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RHPTree—Risk Hierarchical Pattern Tree for Scalable Long

Pattern Mining
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Risk patterns are crucial in biomedical research and have served as an important factor in precision health and

disease prevention. Despite recent development in parallel and high-performance computing, existing risk

pattern mining methods still struggle with problems caused by large-scale datasets, such as redundant can-

didate generation, inability to discover long significant patterns, and prolonged post pattern filtering. In this

article, we propose a novel dynamic tree structure, Risk Hierarchical Pattern Tree (RHPTree), and a top-down

search method, RHPSearch, which are capable of efficiently analyzing a large volume of data and overcom-

ing the limitations of previous works. The dynamic nature of the RHPTree avoids costly tree reconstruction

for the iterative search process and dataset updates. We also introduce two specialized search methods, the

extended target search (RHPSearch-TS) and the parallel search approach (RHPSearch-SD), to further speed

up the retrieval of certain items of interest. Experiments on both UCI machine learning datasets and sampled

datasets of the Simons Foundation Autism Research Initiative (SFARI)—Simon’s Simplex Collection (SSC)

datasets demonstrate that our method is not only faster but also more effective in identifying comprehensive

long risk patterns than existing works. Moreover, the proposed new tree structure is generic and applicable

to other pattern mining problems.
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1 INTRODUCTION

Risk factors are variables which capture the differences of two groups through certain risk mea-
surements such as risk difference, relative risk, and odds ratio [10]. Risk factors allow people to
gain a better understanding of the intricate structure of a large dataset, which has a catalytic effect
in decision-making and predictions. For decades, risk factors have been widely utilized in a broad
range of applications, such as fraud detection [37], social bot detection [38, 57], and geospatial
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traffic intervention [55]. Most recently, risk factors have begun to play an important role in medi-
cal research as they contribute to identifying behavioral, environmental, and genetic factors that
can increase the likelihood of developing a disease. Specifically, there has been a rising demand to
identify the risk factors in precision medicine [40, 49] and preventive healthcare [39, 52] to better
understand the etiology of diseases in order to tailor treatments for targeting patients. Risk factors
and the corresponding outcomes are typically quantified using the statistic measurements such as
risk difference, relative risk, and odds ratio, which indicate the difference of risks, the ratio of risks,
and the ratio of odds between two groups, respectively.

A combination of several co-occurring risk factors, which is defined as a risk pattern, is critical in
etiological research and disease intervention [8, 22, 51]. For example, the etiology of autism could
include multiple mutated genes as risk factors. The majority of prevention research has focused on
single or simple factor identification. However, a number of studies have shown that risk factors
often coexist and interact mutually [9, 15]. For instance, a previous study demonstrated a gene-
environment interaction between passive smoking and two HLA genes, which relates to higher
multiple sclerosis risk [43]. There is a clear need to discover longer and more complex patterns for
understanding risk factors in the abovementioned application areas. Unfortunately, only 8.8% of
studies have considered multiple risk factors [54] and are still in a preliminary stage.

1.1 Motivation

To gain a better understanding of the current challenges, we first formally introduce the risk
measurements with an example of a genetic mutation (m) as a risk factor between two groups
of autistic patients with (Gi ) and without (G j ) aggressive behavior. Within each group (Gi ,G j ),
the number of patients who have the mutation (дm,i ,дm, j ) or who do not have the mutation
(дn,i ,дn, j ) are recorded. One can measure the risk of m between the two groups using (1) risk
difference (or support difference) to capture the probability difference of having the mutation,
RD (Gi ,G j ) = ( |дm,i |/|Gi |) − ( |дm, j |/|G j |); (2) relative risk (or growth rate) to capture the ratio of
the probability of having the mutation, RR (Gi ,G j ) = ( |дm,i |/|Gi |)/( |дm, j |/|G j |); and (3) odds ratio
to capture the ratio of the percentage of patients with the mutation compared to those do not have
the mutation, OR (Gi ,G j ) = ( |дm,i |/|дn,i |)/( |дm, j |/|дn, j |).

Unlike identifying patterns containing a single risk factor, mining risk patterns, which are com-
posed of multiple risk factors, is much more computationally expensive as the mining process
must compare a potentially large number of candidate patterns in one group with every pattern
in the other group. The search space expands rapidly due to combinatorial explosion caused by a
large number of risk factors [4]. Although there have been several previous studies on risk pattern
mining [12, 14, 21, 26, 47], they have mainly focused on two risk factors, i.e., risk difference and rel-
ative risk because these two measurements can take the advantage of a contrast mining algorithm.
The efficiency of the contrast mining algorithm mainly originates from the border representation
proposed by [12], which utilizes Apriori property [1] to effectively reduce the search space.

However, odds ratio pattern mining has not been studied as much in computational communi-
ties due to the fact that the border representation cannot be applied to odds ratio patterns. Unlike
all sub-patterns of maximal frequent patterns which can be computed based on Apriori property,
the odds ratios of all subsets of maximal odds patterns do not automatically meet odds threshold β .
Therefore, the border cannot cover all sub-patterns with odds above β . This increases the complex-
ity and difficulty for odds ratio pattern mining [12]. Similarly, for any other risk criteria that do not
have the Apriori property, border representation will not be valid. Hence, a generalized approach
is needed to handle risk criteria that are not restricted to following border representations.
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1.2 Novelty of the Work

To build a general risk pattern mining algorithm, it is critical to utilize a persistent and dynamic
data structure that allows search space reduction with various risk criteria and dynamic data up-
dates without full reconstruction. Currently, the data structures used by most risk pattern mining
methods are not suitable for odds ratio or other less studied risk criteria. Practically, discovering
patterns with varied risk measurements is often performed manually by humans and has become
increasingly challenging with the unprecedented growth of the data. For example, with different
discovery criteria or database updates, repeatedly mining the database unnecessarily wastes re-
sources and time [1, 31]. Also, it is common for studies to prioritize items of interest to the mining
process based on observations and prior beliefs, and therefore it is important that the data struc-
ture accommodate for the target-orientated searches. Itemset tree [28] and FPTree [23] have been
adapted for target-oriented search for frequent patterns [19, 29, 33, 48]. But they do not offer any
possibility to avoid unnecessary search using risk measurements because the required statistics
are not easily accessible. With these identified requirements and limitations, it is clear that a novel
data structure is needed for the increased risk calculation complexity rooted in risk pattern mining,
especially with odds ratio as the risk measurement.

In this work, we propose a dynamic indexing structure for general risk pattern mining that al-
lows for data updates and target search. We also design a general mining method for the proposed
data structure that effectively reduce the search space for various risk criteria. The proposed min-
ing method can be further specified to provide incremental and target-oriented mining, and it can
be scaled by performing parallel computation.

1.3 Contributions

To bridge the gaps stated above, this article proposes a novel data structure as well as a highly effi-
cient search algorithm to identify significant risk patterns. Our main contributions are summarized
as follows:

—We proposed a new dynamic tree structure, namely Risk Hierarchical Pattern Tree

(RHPTree), in which the number of nodes scales linearly to the cardinality of items in
the data and thus handles large datasets effectively. The RHPTree also serves as a persis-
tent data structure which supports insert, delete, and update operations to adjust well to
database growth. Moreover, the RHPTree inherently indexes frequent and risk patterns, en-
abling efficient, targeted pattern mining, and inclusive mining when the search criteria vary
iteratively.

—We designed a top-down comprehensive search paradigm, called Risk Hierarchical Pat-

tern Search (RHPSearch). This method is capable of tackling the challenging mining task
that identifies long and complex risk patterns. Furthermore, we also developed an efficient
target-oriented search algorithm RHPSearch-TS for applications that focus only on specific
items. We have proved the completeness of the patterns returned by our algorithms, and
also evaluated their performance with benchmark datasets and real-world data.

—We developed a parallel search algorithm based on our proposed RHPSearch to further im-
prove the overall pattern mining performance in a distributed computing environment.

The rest of this article is organized as follows. Section 2 discusses related work and provides the
formal definition of the odds ratio pattern mining. Section 3 reports the new dynamic tree structure
RHPTree and explores its frequency and bound properties for risk pattern mining. Section 4 intro-
duces the definition and comprehensive analysis of search methods, including the RHPSearch, the
target-oriented search, RHPSearch-TS, and the RHPSearch-SD for parallel computing. Section 5
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evaluates the efficiency of our algorithms on both benchmark and health data sets. Finally, the
article is concluded in Section 6 with future research directions.

2 RELATED WORK AND PROBLEM DEFINITION

2.1 Related Work

Risk pattern mining is related to frequent itemset mining, contrast mining, and equivalent class
mining. In this section, we provide a brief overview of main approaches in these fields and compare
our risk pattern mining algorithm with existing studies to provide a background for the proposed
method.

2.1.1 Risk Pattern Selection Using Frequent Pattern Mining. Naturally, one straightforward solu-
tion to mine risk patterns is to implement a post-processing step after the frequent pattern mining
to extract risk patterns from the frequent patterns. Most of the existing frequent pattern min-
ing algorithms can be categorized into three main types: join-based approaches, growth-based
approaches, and set-enumeration-based approaches. Join-based approaches start with candidate
generation and then filter out candidates that do not satisfy the frequency threshold [25]. Join-
based approaches, such as Apriori, do not have a tree structure to adjust changes in the database.
Also, the candidate generation is time- and memory-consuming. Growth-based approaches, such
as FP-Growth [23] and LP-Growth [45], implement a divide-and-conquer method to partition and
project the dataset to a smaller conditional subset until all patterns are identified. The growth-
based tree structure for FP-Growth and LP-Growth supports insert, delete, update operations based
on transactions, but are not designed for a target-oriented search that looks for a specific pattern.
Set-enumeration-based algorithms use a vertical representation of the dataset by scanning it once
and generate the longer patterns by enumeration, such as LCM [53], PrePost+ [11], and negFIN [2].
The set-enumeration-based algorithms either do not have an indexing structure or do not support
target-oriented search.

Most importantly, adding post-processing to existing frequent pattern mining is not an efficient
method for risk pattern mining because a large number of frequent patterns that need to be eval-
uated by the post-processing are not risk patterns. Even though some frequent pattern mining
methods utilize parallel implementations, such as EAFIM [46] based on Apriori and Pfp [33] based
on FP-Growth, the exhaustive checks of the large amount of candidate patterns is still a waste of
computing power. In our work, we propose a novel and parallel algorithm that is specially designed
for risk pattern mining to avoid such unnecessary overhead.

2.1.2 Contrast Mining Using Growth Measurement. Contrast mining is a field which detects pat-
terns that are used to distinguish two groups. Measurement growth, referred to as relative risk in
this article, is often used in contrast mining. As stated previously, Dong and Li [12] proposed the
border differential algorithm to reduce the search space when mining contrast patterns. Because
contrast patterns are often used in classification, sub-contrast mining technologies have been de-
veloped to detect contrast patterns which have a strong classification ability, such as jumping

emerging patterns (JEPs) and strong emerging patterns (SJEPs). These subsets of contrast
patterns can be mined based on the tree structure. Bailey, Manoukian, and Kotagiri [3] proposed a
component tree structure for mining JEPs based on the FP-Growth algorithm. The tree structure
maps each transaction onto a path in the tree, and the search algorithm for this tree is based on
the border differential algorithm. Fan and Kotagiri [14] proposed the contrast pattern tree (CP-

tree) to discover the SJEPs which have a strong discriminating power. The CP-tree is also FP-tree
based but only works using the growth statistic. Currently there is no generic tree structure that
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is suitable for mining contrast patterns under other measurements such as odds ratios considered
in our work.

2.1.3 Equivalent Class Mining. In addition to mining patterns using target statistics, several
studies aim to find patterns with the same statistical measurements, which is called equivalent
class mining [32, 34, 35]. Li et al. [32] proposed a method that mines the generators and closed
patterns of equivalence classes at the same time, and then combines them to discover the odds
ratio pattern. An equivalent class can be represented by a concise closure, which is denoted as
[д, c], where д is a generator and c is a closed pattern. A generator is an itemset which contains no
subsets with the same support and a closed pattern is an itemset where there exists no superset
that has the same support. A closure [д, c] can be extended to include the patterns having the same
transactions, and thus these patterns share the same statistical measurements. The concise closure
avoids mining all frequent patterns by only mining generators and closed patterns to cover all
frequent patterns that have the same support level. Equivalent class mining aims to discover all
closures for each support level. After discovering all equivalent classes in the dataset, users need
to calculate the risk measurement values for all closures and then select the ones which meet the
chosen criteria.

Although equivalent class mining represents patterns with the same statistical measurements el-
egantly, extracting risk patterns from all equivalent classes is as computationally costly as getting
risk patterns from frequent patterns. This is especially true when many equivalent classes exist,
but only a few pass the risk threshold. Also, the method for mining generators or closed patterns
does not support target-oriented search. Some existing methods can mine closed patterns [24, 50]
or generators [56] in the incremental databases, but none of them are designed for generating a
concise closure of equivalent classes. Therefore, these aforementioned methods for related prob-
lems cannot be easily applied to risk pattern mining. Inspired by the FHPTree for maximal pattern
mining [44], we developed a new tree structure for efficiently mining risk patterns between two
groups directly without further post-processing.

2.1.4 Target-orientated Mining. Target item mining is to discover the target itemsets that are
useful for specific application, instead of mining all frequent itemsets. Several target itemset min-
ing algorithms are based on itemset tree which stores transactions or their intersections as nodes
[20, 28, 30]. While the itemset tree is able to mine the target frequent itemsets, its structure is de-
signed for frequent pattern mining, which only involves the measurement of a single dataset. Our
motivation is to have a single tree structure that can perform full search, target search, parallel
search for risk patterns from two contrast collections of transactions.

2.1.5 high-utility Pattern Mining. Recently, high utility mining has been an active area of fre-
quent pattern mining research with the goal of evaluating the usefulness of the item. The transac-
tion database contains the quantity of items and the unit profit of each item. The aim of high utility
mining is to discover the high utility itemsets (HUIs) that is able to generate the high profit that
exceeds the predefined threshold (minutil). There are several methods that mines the high utility
patterns by using advanced tree and list structures [6, 27, 36, 42, 58]. Although high utility pattern
mining considers the profit of the item, it does not consider the cost to obtain the utility. Philippe
Fournier-Viger [18] proposed the novel approaches to mine cost-effective patterns in event logs.
While the purpose of finding risk patterns is different from finding high utility patterns, high utility
concept can be added into the RHPTree. An example is discovering the druggability of a collection
of genes. However, to have a clear goal of this project, we focus on the risk pattern tree and risk
pattern part and leave the potential opportunities of high utility pattern mining as future work.
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2.2 Risk Pattern Definition

Let I = {i1, i2, . . . , im } be a set of items, and a dataset D be a collection of transactions T , where
each transaction is a set of items in I . A pattern P is a collection of co-occurring items. The support
of P in D, supp (P ,D), is the ratio of the number of transactions containing P to the total number
of transactions in D. A pattern is called a frequent pattern when its support is no less than a given
support threshold α . Given two groups Gi and G j in the dataset D, the risk difference RD of a
pattern P in Gi , when comparing against G j , is defined as the support difference of P between the
groups Gi and G j :

RD (P ,Gi ,G j ) = supp (P ,Gi ) − supp (P ,G j ). (1)

The relative risk RR of a pattern P inGi , when comparing againstG j , is defined as the ratio of two
supports:

RR (P ,Gi ,G j ) =
supp (P ,Gi )

supp (P ,G j )
. (2)

The odds ratio OR of a pattern P in Gi , when comparing against G j , is defined as the ratio of the
odds of P in the presence of Gi to the odds of P in the presence of G j :

OR (P ,Gi ,G j ) =
supp (P ,Gi ) ∗ |Gi |/((1 − supp (P ,Gi )) ∗ |Gi |)
supp (P ,G j ) ∗ |G j |/((1 − supp (P ,G j )) ∗ |G j |)

, (3)

where supp (P ,G ) ∗ |G | is the number of transactions containing P in G, and (1 − supp (P ,G )) ∗ |G |
is the number of transactions excluding P in G. P can be considered a risk pattern in Gi or G j

using either odds ratio, risk difference, or relative risk with a threshold β while being a frequent
pattern in Gi ∪G j . As discussed in the Motivation section, mining patterns using odds ratio mea-
surement is more challenging than mining patterns using risk difference and relative risk due to
the applicability of the border condition.

3 RISK HIERARCHICAL PATTERN TREE

Mining and searching odds ratio patterns require an efficient tree structure for varied risk thresh-
olds and target-oriented search. Once constructed, this tree allows multiple mining processes un-
der different thresholds with no additional risk computations. The tree can also be dynamically
updated with new transactions without rebuilding. In this section, we first define the RHPTree and
then discuss the tree building method as well as tree operations.

3.1 Definition

The basic elements of a RHPTree are tree nodes representing an item or a set of items and the
relationships between a parent node and its two child nodes. Because risk pattern mining always
involves comparing patterns between two groups, the tree structure is designed to contain the
transactions as well as the group information for each item. To keep track of the transaction infor-
mation of both Gi and G j , each node stores the IDs of the transactions where the item occurs in
groups Gi and G j . To estimate the range of a risk measurement value for a pattern efficiently, we
use the concept of exact transaction set eT and candidate transaction set cT as the lower and up-
per estimations of the number of transactions that contain a pattern. The exact transaction set of
a node includes all transaction IDs that exactly contain the items in the node, while the candidate
transaction set includes all transaction IDs that may contain the items. For each leaf node, which
represents a single item, these two sets are the same. For each internal node, the exact transaction
set is the intersection of both child nodes’ exact transaction sets and the candidate transaction set
is the union of both child nodes’ candidate transaction sets. As one ascends the tree, the number
of transactions in eT shrinks and the number of transactions in cT grows. One group’s cT and the
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Fig. 1. (a) The hierarchical structure of a node and its children. (b) An example of hierarchical relation in the

RHPTree node.

other group’s eT can be used to calculate the upper and lower bounds of the risk measurement
value. These bounds can be further used to generate qualified patterns that pass the threshold and
to prune the unnecessary patterns that fall below the threshold. For the purpose of presentation
clarity, we will present the process for finding odds ratio patterns only in Gi . The same principles
can also be applied to the other group G j . The basic element tree node is defined as follows:

Definition 3.1 (Tree Node). Each nodev in RHPTree contains three parts as shown in Figure 1(a):
(1) label: an item or a set of items that v represents, (2) exact transaction set eT : eTi is a set of IDs
of the transactions that exactly contain v in group Gi , and (3) candidate transaction set cT : cTi is
a set of IDs of the transactions that possibly contain v in group Gi .

The RHPTree consists of leaf nodes and internal nodes in a binary tree format. The relationships
of the parent node to its child nodes are defined as follows:

Definition 3.2 (Parent and Child Node Relationships). Each leaf node in the RHPTree is a sin-
gle frequent item which has eTi = cTi as the true counts that can be obtained. Each internal
node represents an itemset which is a union of itemsets from its children. eTi of an internal
node v is the intersection of its children’s eTi , and its cTi is the union of its children’s cTi , i.e.,
eTi (v ) = eTi (vL ) ∩ eTi (vR ) and cTi (v ) = cTi (vL ) ∪ cTi (vR ), where vL , vR are children of the
node v .

With these definitions, it is worth noting that a node’s exact transaction set eTi (v ) is a subset of
its candidate transaction set cTi (v ), i.e., eTi (v ) ⊆ cTi (v ). Additionally, according to the parent and
child node relationships, a node’s exact transaction set is a subset of its children’s exact transaction
set, and the child’s candidate transaction set is a subset of its parent’s candidate transaction set,
i.e., eTi (v ) ⊆ eTi (vL ), eTi (v ) ⊆ eTi (vR ) and cTi (vL ) ⊆ cTi (v ), cTi (vR ) ⊆ cTi (v ).

Example. As shown in Figure 1(b), the leaf node representing item a appears in the transactions
t1, t2, t3 in groupGi , and transactions t1, t2, t3, t4 in groupG j ; the leaf node representing b appears
in the transactions t1, t2, t3 in group Gi , and transactions t1, t4 in group G j . Their parent node
ab has the following exact transaction sets and candidate transaction sets: eTi (ab) = eTi (a) ∩
eTi (b) = {t1, t2, t3}, eTj (ab) = eTj (a) ∩ eTj (b) = {t1, t4}; cTi (ab) = cTi (a) ∪ cTi (b) = {t1, t2, t3},
cTj (ab) = cTj (a) ∪ cTj (b) = {t1, t2, t3, t4}. Using the two basic tree elements, we will discuss the
tree construction process for the RHPTree.

3.2 RHPTree Construction

The construction of the RHPTree follows a bottom-up method that is similar to hierarchical clus-
tering. First, all single frequent items are made into leaf nodes where both cT and eT are the sets of
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transactions in which the items occur, calculated separately in each group. Secondly, the algorithm
selects two leaf nodes based on similarities of exact and candidate transaction sets and generates
a parent node. This parent node will enter the next round of selection and parent node generation.
The process repeats until only one node, the root of the tree, is left.

One key step in RHPTree construction is to identify the most comparable peer nodes which have
similar transactions with similar supports and risk measurements. Nodes with similar transaction
sets are more likely to form long odds ratio patterns, and thus should be grouped together. To
accomplish this, we use the Jaccard distance in groupsGi andG j to measure the distance between
the exact and candidate transaction sets of two nodes:

deTi
(vL,vR ) = 1 − eTi (vL ) ∩ eTi (vR )

eTi (vL ) ∪ eTi (vR )
and deTj

(vL,vR ) = 1 −
eTj (vL ) ∩ eTj (vR )

eTj (vL ) ∪ eTj (vR )
,

dcTi
(vL,vR ) = 1 − cTi (vL ) ∩ cTi (vR )

cTi (vL ) ∪ cTi (vR )
and dcTj

(vL,vR ) = 1 −
cTj (vL ) ∩ cTj (vR )

cTj (vL ) ∪ cTj (vR )
,

(4)

and then combine these distances linearly to get the distance function between two nodes.

Definition 3.3. The distance between two nodes vL and vR is defined as follows:

dist (vL,vR ) = deTi
(vL,vR ) + deTj

(vL,vR ) + dcTi
(vL,vR ) + dcTj

(vL,vR ). (5)

Each component in the distance function ranges from 0 to 1, thus the range of the dist (vL,vR )
is [0,4]. The pseudocode of the RHPTree construction is listed in Algorithm 1.

The most expensive operation in the RHPTree construction algorithm is the iterative pairwise
comparison, which calculates the distance of each node pair based on their transaction sets. The
pairwise comparison at each tree layer requiresO (n2) comparisons, wheren is the number of items
in the dataset. Each layer contains roughly half the items from the previous layer, and there are
loд(n) layers as RHPTree is a full binary tree. Thus, the upper bound for the number of comparisons
during the RHPTree construction is:

n2 ×
loд (n)∑

k=0

(
1

2

)2k

<
4

3
n2. (6)

During each comparison, the algorithm does the bitset union and intersection on the transac-
tion sets to calculate the distance. The time complexities of the union and intersection operations
are linear to the transaction number. To store the tree structure, the worst-case scenario is that
every item appears in every transaction, which means each node has to store all transaction IDs.
Assuming there are m transactions and n items in the dataset, the size of the tree is (2n − 1) ∗ 4m,
where (2n − 1) is the number of nodes in the RHPTree, and 4m is the size of two exact transaction
sets and two candidate transaction sets for each node. Thus, the space complexity is O (nm).

Example. Figure 2 depicts a simplified example of the RHPTree construction process. Assume
support threshold α = 0.5, then the frequent items are a, b, c , d in the combination of Gi

and G j . By calculating the distance between the nodes using Equation (5), as the line 2 in the
Algorithm 1 states, leaf nodes c , d have the smallest distance among all pairs formed by a, b, c , d .
Next c , d are paired to form an internal node cd first as the line 3 in Algorithm 1. Then node cd is
the new node for the next iteration with nodes a, b as shown in line 4. In the next iteration, nodes
a, b are paired to form node ab. Finally, ab and cd are paired to form the root node abcd . Different
orders of node parings will generate different tree structures which will ensure that the patterns
of interest remain identical. Section 4.1 will provide a formal proof of the completeness in pattern
search.
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Fig. 2. An example of RHPTree construction.

ALGORITHM 1: RHPTree Construction

Input: A node set: V = {v1,v2, . . . ,vn }, A distance function dist (vL,vR )
Output: RHPTree

1: while V .size > 1 do

2: vL , vR satisfy min dist for all pairs in V
3: Create parent node vp for vL , vR

4: V = V −vL −vR +vp

5: end while

6: return V .head

3.3 Operations

The ever-growing data require a flexible data structure. The reusable tree structure is a requisite to
iterative discovery and fault tolerance. The RHPTree features insert, delete, and update operations
to dynamically adjust the tree structure as the dataset it represents is updated.

3.3.1 Insert. The insert operation is triggered when a new item is introduced to the dataset or
a previous infrequent item is now frequent due to a reduced support threshold or newly added
transactions. To integrate the new leaf nodev into the RHPTree, the primary goal is to pairv with
the most similar node in the RHPTree.

To optimize the tree structure after inserting v , we adopt the rotate technique as described in
[41]. First, we pair v with the nearest leaf neighbor Sib and generate a new parent which replaces
Sib’s position in the tree. The original sibling of Sib becomes the aunt of both v and Sib. Second,
we check the distances between Sib andv , Sib and aunt . If the distance between Sib and aunt is less
than the distance between Sib and v , then swap v with aunt so that the Sib and aunt can still pair
together. The algorithm then repeatedly checks the distances betweenv and its new sibling Sib, Sib
and aunt , and swaps v and aunt until dist (v, Sib) < dist (Sib,aunt ) or v’s parent is the root of the
RHPTree. Finally, it updates the transaction sets ofv’s ancestors. The pseudocode for the RHPTree
insert is described in Algorithm 2. The insertion operation has two steps, one is to find the nearest
neighbor of the new item, and the other is to update ancestors’ transaction sets. Assuming there
are n leaf nodes in the tree and m transactions in the dataset, the worst-case scenarios of finding
nearest neighbor is O (n) and updating all ancestor’s transactions is O (loд(n) ∗m), where loд(n) is
the height of the RHPTree.

Example. In Figure 3, a new node e is added into the RHPTree in Figure 2. First, the algorithm
finds the nearest neighbor a among all leaf nodes and rotates b to become their aunt as lines 1–3
show in Algorithm 2. However, a and b have a smaller distance than a and e as the condition in
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Fig. 3. An insert example of adding node e into an existing RHPTree.

ALGORITHM 2: RHPTree Insertion

Input: A new node v , RHPTree
Output: RHPTree

1: Sib=Nearest_Neighbor (v)
2: Replace Sib with a new parent of both Sib and v
3: aunt = v .aunt
4: while v .parent is not RHPTree.root or dist (Sib,aunt ) < dist (Sib,v ) do

5: swap v and aunt
6: Sib = v .siblinд, aunt = v .aunt
7: end while

8: UpdateAncestorTransactions(v)
9: return RHPTree

line 4, so node e is swapped with node b to put a and b together again as lines 5–7 show. Because
dist (ab, cd ) > dist (ab, e ), no more swapping is needed.

3.3.2 Delete. The delete operation is triggered when an item is deleted from the dataset or a
previously frequent item is now infrequent. The delete operation is a bottom-up approach. The
algorithm deletes the node with its parent, and then uses its sibling to replace its former parent.
Similar to the insert, delete also needs to update the transaction sets of its ancestors. The pseu-
docode for the delete operation is provided in Algorithm 3. The delete operation deletes the target
leaf node and then updates the ancestors’ transaction sets. Assuming there are n leaf nodes in the
tree and m transactions in the dataset, updating all ancestor’s transactions has a complexity of
O (loд(n) ∗m).

Example. Figure 4 shows the process of deleting c from the RHPTree. The node c’s sibling d
replaces its original parent cd .

ALGORITHM 3: RHPTree Deletion

Input: A remove node v , RHPTree
Output: RHPTree

1: if v .siblinд � ∅ then

2: grandparent=v .parent .parent
3: v .siblinд.parent=grandaparent
4: RHPTree.delete(v .parent )
5: end if

6: UpdateAncestorTransactions(v .siblinд)
7: return RHPTree
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Fig. 4. Deleting the node c from the RHPTree.

3.3.3 Update. The update operation is designed to modify the label and the transaction sets of
an existing node. Changing the label is straightforward. Updating the transaction sets is a bottom-
up method, it starts from the leaf node and continuously updates the transaction sets of its an-
cestors as provided in Algorithm 4. The update operation triggers the insert or delete operation
when the modified item becomes frequent or infrequent, respectively. As discussed previously, as-
suming there are n leaf nodes in the tree andm transactions in the dataset, updating all ancestor’s
transactions has a complexity of O (loд(n) ∗m).

ALGORITHM 4: RHPTree Update

Input: A leaf node v , new transaction sets eT , cT , RHPTree
Output: RHPTree

1: p = v
2: p.eT = eT , p.cT = cT
3: while p is not RHPTree.root do

4: p.parent .eTi = p.eTi ∩ p.siblinд.eTi , p.parent .eTj = p.eTj ∩ p.siblinд.eTj

5: p.parent .cTi = p.cTi ∪ p.siblinд.cTi , p.parent .cTj = p.cTj ∪ p.siblinд.cTj

6: p = p.parent
7: end while

8: return RHPTree

4 RHPSEARCH: RISK PATTERN TREE SEARCH

Based on the RHPTree structure, we describe an efficient, top-down, iterative search method en-
suring the coverage of all item combinations that satisfy both support and odds ratio criteria.

4.1 The Naïve RHPSearch

We first describe the naïve search method for RHPTree without pruning methods to provide an
intuitive introduction of the basic search strategy. We define a naïve search as an exhaustive depth-
first search method that lists all possible patterns. The RHPSearch is a top-down search method
that starts from the root node and iteratively searches downwards. Because the RHPTree is a
binary tree, there are three paths requiring checking for a given node: the node itself, its left child,
and its right child. For each search path, the tree checks the pattern combinations of nodes to find
qualified risk patterns. With this naïve search strategy, the search paths continue to split as the tree
is traversed downwards iteratively until all leaf nodes are covered. The iterative three-way split
method ensures that all possible patterns are covered. The complete RHPSearch, which utilizes
advantageous properties of RHPTree to prune many unnecessary search paths, will be given in
Section 4.3.
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As described above, RHPSearch starts the first iteration from the root node V0 = {vroot } and
then in the second iteration splits into three sub-searches conducted on the collection of search
nodes of the root node vroot and its children vL and vR , which are V1 = {vL,vR }. V1,L = {vL },
and V1,R = {vR }. Each of these sub-searches will also iteratively yield three sub-searches. The
mechanism to determine the three sub-searches first selects a non-leaf node v in the searching
node collection V and launches the searches on its children. Assume that at the nth iteration, the
algorithm is checking a collection Vn = {v1,v2, . . . ,vk }, and that a non-leaf node vi , which is
picked for this iteration, has children vi,L and vi,R . Then three sub-searches are launched:

Vn+1 = (Vn −vi ) ∪ {vi,L } ∪ {vi,R }
Vn+1,L = (Vn −vi ) ∪ {vi,L }
Vn+1,R = (Vn −vi ) ∪ {vi,R }.

Algorithm 5 describes the searching steps. Starting at the root node, if there are non-leaf nodes
inside the searching collection (lines 1–3), the first non-leaf nodevn is replaced by its two children
vn,L andvn,R (lines 4–5), and then three sub-searches are launched (lines 6–12). Using the RHPTree
in Figure 2 as an example, by following Algorithm 5, all derived paths are shown in Figure 5.
The normal node collections contain non-leaf nodes, while the marked collections are the final
searching collections that only contain leaf nodes and represent all possible item combinations. In
Theorem 4.2, we prove that this search method covers a comprehensive list of patterns containing
all items in the tree.

ALGORITHM 5: Naive RHPSearch

Input: A searching node collection: V
Output: Pattern collection: RHPSet

1: leaves = {v |v ∈ V and v .children.size = 0}
2: nonLeaves = V − leaves
3: if nonLeaves .size > 0 then

4: vn = nonLeaves .head
5: Nodes = (nonLeaves −vn ) + leaves
6: Naive RHPSearch(Nodes +Vn,R +Vn,L)
7: if vn,R � RHPSet then

8: Naive RHPSearch(Nodes +vn,R )
9: end if

10: if vn,L � RHPSet then

11: Naive RHPSearch(Nodes +vn,L)
12: end if

13: end if

14: RHPSet.add(V )

Before introducing Theorem 4.2, we define the set of patterns that each searching node collection
V covers, which is called k-ary collection as follows. The k-ary collection of a searching node
collection contains a representation of all derived patterns, which are also related to the pruning
properties introduced in Section 4.2.

Definition 4.1 (k-ary Collection). Given a searching node collection Vn = {v1,v2, . . . ,vk }, all
possible patternsVn covers are P (Vn ) = P+ (W1) × · · · × P+ (Wk ) = {w1 ∪ · · · ∪wk |wi ∈ P+ (Wi ) for
every vi ∈ Vn }, whereWi is the set of all leaf nodes covered by vi and P+ (Wi ) is the powerset of
Wi excluding the empty set.
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Fig. 5. The derived searching paths of an example RHPTree.

As shown by the RHPTree in Figure 2, assume the node collection is V = {ab, cd }, then the
leaf node sets of ab and cd areW1 = {a,b} and W2 = {c,d }, respectively. The powerset P+ (W1) is
presented by {{a}, {b}, {a,b}} and the powerset P+ (W2) is presented by {{c}, {d }, {c,d }}. The k-ary
collection overV is P (V ) = P+ (W1)×P+ (W2) = {{a, c}, {a,d }, {a, c,d }, {b, c}, {b,d }, {b, c,d }, {a,b, c},
{a,b,d }, {a,b, c,d }}. From this definition, we can derive Theorem 4.2, which ensures that the split-
ting strategy in Naïve RHPSearch keeps the same patterns when launching the three sub-searches.

Theorem 4.2. Given a searching node collection Vn = {v1,v2, . . . ,vk }, in the Naïve RHPSearch,

the patterns covered by subsequent sub-searches are the same as the patterns covered by Vn , which is

P (Vn ) = P (Vn+1) ∪ P (Vn+1,L ) ∪ P (Vn+1,R ).

Proof (Left→ Right). For any pattern t = {w1∪w2∪ · · ·∪wk } ∈ P (Vn ), we want to prove that
t ∈ P (Vn+1) ∪ P (Vn+1,L ) ∪ P (Vn+1,R ). Assume the nodev1 is the non-leaf node to split in the collec-
tionVn , andv1,L ,v1,R are the children ofv1, then three launched sub-searches are on the collections
Vn+1 = {v1,L,v1,R ,v2, . . . ,vk }, Vn+1,L = {v1,L,v2, . . . ,vk }, and Vn+1,R = {v1,R ,v2, . . . ,vk }. Also, all
item combinations covered byv1 are P+ (W1) = P+ (W1,L ) ∪ P+ (W1,R ) ∪ (P+ (W1,L ) × P+ (W1,R )). Ac-
cording to the k-ary collection definition, we know thatw1 ∈ P+ (W1) because of P (Vn ) = P+ (W1) ×
P+ (W2) × · · · × P (Wk ). Thus, w1 belongs in P+ (W1,L ) or P+ (W1,R ) or (P+ (W1,L ) × P+ (W1,R )).

Case 1: Ifw1 ∈ P+ (W1,L ), then t ∈ P+ (W1,L )×P+ (W2)× · · · ×P+ (Wk ). The definition of P (Vn+1,L )
is P+ (W1,L ) × · · · × P+ (Wk ), then t ∈ P (Vn+1,L ).

Case 2: Ifw1 ∈ P+ (W1,R ), then t ∈ P+ (W1,R )×P+ (W2)× · · · ×P+ (Wk ). The definition of P (Vn+1,R )
is P+ (W1,R ) × · · · × P+ (Wk ), then t ∈ P (Vn+1,R ).

Case 3: Ifw1 ∈ P+ (W1,L )×P+ (W1,R ), then t ∈ P+ (W1,L )×P+ (W1,R )× · · · ×P+ (Wk ). The definition
of P (Vn+1 is P+ (W1,L ) × P+ (W1,R ) × · · · × P+ (Wk ), then t ∈ P (Vn+1).

According to three cases above, t ∈ P (Vn+1) ∪ P (Vn+1,L ) ∪ P (Vn+1,R ). Therefore, P (Vn ) ⊆
P (Vn+1) ∪ P (Vn+1,L ) ∪ P (Vn+1,R ).

(Right → Left). Assume any t ′ ∈ P (Vn+1) ∪ P (Vn+1,L ) ∪ P (Vn+1,R ). We want to prove that
t ′ ∈ P (Vn ). There also exists three cases.
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Case 1: The definition of P (Vn+1,L ) is P+ (W1,L ) × P+ (W2) × · · · × P+ (Wk ). If t ′ ∈ P (Vn+1,L ), then
t ′ ∈ P (Vn ) because P+ (W1,L ) ⊆ P+ (W1).

Case 2: The definition of P (Vn+1,R ) is P+ (W1,R ) × P+ (W2) × · · · × P+ (Wk ). If t ′ ∈ P (Vn+1,R ), then
t ′ ∈ P (Vn ) because P+ (W1,R ) ⊆ P+ (W1).

Case 3: The definition of P (Vn+1) is P+ (W1,L )×P+ (W1,R )×P+ (W2)× · · · ×P+ (Wk ). If t ′ ∈ P (Vn+1),
then t ′ ∈ P (Vn ) because P+ (W1,L ) × P+ (W1,R ) ⊆ P+ (W1).

According to three cases above, we know that t ′ ∈ P (Vn ). Therefore, P (Vn+1) ∪ P (Vn+1,L ) ∪
P (Vn+1,R ) ⊆ P (Vn ). Finally, we can conclude that P (Vn ) = P (Vn+1) ∪ P (Vn+1,L ) ∪ P (Vn+1,R ). �

4.2 Pruning Strategies: Statistical Bound Properties for Searching RHPTree

The Naïve RHPSearch is able to search the entire tree and cover all possible combinations, which
makes it capable of finding all risk patterns. However, the structure of the RHPTree has two impor-
tant properties that allow us to prune search paths that contain unqualified patterns. As defined
in Section 2.2, frequent odds ratio patterns are patterns that exceed both support and odds ra-
tio thresholds. With two thresholds, the two properties of a complete RHPTree search are: (1) a
frequency property using the support threshold and (2) a bounds property using the odds ratio
threshold. The complete RHPSearch can efficiently discover all qualified risk patterns with no re-
dundant searches. Before describing the search method, we first define these properties in this
section.

The idea behind the frequency property is that if we already know that the search paths derived
from the current search node are certainly frequent or certainly infrequent, there is no need to
check the support of any pattern in the derived paths. In the first case, when the paths are certainly
infrequent, it is easily understood that the subsequent patterns will also be infrequent, and that
we can safely discard them. In the second case, when the paths are certainly frequent, we can also
stop checking because all subsequent patterns will be frequent as well. For example, if either item
a or item b falls below the frequency threshold, then there is no need to check further to see if a∩b
meets the frequency threshold. On the other hand, if a ∩ b meets the frequency threshold, then
both item a and item b certainly will too. By following this idea, our method is to decide whether
the derived paths of the node collection V are definitely frequent or not. We then can define both
the upper bound (definitely infrequent) and the lower bound (definitely frequent) of the frequency
property.

As discussed in Section 3.2, the bottom-up building method makes the candidate transaction
sets expand with the union operation while the exact transaction sets shrink with the intersection
operation. The enlarged candidate transaction sets and the reduced exact transaction sets are both
valuable to estimate the support values of the patterns. Before introducing the frequency property
and the bounds property, we first define the preliminary definitions of intersection, which is the
key operation in the tree pruning process to ensure a confined and efficient search. The intersection
of the transaction sets of a node collection is used to estimate the frequency and the bounds of the
collection.

Definition 4.3 (Intersection). Given a searching node collection V = {v1,v2, . . . ,vk }, the exact
intersection of all exact intersection sets ofV in groupGi is marked as eXi (V ) = eTi (v1)∩eTi (v2)∩
. . . ∩ eTi (vk ); the candidate intersection of all candidate intersection sets of V in group Gi is
represented as cXi (V ) = cTi (v1) ∩ cTi (v2) ∩ · · · ∩ cTi (vk ).

For the RHPTree shown in Figure 2, assume V = {ab,d }, then in group G1, there are eX1 (V ) =
eT1 (ab) ∩ eT1 (d ) = {t1, t2} and cX1 (V ) = cT1 (ab) ∩ cT1 (d ) = {t1, t2}; In group G2, there are
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eX2 (V ) = eT2 (ab) ∩ eT2 (d ) = {t1} and cX2 (V ) = cT2 (ab) ∩ cT2 (d ) = {t1}. Also, based on Defi-
nition 3.1, for each node vk , eTi (vk ) is the transaction set in group Gi that exactly contains vk .
Thus, it is worth noting that eX (V ) is the set of all the transactions that exactly contain all items
in node collection V . After introducing the basic terminologies, we define the frequency property
as follows, based on Definition 4.1 (k-ary collection) and Definition 4.3 (Intersection).

Theorem 4.4 (Freqency Property). Given a searching node collectionV = {v1,v2, . . . ,vk }, (1)

if |cXi (V ) | + |cX j (V ) | < α ∗ ( |Gi | + |G j |), then all elements in the k-ary collection are infrequent; (2)

if |eXi (V ) | + |eX j (V ) | ≥ α ∗ ( |Gi | + |G j |), then all elements in the k-ary collection are frequent.

Proof. (1) To prove all elements in the k-ary collection P (V ) are infrequent, it is only necessary
to prove that any element w1 ∪ · · · ∪wk ∈ P (V ) is infrequent. As defined in Definition 4.3 (Inter-
section), the frequency of the element w1 ∪ · · · ∪wk ∈ P (V ) is |eX1 (w1 ∪ · · · ∪wk ) | + |eX2 (w1 ∪
· · · ∪ wk ) |. The proof now becomes that if |cXi (V ) | + |cX j (V ) | < α ∗ ( |Gi | + |G j |) holds, then
( |eX1 (w1 ∪ · · · ∪wk ) | + |eX2 (w1 ∪ · · · ∪wk ) |) < α ∗ ( |Gi | + |G j |).

According to Definition 4.3 (Intersection), |eXi (w1 ∪ · · · ∪ wk ) | and |cXi (V ) | can be obtained
by:

|eXi (w1 ∪ · · · ∪wk ) | = |eTi (w1) ∩ · · · ∩ eTi (wk ) | (7)

|cXi (V ) | = |cTi (v1) ∩ · · · ∩ cTi (vk ) | (8)

In Definition 4.1, wk is a subset of vk ’s leaf node collection. According to Definition 3.2 (Parent
and Child Node Relationships), in group Gi , eTi (wk ) ⊆ cTi (wk ) and cTi (wk ) ⊆ cTi (vk ) imply
eTi (wk ) ⊆ cTi (vk ). Thus, |eTi (w1) ∩ · · · ∩ eTi (wk ) | ≤ |cTi (v1) ∩ · · · ∩ cTi (vk ) |. According to
Equations (7) and (8), in group Gi , |eXi (w1 ∪ · · · ∪wk ) | ≤ |cXi (V ) | holds. Therefore, if |cXi (V ) | +
|cX j (V ) | < α ∗ ( |Gi |+ |G j |) holds, then ( |eXi (w1∪ · · · ∪wk ) |+ |eX j (w1∪ · · · ∪wk ) |) < α ∗ ( |Gi |+ |G j |).

(2) Similarly, to prove all elements in k-ary collection P (V ) are frequent, we only need to prove
that any elementw1∪ · · · ∪wk ∈ P (V ) is frequent. The proof now becomes if |eXi (V ) |+ |eX j (V ) | ≥
α ∗ ( |Gi | + |G j |) holds, then ( |eXi (w1 ∪ · · · ∪wk ) | + |eX j (w1 ∪ · · · ∪wk ) |) ≥ α ∗ ( |Gi | + |G j |).

Based on Definition 3.2 (eTi (vk ) ⊆ eTi (wk )), |eTi (w1) ∩ ... ∩ eTi (wk ) | ≥ |eTi (v1) ∩ ... ∩ eTi (vk ) |,
which means the number of intersections of the exact transactions from all child nodes is no
less than the number of intersections of the exact transactions from their parent nodes. Using
Equation (7) and Definition 4.3, |eXi (w1∪ · · · ∪wk ) | ≥ |eXi (V ) |. Therefore, if |eXi (V ) |+ |eX j (V ) | ≥
α ∗ ( |Gi | + |G j |) holds, then ( |eXi (w1 ∪ · · · ∪wk ) | + |eX j (w1 ∪ · · · ∪wk ) |) ≥ α ∗ ( |Gi | + |G j |). �

As shown by the RHPTree in Figure 2, assumingV = {ab,d } and support threshold hold α = 0.5.
There are |cX1 (V ) | + |cX2 (V ) | = |{t1, t2}| + |{t1}| = 3, and α ∗ ( |G1 | + |G2 |) = 4. From Theorem 4.4,
we know all elements in the k-ary collection P (V ) = {{a,d }, {b,d }, {a,b,d }} are infrequent. On the
contrary, assumingV = {ab,d } and support threshold α = 0.3 holds, we have |eX1 (V ) |+ |eX2 (V ) | =
|{t1, t2}| + |{t1}| = 3, and α ∗ ( |G1 | + |G2 |) = 2.4. From Theorem 4.4, we know all of the elements in
the k-ary collection P (V ) = {{a,d }, {b,d }, {a,b,d }} are frequent.

The pruning process is based on the estimates of lower and upper bounds. The idea of the
Bounds Property is similar to that of the Frequency Property, but targets the odds ratio threshold.
In Definition 4.5, we give the new format of the odds ratio definition by utilizing the exact intersec-
tion eX and the candidate intersection cX of the node collection V . The lower and upper bounds,
the decrease and amplification for the real odds ratio, are also defined by using eX and cX in
Definition 4.6.
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Definition 4.5 (Odds Ratio of the Searching Node Collection). Given a set of searching nodes V =
{v1,v2, . . . ,vk }, the real value of odds ratio of V in Gi in comparison to G j is:

OR (V ,Gi ,G j ) =
|eXi (V ) | ∗ ( |G j | − |eX j (V ) |)
|eX j (V ) | ∗ ( |Gi | − |eXi (V ) |) . (9)

Based on Equation (3), the odds ratio of the collection V is
supp (V ,Gi )∗ |Gi |/((1−supp (V ,Gi ))∗ |Gi |)
supp (V ,G j )∗ |G j |/((1−supp (V ,G j ))∗ |G j |) .

supp (V ,G ) ∗ |G |, the number of transactions that contain V in G, is equal to |eX (V ) |. Similarly,
(1− supp (V ,G )) ∗ |G |, the number of transactions inG that excludesV , is equal to ( |G | − |eX (V ) |).
Thus, OR (V ,Gi ∪G j ) =

|eXi (V ) |∗( |G j |− |eX j (V ) |)
|eX j (V ) |∗( |Gi |− |eXi (V ) |) .

Definition 4.6 (Bounds). Given a set of searching nodesV = {v1,v2, ...,vk }, the upper and lower
bounds of odds ratio of V in Gi in comparison to G j are:

Upperbound (V ,Gi ) :
|cXi (V ) | ∗ ( |G j | − |eX j (V ) |)
|eX j (V ) | ∗ ( |Gi | − |cXi (V ) |) ,

Lowerbound (V ,Gi ) :
|eXi (V ) | ∗ ( |G j | − |cX j (V ) |)
|cX j (V ) | ∗ ( |Gi | − |eXi (V ) |) .

(10)

The upper bound enlarges the odds ratio by replacing |eXi (V ) | with |cXi (V ) | as the numerator
and |Gi | − |eXi (V ) | with |Gi | − |cXi (V ) | as the denominator in Equation (9). On the other hand, the
lower bound shrinks the odds ratio by replacing |G j | − |eX j (V ) | to |G j | − |cX j (V ) | at the numera-
tor and |eX j (V ) | to |cX j (V ) | at the denominator. After defining the upper and lower bounds, we
introduce the Bounds Property, which estimates the odds ratio of all elements in k-ary collection
over V based on the upper and lower bounds of V .

Theorem 4.7 (Bounds Property). Given a set of searching nodes V = {v1,v2, ...,vk }, (1) if the

upper bound odds ratio of V in Gi over G j is less than or equal to β , then all elements in the k-ary

collection over V have odds ratio values less than or equal to β ; (2) if its lower bound odds ratio is

greater than or equal to β , then all elements in the k-ary collection over V have odds ratio values

greater than or equal to β .

Proof (Upper bound proof). To prove all elements in k-ary collection P (V ) have odds ratio
values less than or equal to β inGi overG j , one only needs to prove that any elementw1∪ · · · ∪wk ∈
P (V ) hasOR (w1∪ · · · ∪wk ,Gi ,G j ) ≤ β . The proof now becomes if

|cXi (V ) |∗( |G j |− |eX j (V ) |)
|eX j (V ) |∗( |Gi |− |cXi (V ) |) ≤ β holds,

then OR (w1 ∪ · · · ∪wk ,Gi ,G j ) =
|eXi (w1∪ ··· ∪wk ) |∗( |G j |− |eX j (w1∪ ··· ∪wk ) |)
|eX j (w1∪ ··· ∪wk ) |∗( |Gi |− |eXi (w1∪ ··· ∪wk ) |) ≤ β .

According to the proof in Frequency Property, in group G j , eTj (vk ) ⊆ eTj (wk ) implies
|eX j (V ) | ≤ |eX j (w1 ∪ · · · ∪wk ) |; in groupGi , |eXi (w1 ∪ · · · ∪wk ) | ≤ |cXi (V ) | holds. Thus, |G j | −
|eX j (w1∪ · · · ∪wk ) ≤ |G j | − |eX j (V ) | and |Gi | − |cXi (V ) | ≤ |Gi | − |eXi (w1∪ · · · ∪wk ) |. Therefore,

OR (w1 ∪ · · · ∪wk ,Gi ,G j ) =
|eXi (w1∪ ··· ∪wk ) |∗( |G j |− |eX j (w1∪ ··· ∪wk ) |)
|eX j (w1∪ ··· ∪wk ) |∗( |Gi |− |eXi (w1∪ ··· ∪wk ) |) ≤

|cXi (V ) |∗( |G j |− |eX j (V ) |)
|eX j (V ) |∗( |Gi |− |cXi (V ) |) ≤ β .

(Lower Bound Proof). Similarly, to prove all elements ink-ary collection overV have odds ratio
values greater than or equal to β , we only need to prove that any element w1 ∪ · · · ∪wk ∈ P (V )

has OR (w1 ∪ · · · ∪ wk ,Gi ,G j ) ≥ β . The proof now becomes if
|eXi (V ) |∗( |G j |− |cX j (V ) |)
|cX j (V ) |∗( |Gi |− |eXi (V ) |) ≥ β holds,

then OR (w1 ∪ · · · ∪wk ,Gi ,G j ) =
|eXi (w1∪ ··· ∪wk ) |∗( |G j |− |eX j (w1∪ ··· ∪wk ) |)
|eX j (w1∪ ··· ∪wk ) |∗( |Gi |− |eXi (w1∪ ··· ∪wk ) |) ≥ β .

According to the proof in Frequency Property, |eX j (w1 ∪ · · · ∪ wk ) | ≤ |cX j (V ) | and
|eXi (V ) | ≤ |eXi (w1 ∪ · · · ∪ wk ) | holds. Thus, |G j | − |cX j (V ) | ≤ |G j | − |eX j (w1 ∪ · · · ∪ wk ) |
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Fig. 6. The search paths derive from the root node.

and |Gi | − |eXi (w1 ∪ · · · ∪ wk ) | ≤ |Gi | − |eXi (V ) |. Therefore, OR (w1 ∪ · · · ∪ wk ,Gi ,G j ) =
|eXi (w1∪ ··· ∪wk ) |∗( |G j |− |eX j (w1∪ ··· ∪wk ) |)
|eX j (w1∪ ··· ∪wk ) |∗( |Gi |− |eXi (w1∪ ··· ∪wk ) |) ≥

|eXi (V ) |∗( |G j |− |cX j (V ) |)
|cX j (V ) |∗( |Gi |− |eXi (V ) |) ≥ β . �

As shown in Figure 2, givenV = {ab}, the upper bound ofV in |Gi | is
|cXi |∗( |G j |− |eX j |)
|eX j |∗( |Gi |− |cXi |) = 3, then

all elements in the k-ary collection overV have odds ratio values less than or equal to 3 in Gi ; On

the contrary, given V = {cd }, the lower bound of V in |Gi | is
|eXi |∗( |G j |− |cX j |)
|cX j |∗( |Gi |− |eXi |) = 9, all elements in

k-ary collection over V have odds ratio values greater than or equal to 9 in Gi .

4.3 RHPSearch

With the Frequency and Bounds Properties, the algorithm can prune unnecessary search paths that
are evidently qualified or unqualified during the search process. Using the search principles of the
Naïve RHPSearch in Algorithm 5 and the two properties, we can strategically search only the paths
that fall between the upper and lower bounds, and these are only paths whose patterns cannot be
safely discarded or qualified. Starting at the root node, we calculate all its upper and lower bounds,
as well as the odds ratio values shown in line 1 of Algorithm 6. If the frequency and upper bound
conditions are not met, the algorithm stops (lines 2–4). Otherwise, the lower bound will be checked.
If the frequency and lower bound conditions are satisfied, the current nodes’ collection is saved
(lines 5–8). Otherwise, the algorithm checks the exact odds ratio value (lines 9–11), and then the
three sub-searches from that node are launched as same as the Naïve RHPSearch in Algorithm 5.

Using the example shown in Figure 2, given the support threshold α = 0.5 and the odds ratio
threshold β = 5, the search process is depicted in Figure 6 and steps are given below from (1) to
(3):

(1) Starts from the root node {abcd }, the UpperBound ({abcd }) = ∞ and the
LowerBound ({abcd })= 0. It is clear that the odds ratio of k-ary collection over {abcd }
is between 0 and infinity. Also, the exact odds ratio of {abcd } is 3. Thus, the search
continues.

(2) Based on the search strategy, the search splits into three sub-searches {ab, cd }, {ab}, {cd }.
Their bounds are calculated as follows:

(a) As UpperBound ({ab, cd }) = 9 and LowerBound ({ab, cd }) = 3, the odds ratio of k-ary col-
lection over {ab, cd } is between 3 and 9. The exact odds ratio of {ab, cd } is 3. The search
continues.

(b) As UpperBound ({ab}) = 3 and LowerBound ({ab}) = 0, the odds ratio of k-ary collection
over {ab} is between 0 and 3. The search stops.

(c) As UpperBound ({cd }) = ∞ and LowerBound ({cd }) = 9, the odds ratio of k-ary collection
over {cd } is between 9 and∞. Then the search stops and saves the k-ary collection of {cd }.

(3) Continues the search over {ab, cd } and splits it into three sub-searches {ab, c,d }, {ab, c},
{ab,d }. Their bounds are calculated as follows:
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ALGORITHM 6: RHPSearch

Input: Suppport threshold: α , Odds Ratio threshold: β , Node collection: V
Output: Pattern collection RHPSet

1: Calculate eXi , cX j , OR (V ,Gi ∪G j ) and OR (V ,G j ∪Gi )
2: if (cXi .size < α ∗ ( |Gi | + |G j |) or UpperBound (V ,Gi ) < β ) and (cX j .size < α ∗ ( |Gi | + |G j |)

or UpperBound (V ,G j ) < β ) then

3: return

4: end if

5: if (eXi .size ≥ α ∗ ( |Gi | + |G j |) and LowerBound (V ,Gi ) ≥ β ) or (eX j .size ≥ α ∗ ( |Gi | + |G j |)
and LowerBound (V ,G j ) ≥ β ) then

6: RHPSet+ = saveRHP (P (V ))
7: return

8: end if

9: if (eXi .size ≥ α ∗ ( |Gi | + |G j |) and OR (V ,Gi ,G j ) ≥ β ) or (eX j .size ≥ α ∗ ( |Gi | + |G j |) and

OR (V ,G j ,Gi ) ≥ β ) then

10: RHPSet+ = saveRHP (P (V ))
11: end if

12: leaves = {v |v ∈ V and v .children.size = 0}
13: nonLeaves = V − leaves
14: if nonLeaves .size > 0 then

15: vn = nonLeaves .head
16: Nodes = (nonLeaves −vn ) + leaves
17: RHPSearch(Nodes +vn,R +vn,L )
18: if vn,R � RHPSet then

19: RHPSearch(Nodes +vn,R )
20: end if

21: if vn,L � RHPSet then

22: RHPSearch(Nodes +vn,L )
23: end if

24: end if

(a) As UpperBound ({ab, c,d }) = 3 and LowerBound ({ab, c,d }) = 3, the odds ratio of k-ary
collection over {ab, c,d } is 3. The search stops.

(b) As UpperBound ({ab, c}) = 9 and LowerBound ({ab, c}) = 9, the odds ratio of k-ary collec-
tion over {ab, c} is 9. Then the search stops and saves the k-ary collection of {ab, c}.

(c) As UpperBound ({ab,d }) = 3 and LowerBound ({ab,d }) = 3, the odds ratio of k-ary collec-
tion over {ab, c} is 3. The search stops.

Overall, the patterns that satisfy the preset threshold is k-ary collections over {cd }, {ab, c}, which
is {c,d, cd,ac,bc,abc}.

4.4 Target Search and Sequential Delete Search

The RHPSearch, described in Section 4.3, provides a comprehensive search through the RHPTree
to provide all the odds ratio patterns of a dataset. However, a full search is usually unnecessary
when a study is only interested in patterns containing a subset of items. In such a situation, we
only need to consider the paths which include the target item instead of going through all paths
in the full search. The pseudocode of this target search is listed in Algorithm 7. In line 2 and line 3,
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the algorithm keeps the ancestors of the target item and makes sure the searching node collection
V contains the ancestor of the target item.

ALGORITHM 7: RHPSearch-TS

Input: Suppport threshold: α , OddsRatio threshold: β , Node Collection: V
Output: Target pattern collection TRHPSet

1: Calculate the eXi , cX j , OR (V ,Gi ,G j ) and OR (V ,G j ,Gi )
2: ancestors (T ) = ancestors o f T
3: if V ∩ ancestors (T ) = ∅ then

4: return

5: end if

6: if (cXi .size < α ∗ ( |Gi | + |G j |) or UpperBound (V ,Gi ) < β ) and (cX j .size < α ∗ ( |Gi | + |G j |)
or UpperBound (V ,G j ) < β ) then

7: return

8: end if

9: if (eXi .size ≥ α ∗ ( |Gi | + |G j |) and LowerBound (V ,Gi ) ≥ β ) or (eX j .size ≥ α ∗ ( |Gi | + |G j |)
and LowerBound (V ,G j ) ≥ β ) then

10: TRHPSet+ = saveTRHP (P (V ))
11: return

12: end if

13: if (eXi .size ≥ α ∗ ( |Gi | + |G j |) and OR (V ,Gi ,G j ) ≥ β ) or (eX j .size ≥ α ∗ ( |Gi | + |G j |) and

OR (V ,G j ,Gi ) ≥ β ) then

14: TRHPSet+ = saveTRHP (P (V ))
15: end if

16: leaves = {v |v ∈ V and v .children.size = 0}
17: nonLeaves = V − leaves
18: if nonLeaves .size > 0 then

19: vn = nonLeaves .head
20: Nodes = (nonLeaves −vn ) + leaves
21: RHPSearch −TS (Nodes +vn,R +vn,L )
22: if vn,R � TRHPSet then

23: RHPSearch −TS (Nodes +vn,R )
24: end if

25: if vn,L � TRHPSet then

26: RHPSearch −TS (Nodes +vn,L )
27: end if

28: end if

The target search can be used to decompose the full search into multiple individual target
searches. For example, the full search over {abcd } can be replaced by target searches over the
items {a}, {b}, {c}, {d }. However, performing a target search for every item sequentially is ineffi-
cient because some pattern’s combinations will appear multiple times. For example, pattern {ab}
in the search of item a will also appear in the search of item b. To avoid redundancy, we refine the
complete sequential target search and propose Sequential Delete Search, namely RHPSearch-SD,
for parallel computing.

By utilizing high-performance computational resources, RHPSearch-SD (Algorithm 8) can be
executed in parallel to speed up the mining processes. When executing in parallel, the number
of items to be searched at once, or the batch size, needs to be specified. Assuming there are n
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Fig. 7. Batch search and delete process.

ALGORITHM 8: RHPSearch-SD

Input: Batch size: b, Node collection: V
Output: Pattern collection: RHPSet

1: leaves = {v |v ∈ V and v .children.size = 0}
2: while leaves .size > 0 do

3: ItemList = GetItems (leaves,b)
4: for item ∈ ItemList do

5: RHPSet=RHPSearch-TS(item) {Do in Parallel}
6: end for

7: RHPTree.delete(ItemList )
8: leaves = leaves − ItemList
9: end while

10: return RHPSet

leaves in the RHPTree and m cores in a computational node. If each core searches for k items,
then the batch size is 
 n

m∗k �. During the search process, each core searches their assigned items on
the same tree structure, which means there is no dependency issues across multiple cores. In our
implementation, Scala parallelizes the search operation on each partition of the node collection
and recombining all of the results that were completed in parallel [7]. After the user defines the
batch size, multiple cores are launched to search the items in the batch at the same time. After
finishing the batch, we delete those items from the RHPTree and then begin the next batch. The
process continues until no item is left in the RHPTree. The batch search reduces the search time,
but it can still potentially produce some duplicate patterns due to the parallelization. For example,
if both a and b are searched in parallel, a and b are searched first and produce the pattern ab
twice. The RHPSearch-SD could be optimized to reduce the occurrence of duplicate patterns in
concurrent searches upon further research.

For the RHPTree shown in Figure 2, assume processing is taking place on a machine with two
cores and the batch size is set to two. The support threshold α = 0.5 and the odds ratio threshold
β = 2. As shown in Figure 7, the parallel search follows: (1) search items c , d in parallel first; (2)
delete items c , d from the RHPTree; (3) search items a, b in parallel; (4) delete items a, b from the
RHPTree. The searches on the items c and d will have patterns {c, cd,ac,bc,abc} and {d, cd }. After
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Table 1. The Statistics of UCI Datasets

Dataset
Transaction

Count
Item

Count
Average Length
Per Transaction

Class 1
Transaction Count

Class 2
Transaction Count

Chess 3,196 75 37 1,527 1,669
Connect-4 67,557 129 43 44,473 16,635

Pumsb 49,046 2,113 74 24,523 24,523
Accidents 340,183 468 33.8 170,092 170,091

deleting c , d from the RHPTree, the searches for items a, b start, and they end with “no pattern is
identified.” In summary, the patterns are {c,d, cd,ac,bc,abc}.

5 EXPERIMENTS

We evaluated our methods using UCI Machine Learning Repository datasets [13] and a sampled
version of a real medical dataset from the Simons Foundation with Single Nucleotide Polymor-

phisms (SNPs) in Autism Spectrum Disorder (ASD) [16]. The performance of RHPSearch and
RHPSearch-SD on the UCI datasets served as a baseline for efficiency comparison against other
methods. The sampled ASD datasets are used to evaluate the scalability of the methods.

We compared our algorithms with two other algorithm categories as described in Section 2:
(1) frequent itemset mining and (2) equivalent class mining. The concurrent frequent itemset min-
ing category includes LCM-ver2 [53], PrePost+ [11], and negFIN [2]. The equivalent class cate-
gory includes GC-growth-v2.1 [32], which also features odds ratio mining. Because frequent item-
set mining and equivalent class mining are not designed directly for mining odds ratio patterns,
an additional post-mining filtering process is required to produce desirable results for odds ratio
patterns. For frequent pattern mining, the post-processing step calculates the odds ratio of each
frequent pattern, while for equivalent class mining, it automatically calculates the odds ratio of
each pattern closure. The performances with and without this post-processing are both shown for
detailed comparison and discussion. All experiments were conducted on a single machine with
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz and 256 GB of RAM with 20 CPU cores available for
fair comparisons.

5.1 UCI Data Experiments

The following experiments were conducted to evaluate the efficiency of using four UCI datasets
including Chess, Connect, Accidents, and Pumsb, which are commonly used benchmark dataset for
frequent pattern mining algorithms [17]. For the Chess and Connect-4 datasets, we used the class
labels assigned to each sample. There is no class label in the Pumsb and Accidents datasets. Thus,
we separated the data randomly into two equal-sized classes. The statistics of the four datasets are
shown in Table 1.

5.1.1 RHPTree and Search Methods Evaluations. We evaluated our RHPTree and the three
search methods, namely RHPSearch, RHPSearch-TS, and RHPSearch-SD, on the four datasets based
on running time. The RHPTree was evaluated based on build time and time needed for insert
and delete operations. Without bias, we included all the items in the dataset without any support
threshold to build the tree.

To evaluate the tree building time, we used the procedure discussed in Section 4.2. Figure 8(a)
shows the numbers of items and transactions that affect the RHPtree construction time. As de-
picted in Figure 8(a), the tree building time for the Pumsb dataset is far larger than that of the
Connect-4 dataset despite their transaction counts being close. At the same time, the number of
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Fig. 8. Tree building time and the insert, delete time on four datasets.

Fig. 9. The memory footprint for the RHPTree on different datasets.

transactions also has an impact on tree building time. The number of transactions in the Accidents
dataset is about seven times that of the Pumsb dataset, and the running time of the Pumsb is only
around twice that of the Accidents dataset although the number of items in the Pumsb dataset is
approximately 4.5 times as many as the number in the Accidents dataset. We also provide the mem-
ory footprint in terms of different datasets as shown in Figure 9. As the support value decreases,
more frequent items and their transaction sets are included in the RHPTree, which increases
the size of the RHPTree. As we can see in Figure 9, for the Chess, Connect, and Pumsb datasets,
the memory size is no more than 5 MB when the support value is 0.2, for the Accidents datasets,
the memory size is no more than 15 MB when the support value is 0.1.

To evaluate the insertion time, we conducted a “leave-one-item-out” experiment where a se-
lected item was removed from the dataset to build the RHPTree. We then inserted it back into the
tree to measure the insertion time. This process is to mimic the real-world situation in which new
items are added to the existing transactions. The results are shown in Figure 8(b). The insertion
operation involves the nearest neighbor searching, node rotation, and transaction sets updating
as described in Section 3.3. The efforts of these operations are affected by the size of RHPTree and
the transaction number of each node in the tree. This is the main reason for the excessive running
time for the Accidents and Pumsb datasets in comparison to the other two datasets.

To evaluate the deletion time, we began with a completely-built RHPTree and then deleted each
item from the tree to measure the deletion time. This process was repeated for all items. The
deletion times are shown in Figure 8(c). The delete operation involves updating of transaction
sets, which depends on the size of the tree. The deletion time for the Pumsb dataset is more than
deletion times for other datasets due to its large number of items and transactions. Also, the insert
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Fig. 10. The running time boxplots of the RHPSearch-TS compared with RHPSearch on four datasets.

Fig. 11. The running time of RHPSearch and RHPSearch-SD with different odds ratio levels on four datasets.

time on the RHPTree is longer than the delete time. The main reason for this is that the insert
continuously compares and rotates nodes while the delete simply uses the sibling to replace the
parent node.

To evaluate the target search time for a specific item, we queried patterns containing a randomly
selected item in the dataset with RHPSearch-TS. We set the odds ratio β = 2.5 with various sup-
port thresholds. Because the query time for each item is different, we recorded the search times
for all items using the RHPSearch-TS. In Figure 10, for each dataset, the boxplot result shows
the distribution of the search times under each support threshold. The maximal search time of
RHPSearch-TS is comparable to the RHPSearch time, the median search time is much less than the
RHPSearch, and the minimal search time is close to zero. The interquartile ranges of the boxplot,
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Table 2. Number of Patterns with Different Support and Odds Ratio Thresholds

Chess

β α = 0.2 α = 0.25 α = 0.3 α = 0.35 α = 0.4 α = 0.45 α = 0.5

10 1,408,752 319,194 75,985 16,506 2,194 115 95

5 4,198,046 997,213 281,658 105,597 47,646 27,084 15,345

2.5 38,348,314 11,996,615 4,326,461 1,690,025 678,959 293,030 132,787

Connect-4

β α = 0.2 α = 0.25 α = 0.3 α = 0.35 α = 0.4 α = 0.45 α = 0.5

10 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

2.5 6,797,899 597,787 11 3 3 3 3

Accidents

β α = 0.1 α = 0.15 α = 0.2 α = 0.25 α = 0.3 α = 0.35 α = 0.4

10 63,106 4,648 384 16 0 0 0

5 63,106 4,648 384 16 0 0 0

2.5 169,672 22,150 1,780 86 0 0 0

Pumsb

β α = 0.2 α = 0.25 α = 0.3 α = 0.35 α = 0.4 α = 0.45 α = 0.5

10 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

2.5 3 3 3 3 3 3 3

IQR = Q3 −Q1, shows that 50% of items’ search times are less than half of the RHPSearch’s. In the
figure, for each dataset, the search times and the number of frequent items share the same trend.
The running times of both RHPSearch and RHPSearch-TS increase when the support threshold
decreases because the algorithms included more frequent items and generated more patterns. It
is worth noting that the search times soar when support thresholds are less than 0.35, 0.25, 0.2,
0.2 for the Chess, Connect, Accidents, and Pumsb, respectively. The reason for these increases is
that the algorithm had to search deeper for the qualified patterns since the frequency property
and the bounds properties defined in Section 4.2 were not activated during the searches at the top
layers. At the same time, the search time also associates with the number of discovered patterns
due to the computational time for the algorithm to generate the qualified patterns from the k-ary
collection as discussed in Section 4.1. As listed in Table 2, when the odds ratio threshold β = 2.5,
we observed that the increments of the number of discovered patterns were more than one million,
five hundred thousand, and one thousand for the Chess, Connect, and Accidents at the abovemen-
tioned support thresholds separately. These increments of the number of patterns also contribute
to the sharp increments of the running times.

To evaluate the search time using a distributed computing environment, we searched all pat-
terns in the dataset by using the RHPSearch-SD with all 20 cores of the single server node listed
previously. We set three odds ratio thresholds β = 2.5, 5.0, and 10.0. For each odds ratio threshold,
there are 
 n

20 � iterations to complete the search, where n is the number of leaf nodes (items) in
the tree. In Figure 11, RHPSearch-SD is significantly faster than RHPSearch when both the odds
ratio and support thresholds decrease. We also evaluate the RHPSearch-SD algorithm in terms of
the number of threads. The experiments were conducted on 5, 10, 15, and 20 cores with odds ratio
equals to 2.5. Each core was assigned an item to search during each batch. In Figure 12, RHPSearch-
SD time decreases significantly when the number of cores increases. The RHPSearch-SD utilized
multiple cores to search and delete a batch of items. After each deletion, the tree size becomes
smaller, which contributes to shorter search time in future searches. If multiple computational
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Fig. 12. Running time of RHPSearch-SD on four datasets with respect to the number of cores.

cores are available, it is beneficial to use RHPSearch-SD to speed up the search. This is a unique
tree characteristic compared to other tree-based pattern indexing structures [19, 48].

5.1.2 Comparison with Other Methods. We compared our RHPSearch (including tree building
time) methods with other state-of-the-art methods. Because all the compared methods require a
post-processing step, i.e., filtering out patterns with OR ≥ β , the experiments were separated into
two phases: (1) before post-processing; (2) with post-processing. For frequent pattern mining and
equivalent class mining, post-processing is to calculate the odds ratio of each frequent pattern or
each pattern closure. We set a fixed odds ratio β to 2.5 for all datasets. We also set a range of support
values between 0.2 and 0.5 with a 0.05 increment for the Chess, Connect and Pumsb datasets, and
the range of support values between 0.1 and 0.4 with a 0.05 increment for the Accident dataset to
show the clear differences between the compared running times.

In phase (1), all algorithms utilized a single core to create a fair comparison with other algo-
rithms which were not designed for distributed computing. We directly ran the adapted frequent
itemset algorithms LCM-ver2 [53], PrePost+ [11], and negFIN [2], equivalent class algorithm GC-
growth-v2.1 [32], and our RHPSearch. We did not include the RHPSearch-SD algorithm in Phase
(1) as it is designed for distributed computing. In Figure 13, the Phase (1) result shows that the
frequent itemset mining algorithms are faster than other algorithms on the datasets which do not
have a large number of frequent patterns, such as Chess and Accidents datasets. However, for the
datasets with large numbers of frequent patterns, such as Connect-4, and Pumsb, the frequent item-
set mining algorithms require more time to identify all frequent items. The GC-growth algorithm
outperforms on the Connect dataset but suffers on the Pumsb dataset. The reason for the perfor-
mance differences is that GC-growth mines the frequent equivalent classes instead of mining the
frequent patterns directly. There are more frequent equivalent classes in Pumsb compared to the
Connect. Thus, the running time of GC-growth for the Connect dataset is less than the Pumsb
dataset. Our RHPSearch algorithm is much faster than any other algorithm on the Pumsb dataset
because it detects the risk patterns directly without mining all frequent patterns. Also, the running
time of RHPSearch on the Connect dataset is closer to the GC-growth. It is worth noting that, to
get the odds ratio patterns, the frequent itemset mining algorithms and equivalent class algorithm
must perform a post-processing step while RHPSearch does not. In phase (1), other algorithms
had not done the post-processing while our RHPSearch had already found all qualified odds ratio
patterns without post-processing.

In phase (2), we included the post-processing time for the frequent itemset algorithms and
equivalent class algorithm. These algorithms utilized 20 cores for the post-processing step. Our
RHPSearch-SD was included in Phase (2) with 20 cores, and the RHPSearch still used the sin-
gle core since it does not require the post-processing time. In Figure 13, the Phase (2) results
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Fig. 13. Running time comparisons with other methods. Phase (1) is running time before post-processing,

and Phase (2) is running time with post-processing.

show that the frequent itemset mining algorithm cannot finish in one hour on the Connect and
Pumsb datasets. This is because there are a large number of frequent patterns generated by the
algorithms. Consequently, more frequent items require longer post-processing time. The running
time of the GC-growth algorithm increases dramatically when adding the post-processing time
to the Chess, Pumsb, and Accidents datasets as it is time-consuming to calculate the odds ratio
values and generate qualified odds ratio patterns from a large number of the frequent equivalent
classes. Our RHPSearch and RHPSearch-SD algorithms outperform significantly on the Connect
and Pumsb dataset. They also beat other algorithms on the Accident dataset. The running time of
RHPSearch-SD is closer to the frequent pattern mining algorithms and much faster compared to
the GC-growth.

Overall, the compared methods struggle when there are many frequent items or frequent equiv-
alent classes exist in the dataset. Because the equivalent class mining and adapted frequent itemset
mining algorithms cannot finish mining frequent patterns or frequent equivalent classes, then it is
unfeasible to extract odds ratio patterns in a real-world applications. Using the RHPSearch meth-
ods, we can directly check the qualified risk patterns instead of wasting time on mining frequent
patterns. In the experiment, the Connect dataset has more than 6 million patterns when β = 2.5 and
support threshold α = 0.2. The Accidents dataset does not have patterns when support threshold is
more than 0.3. To obtain more patterns under a manageable execution time algorithm comparison,
we chose 0.1 as the support threshold to ensure some results from other algorithms. When α = 0.1
and β = 2.5, there are more than one hundred thousand patterns. For the Pumsb dataset, even by
setting α = 0.4, our algorithm is proven much faster than other algorithms as shown in Figure 13
although there are only three odds ratio patterns exist. In the experiment, even by setting lower
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Table 3. The Description of the Sampled ASD Dataset

Dataset
Transaction

Count
Item

Count
Average Length
Per Transaction

Class 1
Transaction Count

Class 2
Transaction Count

Sample 1 1,000 50 25 500 500
Sample 2 1,000 75 38 500 500
Sample 3 1,000 100 50 500 500
Sample 4 1,000 125 63 500 500
Sample 5 1,000 150 75 500 500

α = 0.15 and β = 2.5, there are still the same three patterns listed in Table 2. The risk patterns can be
used to interpret the potential factors that contribute to the outcomes. For the chess and connect
game datasets which have the win and loss labels, the risk patterns can be used to analyze the
potential causes for winning or losing the game. For example, the patterns (hdchk = f, wkna8 = f,
skrxp = f, mulch = f, bxqsq = f, skach = f), (a1 = o, g6 = b, f6 = b, e6 = b) have winning odds ratios
OR = 10.32 and OR = 2.68 in the Chess and Connect datasets, respectively. Such types of patterns
may guide the players to take less risky moves to increase the chances to win the game if the
next moves match with the patterns. The traffic accidents dataset records different circumstances
where accidents have occurred. The risk patterns can be used to analyze the causes of different
collisions, such as traffic condition, environmental conditions, and human conditions. The pumsb
dataset contains census data for population, housing, and income. The researchers can use these
patterns to analyze the differences between cohorts and areas for health disparity studies. These
datasets serve as common datasets for performance comparisons.

5.2 Scalability Assessments

The sampled ASD dataset contains SNPs from two groups: people with and without autism. The
scalability is tested with three variables: (1) the number of SNPs, (2) the number of data records,
and (3) the odds ratio levels. In reality, the number of SNPs is much higher. However, due to
comparisons with existing algorithms, we only use SNP numbers ranging from 50 to 150.

In the first part, we set the data records to be 1,000 (500 people in each group) with odds ratio
β = 2.5 and varied the numbers of SNPs to be 50, 75, 100, 125, and 150. The data is described in
Table 3. We compared RHPSearch and RHPSearch-SD by using 5, 10, 15, and 20 cores with other
methods. Due to the performance issue with other methods, the running time is recorded with-
out post-processing and their results are not odds patterns. We evaluated with different support
thresholds and the running time is shown in Table 4. We can see that RHPSearch and RHPSearch-
SD outperforms other methods by a large margin in efficiency and scalability. The LCM method
is the best of the other compared algorithms. Upon further inspection, the output it produces is
more than 1 TB when processing only 125 SNPs with a 0.7 support threshold. This shows the large
amount of overhead required for generating frequent patterns instead of directly targeting odds
ratio patterns. The GC-growth runs more than four hours when there are only 100 SNPs with a 0.7
support threshold. The exhaustive equivalent class generation drastically limits the performance
of GC-growth. The huge number of mined patterns requires a large amount of post-processing
time and unfinished jobs, causing failure for further odds ratio pattern extraction. In comparison,
our algorithm can still extract the patterns within a reasonable time when the number of SNPs is
150. To evaluate the usefulness of the patterns, we found that there are 0.9% patterns containing
genes that appear in AutDB, an evolving database for autism research community [5], by setting
α = 0.5 and β = 2.5. 14 patterns have all genes shown in AutDB. For example, the patterns (CLSTN2,
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Table 4. The Running Time (Seconds) Comparison of 1,000 Data Records

Support (α ) Methods Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

0.9
LCM 0.08 0.64 38.93 1,517.02 NA*

NegFIN 0.30 3.52 77.33 6,613.21 NA*
PrePost+ 0.40 3.14 141.25 6,945.20 NA*

GC-growth 0.22 2.46 57.34 NA NA
RHPSearch 0.27 0.64 0.69 2.49 19.43

RHPSearch-SD-5cores 0.26 0.62 0.64 2.23 18.25
RHPSearch-SD-10cores 0.25 0.60 0.63 2.19 16.54
RHPSearch-SD-15cores 0.22 0.58 0.6 1.98 14.72
RHPSearch-SD-20cores 0.22 0.54 0.67 1.67 12.69

0.8
LCM 0.14 19.09 1,871.16 NA* -

NegFIN 1.57 78.52 5,340.15 NA* -
PrePost+ 1.38 58.94 4,970.24 NA* -

GC-growth 1.49 78.14 2,948.38 NA -
RHPSearch 0.26 0.64 0.99 4.47 28.75

RHPSearch-SD-5cores 0.26 0.62 0.92 3.97 26.65
RHPSearch-SD-10cores 0.23 0.61 0.86 3.32 22.49
RHPSearch-SD-15cores 0.21 0.57 0.67 2.98 18.67
RHPSearch-SD-20cores 0.21 0.54 0.66 2.86 16.78

0.7
LCM 0.43 190.64 NA* - -

NegFIN 2.80 579.12 NA* - -
PrePost+ 4.29 803.02 NA* - -

GC-growth 5.17 805.38 NA - -
RHPSearch 0.28 0.76 1.09 5.96 38.31

RHPSearch-SD-5cores 0.27 0.72 0.97 5.23 35.78
RHPSearch-SD-10cores 0.23 0.69 0.92 5.01 32.03
RHPSearch-SD-15cores 0.21 0.61 0.84 4.90 27.09
RHPSearch-SD-20cores 0.20 0.59 0.78 4.83 25.11

0.6
LCM 0.83 1,201.27 - - -

NegFIN 3.90 4,231.46 - - -
PrePost+ 5.64 4,019.10 - - -

GC-growth 10.44 4,511.93 - - -
RHPSearch 0.29 0.72 1.44 8.28 50.39

RHPSearch-SD-5cores 0.26 0.71 1.32 7.87 46.27
RHPSearch-SD-10cores 0.24 0.67 1.02 6.24 41.37
RHPSearch-SD-15cores 0.24 0.63 0.92 5.98 33.30
RHPSearch-SD-20cores 0.21 0.63 0.79 5.88 28.03

0.5
LCM 1.12 3,627.87 - - -

NegFIN 5.77 7,928.07 - - -
PrePost+ 7.51 12,222.63 - - -

GC-growth 16.94 13,274.21 - - -
RHPSearch 0.30 0.86 1.68 12.05 74.10

RHPSearch-SD-5cores 0.29 0.82 1.24 10.97 69.30
RHPSearch-SD-10cores 0.25 0.78 1.08 9.64 62.95
RHPSearch-SD-15cores 0.23 0.75 0.92 8.44 56.08
RHPSearch-SD-20cores 0.22 0.72 0.85 7.98 52.10

Note: “NA” marks jobs unfinished due to running time greater than four hours; “NA*” marks jobs unfinished

due to output more than 1 TB; “-” marks jobs unfinished due to no more experimentation necessary based

on the unfinished status of its previous setting.

HERC2, RNF38, RBFOX1) (Odds Ratio: 2.53) and (HERC2, SLC24A2, RNF38, RBFOX1) (Odds Ratio:
3.1) appear more frequently in autism patients. Other patterns could be potential new findings.

In the second part, we evaluated the performance of RHPSearch with different numbers of data
records. To get the data records with different numbers, we did the sampling with the replacement
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Fig. 14. The running time (seconds) of the tree construction and search with different data sizes and support

thresholds.

Fig. 15. The running time (seconds) of minimal pattern length is 20 under different feature sizes, support,

and odds ratio thresholds.

on the autism and the non-autism groups, respectively. We set the number of SNPs to 150 with
β = 2.5, the support threshold ranges from 0.9 to 0.5, and the numbers of data records are varied
from 1,000, 10,000, to 100,000. We evaluated the times of tree building and search separately. As
shown in Figure 14, the times of tree construction are only slightly affected by the support thresh-
old in all data sizes. Both construction and search time increase as the data size grows, and the
construction time exceeds search time at a 0.9 support threshold in the largest dataset size due
to the increased complexity in node distance calculation. The effect of the support threshold on
search time becomes progressively more significant with the growth of data size.

In the third part, we conducted more experiments to test the limitation of RHPSearch’s scala-
bilities. In the first part, as shown in Table 4, RHPSearch does not perform well when the number
of SNPs is beyond 200. There are three reasons: (1) we generated all patterns when detecting the
k-ary collection during the search process, (2) the number of search branches bloated when set-
ting a small threshold and the algorithm searches in deeper levels, and (3) the generation of the
long patterns from the k-ary collection takes much computational time. Thus, we evaluated the
performance using k-ary descendant collections to represent patterns directly instead of gener-
ating all patterns. We used 1,000 sampled data records and a minimum pattern length of 20 for
our evaluation. The odds ratio thresholds were set to 100 and infinity, and the support thresholds
ranged from 0.6 to 0.9. The number of SNPs ranged from 100 to 400. The running times are shown
in Figure 15. The result shows that the running time of β = ∞ is less than the β = 100 in all four
cases. The running time increases sharply when the number of SNPs is set to 400 and odds ratio
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threshold is set to 100. The reason for the large time increment is the increased frequent items
in the dataset and also the frequency property and the bounds property were not able to be used
at the top layers of the RHPTree, and the algorithm had to split further to finish all inspection.
However, the RHPSearch is able to discover the long odds ratio patterns in the dataset because of
the top-down search strategy. In the experiment, the longest valid pattern in the 400 SNP dataset
consisted of 34 SNPs, which is usually considered to be a long pattern in a real-world application.

6 CONCLUSION

In almost all epidemiology research, finding risk patterns is a critical process in identifying risks
for diseases. In this article, we introduce the RHPTree, a dynamic hierarchical tree, and a collection
of efficient search methods, RHPSearch. The RHPTree supports common insert, delete, and update
operations to adapt to dataset evolvement and iterative search process without tree reconstruction.
In addition, the RHPTree data structure is item-oriented and suitable for targeted searches for users
interested in specific items. The RHPSearch-TS and paralleled search method RHPSearch-SD de-
compose the full search into item-based searches, which greatly speeds up the odds ratio pattern
extraction process. Experimental results on the UCI datasets demonstrate that our method sig-
nificantly reduces the running time when compared to the existing methods, negFIN, PrePost+,
LCM-ver2, and GC-growth. Also, the target search is faster than the full RHPSearch when search-
ing a specific item, thus offering an efficient alternative when there is a specific mining target.
Experiments on the sampled genomic dataset demonstrate that our method outperforms other
methods by a large margin, especially when many frequent patterns exist but only a few of them
are qualified odds ratio patterns. Our approach is most advantageous when the data contains a
large number of features which may form long patterns.

Our proposed approaches may open up new possibilities for a broad range of applications to
healthcare research for discovering complex, interacting risk factors. Given the dynamic structure
and flexibility of our approaches, they may offer advantages in other pattern mining areas, such
as high-utility pattern mining, sequential pattern mining, and distributed pattern mining.text
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