COVER FEATURE

3 o
Rise of the Autonomous
Machines =% .s=

Shaoshan Liu, Perceptin

Jean-Luc Gaudiot, University of California, Irvine

We are entering the age of autonomous machines, but
many roadblocks exist on the path to make this a reality.
We make a preliminary attempt at recognizing and
categorizing the technical and nontechnical challenges of
autonomous machines; for ten areas, we review current
status, roadblocks, and potential research directions.

s increasing numbers and kinds of auton- THE AGE OF AUTONOMOUS MACHINES:
omous machines enter our daily lives, the THE SIXTH LAYER OF INFORMATION
age of autonomous machinesisuponus,and TECHNOLOGY
a whole new era of information technology Information technology took off in the 1960s when
begins. How did we get here? Before delving into autono-  Fairchild Semiconductor and Intel established its
mous machines, let us first review the evolution of com- foundation by producing the first silicon micropro-
puting machinery. cessors, with the attendant explosive growth of Sil-
icon Valley. At first, although microprocessor tech-
nologies greatly improved industrial productivity, the
general publichad limited accesstoit. Thischangedin
Digital Object Identifier 10.1109/MC.2021.3093428 the 1980s with the advent of personal computers and,
Date of current version: 12 January 2022 later, the Apple Macintosh and Microsoft Windows,
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using a GUI. The second layer had been
established, and the vision of ubig-
uitous computers, targeted for use
by untrained personnel at home, had
become a possibility.

With virtually everyone having access
to computing power by the early 2000s,
Yahoo and Google laid the third layer,
connecting people—indirectly—with in-
formation available through search
engines. With the third layer, the Inter-
net, a core infrastructure to enable later
layers, could become ubiquitous.

Beginning with Facebook in 2004,
social networking sites created the
fourth layer of information technology
by allowing people to directly connect
with each other, effectively moving the
whole of human society to the World
Wide Web. As the population of Inter-
net-savvy people reached critical mass,
the emergence of such applications as
Airbnb (2008) and Uber (2009) was the
basis for the fifth layer by providing
direct Internet commerce services.

So far, each new layer of information
technology, with its added refinements,

mmWave Radar

has incrementally improved popular
access and demand. Note that, for most
Internet commerce sites providing access
to service providers through the Inter-
net, it is still ultimately humans who
are providing the services.

We have now entered the age of
autonomous machines (the sixth
layer), in which autonomous machines,
such as service robots, autonomous drones,
delivery robots, and autonomous vehi-
cles, rather than humans, will provide ser-
vices. Obviously, autonomous machines
have the potential to completely upend
our daily lives and our economy in the
coming decade.

Yet, autonomous machines are ex-
tremely complex systems that integrate
many segments of technology,! and for
autonomous machinestobecome aninte-
gral part of our daily lives, we still face
many technical and nontechnical chal-
lenges. In this article, we categorize these
challenges in ten areas. For each area, we
introduce the current status and road-
blocks as well as potential research direc-
tions. It is hoped that this will help the
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community define clear, effective, and
more formal development goalposts for
the future.

AREA 1: THE ON-MACHINE
COMPUTE SYSTEM
As opposed to other computing work-
loads, autonomous machines have a
very deep processing pipeline, or com-
putation graph, with strong dependen-
cies among the different stages and
strict deadlines associated with each
stage.2 For instance, Figure 1 presents
an overview of the processing pipeline
ofalevel 4 autonomous driving system.
Starting from the left side of the
figure, the system consumes raw sens-
ing data from mmWave radars, lidars,
cameras, and global navigation satel-
lite system (GNSS) receivers and iner-
tial measurement units (IMUs), where
each sensor produces raw data at its
own frequency. The cameras capture
images at 30 frames per second (fps)
and feed the raw data to the 2D percep-
tion module, the lidars capture point
clouds at 10 fps and feed the raw data
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FIGURE 1. The processing pipeline of an autonomous vehicle. GNSS: global navigation satellite systems; IMU: inertial measurement unit.
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to the 3D perception module as well
as the localization module, the GNSS/
IMUs generate positional updates at
100 Hz and feed the raw data to the
localization module, and the mmWave
radars detect obstacles at a rate of
10 fps. All of these raw data are then
fed to the perception fusion module.
Next, the results of the 2D and 3D
perception modules are fed into the
perception fusion module at 30 and
10 Hz, respectively, to create a compre-
hensive perception list of all detected

an output, the control module must
still generate a command before the
deadline. This could lead to disastrous
results as the autonomous machine
would then be essentially driving
blindly without timely participation
from the perception unit.

To minimize the end-to-end latency,
one commercial approach is to build
a proprietary on-machine computing
system to map sensing and computing
tasks to the best compute substrates
to achieve optimal performance and

THIS COULD LEAD TO DISASTROUS
RESULTS AS THE AUTONOMOUS
MACHINE WOULD THEN BE ESSENTIALLY
DRIVING BLINDLY WITHOUT TIMELY
PARTICIPATION FROM THE
PERCEPTION UNIT.

objects. The perception list is then sent
to the tracking module at 10 Hz to cre-
ateatrackinglist ofall detected objects.
The tracking list then is fed into the
prediction module at 10 Hz to create a
prediction list of all objects. After that,
both the prediction results and the
localization results are received by the
planning module at 10 Hz to generate a
navigation plan, which then goes into
the control module at 10 Hz to generate
control commands. These, in turn, are
sent to the autonomous machine for
execution at 100 Hz.

Hence, every 10 ms, the autono-
mous machine needs to generate
a control command to maneuver the
autonomous machine. Ifany upstream
module, such as the perception mod-
ule, misses the deadline to generate
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energy consumption.3 However, this
design evolves through trial and error,
and the whole design process takes
much time with multiple iterations.
This is the same approach that many
autonomous machine companies take:
they deploy ad hoc solutions to ensure
on-time autonomous machine prod-
uct release. These methods are prod-
uct specific and hard to generalize to
other autonomous machine designs,
hence leading to high reengineering
costs for each product.

Challenge

We conclude that the key technical
challenge of designing an autonomous
machine compute system is to develop
an appropriate computer architecture,
along with a software stack that allows

the flexibility of mapping various com-
putation graphs from different types
of autonomous machines to the same
compute substrate, while meeting real-
time performance, cost, and energy con-
straints. Existing CPUs meet the flexi-
bility requirement but fail to meet the
performance and energy constraints,
whereas other compute substrates, espe-
cially accelerators, typically target to
meet the performance and energy con-
straints of one module, for example, the
perception module, without optimizing
the end-to-end system.

AREA 2: THE SENSING
SYSTEM
Autonomous machines gather informa-
tion about their surroundings through
their sensors; sensing is thus the very
first stage of autonomous machines’
deep processing pipeline. The ulti-
mate objective of the sensing system
is to provide accurate, reliable, and
comprehensive information about the
physical environment for later pro-
cessing stages to precisely understand
the physical world. These three goals
(accuracy, reliability, and comprehen-
siveness) can be achieved through
multimodal sensor fusion.? However,
multimodal sensor fusion presents
significant challenges because all sen-
sor data have to be synchronized tem-
porally and spatially all of the time
during the operation of the machine.
Asan instance of temporal synchro-
nization, take two sensors, a camera
and a lidar; their measurements must
be made simultaneously so that the
machine can fuse the measurements
and reconstruct an accurate and com-
prehensive view of the environment.
Without proper time synchronization,
the data from multiple sensors could
yield an inaccurate, ambiguous view of
the environment, leading to potentially

WWW.COMPUTER.ORG/COMPUTER



catastrophic outcomes.” For an exam-
ple of spatial synchronization, assume
multiple cameras with overlapping
field of views are installed at different
locations of the autonomous machine.
To guarantee that the visual sensing
results from these multiple cameras
accurately match, the results from each
camera need to go through geometric
transformations, or calibration, so that
they can be projected to a commonly
agreed-uponreference point. Currently,
on most autonomous machines that
fuse multiple sensor modalities, the
sensors must be manually calibrated,®
a slow, labor-intensive, and often error-
prone process. Once this calibration
hasbeen completed, it is often assumed
that it remains unchanged while the
autonomous machine is operating.
In practice, the calibration is gradu-
ally degraded due to the autonomous
machine’s motion, leading to the need
of periodic recalibration.

Challenge

In an ideal scenario, we should be able
to simply plug a sensor into an autono-
mous machine, and it would just work.
Unfortunately, we are still far from
this ideal, and any change to the sen-
sor configuration of the autonomous
machine must often lead to a rede-
sign of the temporal and spatial syn-
chronization subsystem (for example,
a complete recalibration of the whole
autonomous machine) or even a mod-
ification to the perception and local-
ization systems. We conclude that the
key technical challenge for the design
of sensing systems is to provide a
standardized framework for tempo-
ral and spatial synchronization for
existing as well as new sensors. Only
then will we be able to provide sensor
plug-and-play capability for autono-
mous machines.

AREA 3: THE PERCEPTION
SYSTEM

Perception is essential to any auton-
omous machine applications where
sensory data and artificial intelligence
techniques are involved. The final
objective of perception is to extract
spatial and semantic information from
the raw sensing data so as to allow
the machine to construct a compre-
hensive understanding of its operat-
ing environment. Such understanding
includesthe types, positions, headings,
speeds, and dimensions of all objects
in the environment.

There are two categories of percep-
tion for autonomous machines: the
deep learning-based approach and the
geometry-based approach. The deep
learning-based approach is mainly used
to extract semantic information and
is heavily used in applications such as
object detection, scene understanding,
segmentation, tracking and predic-
tion, and so on. Within an autonomous
machine’s perception system, multi-
ple deep learning models are running
simultaneously, such as networks for 2D
perception, networks for 3D perception,
and networks for tracking and predic-
tion. Nonetheless, deep learning-based
perception is often the performance
bottleneck in autonomous machines.
It thus becomes a painful tradeoff
between perception quality and com-
pute and energy resource utilization.

The geometry-based approach is
mainly used to extract positional and
dimensional information of the tar-
get objects. A most common instance
of geometry-based perception appli-
cation is the real-time stereo vision
used for autonomous machine navi-
gation, obstacle avoidance, and scene
reconstruction. Stereo vision allows
autonomous machines to obtain 3D
structure information of the scene. A

stereo vision system typically consists
of two cameras to capture images from
two points of view. Disparities between
the corresponding pixels in two ste-
reo images are detected using ste-
reo-matching algorithms. Depth infor-
mation can then be calculated from the
inverse of this disparity. Autonomous
machines must fuse the positional
and dimensional information and the
semantic information of the target
objects to form a comprehensive under-
standing of their environments.

Challenge

We conclude that the key technical
challenge for perception is in the
development of a general framework
to generate a reliable and precise
understanding of the operating envi-
ronment inreal time. Reliable and pre-
cise perception can be achieved by fus-
ing various perception results, such as
2D semantics, 3D semantics, and 3D
geometry, an area still currently under
active research. On the other hand,
to achieve real-time performance,
there are software approaches, such as
the compression-compiler co-design
method, which combines the compres-
sion of deep learning models and their
compilation to optimize both the size
and speed of deep learning models.” 8
Hardware approaches such as hard-
ware accelerators for perception mod-
ules™ 19 also can be taken. Ultimately,
more research is required to deter-
mine what combination of software
and hardware approaches will be most
effective in achieving real-time per-
formance for the perception system.

AREA 4: THE LOCALIZATION
SYSTEM

Fundamental to autonomous machines
islocalization, that is, ego-motion esti-
mation, which calculates the position
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and orientation of an agent in each
frame of reference. Formally, localiza-
tion generates the six-degrees-of-free-
dom (DOFs) pose, including the three
DOFs for the translational pose, which
specify the <x, y, z> position, and the
three DOFs for the rotational pose,
which specify the orientation about
three perpendicular axes: yaw, roll,
and pitch. Knowing the translational
pose fundamentally enables an auton-
omous machine to plan its path and
to navigate, while the rotational pose
further lets it stabilize itself.
Localization is highly sensitive to
the operating environment, as differ-
ent environments require different
sensors and algorithms. For instance,
in outdoor environments, which usu-
ally provide stable GNSS signals, using
the compute-light visual-inertial odom-
etry algorithm or lidar odometry cou-
pled with GNSS signals achieves the
best accuracy and performance. By
contrast, in unknown, unmapped in-
door environments, a lidar or visual
simultaneous localization and map-
ping (SLAM) algorithm delivers the
best accuracy.11 Nonetheless, different
localization algorithms often incur
different latencies and, even worse,
latency variations. For instance, for
visual odometry or visual SLAM, the
processing latency often depends on
the number of feature points extracted
from the current image, which means
large latency variations can occur that
mightimpact predictability and safety.

Challenge

We conclude that the key technical
challenge inlocalization is to develop a
standard framework capable of adapt-
ing to different operating scenarios
by unifying core primitives in various
localization algorithms and seamlessly
switching among different algorithms
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as the autonomous machine navigates
through different environments. In
addition, this standard framework
should provide a desirable software
baseline for acceleration, which will
minimize processing latency as well as
latency variations.

AREA 5: THE PLANNING AND
CONTROL SYSTEM

The planning and control system dic-
tates how an autonomous machine
should maneuver. Traditional plan-
ning and control systems mustinclude
behavioraldecisions,motionplanning,
and feedback control kernels.! Specifi-
cally, motion planning entails three
steps, namely, roadmap construction,
collision detection, and graph search.
As autonomous machines work with
configurations with higher DOFs (such
as robotic arms), motion planning will
become increasingly complex since
the search space will have exponen-
tially increased.

While commonly deployed in com-
mercial autonomous machines, tradi-
tional planning and control methods
often utilize human-in-the-loop rule-
based approaches, where engineers
fine-tune the planning and control
kernels with available test data. This
approach is not only slow and costly,
but also it is not robust as all “cor-
ner” cases need to be added manually.
As more rules must be included, the
planning and control system becomes
increasingly large and unwieldy and
often fails to meet real-time require-
ments. In addition, rule-based meth-
ods suffer from a notorious difficulty
to handle the multiagent problem, or
the fact that the actions taken by an
agent can affect the behavior of other
machines in the same environment,
hence failing to handle complex traf-
fic scenarios.

Recently, deep reinforcement learn-
ing (DRL) for planning and control has
been actively researched in many places
worldwide. Compared to traditional
planning and control methods, infer-
encewithDRLincurslowcomputational
requirements during operation, espe-
cially for high-DOF configurations.'?
In addition, DRL methods are capable
of handling the multiagent problem,
allowing autonomous machines to han-
dle complex traffic scenarios. However,
model training is the bottleneck for DRL-
based planning and control systems,
as it requires a vast number of trials to
gain enough experience. This is espe-
cially the case for complex scenarios,
where model training can easily reach
millions of steps, with each setup of
hyperparameters or reward hypothesis
taking hours or even days.

Challenge

While DRL-based planning and con-
trol methods are highly promising,
the key technical challenge for plan-
ning and control remains the devel-
opment of a cloud infrastructure that
provides sufficient compute power
and generates high-quality data for
DRL model training. First, to ensure
we generate enough high-quality data
to train the DRL networks, we need to
develop simulation engines that are
capable of closely simulating various
physical scenarios. Second, to greatly
improve algorithm development effi-
ciency, especially for complex scenar-
ios, we need to develop a model train-
ing infrastructure that can reduce the
training time by orders of magnitudes.

AREA 6: THE
COMMUNICATION SYSTEM
As most autonomous machines are
also connected machines, the commu-
nication among autonomous machines
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as well as that between autonomous
machines and the infrastructure is
critical to overall performance, safety,
and reliability. For instance, cellular
vehicle-to-everything (C-V2X)is designed
as a unified connectivity platform that
provides low-latency communications.
It consists of two modes of communica-
tions. The first mode uses direct commu-
nication links between vehicles, infra-
structure, and pedestrians. The second
mode leverages commercial LTE or 5G
cellular networks to enable vehicles to
receive information from the Internet.
With the proliferation of 5G technolo-
gies, we expect that, in the near future,
the C-V2X technology will be extended to
all autonomous machines.

Disappointingly, the field exper-
imental results demonstrate that
the real-world wireless networks are
unstable and unreliable, which can sig-
nificantly affect the arrival timing of
the infrastructure-side data.!® Further,
complexand ever-changing traffic con-
ditions can exacerbate this situation.
Specifically, while for direct-commu-
nication C-V2X networks, communi-
cation latency is less of a problem, the
communication bandwidth remains
insufficient to sustain the data needed
for cooperative autonomous machines.
With commercial LTE or 5G networks,
while bandwidth is less of a problem,
latency variations often lead to missed
deadlines where the miss ratio can be
as high as 30%, thereby preventing
reliable cooperative autonomous driv-
ing scenarios.

Challenge

The key technical challenge of designing
autonomous machine communication
systems is to develop a highly reliable
autonomous machine communication
network with bandwidth guarantees
and minimum latency variations. There

are some initial directions of research
that may achieve these goals, but more
research is required. First, we can adjust
the priority in the commercial commu-
nication networks to provide the high-
est priority to autonomous machines
connections as they are safety critical.
Second, a virtual communication back-
bone that builds on top of both LTE and
5G commercial networks as well as the
direct communication C-V2X networks
can improve the reliability of autono-
mous machine communication through
intelligent scheduling. Third, we can
develop intelligent fusion engines on
autonomous machines to dynamically
decide whether it is reliable and safe to
fuseinfrastructure-side data.

AREA 7: THE CLOUD SYSTEM
Autonomous machines, especially the
ones with mobility (such as vehicles,
delivery robots, service robots, and
drones), require cloud computing sup-
port. Such an autonomous machine
cloud system must be capable of sup-
porting offline computing tasks, such
as deep learning model training or
high-definition (HD) map generation,
or even online computing tasks such as
aggregating all traffic information and
broadcasting the information to all traf-
fic participants, especially in the context
of cooperative autonomous driving.
Autonomous machine clouds today
aremostlyapplication specific, although
they share many common require-
ments. To support different cloud appli-
cations, we need an infrastructure to
provide basic services, including dis-
tributed computing and storage as well
as hardware acceleration through het-
erogeneous computing. If we were to
tailor the infrastructure for each appli-
cation, we would have to maintain
multiple infrastructures, potentially
leading to low resource utilization, low

performance, and high management
overhead. One effective way to solve this
problem is to develop a unified auton-
omous machine cloud infrastructure
with consolidated distributed comput-
ing and storage services.*

Simulation is the cornerstone appli-
cation in autonomous machine cloud sys-
tems, in which autonomous machine
functions are exercised in a virtual
environment. The architecture of an
autonomous machine cloud simula-
tion system is illustrated in Figure 2;
the simulator models the sensing mech-
anism and generates sensory data by
simulating interactions between the
sensors and environments. Exercised
by the simulated sensory data, the
autonomous machine software gener-
ates control commands to maneuver.
We believe that autonomous machine
clouds should be simulation centric
as simulation consumes outputs from
most other cloud-based applications,
such as HD map generation and deep
learning model training. Also, simula-
tion consumes more than 80% of com-
puting resources in our autonomous
machine cloud, making it a low-hang-
ing fruit in terms of a target for optimi-
zation. In addition, by moving some of
the physical testing to cloud-based sim-
ulation, we managed to reduce testing
costs by 28 times and improve the test-
ing efficiency by 12 times.

Challenge

Moving forward, as autonomous machine
clouds become more prevalent, two
technical challenges have emerged.
First, we need to continuously develop
and refine distributed computing and
storage services to adapt to the needs
of various autonomous machine appli-
cations, especially to provide the
infrastructure support to satisfy the
ever-increasing compute and storage

JANUARY 2022 69

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 17:00:51 UTC from IEEE Xplore. Restrictions apply.



demands for autonomous machines.
Second, we need to deploy and optimize
basic simulation services on the cloud
infrastructure to serve various auton-
omous machine simulation needs. For
instance, autonomous drones and ser-
vice robots demand different simula-
tion services.

AREA 8: THE COOPERATION
AMONG AUTONOMOUS
MACHINES

While traditional autonomous machines
utilize only on-machine intelligence,
cooperative autonomous machines
depend on the cooperation between
autonomous machines in addition to
the infrastructure. Take autonomous
driving for example; the infrastruc-
ture-vehicle cooperative autonomous
driving approach relies on the coopera-
tionbetween intelligentroads and intel-
ligent vehicles. This method is not only

safer but also more economical com-
pared to the traditional on-vehicle-only
autonomous driving. Based on the
progress toward commercial deploy-
ment, a three-stage development road-
map hasbeen proposed as follows:"

) stage1: infrastructure-aug-
mented autonomous driving,

in which autonomous vehicles
fuse vehicle-side and infrastruc-
ture-side perception outputs to
improve the safety of autono-
mous driving

stage 2: infrastructure-guided
autonomous driving, in which
autonomous vehicles can offload
all of the proactive perception
tasks to the infrastructure in
order to reduce per-vehicle
deployment costs

stage 3: infrastructure-planned
autonomous driving, in which

~

~

the infrastructure takes care of
both perception and planning,
thus achieving maximum traffic
efficiency and cost efficiency.

To complete these tasks, Figure 3
presents an overview of the coopera-
tive autonomous driving system archi-
tecture. It consists of systems on vehi-
cle (SoVs), systems on road (SoRs), the
intelligent transportation cloud system
(ITCS), and the control center. The SoRs
provide local perception results to the
SoVs for blind-spot elimination and
extended perception to improve safety.
Meanwhile, the SoRs process incom-
ing sensor data and send the extracted
semantic data to the ITCS for further
processing. The ITCS fuses all incom-
ing semantic data to generate global
perception and planning information
before the control center can dispatch
real-time global traffic information,
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FIGURE 2. A cloud system for autonomous machines. AD: autonomous driving.
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navigation plans, and even vehicle con-
trol commands to the SoVs to achieve
optimal traffic efficiency. This design
does not only apply to autonomous driv-
ing; it can be generalized to all autono-
mous machines.

Challenge

The key technical challenge for coop-
erative autonomous machines is inte-
gration as its full realization relies on
all of the technical areas described
in the previous sections. To guide the
progress of cooperative autonomous
machines, the community needs to
clearly define the technical specifica-
tions and standards of each technical
area for each stage of deployment to
ensure effective technical integration.

AREA 9: THE EDUCATION OF
ENGINEERS IN THE AGE OF
AUTONOMOUS MACHINES
Talent supply is the single most import-
ant input for the ubiquitous deployment
of autonomous machines. Unfortu-
nately, inthe past few years, industry has
observed a huge supply-demand gap for
autonomous machine engineers.

On the supply side, many students
actually have a high degree of interest
in autonomous machine technologies
but find that their home universities
do not provide an adequate education
to prepare them to enter this field. On
the demand side, it is extremely diffi-
cult for autonomous machine compa-
nies to hire qualified engineers to fill
the open positions, thus forcing many
companies to develop internal train-
ing programs to prepare incoming
engineers. However, since many com-
panies in this field are resource-con-
strained startups, the need to pro-
vide training for incoming engineers
imposes an additional burden on
their financial situation, leading to an

inefficient allocation of precious fund-
ing resources.

To bridge this supply-demand gap,
we, asasociety, should urgently reshape
our engineering education programs
and create a cross-disciplinary program
to impart students with a technical
background in computer science, com-
puter engineering, electrical engineer-
ing, and mechanical engineering.!® On
top of this cross-disciplinary technical
foundation, a capstone project that will
provide students with hands-on expe-
rience in working with a real autono-
mous machine would consolidate the
technical foundation.!” An effective
way to perform the capstone project is
through cooperative education (coop),
a structured method combining class-
room-based education with practical
work experience, which would require
close collaboration between universi-
ties and industry.

Challenge
This proposed engineering education
reform roadmap is ambitious, and we

have a long way to go to achieve it as
it is extremely challenging to estab-
lish long-term and stable collabora-
tions among multiple parties. To pro-
mote collaboration between industry
and academia in emerging fields like
autonomous machines, we advocate
for governments to provide incentives
through grant programs. It is nota-
ble that the U.S. government has been
playing an active role in driving the
U.S. innovation rate.'® These education
and training grants should advance the
domestic workforce skills in autono-
mous machine technologies and conse-
quently improve the domestic economy.

AREA 10: THE BROADER
SOCIETAL IMPACT OF
AUTONOMOUS MACHINES
Finally, autonomous machines are
expected to completely revolutionize
our economy by greatly improving
the efficiency in delivery, transporta-
tion, manufacturing, and many other
sectors. Take last-mile autonomous
delivery, for example; the growing
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FIGURE 3. An infrastructure—vehicle cooperative autonomous driving system. ITCS: intel-
ligent transportation cloud system; SoR: system on road; SoV: system on vehicle.
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labor cost may be prohibitive for ser-
vice providers. In China, a contracted
delivery clerk with an annual salary of
US$20,000 can deliver 110 parcels per
day, which means that each delivery
order costs nearly USS0.5. This cost is
expected to continue increasing as the
demographic dividend has reached its
end. Deploying autonomous machines
forlast-mile delivery has proved tobea
promising approach to cut these costs
by more than half.!¥

Take autonomous vehicles as another
example. Traffic inefficiency such
as congestion imposes high costs on
our society. For the trucking industry
alone, the American Transportation
Research Institute estimates that con-
gestion costs the United States US$74.1
billion annually, of which US$66.1
billion occurs in urban areas. As one
of the ultimate goals of autonomous
driving is to completely eliminate traf-
fic inefficiency, utilizing autonomous
driving technologies on trucking alone
can lead to a significantly more effi-
cient national economy.

However, the benefits of improved
efficiency do come at a cost. Converting
all vehicles in the world into autono-
mous vehicles would result in an enor-
mous social costasautonomousvehicles
are still very expensive to build.?® An
alternative but cost-efficient solution is
cooperative autonomous machines. As
infrastructures become more intelli-
gent, more workloads can be offloaded
to the infrastructure side, greatly reduc-
ing the hardware and energy costs of
autonomous machine deployments. It is
estimated thatthisapproach would drop
the cost of autonomous machine deploy-
ment by more than 50%." Besides the
impact on the economy, there will also
be increasingly more ethical, privacy,
andsecurity challenges as autonomous
machines proliferate.
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Challenge

One nontechnical but critical challenge
is for the whole industry to thoroughly
understand the potential impact of
various autonomous machines on our
economy as well as the costs of large-
scale deployments of various autono-
mous machines. Only with accurate
projections and estimations will we be
able to provide comprehensive infor-
mation to policy makers and technol-
ogy firms. Consequently, policy mak-
ers and technology firms are capable
of making their policy and technology
investment decisions with the ulti-
mate goal of improving human society
with autonomous machine technologies.
Once we have a clear understanding
of the societal benefits of autonomous
machines, our society should develop
ethical guidelines, standards, and leg-
islations to guide the healthy develop-
ment of autonomous machines. Hence,
an immediate next step is for econo-
mists, policy makers, and autonomous
machine engineers to work closely
together to define economicimpactand
policy roadmaps to integrate autono-
mous machines into our daily lives.

fter more than six decades of

information technology devel-

opment, we believe that autono-
mous machines will completely revolu-
tionize our daily lives and our economy
in the coming decade. The impact of
autonomous machines on our society
is likely to be much deeper and broader
than any other information technology
revolution that we have experienced in
the past decades. To facilitate the rise of
autonomous machines, in thisarticle, we
have categorized the technical and non-
technical challenges in ten areas, and,
for each area, we have reviewed the cur-
rent status, roadblocks, and potential

research directions. Note that the cur-
rent categorizationisbynomeanscom-
prehensive, as we expect new research
areas will emerge as the field evolves.
Rather, this article is meant to serve
as an initial step for our community to
define clear and effective roadmaps to
make the age of autonomous machines
a reality in the near future. As a next
step, we aim to work with technical,
educational, economic, and policy
experts from academia, industry, and
government within each area to form
cross-disciplinary teams to address the
challenges outlined in this article.
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