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We are entering the age of autonomous machines, but 

many roadblocks exist on the path to make this a reality. 

We make a preliminary attempt at recognizing and 

categorizing the technical and nontechnical challenges of 

autonomous machines; for ten areas, we review current 

status, roadblocks, and potential research directions.  

A s increasing numbers and kinds of auton­
omous machines enter our daily lives, the 
age of autonomous machines is upon us, and 
a whole new era of information technology 

begins. How did we get here? Before delving into autono­
mous machines, let us first review the evolution of com­
puting machinery. 

THE AGE OF AUTONOMOUS MACHINES: 
THE SIXTH LAYER OF INFORMATION 
TECHNOLOGY  
Information technology took off in the 1960s when 
Fairchild Semiconductor and Intel established its 
foundation by producing the first silicon micropro­
cessors, with the attendant explosive growth of Sil­
icon Valley. At first, although microprocessor tech­
nologies greatly improved industrial productivity, the 
general public had limited access to it. This changed in 
the 1980s with the advent of personal computers and, 
later, the Apple Macintosh and Microsoft Windows, 
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using a GUI. The second layer had been 
established, and the vision of ubiq­
uitous computers, targeted for use 
by untrained personnel at home, had 
become a possibility.

With virtually everyone having access 
to computing power by the early 2000s, 
Yahoo and Google laid the third layer, 
connecting people—indirectly—with in­
formation available through search 
engines. With the third layer, the Inter­
net, a core infrastructure to enable later 
layers, could become ubiquitous.

Beginning with Facebook in 2004, 
social networking sites created the 
fourth layer of information technology 
by allowing people to directly connect 
with each other, effectively moving the 
whole of human society to the World 
Wide Web. As the population of Inter­
net-savvy people reached critical mass, 
the emergence of such applications as 
Airbnb (2008) and Uber (2009) was the 
basis for the fifth layer by providing 
direct Internet commerce services.

So far, each new layer of information 
technology, with its added refinements, 

has incrementally improved popular 
access and demand. Note that, for most 
Internet commerce sites providing access 
to service providers through the Inter­
net, it is still ultimately humans who 
are providing the services.

We have now entered the age of 
autonomous mach i nes (t he si xt h  
layer), in which autonomous machines,  
such as service robots, autonomous drones, 
delivery robots, and autonomous vehi­
cles, rather than humans, will provide ser­
vices. Obviously, autonomous machines 
have the potential to completely upend 
our daily lives and our economy in the 
coming decade.

Yet, autonomous machines are ex­
tremely complex systems that integrate 
many segments of technology,1 and for 
autonomous machines to become an inte­
gral part of our daily lives, we still face 
many technical and nontechnical chal­
lenges. In this article, we categorize these 
challenges in ten areas. For each area, we 
introduce the current status and road­
blocks as well as potential research direc­
tions. It is hoped that this will help the 

community define clear, effective, and 
more formal development goalposts for 
the future.

AREA 1: THE ON-MACHINE 
COMPUTE SYSTEM
As opposed to other computing work­
loads, autonomous machines have a 
very deep processing pipeline, or com­
putation graph, with strong dependen­
cies among the different stages and 
strict deadlines associated with each 
stage.2 For instance, Figure 1 presents 
an overview of the processing pipeline 
of a level 4 autonomous driving system.

Starting from the left side of the 
figure, the system consumes raw sens­
ing data from mmWave radars, lidars, 
cameras, and global navigation satel­
lite system (GNSS) receivers and iner­
tial measurement units (IMUs), where 
each sensor produces raw data at its 
own frequency. The cameras capture 
images at 30 frames per second (fps) 
and feed the raw data to the 2D percep­
tion module, the lidars capture point 
clouds at 10 fps and feed the raw data 
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FIGURE 1. The processing pipeline of an autonomous vehicle. GNSS: global navigation satellite systems; IMU: inertial measurement unit.
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to the 3D perception module as well 
as the localization module, the GNSS/
IMUs generate positional updates at 
100 Hz and feed the raw data to the 
localization module, and the mmWave 
radars detect obstacles at a rate of  
10 fps. All of these raw data are then 
fed to the perception fusion module.

Next, the results of the 2D and 3D 
perception modules are fed into the 
perception fusion module at 30 and  
10 Hz, respectively, to create a compre­
hensive perception list of all detected 

objects. The perception list is then sent 
to the tracking module at 10 Hz to cre­
ate a tracking list of all detected objects. 
The tracking list then is fed into the 
prediction module at 10 Hz to create a 
prediction list of all objects. After that, 
both the prediction results and the 
localization results are received by the 
planning module at 10 Hz to generate a 
navigation plan, which then goes into 
the control module at 10 Hz to generate 
control commands. These, in turn, are 
sent to the autonomous machine for 
execution at 100 Hz.

Hence, every 10 ms, the autono­
mous machine needs to generate 
a control command to maneuver the 
autonomous machine. If any upstream 
module, such as the perception mod­
ule, misses the deadline to generate 

an output, the control module must 
still generate a command before the 
deadline. This could lead to disastrous 
results as the autonomous machine 
would then be essentially driving 
blindly without timely participation 
from the perception unit.

To minimize the end-to-end latency, 
one commercial approach is to build 
a proprietary on-machine computing 
system to map sensing and computing 
tasks to the best compute substrates 
to achieve optimal performance and 

energy consumption.3 However, this 
design evolves through trial and error, 
and the whole design process takes 
much time with multiple iterations. 
This is the same approach that many 
autonomous machine companies take: 
they deploy ad hoc solutions to ensure 
on-time autonomous machine prod­
uct release. These methods are prod­
uct specific and hard to generalize to 
other autonomous machine designs, 
hence leading to high reengineering 
costs for each product.

Challenge
We conclude that the key technical 
challenge of designing an autonomous 
machine compute system is to develop 
an appropriate computer architecture, 
along with a software stack that allows 

the flexibility of mapping various com­
putation graphs from different types 
of autonomous machines to the same 
compute substrate, while meeting real-
time performance, cost, and energy con­
straints. Existing CPUs meet the flexi­
bility requirement but fail to meet the 
performance and energy constraints, 
whereas other compute substrates, espe­
cially accelerators, typically target to 
meet the performance and energy con­
straints of one module, for example, the 
perception module, without optimizing 
the end-to-end system.

AREA 2: THE SENSING 
SYSTEM
Autonomous machines gather informa­
tion about their surroundings through 
their sensors; sensing is thus the very 
first stage of autonomous machines’ 
deep processing pipeline. The ulti­
mate objective of the sensing system 
is to provide accurate, reliable, and 
comprehensive information about the 
physical environment for later pro­
cessing stages to precisely understand 
the physical world. These three goals 
(accuracy, reliability, and comprehen­
siveness) can be achieved through 
multimodal sensor fusion.4 However, 
multimodal sensor fusion presents 
significant challenges because all sen­
sor data have to be synchronized tem­
porally and spatially all of the time 
during the operation of the machine.

As an instance of temporal synchro­
nization, take two sensors, a camera 
and a lidar; their measurements must 
be made simultaneously so that the 
machine can fuse the measurements 
and reconstruct an accurate and com­
prehensive view of the environment. 
Without proper time synchronization, 
the data from multiple sensors could 
yield an inaccurate, ambiguous view of 
the environment, leading to potentially 

THIS COULD LEAD TO DISASTROUS 
RESULTS AS THE AUTONOMOUS 

MACHINE WOULD THEN BE ESSENTIALLY 
DRIVING BLINDLY WITHOUT TIMELY 

PARTICIPATION FROM THE  
PERCEPTION UNIT.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 05,2022 at 17:00:51 UTC from IEEE Xplore.  Restrictions apply. 



	 J A N U A R Y  2 0 2 2 � 67

catastrophic outcomes.5 For an exam­
ple of spatial synchronization, assume 
multiple cameras with overlapping 
field of views are installed at different 
locations of the autonomous machine. 
To guarantee that the visual sensing 
results from these multiple cameras 
accurately match, the results from each 
camera need to go through geometric 
transformations, or calibration, so that 
they can be projected to a commonly 
agreed-upon reference point. Currently, 
on most autonomous machines that 
fuse multiple sensor modalities, the 
sensors must be manually calibrated,6 
a slow, labor-intensive, and often error-
prone process. Once this calibration 
has been completed, it is often assumed 
that it remains unchanged while the 
autonomous machine is operating. 
In practice, the calibration is gradu­
ally degraded due to the autonomous 
machine’s motion, leading to the need 
of periodic recalibration.

Challenge 
In an ideal scenario, we should be able 
to simply plug a sensor into an autono­
mous machine, and it would just work. 
Unfortunately, we are still far from 
this ideal, and any change to the sen­
sor configuration of the autonomous 
machine must often lead to a rede­
sign of the temporal and spatial syn­
chronization subsystem (for example, 
a complete recalibration of the whole 
autonomous machine) or even a mod­
ification to the perception and local­
ization systems. We conclude that the 
key technical challenge for the design 
of sensing systems is to provide a 
standardized framework for tempo­
ral and spatial synchronization for 
existing as well as new sensors. Only 
then will we be able to provide sensor 
plug-and-play capability for autono­
mous machines.

AREA 3: THE PERCEPTION 
SYSTEM
Perception is essential to any auton­
omous machine applications where 
sensory data and artificial intelligence 
techniques are involved. The f ina l 
objective of perception is to extract 
spatial and semantic information from 
the raw sensing data so as to allow 
the machine to construct a compre­
hensive understanding of its operat­
ing environment. Such understanding 
includes the types, positions, headings, 
speeds, and dimensions of all objects 
in the environment.

There are two categories of percep­
tion for autonomous machines: the 
deep learning-based approach and the 
geometry-based approach. The deep 
learning-based approach is mainly used 
to extract semantic information and 
is heavily used in applications such as 
object detection, scene understanding, 
segmentation, tracking and predic­
tion, and so on. Within an autonomous 
machine’s perception system, multi­
ple deep learning models are running 
simultaneously, such as networks for 2D 
perception, networks for 3D perception, 
and networks for tracking and predic­
tion. Nonetheless, deep learning-based 
perception is often the performance 
bottleneck in autonomous machines. 
It thus becomes a painful tradeoff 
between perception quality and com­
pute and energy resource utilization.

The geometry-based approach is 
mainly used to extract positional and 
dimensional information of the tar­
get objects. A most common instance 
of geometry-based perception appli­
cation is the real-time stereo vision 
used for autonomous machine navi­
gation, obstacle avoidance, and scene 
reconstruction. Stereo vision allows 
autonomous machines to obtain 3D 
structure information of the scene. A 

stereo vision system typically consists 
of two cameras to capture images from 
two points of view. Disparities between 
the corresponding pixels in two ste­
reo images are detected using ste­
reo-matching algorithms. Depth infor­
mation can then be calculated from the 
inverse of this disparity. Autonomous 
machines must fuse the positional 
and dimensional information and the 
semantic information of the target 
objects to form a comprehensive under­
standing of their environments.

Challenge
We conclude that the key technical 
challenge for perception is in the 
development of a general framework 
to generate a reliable and precise 
understanding of the operating envi­
ronment in real time. Reliable and pre­
cise perception can be achieved by fus­
ing various perception results, such as 
2D semantics, 3D semantics, and 3D 
geometry, an area still currently under 
active research. On the other hand, 
to achieve real-time performance, 
there are software approaches, such as  
the compression–compiler co-design 
method, which combines the compres­
sion of deep learning models and their 
compilation to optimize both the size 
and speed of deep learning models.7, 8 
Hardware approaches such as hard­
ware accelerators for perception mod­
ules9, 10 also can be taken. Ultimately, 
more research is required to deter­
mine what combination of software 
and hardware approaches will be most 
effective in achieving real-time per­
formance for the perception system.

AREA 4: THE LOCALIZATION 
SYSTEM
Fundamental to autonomous machines  
is localization, that is, ego-motion esti­
mation, which calculates the position 
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and orientation of an agent in each 
frame of reference. Formally, localiza­
tion generates the six-degrees-of-free­
dom (DOFs) pose, including the three 
DOFs for the translational pose, which 
specify the <x, y, z> position, and the 
three DOFs for the rotational pose, 
which specify the orientation about 
three perpendicular axes: yaw, roll, 
and pitch. Knowing the translational 
pose fundamentally enables an auton­
omous machine to plan its path and 
to navigate, while the rotational pose 
further lets it stabilize itself.

Localization is highly sensitive to 
the operating environment, as differ­
ent environments require different 
sensors and algorithms. For instance, 
in outdoor environments, which usu­
ally provide stable GNSS signals, using 
the compute-light visual–inertial odom­
etry algorithm or lidar odometry cou­
pled with GNSS signals achieves the 
best accuracy and performance. By 
contrast, in unknown, unmapped in­
door environments, a lidar or visual 
simultaneous localization and map­
ping (SLAM) algorithm delivers the 
best accuracy.11 Nonetheless, different 
localization algorithms often incur 
different latencies and, even worse, 
latency variations. For instance, for 
visual odometry or visual SLAM, the 
processing latency often depends on 
the number of feature points extracted 
from the current image, which means 
large latency variations can occur that 
might impact predictability and safety.

Challenge 
We conclude that the key technical 
challenge in localization is to develop a 
standard framework capable of adapt­
ing to different operating scenarios 
by unifying core primitives in various 
localization algorithms and seamlessly 
switching among different algorithms 

as the autonomous machine navigates 
through different environments. In 
addition, this standard framework 
should provide a desirable software 
baseline for acceleration, which will 
minimize processing latency as well as 
latency variations.

AREA 5: THE PLANNING AND 
CONTROL SYSTEM
The planning and control system dic­
tates how an autonomous machine 
should maneuver. Traditional plan­
ning and control systems must include 
behavioral decisions, motion planning, 
and feedback control kernels.1 Specifi­
cally, motion planning entails three 
steps, namely, roadmap construction, 
collision detection, and graph search. 
As autonomous machines work with 
configurations with higher DOFs (such 
as robotic arms), motion planning will 
become increasingly complex since 
the search space will have exponen­
tially increased.

While commonly deployed in com­
mercial autonomous machines, tradi­
tional planning and control methods 
often utilize human-in-the-loop rule-
based approaches, where engineers 
fine-tune the planning and control 
kernels with available test data. This 
approach is not only slow and costly, 
but also it is not robust as all “cor­
ner” cases need to be added manually. 
As more rules must be included, the 
planning and control system becomes 
increasingly large and unwieldy and 
often fails to meet real-time require­
ments. In addition, rule-based meth­
ods suffer from a notorious difficulty 
to handle the multiagent problem, or 
the fact that the actions taken by an 
agent can affect the behavior of other 
machines in the same environment, 
hence failing to handle complex traf­
fic scenarios.

Recently, deep reinforcement learn­
ing (DRL) for planning and control has 
been actively researched in many places 
worldwide. Compared to traditional 
planning and control methods, infer­
ence with DRL incurs low computational 
requirements during operation, espe­
cially for high-DOF configurations.12 
In addition, DRL methods are capable 
of handling the multiagent problem, 
allowing autonomous machines to han­
dle complex traffic scenarios. However, 
model training is the bottleneck for DRL-
based planning and control systems, 
as it requires a vast number of trials to 
gain enough experience. This is espe­
cially the case for complex scenarios, 
where model training can easily reach 
millions of steps, with each setup of 
hyperparameters or reward hypothesis 
taking hours or even days.

Challenge 
While DRL-based planning and con­
trol methods are highly promising, 
the key technical challenge for plan­
ning and control remains the devel­
opment of a cloud infrastructure that 
provides sufficient compute power 
and generates high-quality data for 
DRL model training. First, to ensure 
we generate enough high-quality data 
to train the DRL networks, we need to 
develop simulation engines that are 
capable of closely simulating various 
physical scenarios. Second, to greatly 
improve algorithm development effi­
ciency, especially for complex scenar­
ios, we need to develop a model train­
ing infrastructure that can reduce the 
training time by orders of magnitudes.

AREA 6: THE 
COMMUNICATION SYSTEM
As most autonomous machines are 
also connected machines, the commu­
nication among autonomous machines 
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as well as that between autonomous 
machines and the infrastructure is 
critical to overall performance, safety, 
and reliability. For instance, cellular 
vehicle-to-everything (C-V2X) is designed 
as a unified connectivity platform that 
provides low-latency communications. 
It consists of two modes of communica­
tions. The first mode uses direct commu­
nication links between vehicles, infra­
structure, and pedestrians. The second 
mode leverages commercial LTE or 5G 
cellular networks to enable vehicles to 
receive information from the Internet. 
With the proliferation of 5G technolo­
gies, we expect that, in the near future, 
the C-V2X technology will be extended to 
all autonomous machines.13

Disappointingly, the field exper­
imental results demonstrate that 
the real-world wireless networks are 
unstable and unreliable, which can sig­
nificantly affect the arrival timing of 
the infrastructure-side data.15 Further, 
complex and ever-changing traffic con­
ditions can exacerbate this situation. 
Specifically, while for direct-commu­
nication C-V2X networks, communi­
cation latency is less of a problem, the 
communication bandwidth remains 
insufficient to sustain the data needed 
for cooperative autonomous machines. 
With commercial LTE or 5G networks, 
while bandwidth is less of a problem, 
latency variations often lead to missed 
deadlines where the miss ratio can be 
as high as 30%, thereby preventing 
reliable cooperative autonomous driv­
ing scenarios.

Challenge 
The key technical challenge of designing 
autonomous machine communication 
systems is to develop a highly reliable 
autonomous machine communication 
network with bandwidth guarantees 
and minimum latency variations. There 

are some initial directions of research 
that may achieve these goals, but more 
research is required. First, we can adjust 
the priority in the commercial commu­
nication networks to provide the high­
est priority to autonomous machines 
connections as they are safety critical. 
Second, a virtual communication back­
bone that builds on top of both LTE and 
5G commercial networks as well as the 
direct communication C-V2X networks 
can improve the reliability of autono­
mous machine communication through 
intelligent scheduling. Third, we can 
develop intelligent fusion engines on 
autonomous machines to dynamically 
decide whether it is reliable and safe to 
fuse infrastructure-side data.

AREA 7: THE CLOUD SYSTEM
Autonomous machines, especially the 
ones with mobility (such as vehicles, 
delivery robots, service robots, and 
drones), require cloud computing sup­
port. Such an autonomous machine 
cloud system must be capable of sup­
porting offline computing tasks, such 
as deep learning model training or 
high-definition (HD) map generation, 
or even online computing tasks such as 
aggregating all traffic information and 
broadcasting the information to all traf­
fic participants, especially in the context  
of cooperative autonomous driving.

Autonomous machine clouds today  
are mostly application specific, although 
they share many common require­
ments. To support different cloud appli­
cations, we need an infrastructure to 
provide basic services, including dis­
tributed computing and storage as well 
as hardware acceleration through het­
erogeneous computing. If we were to 
tailor the infrastructure for each appli­
cation, we would have to maintain 
multiple infrastructures, potentially 
leading to low resource utilization, low 

performance, and high management 
overhead. One effective way to solve this 
problem is to develop a unified auton­
omous machine cloud infrastructure 
with consolidated distributed comput­
ing and storage services.14

Simulation is the cornerstone appli­
cation in autonomous machine cloud sys­
tems, in which autonomous machine 
functions are exercised in a virtual 
environment. The architecture of an 
autonomous machine cloud simula­
tion system is illustrated in Figure 2;  
the simulator models the sensing mech­
anism and generates sensory data by 
simulating interactions between the 
sensors and environments. Exercised 
by the simulated sensory data, the 
autonomous machine software gener­
ates control commands to maneuver. 
We believe that autonomous machine 
clouds should be simulation centric 
as simulation consumes outputs from 
most other cloud-based applications, 
such as HD map generation and deep 
learning model training. Also, simula­
tion consumes more than 80% of com­
puting resources in our autonomous 
machine cloud, making it a low-hang­
ing fruit in terms of a target for optimi­
zation. In addition, by moving some of 
the physical testing to cloud-based sim­
ulation, we managed to reduce testing 
costs by 28 times and improve the test­
ing efficiency by 12 times.

Challenge 
Moving forward, as autonomous machine 
clouds become more prevalent, two 
technical challenges have emerged. 
First, we need to continuously develop 
and refine distributed computing and 
storage services to adapt to the needs 
of various autonomous machine appli­
cations, especia l ly to provide t he 
infrastructure support to satisfy the 
ever-increasing compute and storage 
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demands for autonomous machines. 
Second, we need to deploy and optimize 
basic simulation services on the cloud 
infrastructure to serve various auton­
omous machine simulation needs. For 
instance, autonomous drones and ser­
vice robots demand different simula­
tion services.

AREA 8: THE COOPERATION 
AMONG AUTONOMOUS 
MACHINES
While traditional autonomous machines  
utilize only on-machine intelligence, 
cooperative autonomous machines 
depend on the cooperation between 
autonomous machines in addition to 
the infrastructure. Take autonomous 
driving for example; the infrastruc­
ture–vehicle cooperative autonomous 
driving approach relies on the coopera­
tion between intelligent roads and intel­
ligent vehicles. This method is not only 

safer but also more economical com­
pared to the traditional on-vehicle-only 
autonomous driving. Based on the  
progress toward commercial deploy­
ment, a three-stage development road­
map has been proposed as follows:15

›› stage 1: infrastructure-aug­
mented autonomous driving, 
in which autonomous vehicles 
fuse vehicle-side and infrastruc­
ture-side perception outputs to 
improve the safety of autono­
mous driving

›› stage 2: infrastructure-guided 
autonomous driving, in which 
autonomous vehicles can offload 
all of the proactive perception 
tasks to the infrastructure in 
order to reduce per-vehicle 
deployment costs

›› stage 3: infrastructure-planned 
autonomous driving, in which 

the infrastructure takes care of 
both perception and planning, 
thus achieving maximum traffic 
efficiency and cost efficiency.

To complete these tasks, Figure 3  
presents an overview of the coopera­
tive autonomous driving system archi­
tecture. It consists of systems on vehi­
cle (SoVs), systems on road (SoRs), the 
intelligent transportation cloud system 
(ITCS), and the control center. The SoRs 
provide local perception results to the 
SoVs for blind-spot elimination and 
extended perception to improve safety. 
Meanwhile, the SoRs process incom­
ing sensor data and send the extracted 
semantic data to the ITCS for further 
processing. The ITCS fuses all incom­
ing semantic data to generate global 
perception and planning information 
before the control center can dispatch 
real-time global traffic information, 
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navigation plans, and even vehicle con­
trol commands to the SoVs to achieve 
optimal traffic efficiency. This design 
does not only apply to autonomous driv­
ing; it can be generalized to all autono­
mous machines.

Challenge
The key technical challenge for coop­
erative autonomous machines is inte­
gration as its full realization relies on 
all of the technical areas described 
in the previous sections. To guide the 
progress of cooperative autonomous 
machines, the community needs to 
clearly define the technical specifica­
tions and standards of each technical 
area for each stage of deployment to 
ensure effective technical integration.

AREA 9: THE EDUCATION OF 
ENGINEERS IN THE AGE OF 
AUTONOMOUS MACHINES
Talent supply is the single most import­
ant input for the ubiquitous deployment 
of autonomous machines. Unfortu­
nately, in the past few years, industry has 
observed a huge supply–demand gap for 
autonomous machine engineers.

On the supply side, many students 
actually have a high degree of interest 
in autonomous machine technologies 
but find that their home universities 
do not provide an adequate education 
to prepare them to enter this field. On 
the demand side, it is extremely diffi­
cult for autonomous machine compa­
nies to hire qualified engineers to fill 
the open positions, thus forcing many 
companies to develop internal train­
ing programs to prepare incoming 
engineers. However, since many com­
panies in this field are resource-con­
strained startups, the need to pro­
vide training for incoming engineers 
imposes an additional burden on 
their financial situation, leading to an 

inefficient allocation of precious fund­
ing resources.

To bridge this supply–demand gap, 
we, as a society, should urgently reshape 
our engineering education programs 
and create a cross-disciplinary program 
to impart students with a technical 
background in computer science, com­
puter engineering, electrical engineer­
ing, and mechanical engineering.16 On 
top of this cross-disciplinary technical 
foundation, a capstone project that will 
provide students with hands-on expe­
rience in working with a real autono­
mous machine would consolidate the 
technical foundation.17 An effective 
way to perform the capstone project is 
through cooperative education (coop), 
a structured method combining class­
room-based education with practical 
work experience, which would require 
close collaboration between universi­
ties and industry.

Challenge
This proposed engineering education 
reform roadmap is ambitious, and we 

have a long way to go to achieve it as 
it is extremely challenging to estab­
lish long-term and stable collabora­
tions among multiple parties. To pro­
mote collaboration between industry 
and academia in emerging fields like 
autonomous machines, we advocate 
for governments to provide incentives 
through grant programs. It is nota­
ble that the U.S. government has been 
playing an active role in driving the 
U.S. innovation rate.18 These education 
and training grants should advance the 
domestic workforce skills in autono­
mous machine technologies and conse­
quently improve the domestic economy.

AREA 10: THE BROADER 
SOCIETAL IMPACT OF 
AUTONOMOUS MACHINES
Finally, autonomous machines are 
expected to completely revolutionize 
our economy by greatly improving 
the efficiency in delivery, transporta­
tion, manufacturing, and many other 
sectors. Take last-mile autonomous 
delivery, for example; the growing 
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SoR Engineering System

1) Global Traffic Information
2) Navigation Plans
3) Control Commands

Local Perception
Results

Control CenterITCS

Semantics Semantics Semantics
Data
Algorithms

Global Perception
and Planning

FIGURE 3. An infrastructure–vehicle cooperative autonomous driving system. ITCS: intel-
ligent transportation cloud system; SoR: system on road; SoV: system on vehicle.  
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labor cost may be prohibitive for ser­
vice providers. In China, a contracted 
delivery clerk with an annual salary of 
US$20,000 can deliver 110 parcels per 
day, which means that each delivery 
order costs nearly US$0.5. This cost is 
expected to continue increasing as the 
demographic dividend has reached its 
end. Deploying autonomous machines 
for last-mile delivery has proved to be a 
promising approach to cut these costs 
by more than half.19

Take autonomous vehicles as another 
example. Traffic inefficiency such 
as congestion imposes high costs on 
our society. For the trucking industry 
alone, the American Transportation 
Research Institute estimates that con­
gestion costs the United States US$74.1 
billion annually, of which US$66.1 
billion occurs in urban areas. As one 
of the ultimate goals of autonomous 
driving is to completely eliminate traf­
fic inefficiency, utilizing autonomous 
driving technologies on trucking alone 
can lead to a significantly more effi­
cient national economy.

However, the benefits of improved 
efficiency do come at a cost. Converting 
all vehicles in the world into autono­
mous vehicles would result in an enor­
mous social cost as autonomous vehicles 
are still very expensive to build.20 An 
alternative but cost-efficient solution is 
cooperative autonomous machines. As 
infrastructures become more intelli­
gent, more workloads can be offloaded 
to the infrastructure side, greatly reduc­
ing the hardware and energy costs of 
autonomous machine deployments. It is 
estimated that this approach would drop 
the cost of autonomous machine deploy­
ment by more than 50%.15 Besides the 
impact on the economy, there will also 
be increasingly more ethical, privacy, 
and security challenges as autonomous 
machines proliferate.

Challenge
One nontechnical but critical challenge 
is for the whole industry to thoroughly 
understand the potential impact of 
various autonomous machines on our 
economy as well as the costs of large-
scale deployments of various autono­
mous machines. Only with accurate 
projections and estimations will we be 
able to provide comprehensive infor­
mation to policy makers and technol­
ogy firms. Consequently, policy mak­
ers and technology firms are capable 
of making their policy and technology 
investment decisions with the ulti­
mate goal of improving human society 
with autonomous machine technologies. 
Once we have a clear understanding 
of the societal benefits of autonomous 
machines, our society should develop 
ethical guidelines, standards, and leg­
islations to guide the healthy develop­
ment of autonomous machines. Hence, 
an immediate next step is for econo­
mists, policy makers, and autonomous 
machine engineers to work closely 
together to define economic impact and 
policy roadmaps to integrate autono­
mous machines into our daily lives.

After more than six decades of 
information technology devel­
opment, we believe that autono­

mous machines will completely revolu­
tionize our daily lives and our economy 
in the coming decade. The impact of 
autonomous machines on our society 
is likely to be much deeper and broader 
than any other information technology 
revolution that we have experienced in 
the past decades. To facilitate the rise of 
autonomous machines, in this article, we 
have categorized the technical and non­
technical challenges in ten areas, and, 
for each area, we have reviewed the cur­
rent status, roadblocks, and potential 

research directions. Note that the cur­
rent categorization is by no means com­
prehensive, as we expect new research 
areas will emerge as the field evolves. 
Rather, this article is meant to serve 
as an initial step for our community to 
define clear and effective roadmaps to 
make the age of autonomous machines 
a reality in the near future. As a next 
step, we aim to work with technical, 
educational, economic, and policy 
experts from academia, industry, and 
government within each area to form 
cross-disciplinary teams to address the 
challenges outlined in this article. 
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