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Abstract— Traffic flow forecasting is indispensable in today’s
society and regarded as a key problem for Intelligent Transporta-
tion Systems (ITS), as emergency delays in vehicles can cause
serious traffic security accidents. However, the complex dynamic
spatial-temporal dependency and correlation between different
locations on the road make it a challenging task for security
in transportation. To date, most existing forecasting frames
make use of graph convolution to model the dynamic spatial-
temporal correlation of vehicle transportation data, ignoring
semantic similarity between nodes and thus, resulting in accuracy
degradation. In addition, traffic data does not strictly follow
periodicity and hard to be captured. To solve the aforementioned
challenging issues, we propose in this article CRFAST-GCN,
a multi-branch spatial-temporal attention graph convolution net-
work. First, we capture the multi-scale (e.g., hour, day, and week)
long- short-term dependencies through three identical branches,
then introduce conditional random field (CRF) enhanced graph
convolution network to capture the semantic similarity globally,
so then we exploit the attention mechanism to captures the
periodicity. For model evaluation using two real-world datasets,
performance analysis shows that the proposed CRFAST-GCN
successfully handles the complex spatial-temporal dynamics effec-
tively and achieves improvement over the baselines at 50%
(maximum), outperforming other advanced existing methods.

Index Terms— Conditional random field, graph conventional
network, smart city, security frame, vehicle prediction.
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I. INTRODUCTION

ITH the rapid development of cities and economical

construction, the urbanized vehicle traffic system has
also become increasingly more complex [1]. While the current
traffic system brings convenience to people, it also leads to
problems and issues incurred due to reduced visibility and
massive greenhouse gas emissions [2]. For example, a complex
road network makes the traffic system more congested and
fragile. Moreover, cases of fatigue driving, illegal driving,
and illegal occupation of emergency lanes have increasely
occurred in recent years [3], [4], seriously jeopardizing the
order and safety of vehicle driving and causing loss of
life and property. Therefore, improving road traffic capacity,
reducing road network maintenance costs, and accident risks
are questions that need to be settled expeditiously by current
intelligent traffic systems (ITS). In such systems, the short-
term vehicle flow forecast problem is a critical yet challenging
task. Advancements [5] in Big Data, smart cities, data storage,
and urban computing make vehicle data collection and analysis
possible, so the vehicle data (e.g., vehicle velocity, vehicle
capacity, and pedestrian volume) reflect the current status of
ITS and can be applied to predict the upcoming status for
vehicle control.

The exponential growth of the IoT has provided an effi-
cient approach to collect data for intelligent systems [6].
With improved distributed hardware scheduling algorithms [7],
wireless sensor networks develop with low consumption and
high fault tolerance [8],vehicle data can be collected through
sensors that are deployed at a fixed position and sample
regularly. However, observed values in the adjacent time slice
are not independent despite dynamically correlated. In addi-
tion, vehicle flow data have apparent periodicity, two peaks
corresponding to morning and evening. Intuitively, the traffic
can impact the nearby road in a diffusion manner. There-
fore, the road network vehicle data have a robust dynamic
dependency, though it remains challenging to learn the inter-
nal spatial-temporal pattern and perform accurate vehicle
prediction.

Vehicle flow forecasting is a classic spatial-temporal fore-
casting topic. Most works in the literature at early stage
exploits time-series-based approaches to predict vehicle speed;
for example, history average (HA) [9], vector autoregression
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(VAR) [10], support vector regression (SVR) [11], Autoregres-
sive Integrated Moving Average model (ARIMA) [12] and
their variants. Unfortunately, the studies/methods developed
have been assumed at a stationary basis, without spatial
dependency. In addition, due to high uncertainty and com-
plexity, they fail to forecast for long-term and extreme events
(e.g., holidays, severe weather, and vehicle crash accidents).
Therefore, with the impressive development of Deep Learning
(DL), recent researches have been re-directed using this type
of Artificial Intelligence (AI) technology for better accuracy
and robustness [13].

DL-enabled approaches are widely applied in several
spatial-temporal prediction tasks and outperform existing
strategies. Recurrent Neural Networks (RNNs) are usually
used to encode temporal patterns. Nevertheless, despite the
tremendous success achieved by RNNs, the inadequate train-
ing and inference speed limits their further development,
leading to an alternative solution for sequence modeling.
It is known that can be benefited from Convolution Neural
Networks (CNNs) of their effective parallelization, diffusely
used in sequence modelings, speech recognition, natural lan-
guage processing, and time series. However, CNNs can not
handle data in non-euclidean space since the direct applica-
tion of CNNs in time-series prediction may bring precision
loss, unfortunately. The emergence of GCN provides the best
choice for graph data learning. GCN can learn the charac-
teristics and structural information of nodes simultaneously,
and it is suitable for nodes of any topology. The results
on the public data set show that the effect of GCN on
tasks such as node classification and edge prediction is far
superior to other solutions. Lastly the combination of GCN
and time series methods also provides new ideas for traffic
forecasting.

At this point, two key challenges are depicted in-vehicle
prediction. Existing researches has ignored the shift of long
cyclical dependence. Traffic data has a solid daily and weekly
cyclical, which can be beneficial to prediction, and thus,
the challenge is that vehicle data do not strictly follow the
periodicity. For example, peak hours on weekdays always
happen around 9:30am though they may vary from 3:00pm
to 4:30pm on different days, while peak hours between weeks
range from 8:30 to 9:30. Although previous works considered
periodicity, but unfortunately, failed to capture the cyclical,
as well as two sensors that have long-distance in spatial may
share an implicit similarity. Therefore, due to the locality
of the convolution operator, some useful information may
be lost, so the preservation of semantic similarity remains
challenging.

Based on the abovementioned issues, we propose in this
article the CRFAST-GCN framework. Specifically, we develop
a multi-branch architecture above trend, daily, weekly, and
each branch contains a CFRGCN model and an attention
component. The CRFGCN module captures the dynamic
Spatial-temporal relationship while protecting the similarity
information of the hidden layer of the graph convolution.
The enhanced attention component to arrest the tempo-
ral pattern shift and align them, and next, a CRF-refined
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graph convolution layer is introduced to capture semantic
similarity. In essence, our contributions in this article are
threefolds:

o To develop a spatial-temporal multi-branch framework,
named CRFAST-GCN, to learn dynamic and multi-scale
correlation of traffic data. A temporal self-attention is
applied to learn temporal pattern shift and alignment.

o To propose a CRF-based GCN block, which uses CRF
between two graph convolution layers to preserve simi-
larity and learn semantic similarity simultaneously.

o To conduct broad-scale experiments on two real-world
vehicles datasets, the results show that CRFAST-
GCN successfully handles the complex spatial-temporal
dynamic, and its performance consistently outperforms
baselines.

The remaining of this article is organized as fol-
lows. The related works of literature is presented in Section II,
the notations and problems definition in Section III, and the
proposed security frame in Section IV. Next, the experimental
results, anslysis and discussions are depicted in Section V,
and finally, the concluding remarks and prospect directions
are drawn in Section VI

II. RELATED WORKS

The Internet of Things (IoT) technology [14] continuously
drives the evolution of vehicle networks into the Internet
of Vehicles (IoV) paradigm, where a large amount of data
acquired from connected vehicles, traffic monitoring, and flow
augments the potential value of the Big Data in the IoV,
improving traffic prediction toward intelligent transportation.
In traffic prediction, prior knowledge is significant since grid-
based data has an inherent limitation on representation com-
plex spatial relationship [15], [16]. Therefore, predefined graph
such as distance-based graph [17], binary graph [18], multi-
graph [19], and self-adaptive graph [20], [21] are introduced.
Also, many recent works adopts RNNs [22]-[25], Temporal
Convolutional Networks (TCNs) [18], [20], [25], and trans-
former to model temporal dependency. Additionally, data are
sensitive to external factors [26], so thus, existing related
works in the field take weekday [27], points of interest [19],
and weather condition [15], [28] into consideration for further
improved accuracy.

A. Temporal Modeling

In the early times, traffic forecast was viewed as a naive
sequentially prediction task. For instance, classic modus,
AutoRegression Moving Average (ARMA) and ARIMA focus
on univariate time series prediction without modeling depen-
dent variables, limiting multi-variate time series forecast effi-
ciency. Besides, these statistical approaches have a robust
stationary assumption, leading to failure to predict unsta-
ble series and corrupted data. RNN is introduced to model
sequential data due to its powerful ability to capture temporal
dependency [24], [29]-[31]. Even though the recursive manner
of RNNs brings flexibility in model design, the RNNs suffer
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from low computation efficiency and occupy massive mem-
ory. Moreover, it suffers from gradient vanishing/exploding,
resulting in additional training difficulties. Hochreiter and
Schmidhuber [32] designed a neural network called Long
Short-Term Memory (LSTM) to solve gradient problems and
enhance long-term memory. However, with a large number or
longer-span sequences, as the depth of the network increases,
the loss will be severe, also introducing the problem of
overfitting. Meanwhile, Cho et al. [33] designed GRU to sim-
plify LSTM. Recently, transformer [34] has made remarkable
achievements in Natural Language Processing (NLP) and even
sequentially forecasting. The self-attention mechanism [29],
[35], [36] in the transformer can capture the global input-
wise dependency with high parallelization potential though
still suffer from large computation resources requirements.
Generally speaking, time series-based forecasting methods
ignore the temporal and spatial characteristics of traffic data.
In fact, traffic flow has a strong spatial dependence. Congestion
in a place will quickly affect the traffic of the surrounding road
sections, which is also the challenge of considering only time
series forecasting.

B. Spatial-Temporal Modeling

As known, GNNs have power and flexibility in capturing
the spatial correlation in non-euclidean space data, so many
works of the literature exploit them into time series pre-
diction. For example, works presented in [17], [20]-[22]
applied Graph Convolution Network (GCN [37]) and its
variants in traffic prediction. Pan et al. [38] proposed meta-
learning to generate parameters for Graph Attention Network
(GAT) [39]. Li et al. [40] designed DCRNN to reformulate
the spatial corrections of vehicles as an expanded procedure
and separate the adjacent matrix into two directed graphs.
Graph WaveNet [20], [29] combined GCN with a dilation
causal convolution network to save the computational cost
of processing long sequences and proposed adaptive adja-
cency matrix as a supplement to the predefined adjacency
matrix to catch implicit spatial correlation. In recent work,
Yu et al. [25] designed STGCN to capture spatial-temporal
correlation through spatial graph convolution and temporal
convolution. AGCRN can capture fine-grained temporal and
spatial correlations of specific nodes in traffic sequences [41].
ASTGCN [18], STSGCN [39] and GMAN [35] further intro-
duced a more carefully designed spatial-temporal attention
mechanism to catch dynamic spatial-temporal correlation with
GCN. Bai et al. [23] combined adaptive graph convolution
GRU with an attention mechanism to capture temporal and
spatial correlation dynamically. However, these methods only
learned shared patterns of time series data. Although methods
based on GCN capture the spatial correction and retrieve excel-
lent results, graph data has similar information between differ-
ent nodes, since preserving the similarity of the hidden layer in
the graph convolution process cannot be ignored. Nevertheless,
current research works do not aim to this direction. Although
traffic flow data has prominent periodic characteristics, there
is also cyclical volatility. Thereafter, the method proposed in
this article solves these two abovementioned issues.

C. External Factors

The traffic conditions are vulnerable to external factors, such
as weather [15], [29] and poi [40], so it is required to tackle
it explicitly. Since the original time series can be used to
generate time information [15], [17], [20], [40], [42], DTW
similarity [43], the road structure and connectivity [19], [38]
can be extracted from adjacency matrix. In addition, leveraging
more external factors and designing effective ways to make
factors cooperate well with each other is critical and promis-
ing. As a summary, the proposed model effectively deals
with dynamic spatial similarity and period deviation through
periodic attention mechanisms and conditional random fields,
respectively.

III. PRELIMINARY AND NOTATION
A. Conditional Random Field

Conditional Random Field (CRF) was introduced in [44]
for forecasting labels of sequence data and later extended its
application to different structured prediction tasks [45], [46].
Essentially, CRF can forecast the future data of the node based
on the information of the node and neighboring nodes. That
is, maximize the probability of the predicted target, as:

1

P(yjlx)) = 265
t

exp (~EGI1x)) M

where Z(xf) is the normalization factor, E(-]-) represents
energy function, and y’ is a goal representation method.
The energy function has a unary component and a binary
component, where the former can predict the data of the node
itself, and the latter can obtain the relevant data information
between the node and its neighbor nodes to regularize the
unary function. A node can predict its data for the next
moment through its and neighbor nodes’ information. For
such, the defined energy function is:

E(yjlx) = @, L xD+ D @,60 0 xl.x]) @
JeN;

where, d)u(yf,)qf) is the unary energy function, and
ZjEM d)p(yf,yf,xf,xf) is the pairwise function. Next,
to adopt mean-field approximation to the majorization the
CRF, based on the ability of CRF to capture the paired
correlation between data points and their context. In this
article, CRF and GCN are combined to maintain the similarity
of the hidden layer.

B. Notations

In this investigation, we define the traffic network as an
undirected graph G = (V; E), where V represents the collec-
tion of nodes and E the connection edges of nodes. Table I
depicts notations and descriptions in a task.

C. Data Segments

The traffic flow is classified into three segments, as trend,
weekly, monthly, while definitions 1-3 define the meanings of
different fields, in detail.
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TABLE I
NOTATIONS AND DESCRIPTION IN CRFAST-GCN

Notation  Description

\4 finite set of N nodes

E connection edges of nodes

A adjacent matrix of graph

:c% all eigenvalues of node ¢ at time ¢

Xt all eigenvalues of all nodes at time ¢

N; neighourhood node set of node ¢

X all eigenvalues fo all nodes over 7 time slices

Definition 1: Trend segment:
Xh = (XIO_Th"rl» Xto—Th+2, ey XIO) c RNXFXTh , (3)

Historical time series directly adjacent to the forecast period.
Definition 2: Weekly segment:

L) Xlo—(Td/Tp)*q-‘er’ ce
- Xig—grr,] € RNVFXT (4

Xa = [Xig—(1,/T,)%q+15 - -
Xig—g+15 - -

Daily brunch is composed of segments of recent days in the
same period as the forecast period.
Definition 3: Monthly segment:

i) Xt077*(Tw/Tp)*q+Tp, cees
FxNxT,
s Xto—7*q+Tp] e R w - (5)

Xy = [Xt077*(Tw/Tp)*q+l 5.
Xt0—7*q+17 ..

Segments of data from past few weeks matching with same
week attributes and time intervals as forecast period.

IV. PROPOSED METHOD
A. Problem Definition

The problem is formulated by Equation (6), where X’ to
predict the traffic ¥ of all nodes on the complete transportation
network in the following time period.

Y =Fo(X,A) (6)

B. CRFAST-GCN Framework

From an intuitive point of view, the formation and spread
of traffic congestion are gradual, so congestion at the previous
moment directly impacts the next moment. Furthermore, traffic
data may show repetitive patterns, such as morning rush hour
during weekdays, due to people’s daily routines. Therefore,
accurate traffic flow prediction supports the road condition
analysis and timely feedback traffic information to travelers.
All three compositions use the same network architecture,
consisting of several spatial-temporal blocks and a layer to
connect them fully.

C. Spatial Graph Convolution

The two-dimensional convolution operation is developed to
the graph structure with the application of the spectrogram the-
ory. In this way, the transportation network can be represented
as a graph, while a signal represents the nodes’ characteristics.
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Shuman et al. proposed spectral CNN [47], where the diagonal
matrix parameters are indexed as learnable parameters, and
also assumed that the graph signal is multi-dimensional. The
major disadvantage is that a sample’s computational complex-
ity is increased if it has a graph, given that it is required to
perform the feature composition of the Laplace matrix U.

In spectrogram analysis, the Laplace matrix represents the
graph, and the attributes of the graph structure are retrieved
after detailed analysis. The Laplace matrix is L = D — A,
where A is the adjacent matrix, and the diagonal matrix is D €
RN*N Dy = j Aij. The eigenvalue decomposition of the
Laplace matrix is L = UAUT . Taking the traffic flow signal at
time ¢, the signal is x = X,f € RV, the graph signal £ = U'x,
and the corresponding Fourier inversion is x = UX, given
that the graph signal on the convolution operation is equal to
the graphic Fourier transform product of transforming these
signals into the spectral domain Simonovsky and Komodakis
proposed [48]. Nevertheless, for large-scale graphs, it is expen-
sive to decompose the eigenvalues of the Laplace matrix
directly, so Chebyshev polynomials are selected in this article
to approximate and effectively solve such a problem.

K-1

gorox = go(L)x = D O Tu(L)x, (7
k=0

where & € RX is a vector parameter of polynomial coef-
ficients, I = 2(L — IN)/Amax, Where Amax represents the
maximum eigenvalue of L, and Ty is Chebyshev polynomial.

Chebyshev polynomial approximate expansion is adopted to
solve the formula for extracting neighbors from 0 to K order
around each node in the graph through the convolution ker-
nel g. Simonovsky and Komodakis [49] proposed an effective
variant of CNN that directly operates on the graph, and the
local first-order approximation of spectrogram convolution can
encourage the excellence of convolution structure. Thus, in the
proposed multi-layer GCN, the stratification breeding rule is:

HD = ReLU (AH(H)W“*”) , (8)

where ReLU is the active action aAnd W=D is the learned
parameters in the (/ — 1)-th layer. A is defined as:

~

A=D"2Ab? )

D. Temporal Convolution

After capturing the neighboring information of the node in
the spatial dimension through graph convolution operation, the
information on the adjacent time slices of the signal of a node
is updated by merging through a standard convolution layer in
the time dimension. Thereafter, the operation of the first level
in the time dimension is expressed as:

A0 —ReLU ((D * (ReL U (gg*GQ?,j"”))) € ROXNXTy
(10)

where * denotes a standard convolution operation, @ is the
temporal dimension convolution kernel, and ReLU as the
activation function.
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Fig. 1.

CRFSTGCN frame,X),,X;,X;, captures the long and short cycle dependence, respectively. That is, GCN captures the spatial relationship, the CRF

layer captures the graph convolution hidden layer similarity, con captures the time dimension of the long- and short-term periodic relationship, the attention
mechanism captures the periodic volatility, and lastly, the fully connected layer outputs the prediction results.

In summary, the spatial-temporal convolution module can
acquire data’s temporal and spatial features skillfully since
the spatial-temporal attention module and spatial-temporal
convolution module consist of a spatial-temporal block. Fur-
thermore, multiple spatial-temporal blocks are stacked further
to extract a more extensive range of dynamic spatial-temporal
correlations.

E. Spatial CRF-GCN Layer

The influence of traffic conditions between different nodes
on spatial dimensions is highly dynamic. Compared with
general data, the graph between other nodes hides parallel
information, so it is challenging to maintain it in the GCN
hidden layer. Next, a flexible CRF layer that can directly
extract hidden similarity features between nodes in the GCN
process is depicted in [50].

In this article, to maintain the similarity in the propa-
gation of graph neural network, we borrow the idea from
CRF that captures the pair-wise relation. Specifically, node
representation of hidden layer H () can be regarded as ran-
dom variable {H; ® } in which H; ® corresponding to node i.
These random variable are under condition of {0( )} where

= .7-"1(A, HU=D, wi ). Based on these facts, the CRF is
formulated as:
exp(—E(HP10")),

PH®D 10y = (1)

1
Z(00)
where Z(-) is normalize factor, and E(-) is energy function.

The energy function can be divided into the unary
component and binary component. Herein, the unary

function is defined as:

2
! I I I
o, 0" = H® - 0}’”2 (12)
To minimize this unary function, Ol.(l) is forced to approx-
imate to convolution output Hi(l). Next, to learn different
similarity from hidden layer, pairwise energy function is
applied, as:

2
QNHpJﬂQOPJﬂBZgUwﬁD—H@H,

where g;; is the similarity of nodes i and j. If g;; is large,
minimizing @, (H; ® H @ O(l) 0(1)) will extort H; ®
close to H Otherw1se the distance between node i and j
will be enlarged. subsequently, similar nodes are mapped to
parallel position in hidden space. Finally, the energy function
can be define as:

E(Hi(l)lai(l)) —u

13)

to get

2
=07
2

+8 D
JjeN;

Aimed to flexibly control the two components, two non-
negative parameters o and f are introduced. The similarity
fraction g;; is computed by:

2
A [
gij HH,-"—H})HZ, (14)

a0V 0"

[op[JoP],

The approximation of Oi(l) and Hl.(l) is strengthened by Equa-
tion 14, and compared to Equation 12, the pairwise compo-
nents play a role in regularization.

8ij = €xp o’ (15)
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(b)CREF layer of embedded GCN.
Fig. 2. Comparison of the graph CNN with the CRF layer, the designed

CREF layer can better maintain the similarity of the output characteristics.

After defining Equation 14, we acquire a renew rule for the
target representation H ) through

k—1
- -
i O‘Oi( 1)+IBZjENigij(Hi( 1))
()’ -
L

a+ B2 jeN:8ij
where N; denotes the neighbor nodes set of node i, a > 0
and £ > 0 are used to process the balance of Equation 12,
respectively.
To enable CRF to help comfort the similarity restrain in a
graph convolution, a objective function is defined as:

, (16)

L—1
N 2
LCRF ZZ% HH(I)_FI(AH(FI)’W(D)HF’ (17)
l_

where y > 0, L is the number of layers of graph convolution
network, and L is the objective function.

In mild condition, when y increase, it is difficult to force
H to satisfy similarity constraint. To solve this issue, the idea
is to add regularization to H /), and the objection function is
depicted as:

L-1
. 2
Lcrr = z % HH(I) — F(A, HD, W(l))HF +RHD),

(18)

where R(-) is a regularization function to compute the back-
propagation, and Fig. 2 shows the similarity of the output
characteristics.

F. Attention for Time Cycle Shift

Once the graph convention similarity of the hidden layer
is obtained, there is still a complex problem of time period
fluctuations in the traffic flow. As shown in Fig. 3, the traffic
data is not only periodic in long and short periods of time,
as there is also cyclical volatility presented. For example, the
peak period of yesterday morning was 9am, while today’s peak
period was 1lam, and such a situation should bring errors
to short-term predictions. To work out these challenges, this
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investigation proposes a cycle transfer mechanism based on
attention.

At this point, we focus on solving daily cycle changes.
Relative time interval P days include periodic processing
dependencies. We further select the Q time interval for each
day to solve the time shift problem. In Fig. 4, we select the
attention mechanism to acquire the time shift and retrieve
the weighted representation xf’ , of the previous day. As for
the selected time interval, the total weight ¢ defined is:

P o_ P-q .P-q
Xip = i Xig o

q€Q

19)

Comparing the previous hidden state xip ;q with the temporal
and spatial representations learned in short-term memory,
P-4 " the weight formally defined as:

we obtain a;
pq .
pa _ exp (score (xijt , xl,t))

it
1,t 5
> exp (score (xil?;q, xi,t))

qeQ
Similar to [51], the score function defined in this work is
given as:

(20)

pd xi,t) = v' tanh (WHxE;q + Wxxi + bx) , (2D

score (xi’t ,

where Wy, Wx, bx, v are learned parameters, vl denotes the
transpose of v.For each p of the previous day, we get the cycle
representation. The time representation is:
vr _ r ypr-1
X7 =ReLU (X0, ®01). (22)

it

G. Multi-Scale Fusion

The way how to combine the output of these three compo-
nents is depicted in this section. Take the traffic flow of the
complete transportation network at 9:30 am as an example.
In Fig. 3, it can be noted that the traffic flow of some weekdays
has apparent peak hours in the morning, so the output of daily
and weekly components may be more demanding and critical.
However, there are no nitid traffic cycle patterns on other days,
so daily and weekly cycle components may not help predict
results. Thus, when the three components are fused, the output
weight of each node is different, and it needs to learn from
historical data. Conclusively, the final prediction result after
fusion is:

Y=W,0Y,+W,0Ys+W,0Y,, (23)

where © denotes inner product and Wy, W,, and W,, are
learning parameters, reflecting the influence degrees of the
temporal-dimensional components on the forecasting target.
Lastly, the prediction process of the entire framework is shown
in Algorithm 1.

V. EXPERIMENTAL RESULTS

The experimental processing on two real highway traffic
data sets is carried out, and many comparative experiments
to verify that the proposed model has the highest prediction
accuracy are depicted.
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Fig. 4. In time step t, the weight vector a; is aligned from the current target
state X,p and all source states A7, and then calculates the global context
vectorc; according to ay as the weighted average of all source states.

A. Evaluation Metrics

Three commonly used indicators are considered, the Root
Mean Squared Errors (RMSE), Mean Absolute Errors (MAE),
and Mean Absolute Percentage Error (MAPE), to evaluate the
performance of all compared models as follows:

« MAE

MAE = % ; I — & (24)
« RMSE
RMSE = (25)
« MAPE
100% ~— | X — x;
MAPE = —=3%" & . & (26)

i=1
where n is the number of test samples.

B. Experimental Datasets

All experiments in this article are conducted on PeMSD4
and PeMSD8. The Caltrans Performance Measurement System
collects the datasets (PeMS) [52] in real-time at every 30 sec-
onds, composed of 39000 detectors on the California high-
ways, USA. The total flow, average occupancy, and average
speed are considered as prediction indexes in this experiment.

11 1/8 115 1/22 1/29
(b) The peaks between weeks

Time offset of the cycle. (a) Time conversion between different days. (b) Time conversion between different weeks.

Algorithm 1 Algorithm of CRFAST-GCN

Input: batch_size, num_of_vertices, num_for_prediction,
all_backbones.

Output: Result.

1 if len(all_backbones) > 0 then

2 | self.submodules = []

3 | with self.name_scope()

4 | for backbones in all_backbones do

5 if len(x_list) = len(self.submodules) then

6

7

8

9

if len(num_of vertices_set) = 1 then
if len(batch_size_set) = 1 then
| Result = nd.add_n(*submodule_outputs);

end
10 end
11 end
12 end
13 end

14 return Result;

TABLE II
STATISTICS OF PEMSD4 AND PEMSD8 DATASETS

Data #Nodes  #Edges  #Timesteps Time Ranges
PEMSD4 307 340 16992 1/1/2018-2/28/2018
PEMSDS 170 277 17856 1/7/2016-31/8/2016

The dataset is split into two parts: the first 50 days as the
training set and the remaining data as the test set. Statistical
properties and details of the abovementioned two datasets are
shown in Table II

C. Pre-Processing

This experiment utilizes linear interpolation to complete
the missing value and zero-mean normalization data. The
CRFAST-GCN model is implemented based on the MXNet
framework, and several terms of the Chebyshev polynomial
K are tested. As K increases, the prediction performance is
slightly improved, and the same is true for the kernel size in
the time dimension. Therefore, considering the improvement
of computational efficiency and prediction performance, we
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TABLE III
AVERAGE PERFORMANCE ON DIFFERENT METHODS OVER PEMSD4 AND PEMSD8

PEMSD4 PEMSD8
Model
MAE RMSE MAPE MAE RMSE MAPE
HA [9] 38.03 59.24 27.88 34.86 52.04 24.07
VAR [10] 24.44 37.76 17.27 19.21 29.74 13.09
LSTM [33] 25.72 39.67 17.71 20.40 31.55 12.77
GRU [33] 25.80 39.67 17.40 20.48 31.54 12.83
DCRNN [40] 21.08 32.74 14.62 16.10 25.00 10.28
STGCN [25] 22.89 35.39 14.94 19.00 28.83 11.78
ASTGCN [18] 22.69 34.65 16.23 18.97 28.39 12.70
STSGCN [39] 21.19 33.65 13.90 17.13 26.86 10.96
AGCRN [41] 19.75 32.25 13.05 16.00 25.21 10.55
CRFST-GCN(Ours) 20.82 31.13 14.94 15.24 24.23 10.19
CRFAST-GCN(Ours) 18.91 28.59 13.87 13.46 22.70 9.88
34 52 24
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Fig. 5.

set K = 3, and the kernel size along the time dimension
is 3 [18].

In this model, all graph convolution and temporal convolu-
tion layers use 64 convolution kernels. The data is adjusted by
controlling the step size of time-domain convolution. In this
research, we aim to predict the traffic flow for the next
coming hour. The MSE between prediction and label is used
as the objective function, and the error is minimized by
backpropagation. During training, the batch size is 64, and
learning rate is 0.0001. [18]

D. Performance Evaluation

The proposed model is compared with nine benchmark
methods on PeMSD4 and PeMSD8, and among all results, the
proposed CRFAST-GCN has achieved the best result among
all evaluation indicators, as shown in Table III the predicted
data results for the next hour.

As seen from the Table, the accuracy of traditional sequen-
tial analysis methods is not high enough since they ignore the
spatial correlation. Specifically, HA performance is not favor-
able in traditional prediction methods based on time series
since they only rely on the historical record of the predicted
value and ignore the spatial and other contextual features.
Despite the remaining baselines achieving better results than
traditional sequential methods, they could not acquire the
complicated nonlinear temporal features and dynamic spatial
relationships. Therefore, the proposed method is significantly
better than those based on regression. Moreover, LSTM mod-
els ignore the dynamic spatial similarity and periodic time
transition.

0 10 20 30 40 50 60

Performance evaluation with increasing prediction interval on PEMSD4.

The proposed model’s excellent performance demonstrates
the availability of the periodic systematic diversion mechanism
in capturing the dynamic temporal and spatial similarity.
Among them, models considering both time and space correla-
tion, including STGCN, ASTGCN, STSTGCN, DCRNN, and
two models proposed are superior to traditional DL techniques
(LSTM, GRU). DCRNN combines graphics convolution and
diffusion processes and combines GCN and GRU in an
encoder mode to perform multi-step prediction; however, loss
in this iterative process may cause errors. AGCRN utilizes
multi-layer superposition as an encoder to capture nodes’ tem-
poral and spatial correlation and applies a linear transformation
to predict the next time step. However, this method does not
consider the preservation of the hidden layer similarity during
the convolution process. In addition, the performance of AST-
GCN is remarkable than STGCN, indicating that the energetic
changes of data flow can be controlled by multi-level attention.
Besides, to verify the influence of the periodic fluctuation
attention mechanism proposed in this research, we designed
a degraded version of CRFAST-GCN named CRFST-GCN,
which outperforms most state-of-the-art baselines without any
attention mechanism with nitid advantages when describing
the peculiarity of vehicle data.

The results over different baselines are depicted in Figure 5,
where we observe that with the enlarge of prediction length,
the forecast error increases. Additionally, in short interval fore-
casting, methods as LSTM and GRU only use time correlation
as an indicator and can obtain higher prediction accuracy.
Nevertheless, with the increases in forecasting length, the
prediction accuracy drops sharply. In contrast, performance
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Fig. 6. Performance evaluation with increasing prediction interval on PEMSDS.
TABLE IV VI. CONCLUSION AND FUTURE WORK
COMPUTATION COST ON THE PEMSD4 DATASET - . p P
With advances in computation and communication
Model #Parameters  #Training Time(epoch) technologies, traffic flow prediction is highly important for
DCRNN 149057 36.30 s intelligent traffic management security, applying several
STGCN 211596 16.36 s technologies and strategies. We propose in this article an
ASTGCN 450031 4947 s effective spatial-temporal multi-scale alignment graph neural
CRFAST-GCN 886272 35.14 s network security model, which is based on the conditional

VAR declines more slowly than these methods in Figure 6,
mainly because VAR can also consider the more critical
spatial-temporal correlation in long-term forecasting. How-
ever, when the scale of the transportation network becomes
more prominent, when more time series are considered in the
model, the prediction error of VAR increases. As a result, its
performance on PeMSD4 is worse than that on PeMSDS. The
error of the deep learning method increases slowly with the
enlargement of the forecasting length. In short, the overall
completion is better.

The attention mechanism of the proposed method is signif-
icantly different from GAT, as it occurs before the activation
function, while the proposed one occurs oppositely - after the
activation. Nonlinear functions cannot guarantee the preserva-
tion of the structure of the node distribution, and the semantic
similarity may lose after the convolution operation, so thus,
the proposed CRFAST-GCN model consistently achieves the
best predictive performance. The gap between CRFAST-GCN
and other approaches is more nitid in long-term forecasting,
indicating that combining attention mechanism and conditional
random field graph convolution can better mine traffic data’s
dynamic spatial-temporal patterns and periodicity.

E. Computation Cost

Computation cost is calculated by comparing the parameter
numbers and training time on the PeMSD4 dataset. It is shown
in Table IV that the CRFAST-GCN parameter is six times of
the DCRNN, which coresponds to the price of solving the
periodic shift. The performance of AGCRN is slightly faster
than DCRNN since the time convolution structure is used,
similar to STGCN. However, ASTGCN requires more training
time to improve the spatial and temple attention mechanisms to
learn more accurate spatial-temporal patterns. Finally, in terms
of significant performance improvements in Table III, AGCRN
has a satisfactory computational cost.

random field and able to effectively extract the similarity of
the graph convolution hidden layer and capture the dynamic
spatial similarity of traffic data. The attention mechanism
solves the problem of cycle offset by extracting data for one
hour before and after the predicted time period and effectively
aligning the data. Experimental results show that the proposed
model outperforms other related models in the field. In fact,
traffic data is sensibly influenced by various factors such
as cycle shifts, weather, temperature, seasonal variation,
spatial relationships, functions of road, cross-sections, and
others. As future work, we will consider the influence of
various factors when designing the model to improve the
prediction accuracy further. Since CRFAST-GCN is a general
Spatial-temporal data prediction model, we can also apply it
to other applications, such as predicting speed, estimating the
time required to reach the destination, etc.
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