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Abstract. For each Dynkin diagram D, we define a “cluster configuration space” Mp and
a partial compactification Mp. For D = A,,_3, we have M4, , = Mg, the configuration

space of n points on P!, and the partial compactification M4 . was studied in this case by

n—3
Brown. The space M p is a smooth affine algebraic variety with a stratification in bijection
with the faces of the Chapoton-Fomin-Zelevinsky generalized associahedron. The regular
functions on Mp are generated by coordinates u., in bijection with the cluster variables
of type D, and the relations are described completely in terms of the compatibility degree
function of the cluster algebra. As an application, we define and study cluster algebra

analogues of tree-level open string amplitudes.
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1 Introduction

1.1

The configuration space M, of n distinct points on P! is a smooth affine algebraic variety of di-
mension n—3, and it has a very well-studied Deligne-Knudsen-Mumford compactification Mo,
which is a smooth projective algebraic variety. The boundary of M, consists of 2"~ —n—1 divi-
sors, satisfying factorization: each divisor is itself a product ﬂo,m X ﬂo,ng where n1+no = n+2.

The real points My, (R) have the structure of a smooth real manifold with (n—1)!/2 con-
nected components. Fixing once and for all a (dihedral) ordering on n points, we let (Mg )>0 C
Mo .n(R) denote the connected component where the n points are ordered on P*(R) = S'. The
closure (Mg ,)>0 of (Mg )s0 in Mo, (R) is a stratified space that is homeomorphic to the face
stratification of the associahedron polytope.

Let W denote the union of those boundary divisors in ﬂoyn whose intersection with (Mg )>0
is empty, and let ./(/lvoﬂ = ﬂo,n \ W. The divisors that do intersect (My)>0o correspond to
ways to divide {1,2,...,n} into two cyclic intervals, each of size greater than or equal to two.
For example, My s has ten boundary divisors, and /Wo,g, includes five of them, corresponding
to the five sides of the pentagon (the associahedron of dimension two). Somewhat surprisingly,
the partial compactification ./f\\/l/gyn is an affine algebraic variety, and its ring of regular functions
has the following description. Let u;; be variables labeled by the diagonals (4, j) (not including
sides) of a m-gon P,. Then C[ﬂg}n] is isomorphic to the polynomial ring Clu;;] modulo the
relations

Rij == ui; + H ug | — 1, (i,7) varying over all diagonals (1.1)
(k,¢) crossing (2,5)

and Mg, C Mo,n is the locus where u;; # 0. The u;; are called dihedral coordinates. Brown [9]
describes the same space using a presentation with more relations (see §10.1); the extra relations
are implied by our smaller set. The u;; are cross-ratios (see (7.1)) on My, and appeared in the
study of scattering amplitudes in string theory and for the bi-adjoint ¢3-theory [1].

1.2

In this paper, we construct in an analogous manner two affine algebraic varieties Mp C M D
for each Dynkin diagram D of finite type by considering the relations

Ry :=uy+ HUSJWHV) —1. (1.2)
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Here, v and w denote mutable cluster variables of a cluster algebra A of type D [17], and (w||7)
denotes the compatibility degree. We call Mp the cluster configuration space of type D. In
the case D = A, _3, we have My, , = Mgy, and My, , = Mp,. Amongst many remarkable
properties of these relations, let us immediately note that w, = 0 forces w, = 1 for all w such
that (v||w) # 0 (or equivalently, (w||y) # 0). Thus, factorization is manifest in (1.2). Some of
the results of this work were reported in [4], and M p is an example of the notion of “binary
geometry” discussed therein.

Whereas Mo,n has a stratification indexed by the faces of the associahedron, the space M D
has a stratification (Proposition 3) indexed by the faces of the Chapoton-Fomin-Zelevinsky
generalized associahedron for DV [12, 18]. We show (Theorem 3) that M p and M p are smooth
affine algebraic varieties and that the boundary stratification of M p is simple normal-crossing.
These geometric properties depend on integrality properties of the normal fan N (DY) of the
generalized associahedron, and an isomorphism (Theorem 8) between M p and an affine open
subset of the projective toric variety Xprpv) associated to A/ (DY). Like (Mg )>0, the variety

M p contains a distinguished nonnegative part M p >o, which is a stratified space homeomorphic
to the face stratification of the generalized associahedron (Theorem 12). The positive part
Mpo C Mp(R) is a distinguished connected component in M p(R), and is cut out by the
conditions u, > 0. Though M is not compact, (Mp, (Mp >0)>0) satisfies the other properties
of a positive geometry in the sense of [2].

1.3

The configuration space My ,, is isomorphic to the quotient of an open subset Gr(2,n) C Gr(2,n)
of the Grassmannian of 2-planes by the diagonal torus T' C SLy, acting on Gr(2,n). Let B be a full
rank acyclic extended exchange matrix of type D. Let A( ) be the corresponding cluster algebra,
X(B) = Spec(A(B)) be the cluster variety, and let X(B) C X(B) denote the locus where all
cluster variables are non-vanishing. We show (Theorem 4) that Mp is isomorphic to the (free)
quotient of X (B) by the cluster automorphism group T(B) generalizing the construction of
Mo, from Gr(2,n). The functions u., are particular 7(B)-invariant rational functions on X (B).

The u, are related to some of the “cluster X-coordinates” in the sense of Fock and Goncharov
[16] by the equation u = X/(1+ X). The cluster X-coordinates appearing here are exactly those
encountered in the Auslander-Reiten walk through cluster variables, beginning from an acyclic
quiver and mutating only on sources. It is important to note that while the u, are simply related
to the cluster X-variables in this way, they are actually in bijection with the cluster A-variables,
while in general there are more cluster X-variables than cluster A-variables.

We do not have a good understanding of the relationship between M p and cluster X-varieties;
for example, M p does not contain a collection of (cluster) torus charts.

Our approach depends crucially on the flexibility in the choice of B. When B = B™V ig
the extended exchange matrix for the universal coefficient cluster algebra [19, 27|, the relation
(1.2) is obtained from the primitive exchange relations of A(B"") by setting all mutable cluster
variables to 1, and sending the universal frozen variables z, to u,. The non-primitive exchange
relations give rise to other relations of the form U 4+ U’ = 1, where U and U’ are monomials in
the u,-s

When B = BP'" i the extended exchange matrix for the principal coefficient cluster algebra,
the functions u., become identified with certain ratios of the F-polynomials F (y). Bazier-Matte,
Douville, Mousavand, Thomas, and Yildrim have shown [8] in the case that D is simply-laced
that the Newton polytope of F,(y) has normal fan a coarsening of the g-vector fan N (DY) of
DV and this result was extended to skew-symmetric cluster algebras by Fei [15]. We extend via
folding this description to the case that D is multiply-laced finite type Dynkin diagram. The
identification of Mp with an open subset of the toric variety X (pv) depends crucially on this
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analysis.

As an application of our results on quotients of cluster varieties and on F-polynomials, we
identify (Theorem 13) the positive tropicalization Tropy Mp of the cluster configuration space
with the cluster fan A/(DV). In particular, we resolve a conjecture of Speyer and Williams [29,
Conjecture 8.1] on positive tropicalizations of cluster varieties of finite type; see also [22].

1.4

Inspired by similar questions for My ,,, we proceed with studying the topology of Mp(C) and
Mp(R). We identify M p, with the complement to the Shi-hyperplane arrangement and thereby
compute point counts over finite fields, and the Euler characteristics of Mp, (R) and Mp, (C).
We give a configuration space style description of M¢, (Proposition 15) but were not able to
determine whether M, is a hyperplane arrangement complement. Nevertheless, we were able
to compute the point count for M¢,, (F,), and the number of connected components of M¢,, (R).
We found numerically the point counts for types Dy, D5 and G2, and obtained numerically that
the point count of M p,(F,) over a finite field I, is not a polynomial in ¢ but a quasi-polynomial.

1.5

One of the main motivations for us are scattering amplitudes in string theory. In [3], we intro-
duced integral functions, called stringy canonical forms,

dll?i o' X P
T = A . G 1.
L IS [0 (1.3

where p;(x) is a positive Laurent polynomial. We showed in [3] that the leading order limy/_,o(o/)"Z
is a rational function that for fixed ¢;-s coincides with the canonical rational function [2] of the
Minkowski sum of the Newton polytopes of pj(x). Tree-level n-point open superstring ampli-
tudes are integrals on My ,. It turns out that for a suitable parametrization of My,,, these
amplitudes can be written as an integral 7,4, , in the form (1.3), where the p;(x) are the F-
polynomials for the type A,_3 cluster algebra. The importance of the w;;-variables appears in
the rewriting (see [3, Section 9] or [11, Section 3])

Tooo= [ 0(Mon)sn) [Lui™ (1.4)
(Mon)>o (59)

of the open-string amplitude. The poles of Z4, , are given by X;; = 0, and at this pole, the
factorization of Z,4, , mimics the factorization of the equations (1.1). We define the cluster
string amplitude (where z., x; are cluster variables of A(B) of type D)

n+m
— 9) o' sy a's;
ID = (MD,>0) H Ty H l‘i .
Mp >0 ~ell i=n+1

The poles of Zp are made manifest by rewriting in terms of the u,-s, and the leading order of
Ip is controlled by the combinatorics of the generalized associahedron of DV.

2 Background on cluster algebras and generalized associahedra

In this section we review basic facts concerning cluster algebras. The most important cluster
algebra references for us are [31, 8]. For cluster varieties, our conventions follow [23].
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2.1

Let D be a finite Dynkin diagram with vertex set I, and let A = (a;;) denote the n x n Cartan
matrix of D, where n = |I|. Let B be a skew-symmetrizable exchange matrix, i.e., there exists a
matrix Z with positive diagonal entries such that ZB is skew-symmetric. We say that B = (B;;)

has type D if
2 ifi=j
i =
Y =Byl ifi # .

In standard cluster algebra language, B corresponds to an acyclic initial seed of a cluster algebra
of finite type D. Given D, the possible exchange matrices B of type D are in bijection with
orientations of the underlying tree of D: writing ¢ — j for the directed edges of this orientation,
we have
—Qyj if i — j
Bij = Q5 if ] — 1
0 otherwise.

For an (n 4 m) x n extended exchange matrix B extending B, we let A(B) denote the corre-
sponding cluster algebra of geometric type [17]. By convention, A(B) is the C-algebra generated
by all mutable cluster variables, all frozen variables, and the inverses of all frozen variables. We
let X(B) = Spec A(B) denote the cluster variety [23]. This is a complex affine algebraic vari-
ety, and in general it differs from the union of cluster tori, which is sometimes called a cluster
manifold.

2.2

We say that B (or A or X) has full rank if B has rank n. We say that B (or A or X) has really
full rank if the rows of B span Z". If B has full rank, then X (B) is a smooth affine algebraic
variety [24, Theorem 7.7].

2.3

Let IT = II(B) be the indexing set for cluster variables, which depends only on B. Set r := |II|.
For v € II, we let z, € A(B) denote the corresponding cluster variable. (Abusing terminology,
sometimes we will refer to elements of II as cluster variables.) We give II the structure of a
simplicial complex, called the cluster complex, by declaring the maximal faces to be the clusters

{717 e 7,771}
The set IT can be identified with the following set of pairs of integers:

=] [{(s;i)|0<s<r} (2.1)
el
where r;, i € I are some positive integers. The initial cluster is {(0,7) | i € I}. We let I C II
denote the subset of non-initial cluster variables, i.e., those v = (t,j) with ¢ # 0.

Remark 1. In [31], the set II is identified with the set of weights {c*w; | 0 < s < r;}. We have
chosen to index using the pairs of integers (s, %) instead. The choice ¢ of a Coxeter element in
[31] corresponds to our choice of an orientation of D in determining the exchange matrix B.

Remark 2. Starting from the initial cluster {z( ;) | i € I'}, the cluster {z(y ;) | i € I} is obtained
by mutating each vertex of I once, always mutating at sources. This process is repeated to obtain
all the cluster variables. In particular, the cluster variable z(, ;) is obtained by mutation from
T(4-1,); see Proposition 1 for the exchange relation. We refer the reader to [8] for an explanation
of this Auslander-Reiten walk, the relation to quiver representations, and many examples.
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2.4

There is an involution * : I — I sending ¢ to i* induced by the longest element of the Weyl group
of the root system of D. This involution is the identity in all types except for A,, Doyi1, Fs,
and in these types * : I — I is the non-trivial automorphism of D (as a graph). We shall use
the notation (—1,1) := (r4+,7*); see [31, Proposition 1.3].

2.5

Each Dynkin diagram D has a dual denoted DV defined by requiring that the Cartan matrix
of DY be transpose to that of D. Note that D and DV have the same underlying tree. If B is
an exchange matrix of type D, then we let BY be the exchange matrix of type D"V associated
to the same orientation of the underlying tree of D and DV. For dual exchange matrices B and
BY,| the cluster variables II(B) and II(B"Y) are naturally in bijection and under this bijection
the cluster complexes are isomorphic.

2.6

For v,w € II, we let (w||y) denote the compatibility degree, defined for example in [31, Proposition
5.1]. In [31], the dependence of the compatibility degree on the choice of ¢ (equivalent to our
choice of B) is made explicit, but we have suppressed this dependence in our notation. By
[31, Section 5], the compatibility degrees for different choices of B are equivalent under an
appropriate renaming of II. Examples of the compatibility degree are given in §3.2.

We have (w||y) = 0 if and only if (y||w) = 0 and in this case we say that w and 7 are
compatible. Otherwise, we call w and 7 incompatible. If (w||y) = (y||w) = 1, we say that w and
~ are exchangeable. The faces of the cluster complex consist of sets of cluster variables that are
pairwise compatible.

2.7

Let AP = A(BP"™) denote the cluster algebra with principal coefficients [19]. Thus BP'™ is
a 2n x n matrix whose top half is equal to B and bottom half is equal to the identity matrix.
In this case, the initial mutable variables are denoted zi,xo,...,z, and the principal frozen
variables are denoted y1,¥y2,...,yn. We have a Z™-grading on the principal coefficient cluster
algebra AP given by

deg(z;) = ¢; and deg(y;) = —Be;. (2.2)

Each mutable cluster variable is homogeneous with respect to this grading, and we define the
g-vector by g, := deg(z) for v € IL.

2.8

For v € IIT, define the F-polynomial F,(y) by setting the initial cluster variables to 1 in
the Laurent expansion of the cluster variable z5™" in the cluster algebra AP"™ with principal
coefficients:

F’Y(y) = ‘Tgrm(l'i =Ly, y2,... 7yn)

By convention, we have F,(y) = 1 if  is initial. Computations of g-vectors and F-polynomials
are given in Examples 1 and 2. Further examples can be found in [19, §].
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2.9

The cluster fan N'(B) is the collection of cones spanned by {g,,...,8.} as {71,...,7s} varies
over collections of cluster variables that belong to the same cluster, called compatible cluster
variables. Recall that a cone C'is called simplicial if dim(C') is equal to the number of extremal
rays of C, and a fan is called simplicial if all its cones are. A fan A in R" is called smooth if it is
simplicial and for each maximal cone C' € N the primitive integer vectors vy,...,Vv, spanning
C form an integral basis for Z".

Theorem 1 ([12, 18, 21]). The collection of cones N (B) is a smooth, complete polyhedral fan.

A generalized associahedron of type B is any polytope whose normal fan is equal to N (B).
Often, we will say “generalized associahedron of type D”, with the choice of B of type D
understood.

2.10

For v € II, let P, denote the Newton polytope of the F-polynomial F,(y). By convention, if
7 is initial, we have set F,(y) =1 and Py = {0}. Let F(y) = [[,e;; #5(y). Then the Newton
polytope P of F(y) is the Minkowski sum __; P,. The following result is established in [8]
when D is simply-laced (and extended to not necessarily acyclic initial seeds in [15]), and in
Theorem 9 we extend the result to multiply-laced finite type D with acyclic initial seed.

Theorem 2. The (outer) normal fan of the Minkowski sum 3 . iy Py is equal to N(BY).

2.11

Let 7 : IT — II be the bijection defined by 7(¢,j) = (t — 1, ) for 0 <t < r;, denoted 7, in [31].
Then (77||tw) = (7||w) and 7 induces an automorphism of the cluster complex of D.

An exchange relation for A(B) is called primitive if it is of the form x,x, = M + M’ where
one of the two monomials M, M’ does not contain any mutable cluster variables. The primitive
exchange relations are exactly the ones of the form . z, = M + M’

2.12

Let A™Y = A(B"Y) denote the cluster algebra with universal coefficients, from [19, Theorem
12.4], [31, Section 5], and [27, Theorem 10.12 and Remark 10.13]. Thus B™V is a (n +7) x n
matrix whose top part is equal to B and whose bottom part has rows given by the g-vectors of
the cluster algebra with exchange matrix B”, see [27]. The bottom 7 rows of B are again
indexed by II, and we denote the corresponding frozen variables by z,, for v € IIL.
Proposition 1 ([31, Proposition 5.6)). The primitive exchange relations of A(B™Y) are given
by
_ —aij —Qij t,j
mprrn el | Envd | ERSPE | (2.3)
1—J J—t w

forjel and 0 <t <r;.

2.13

For v € II'", define the universal F-polynomial F;niv (z) by setting the initial cluster variables

to 1 in the Laurent expansion of :UB/ni":
F;niv(z) = x#niv(xi =1,2,).

By convention, we have F,;mi" (z) = 1 if ~ is initial.
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2.14

Suppose D is a multiply-laced Dynkin diagram whose underlying tree is oriented. Then there
exists a simply-laced Dynkin diagram D such that D is obtained from D by folding [13], and
the orientation of D is induced by the orientation of D. In this situation, there is a finite group
I' acting on [ and II such that I and II are identified with the I'-orbits on I and II. We obtain
surjective quotient maps v : I — I and v : II — II. Abusing notation, let v : RM — RIMI
be given by v(e;) = e, 5, and v : Rl — RHI be given by vie;) = €y Similarly, define
v Zly; | i€l = Zly | i € 1] by v(y;) =y, and v @ Zlzz | 5 € I = Z[zy | v € D] by
v(25) = 2,(3). The following results are a consequence of the definitions.
Proposition 2.

1. For 7,0 €1l and g € T, we have (g-7||g - @) = (3]|@).

2. For vy,w € II, we have (V[|w)p = 3 5¢,-1(,) (V@) p for any © € w.

3. For any 4 € 1, we have v(F5(¥)) = Fy5)(y) and v(FX™(z)) = F;J(I%IY(Z)

4. For any 7 € 11, we have v(87) = 8u(%)-

Examples of foldings are given in §3.2.

3 The cluster configuration space Mp

In this section, we define the cluster configuration space Mp and its partial compactification
Mp, and we state some geometric properties of these spaces. We also give examples of the
cluster compatibility degree appearing in the defining relations.

3.1
Let Clu] := Clus | v € II] be the polynomial ring with generators u, and let C[u*!] denote the

Laurent polynomial ring with the same generators.

Definition 1. Let I denote the ideal (in C[u] or C[u*!]) generated by the elements

Ry i=uy+ [Jul™ -1 (3.1)

for v € II, and (w||y) denotes the compatibility degree.

Definition 2. Define the cluster configuration space Mp and its partial compactification M D
by
Mp := Spec(Clu*!]/Ip) and Mp = Spec(Clu]/Ip).

The following result will be proved in §5.4.

Theorem 3. The two schemes Mp and //\/IVDAQTe smooth, irreducible, affine algebraic varieties
of dimension n. The boundary divisor 0 := Mp \ Mp is a simple normal-crossing divisor in

Mp.

If D = (), we define Mp = Mp = Spec(C) to be a point. If D = Aj, then Clu]/Ip =
Clu,v']/(u+u' =1) so My, = C and My, =C\{0,1}.

Remark 3. The definition of Mp and M p depends on the choice of exchange matrix B of type
D only in the indexing of the generators u, by II. For two different orientations of D, there is
a natural bijection between the two indexing sets II(B) that arise, and a natural isomorphism
between the resulting schemes M p(B).
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3.2

Let us give the relations R, explicitly in types A, B,C,D,G. In the following discussion, we
use models for II involving diagonals of a polygon; see [17] for further details. The precise
correspondence with (2.1) depends on the choice of initial cluster (for example, a choice of
triangulation of the polygon in type A), or equivalently the choice of B, or equivalently the
choice of orientation of D.

3.2.1 Type A,_3

In this case, the set II can be identified with the diagonals (not including sides!) {(7,7)} of
an n-gon. The R, are the equations (1.1). The compatibility degree is given by the formula
((2,9)||(k,£)) = 1if (4,7) and (k,¢) cross (in the interior of the polygon) and ((7,j)||(k,¢)) =0
if (4,7) and (k,¢) do not cross. The automorphism 7 in this case corresponds to the order
n rotation of the polygon. The clusters are exactly the maximal sets of pairwise compatible
diagonals. In other words, clusters are in bijection with triangulations of the n-gon.

3.2.2 Type Cp_1

Let P», be the 2n-gon with vertices cyclically labeled 1,2,...,n,1,2,...,7n. The set II is iden-
tified with the union

I ={[i,i] == (3,3) | 1 < i <n} U{fivj] = ((5,5), (0.0) | 1S i < j— 1 <n}
ULl 7] = (7). G D) |1 <i<j<n, (i,§) # (1,n)}

of the long diagonals, and pairs of centrally symmetric diagonals in Ps,. In total we have
| = n? —n.

The compatibility degree (7||w) is equal to the number of crossings of one of the diagonals
representing w with the diagonals representing . Thus for example ([1,1]][[2,3]) = 1 but
([2,3]]|[1,1]) = 2. For example, for Co, Definition 1 gives the two equations

(3.2)

L= upyq) + upg)us3 Uy, (3.3)
L = upo3) + uptjups)upg)

and the three cyclic rotations of each.

This case is obtained from As,_3 by folding. There is an action of the two-element group I'
on Py, mapping i <> 7. This induces the natural map v : II — II sending diagonals of P, to
[-orbits on the diagonals of P,. We may verify Proposition 2(2): for example ([2, 3]|[1,1])c, =
((2,3)]1(1,1)) a5 + ((2,3)]](1,1))ay = 1 +1 = 2. The automorphism 7 is inherited from the
rotation of the 2n-gon Ps,.

3.2.3 Type D,

Let PP, denote an n-gon P, with vertices 1,2,...,n (in clockwise order) and an additional
marked point 0 in the middle. The set II consists of certain arcs in PPF,, connecting vertices and
0: (a) for 1 <i# j<nandi+# j+1 modn we have an arc (i,j) connecting i to j going
counterclockwise around 0, and (b) for each 1 < i < n we have two arcs [i] and [i] connecting i
to 0. We denote the corresponding u-variables by u;;, and u; and u;. See Figure 1. (We caution
the reader that the notation ¢ here is unrelated to the notation 4 used for foldings.) In this case,
the automorphism 7 is the composition of the rotation of P, with “changing the tagging at 0”
(i.e. switching from [i] to [z] if the arc is incident to 0).

The compatibility degree (v||w) is equal to the (minimal) number of intersection points be-
tween the arc 7 and the arc w, if at least one of v and w do not connect to 0. If both v and w
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1 2

U
u12

uis

Figure 1. The polygon PP, and some u-variables. Note ug; does not exist.

connect to 0, then we have ([d][|[5]) = ([i][|[7]) = ([i]l|[z]) = 0 but ([I|[j]) = (7|[ld]) = 1 if @ # j.
For D, representative equations from Definition 1 are:

1 = 12 + UzUzUAUZUZ, U23U24Us1 U3

1 = u13 + ugugua) uaguzquss (3.4)

1 = u1 + uzuzujuzzuzstsg

and we have 4,4, 8 equations of these types respectively, for a total of 16 equations.

3.2.4 Type B,_1

The set II is the same as for C),—; (3.2). However, the compatibility degree (v||w) is equal to
the number of crossings of one of the diagonals representing v with the diagonals representing
w. Thus, ([1,1]]][2,3]) = 2 but ([2,3]||[1,1]) = 1. For Bs, Definition 1 gives the two equations

1= upg + v uss v

1 = upg + Ufﬁ}U[lg}Um}
and the three cyclic rotations of each. Note that M p, is isomorphic to M, under a non-trivial
re-indexing of the u-variables. However Mp and Mg, are not isomorphic for n > 2.

Type Bj,—1 can be obtained frgm type D, by folding. Let I' be the two-element group acting
on II = II(D,,) by sending [i] > [¢] and fixing all other (i,7). The map v : II — II sends [i] and
[i] to [i,i], and sends (4,7) to [i, ] if i < j and to [j,4] if i > j. For example, for Bs, the images
of the equations from (3.4) are

2 2 2
L= upg) + w33 Ui Uiz U[23) U [22) Y [14] Y[13]
L= upyg) + Uy U1 Uiza uppa s : (3.5)
1= U] T U22) U33] U[4d] U[23] (3] U[24]

The automorphism 7 is inherited from the rotation of the n-gon in type D,,.

3.2.5 Type Go

In type Gg, we have |II| = 8 and we denote u-variables by a;, b; for i = 1,2,3,4. The u-equations
for type G4 are

l=a1+ a2b2a§b3a4

1=06+ b2a§b§aib4
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and the cyclic rotations under the group Z/47Z. Type G2 can be obtained from Dy by folding.
(Though at present we only consider foldings of simply-laced diagrams, G5 can also be obtained
from Bj by folding.)

3.3

Let F' be a face of the generalized associahedron, which we identify with a pairwise compatible
subset {71,...,7q4} of II. We define Mp(F) C Mp to be the closed subscheme cut out by the

ideal (wy,,...,uqy,). If F =0, then MD(Q)) := Mp. We define Mp(F) C /WD(F) to be the
open subscheme of Mp(F') where all the variables {u, | v ¢ F'} are non-vanishing.

Proposition 3. We have a natural stratification

Mp =| | Mp(F) (3.6)
F

where F' varies over all the faces of the generalized associahedron.

Proof. When w and «y are incompatible, the coordinate u,, is non-vanishing on Mp({~}). This
shows that the subschemes M p(F) cover Mp. [

3.4
Let us analyze Mp(F) for F = {~}. Setting u, = 0 in the equation

Uy + Hu(TTH“’) =1

we find that u, = 1 for all w incompatible with ~. Let II(y) C II be the subset of x € II that
are compatible with «y. Setting u, = 1 in Ry, for k € II(7), we get

R; = Uy + H US_THH) —1.
T€ll(y)

It follows that the coordinate ring of Mp (F') has the following presentation
Cluy | £ € TI(9)]/ (Ry).-

Proposition 4. Suppose v = (t,7) and removing j from D disconnects D into connected com-
ponents D1, ...,Ds. Then we have

Mp({7}) = Mp, x Mp, x --- x Mp,

and

Mp({7}) = Mp, x Mp, x -+ x Mp,.

Proof. Let v € II. Since v defines a facet of the generalized associahedron for B, it follows
that the collection of clusters containing v are connected by mutation, without mutating ~y. It
follows that II(7) is the cluster complex of a cluster algebra of finite type associated to the
disjoint union of D1, Do, ..., D;. |

Note that removing a vertex from a finite type Dynkin diagram produces at most three compo-
nents, so in Proposition 4 we have s < 3.
By applying Proposition 4 repeatedly, we have the following result.

Proposition 5. Any Mp(F) (resp. Mp(F)) is a direct product of Mp: (resp. Mp:) as D'
varies over a finite set of Dynkin diagrams obtained by removing some vertices from D.
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3.5

Recall the bijection 7 : II — II of §2.11. We have automorphisms 7 : Mp — Mp and
7 : Mp — Mp induced by u, — ury. The order of the automorphism 7 is either h + 2 or
(h +2)/2, where h is the Coxeter number of D; see for example [7]. It would be interesting to
compute: (1) the group of automorphisms of the variety M D, (2) the group of automorphisms
of the variety Mp, and (3) the group of automorphisms of Mp that send the positive part
Mp o (defined in §8.1) to itself.

In the case D = A,,_3, we have Mp = My, which has a natural action of S,,. The group
Sy, acts transitively on the connected components of M ,,(R). The positive part Mp ~¢ is one
of the connected component of My, (R) and it is sent to itself by a dihedral subgroup of S, of
order 2, and the number of connected components of My ,(R) is equal to n!/2n, see §7.2.

3.6

Let v € II. Then as in Proposition 4, we can uniquely associate Dynkin diagrams D1, ..., Dy
to v, where s < 3.

Proposition 6. Suppose that v € 11 and s(y) = 1. Then we have a natural morphism
Mp — Mp,. (3.7)

The proof of Proposition 6 is delayed to §4.7. The map of Proposition 6 corresponds to
“forgetting a marked point” in the case of My, , = Mo,. We expect (3.7) to be a fibration,
similar to the Mg, case.

3.7
Let D be a folding of D and let I and v : II — II be as in §2.14.

Proposition 7. The quotient of Clu]/Ij by the ideal generated by the equations us = ug.5 for
5 el and g € T is canonically isomorphic to Clu]/Ip.

Proof. Let v : Clus | ¥ € T} = Clu,, | v € II] be the ring homomorphism given by v(us) =
uy(3)- Then applying Proposition 2(1,2), we have v(R5) = R, (5). The result follows. |

Thus M p can be identified with a closed subscheme of /\/l and it is stralghtforward to see that
M p is the intersection of M D C M with the open subset Mp C M

3.8

The significance of the following conjecture is unclear to us. We have proved it by a direct,
elementary calculation for D = A,,, n > 2.

Conjecture 1. For D not of type Ay, the ring Clu™']/Ip is generated by u;l, for v e 1l.

4 Mp as a quotient of a cluster variety

In this section we show that Mp can be obtained as a quotient of an open subspace X of the
cluster variety X(B ) by the action of the cluster automorphism torus 7' considered in [23] An
important role is played by principal and universal coefficients, where B = BP'? or B = Buniv,
In particular, the defining relations of M p are obtained from the primitive exchange relations
of X (Bm™iv),
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4.1

Let B be a full rank extended exchange matrix. Let T = T(B) be the cluster automorphism
group [23] of A(B): this is the group of algebra automorphisms ¢ : A(B) — A(B) such that for
each (mutable or frozen) cluster variable z, we have ¢(x) = {(x)z for ((x) € C*. Thus, T acts
on any cluster torus of the cluster variety X (B) by scaling the coordinates. By [23, Proposition
5.1], we have

T = Hom(Z™*™/BZ",C*). (4.1)

Since B has full rank, the group 7 is a (possibly disconnected) abelian algebraic group of
dimension m. The character group of T is the lattice Z"*™/ BZ"™. By definition, the torus T
acts on each cluster variable by a character, and we denote the weight of the cluster variable
x € A(B) by wt(x) € Z"™/BZ".

Lemma 1. Let B have full rank. Then B has really full rank if and only if Z”+m/BZ” has no
torsion, or equivalently, the group T is connected, and thus a torus of dimension m.

Proof. The rows of B span Z" if and only if BQ" NZ"+™ = BZ" if and only if Z"+™/BZ" has
no torsion. |

Let X =X (B) be the cluster variety, which is a smooth affine algebraic variety. Let XcX
be the locus where all mutable cluster variables are non-vanishing. In terms of rings, we have

X := Spec(A[l/z |  is a mutable cluster variable]).

Thus X is a smooth affine subvariety of the initial (or any) cluster subtorus of X, and it follows
immediately from the definitions that the action of T" preserves X, and furthermore the action
of T is free on X. The geometric invariant theory quotient

X /) T := Spec(C[X]T)

is again a smooth affine algebraic variety, and furthermore, there is a bijection between closed
points of X /T and T-orbits on X. We thus simply denote X /T by X /T. Explicitly, the ring
C[X]" consists of all weight zero Laurent polynomials in cluster variables.

4.2

Let 7 : II — II be the bijection defined by 7(¢,7) = (t — 1,7) for 0 < t < rj. The primitive
exchange relations are of the form

Loy Ty = M + M ’,
where M’ only involves frozen variables. For each primitive exchange relation, we define the

rational function

M

Ty Ty

f'y =

By definition, f, € (C[X ], and it is easy to see that f, is T-invariant. Thus f, € (C[X 7.

Theorem 4. Suppose that B is a full rank extended exchange matriz, acyclic and of finite type.
Let X = X(B). Then the quotient X /T is a smooth affine variety isomorphic to Mp, and the
isomorphism C[Mp] = C[X|T is given by w, — f,.
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Theorem 5. Suppose that B is a full rank extended exchange matriz, acyclic and of finite
type. Let X = XP""(B) have principal coefficients. Then Mp = Xprin /TP s isomorphic to
the locus XP"(1) C XPU0 where all initial mutable cluster variables have been set to 1. The
coordinate ring CIMp) is isomorphic to the subring of C(y1,y2,...,yn) generated by Fvil(y)
+1

and y;

Theorem 6. Suppose that B is a full rank extended exchange matriz, acyclic and of finite type.
Let X = X" (B) have universal coefficients. Then Mp = X" /T 4s isomorphic to the

locus X"V (1) € X"V where all mutable cluster variables have been set to 1. The isomorphism
C[Mp] = C[XWV(1)] is given by uy — zy.

4.3

The relations in the following corollary will be discussed in further detail in §10.1.

Corollary 1. The ideal Ip has a natural set of generators of the form U + U’ — 1, given by the
images of all exchange relations of X "™V,

The ideal Ip also contains the |II| —n distinguished elements which are images of 1 — F;mi" (z).

4.4 Proof of Theorem 6

Recall that the mutable cluster variables of Aumv are denoted x-, and the frozen variables are
denoted z,, where v € II. Let X"V(1) C Xwiv c Xuniv he the locus {x, = 1} where all
mutable cluster variables have been set to 1.

By Proposition 1, the primitive exchange relations are of the form

oy = 28 + ] 2
well
where S is a monomial in the mutable cluster variables. So,
2y S

Ty Ty

f'y =
and thus on X"V(1) we have (f, )| xuniv(1) = 2y and the relation

fr F H f£w||7) - 1. (4.2)

well

We will now show that the multiplication map gives an isomorphism
Tuniv > XuniV(l) o~ Xuniv (43)

or equivalently, every T"™V-orbit on XUV intersects X univ(1) in exactly one point. The character
group of TV is naturally isomorphic to Z" " /BZ", which is a free abelian group of rank r = |II|.
Thus each cluster variable ., has a weight (or degree) wt(z,) € Z"*"/BZ" (see (6.2) for the
weight of initial and frozen variables). By Proposition 12, the set {wt(z) [ v € II} form a basis
of the lattice Z"*"/ BZ"™. Thus we have a projection Xuniv _y univ given by sending x € X univ
to the coordinates (2. ) e, and the fiber of this projection is X"V(1). This is an inverse to the
multiplication map 7"V x X"V(1) — X"V and we deduce that TV x Xuniv(1) o2 xuniv,
We conclude that C[X™V]7™™ =~ C[X™i¥(1)]. Now, any T"™V-invariant function in C[X "]
is a linear combination of 7" "-invariant Laurent monomials in mutable and frozen variables.
Each such Laurent monomial restricts to a Laurent monomial in the z,-s on C[X"V(1)]. It
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follows that the functions f, and their inverses generate C[X )T and by (4.2) satisfy the
same relations that u, € C[Mp] satisfy. Finally, we check that the generators f, do not satisfy
any further relations. Suppose we have a polynomial identity p(f,) = 0 inside C[X univ] T
The equality p(fy) = 0 is equivalent to an equality ¢(z-, z,) = 0 inside (C[X univl - where g(2, 2y)
is a Laurent polynomial. We claim that the primitive exchange relations allow us to eliminate

all the non-initial cluster variables, i.e.

q(xy, 2y) = 7(T1,22,...,%n,2y) mod ideal generated by primitive exchange relations
where 7(x1,%2,...,Tn,2y) is a Laurent polynomial and the ideal is taken inside (C[X u“i"]Tumv.
To see this, first note that deg(z1),...,deg(z,) and deg(z), v € II together span Z"*", and
thus we can always multiply ¢(z,,2,) by a T""V-invariant monomial so that the denominator
involves only initial x; and the z,. Next, we have

o= MM e
Y Trry v

where R = % —1is a primitive exchange relation (divided by z;y-). This allows us (modulo
the ideal) to replace = by an expression involving x,, and M + M’. If v = (¢, j), the mutable
cluster variables that appear in M 4+ M’ are either of the form (¢ — 1,4) or of the form (¢,1%)
where i — j (see Proposition 1). It follows that x, will not appear again when this process is
repeated. This proves our claim. _

But r(x1,22,...,2n,2y) = 0 as an element of (C[)o(uni"]Tumv C (C[)o(uni"] C C(XWiv) only if
the polynomial r is 0, since x1,x2,...,Zn, 2, are algebraically independent. We conclude that
p(fy) lies in the ideal generated by primitive exchange relations. Thus the ideal of relations

satisfied by the f, is generated by (4.2). We thus have an isomorphism of rings
C[Mp] —s CIX™VT™ 0y f,

and an isomorphism of varieties X "V(1) = Mp.

4.5 Proof of Theorem 4

By the defining property of universal coefficients, we have a homomorphism of rings ¢ : A™V —
A = A(B) such that ¢(z u““’) = x, and ¢(zy) is a Laurent monomial in the frozen variables
Ty, -5 Tngm Of A. The homomorphism ¢ may not be surjective, for example this would be
the case 1f B has rows equal to 0, or rows that are repeated. However, the image A’ := H(AMIY)
is itself a cluster algebra: it is generated by ¢(x umv) and the monomials gb(z,y). The monomials

¢(zy) and their inverses generate a Laurent polynomial subring S C Clz o +1, e ,xff}rm] which is
the coefficient ring of A’. For any monomial M in x,1,...,ZTnim, we can find ¢t € T such that

t- M is a Laurent monomial in S. Thus, we have AT = A7, Since A has full rank, the quotient
X/T = X'/T" has dimension n, and A’ also has full rank.

Replacing A by A, we now assume that ¢ : A"V A is surjective, and thus we have a
closed immersion ¥ : X — X"V The monomials #(zy), v € II together define a surjective
linear map C’ : Z" — Z™. Extending by the identity in the first n coordinates, we get a
linear map Z"" — Z"™ represented by a matrix C satisfying CB"™V = B. Suppose that
t € T = Hom(Z"*t™/BZ" C*). Then composing t with C, we get an element ¢/ € TV =
Hom(Z"" /Bu"ivz" C*). Since C is surjective, the induced map t : T — T"™V is injective and
thus the inclusion of a subgroup. ‘

We need to show that ¢ : (C[X univ) TRy C[X ] is an isomorphism. For surjectivity, suppose
that f € C[X]T. Then we may assume that f is a Laurent monomial in mutable and frozen
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variables. Let g € C[X"™"] be such that ¢(g) = f. It is immediate that g is invariant under
T, i.e., the weight wt(g) € Z"t"/B™VZ" of g satisfies C'wt(g) = 0 in Z"t™/BZ". Thus, there
exists u € B™VZ" such that C(wt(g) + u) = 0 € Z"*™. The matrix C is the identity in the
first n-coordinates, so the first n coordinates of wt(g) +uis 0. Let M = [[ 52y “r where
(ay) are the last m coordinates of wt(g). Then by construction we have wt(gM) +u = 0 i.e.
wt(gM) = 0 € Z"" /B™VZ", Furthermore, ¢(M) = 1 and thus gM € C[X"V]T"™" satisfies
¢(gM) = f, proving surjectivity. '

For injectivity, suppose that ¢(g) = 0, where g € (C[X univIT™ 49 nonzero. We have already
shown that X"V /T js an irreducible affine variety in §4.4. The affine variety Spec(C[X]T)
is thus identified with a subvariety of X"V /T of lower dimension. But this is impossible,
since dim(X/T) = n = dim(X "V /Tuniv),

The isomorphism C[M p]| = (C[X |7 given by u, — fy now follows from §4.4.

4.6 Proof of Theorem 5

The group Z>"/ BPHnZ™ can be naturally identified with the subgroup Z" = zlbn ¢ zlh.2n — 720
consisting of vectors which vanish in the last n-coordinates. Under this identification, the torus
TPn hag character lattice Z", and the grading on APTID g given by (2 2). By Theorem 4, we
have Mp & Xprin /Tprln It follows from wt(z;) = e; that XPHn/TPrin js identified with the
subvariety X Prin({) c XPrin where all initial cluster variables are set to 1.

The function f};rin on X Prin (1) restricts to the rational function in yi,...,y, given by (see
[31, Theorem 1.5])

[T F(t;;’ I F(tillj,i)(y) t£0
F(t—l,j)(Y)F(t,j)(y)
Yi Hz‘%j F(tf:;J ) Hj*)i F(t %1]1)( )
Foo 1.5 )5 )

fen(y) = (4.4)

t=20

for v = (¢,7) with 0 <t < r;. By the following result, C[XPrn(1)] ~ C[Mp] is isomorphic to
the subring of C(y1,¥y2, ..., yn) generated by Ffl(y) and y;ﬂ

Proposition 8. The rational functions {fy(y) | v € I} and {y1,...,yn} U{Fy(y) | v € I}
are related by an invertible monomial transformation.

The proof of Proposition 8 is delayed until §6.4.

4.7 Proof of Proposition 6

Using 7, let us assume that v = (0,7 ) so that x, = x; is an initial mutable cluster variable. Let
B be full rank of type D and let A( ;) denote the cluster algebra of type Dy that is obtained
by freezing the variable x; in A(B). The extended exchange matrix B is obtained from B by

removing the j-th row and we have A(B)[z j_l] = A(B;). Thus A( ) C A(B). The action of

the cluster automorphism group T(B) extends to an action on A(B;) and we can identify T'(B)
Wlth a subgroup of T( ;). The morphism Mp — Mp, corresponds to the inclusion of rings

A(B;)TB2) ¢ A(B;)T®) ¢ A(B)TP).

5 Mp as an affine open in a projective toric variety

In this section, we show that the partial compactification M p is an affine open subspace of
the projective toric variety X,(pv) associated to the cluster fan of BY. The stratification
(Proposition 3) of Mp is inherited from the natural stratification of X,r(gv) by torus orbits.
Our approach follows that of [3].
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5.1

Let C(y) = C(y1,...,yn) denote the field of rational functions. Recall that for v € II, we have
defined f,(y) € C(y) in (4.4). By the proof of Theorem 5, C[M p] is isomorphic to the subring of
C(y) generated by f,(y)*!. Define R C C(y) to be the subring generated by {f,(y) | v € I1}.
Some examples of f,(y) are computed in Examples 1 and 2.

Theorem 7. The coordinate ring C[MVD] is 1somorphic to Rp.

Proof. There is a surjective ring homomorphism ¢’ : Clu] — Rp given by u, — fy(y). We
already know that the kernel K of ¢ contains the ideal Ip C C[u]. We need to show that the
homomorphism ¢ : Clu|/Ip — Rp is an isomorphism. From Theorem 5, we know this holds
after inverting the {u, | v € II} and {f, | v € II}.

By definition, Mp({}) is cut out of Mp by the ideal (uy). Thus the ring Clu]/(Ip+ (uy)) is
isomorphic to CIM p({7})], and by Proposition 4, we have Mp({y}) = Mp, x Mp, x---x Mp,
for some Dynkin diagrams D;. By induction on the rank of D, we have that ¢; : Clu]/(Ip +
(uy)) = Rp/(fy(y)) is an isomorphism. Applying Lemma 4, we conclude that ¢ itself is an
isomorphism. |

5.2

We give another description of Rp C C(y). Let R(y) = P(y)/Q(y) € C(y) be a rational
function such that P(y),Q(y) € Zly] have positive integer coefficients. Then Trop(R(y)) is the
piecewise-linear function on R" given by the formal substitution

Yi — Y;7 (+7 X, _) = (min7+7 _)

For example, Trop((3y2y2 + y3)/(y2 + 6y3)) = min(2Y; + Y2, 2Y3) — min(Ys, Y3). Note that the
coefficients are unimportant since, for example, Trop(2y) = Trop(y + y) = min(Y,Y) =Y.

The domains of linearity of the piecewise-linear function L(Y) = Trop(R(y)) define the
structure of a complete fan on R™. A piecewise-linear function L(Y) : R” — R is called
nonnegative, denoted L(Y) > 0, if it takes nonnegative values on R".

Proposition 9. The ring Rp is equal to the subring of C(y) generated by rational functions
R(y) satisfying

1. R(y) =[Ii21 9" [Lyen F5(y)* is a Laurent monomial in y; and F\(y);

2. Trop(R(y)) is nonnegative.

Proof. Let R(y) be a Laurent monomial in {y;, F(y)}. By Theorem 2, the domains of linearity
of the function L(Y) = Trop(R(y)) is a coarsening of the negative of the cluster fan —N'(BVY).
Thus L(Y) is uniquely determined by b, = L(—g,) as 7 varies over II, and g, denotes a g-vector.
As in the proof of Proposition 8, we have R(y) = [[, fy(y)~b. The condition L(Y) > 0 is
equivalent to by > 0 for all v € II. Thus the subring of rational functions R(y) satisfying (1)

and (2) is exactly the subring Rp. [
5.3
The Laurent polynomial ring C[yi!, ..., y;F!] is the coordinate ring of an n-dimensional torus

Ty. Recall that F(y) = [[, F;(y). The following result is an application of [3, Section 10].

Theorem 8. The affine scheme Mp is isomorphic to the affine open {F(y) # 0} in the pro-
Jective toric variety X vy associated to the complete fan N(BY). The subvariety Mp C Mp
is identified with the intersection of {F(y) # 0} with the open torus orbit Ty in Xpr(pv)-
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Proof. For any g € R", the quantity Trop(F(y))(g) is equal to the minimum value that the
linear function Y — Y - g takes on the Newton polytope P of F(y). Thus by Theorem 2, the
outer normal fan of P is equal to N'(BY). Recall that a lattice polytope Q is called very ample
if for sufficiently large integers r > 0, every lattice point in r@Q is a sum of r (not necessarily
distinct) lattice points in Q. For any lattice polytope @, it is known that some integer dilation
c@ is very ample. So let ¢ € Z~ be such that c¢P is very ample and let {vq,...,vg} =cPNZ"
be the set of all lattice points in cP. For v € Z", let y¥ be the monomial with exponent vector
v. Then X,r(gvy can be explicitly realized as the closure of the set of points

{[y"1 coyYlePRly e Ty}
inside the projective space P*~1. The polynomial F(y)¢ can be identified with a hyperplane
section of X (pvy in this projective embedding, and the affine open V' := {F(y) # 0} is the
complement of this hyperplane section. The coordinate ring C[V] is generated by the functions
yVi/F(y)¢ i = 1,2,...,k. Since Trop(yYi/F(y)¢) is nonnegative, by Proposition 9, we have
C[V] € Rp. It is also not hard to see that f,(y) € C[V] (see [3, Section 10]), and we have
C[V] = Rp as subrings of C(y). The theorem now follows from Theorem 7. [

Question 5.1. Is P, the Newton polytope of F(y) = ]_[7 F,(y), very ample? Is P normal?
Question 5.2. Is the polynomial F'(y) saturated?
Question 5.3. Is every lattice point in P a sum of lattice points in P,?

Fei [14] has shown that F,(y) is saturated in the simply-laced case (and in more general
situations). Thus Questions 5.2 and 5.3 are equivalent in that case.

5.4 Proof of Theorem 3

By Theorem 1, the fan N'(BY) is a smooth, simplicial, polytopal, complete fan. Thus X N(BY) 18
a smooth projective toric variety and the torus-orbit closure stratification of X pv) is simple
normal-crossing.

6 Properties of ['-polynomials

We establish some technical properties of F(y) and F’;miv (z), following the approach of [8]. The
statements are first established in the case of simply-laced D; the multiply-laced case follows
from folding. Another closely related approach is that of [26], which would presumably avoid
folding.

A key technical result is Theorem 10 which gives the values of the tropicalization Trop( f,(y))
on a (negated) g-vector.

In this section, we will assume that D is a finite type Dynkin diagram whose underlying tree
has been given an orientation, and we let B denote the corresponding exchange matrix. Recall
that DV denotes the dual Dynkin diagram, and we let BY denote the exchange matrix of type
DY, satisfying the condition: Bj; > 0 if and only if BY; > 0. Recall that we write i — j if
Bij > 0.

6.1

Let B be the exchange matrix corresponding to the oriented Dynkin diagram D. Let R be
the vector space with basis indexed by II, and write (py)emn for a typical vector in R, Define
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I+ :={(s,i) | 1 < s <r} CII and let ¢ = (¢y),en+ denote a typical vector in R, Following
[8], we consider the c-deformed mesh relations

P—1) + Pty = Cay T D 1Bislpewsy + Y 1Bijlpe-14) (6.1)
i—J J—>t
where (¢, j) € II'". (Compare with (2.3), and note that if i — j then B;; > 0, but if j — ¢ then
B;j <0.) If ¢ =0, we call (6.1) the 0-mesh relations.

For ¢ = (c,) € R™" | we let E. ¢ RY denote the solutions to (6.1), and let Ug := E¢ N RY,
denote the intersection of E. with the positive orthant. Let m : Rl — R™ denote the projection
onto the coordinates p, where v varies over {(r;,i) | i =1,2,...,n}. (Up to the action of 771,
this is the same as projection onto the initial cluster variables.)

We use the notation U(D). and E(D)¢ (resp. U(DV). and E(D"),) to denote these objects
for B or D (resp. BY or DV). In the following, e, denotes the unit basis vector in Rgg.

Theorem 9.

1. If ¢ = (cy) € Rgg, then the normal fan of m(U(D)c) is equal to N(B). If (¢y) € Rgg,
then the normal fan of 7(U(D)c) is a coarsening of N'(B).

2. For~ € ITT, the polytope U(DV).,, is the Newton polytope of FY™(z).
8. For~y € I, the polytope w(U(DY).,) is the Newton polytope of F,(y).

Proof of Theorem 2. By Theorem 9(3) the Newton polytope P, of F,(y) is n(U(D")e,).
The Newton polytope P of [[, F(y) is the Minkowski sum of the P,, and by Theorem 9(1), we
conclude that P is a generalized associahedron. |

We let g¥ denote the g-vector for BY indexed by the element of II(BY) corresponding to
under the bijection of §2.5.

6.2 Proof of Theorem 9

For D simply-laced, we have D = D" and Theorem 9 is proven in [8]. We now prove it for
multiply-laced D via folding.

Let D be a folding of D with folding group I', and v : I — II the quotient map on cluster
variables from §2.14. Define v : R" — R™ by v(e3) = ¢,(5), and vV : R — R by v¥(ey) =
meym. (The finite set v~1(v) has cardinality one, two, or three.) Similarly, we have
v,V ROT 5 ROT

Lemma 2. If (pﬁ)'?él:[ S E(D)é then I/V(pfy) S E(D)V\/(é) and I/(p:y) S E(Dv)y(é)

The g-vectors for D are solutions to the 0-mesh relations in the following sense: for each
t=1,2,...,n, the i-th coordinates of g, give a vector g(® that belongs to Eg. This follows from
[19, (6.13)], noting that the sign-coherence conjecture [19, Conjecture 6.13] holds in our case.

The following follows from Lemma 2 and Proposition 2(3). (The appearance of vV seems to
contradict Lemma 2, but it is actually correct: the vV in Lemma 2 acts on R while the vV
below acts only on R’.)

Proposition 10. We have gy = I/V(Z;/GU—l(,Y) g5)-

We say that (p5)scq € R is I-invariant and write (P5)sem € (]Rﬁ)F if for all g € T, we

have ps; = pg.5. Similarly, we define I'-invariants ¢ € (Rfv)r. The following result follows from
Lemma 2.
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Proposition 11.

1. Suppose that ¢ € (Rﬁ+)r. Then the linear map v (resp. v) is a bijection between E(D)gN
(R and E(D),v ) (resp. E(DY),))-

2. Suppose that ¢ € (Rgg)r. Then the linear map vV (resp. v) is a bijection between U(D)gN
(R and U(D)yv(é) (resp. U(Dv)y(é)).

Proof of Theorem 9. In this proof we write N (D) for N'(B) to avoid conflict of notation. Let
D fold onto D. Let ¢ € Rgg and pick ¢ € (Rlzg)r satisfying ¢ = vV (¢). By Proposition 11(2),
the map vV is a bijection between U(D)g N (Rﬁ)F and U(D). To prove Theorem 9(1) for D, it
thus suffices to show that 7(U(D)sN (Rﬁ)r)~: 7(U(D)e) N (Ri)F C QRi)F has normal fan N (D).
By Theorem 9(1) for D, the polytope m(U(D)z) has normal fan A/ (D), and by our choice of ¢, it
is I-invariant. The faces of 7(U(D)g) that intersect (Ri )I" are exactly those normal to the cones
{H1,.--,7a} of N(D) consisting of T-invariant pairwise compatible collections. Combining with
Proposition 2(4), we deduce that the normal fan of 7(U(D)g) N (Rf)F is N (D). This proves the
first statement of Theorem 9(1) for D, and the second statement is similar.

Now, let v(¥) = 7. By Proposition 2(3), the Newton polytope of F}"'V(z) is the image of the
Newton polytope of F3™"(z) under the map v. By Proposition 11(2) and Theorem 9(2) for D,

the Newton polytope of H’N}’El/_l('y) F%miv(z) is equal to U(D)Z%rlm - Thus by Proposition
11(2), the Newton polytope of (F}Ym“’(z)ﬂf Ml is equal to U(DY)jy-1(y)le,» and Theorem 9(2)
for D follows. Finally, Theorem 9(3) follows from Proposition 2(3). |
6.3

The character group of T"Y is Z"+7/B"VZ Let {ey,...,e,} U{e, | v € II} be basis vectors
of Z"*". We have

wt(z;) =e; fori=1,2,...,n, and wt(2zy) = ey for v € I (6.2)
For v € I, we have
wt(z) = Wt(F;miv) mod B™WVZ" 4 span(ey, ..., e,)
Note that all monomials in F;mi" have the same weight modulo BU™iVZ" + span(eq, ..., ep).
Proposition 12. The sets
[WU(ES™) |y T} and  {wi(z) |7 €T}
are bases of Z"t" /(B™VZ" 4+ span(eq, ..., e,)) and Z"t"/B™VZ" respectively.

Proof. The first statement implies the second. By Theorem 9(2), for v € IIT, we have
Wt(F,;‘mV) € E(DY)e,. The equations (6.1) define a lincar map L : R — R, sending (py) to
(¢4). Let B’ be the last r rows of B™". By [27], see also [8, Section 8], the matrix B’ has rows
given by —gX. By [19, (6.13)], the g-vectors are solutions to the 0-mesh relations, and thus the
kernel of L is exactly B'Z™. We conclude that modulo B'Z", the last r entries of Wt(FVuni") is
equal to the basis vector e,. Returning to the vector Wt(FV‘miV) € Z"*", we obtain

Wt(F,;miV) =e, mod B"NYZM 4 span(eq, ..., epn).

Thus {wt(Fi") | v € II*} form a basis of Z""/(B™YZ" 4 span(ey, .. ., en)). [ |
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6.4

Recall the definition of f,(y) from (4.4). Let A(g) := Trop(f,(y)), where we take (g1,...,9n)
as the tropicalization of y1, ..., y,, for example Trop(1l + y; + y1y2) = min(0, g1, g1 + g2).

Theorem 10. For v,w € II, we have Ay (—g)) = 0w rv-

Proof. First, assume that D is simply-laced so that g, = g). For v € II, let W, € DP(repQ°P)
be the object indexed by «v in the bounded derived category of representations of the quiver QQ°P
corresponding to the reversed orientation of D, see [8, Section 3|. For any g € R", the quantity
Trop(F,(y))(g) is equal to the minimum value that the linear function Y +— Y - g takes on the
Newton polytope P,.

Now take v € IIT. Let G be the n x |II| matrix whose columns are g,. According to [8,
Proof of Theorem 1], the map Y + Y - (=G) + v, is a diffeomorphism between P, and U,
where v, € E., is the integer vector given by (v, ), = dim Hom(W,,, Wr). Here, Hom is taken
within D®(repQ°P). Furthermore, it follows from [8] that U has nonempty intersection with
every coordinate hyperplane. Thus,

Trop(Fy(y))(—8w) = — dim Hom(W,,, W,,).

Suppose 7y = (t,4) € II". Then we have an Auslander-Reiten triangle in D®(repQ°P)

W(t—l,i) —F — W(t,z‘) — W(t—l,i)[l] where E = @ W(t,j) () @ W(t—l,j)'

i—J Jj—1
We have an exact sequence
0 — Hom(W,,, W(t,l,i)) — Hom(W,,, E) — Hom (W, W(; ;) — Hom(W,,, W,_y ;) 1) —---

By the definition of Auslander-Reiten triangle, any map from W, to W ; which is not an
isomorphism factors through E. Thus

(dim Hom (W, Wi;_1 4)) + dim Hom(W,,, W, ;)) — dim Hom(W,,, E) = 6, (¢3)

and this is exactly A,(—gy). Now if v € II'" but 7 is initial, then we have an Auslander-Reiten
triangle of the form
Werp—19[=1 = E = Wgiy = W17

and Hom(W,,, Wi, _14+)[—1]) = Ext_l(Ww,W(ri*,Li*)) = 0 for all w € II, agreeing with our
convention that Fg ;) (y) = 1, so again we have A, (—gy) = d, 7. Finally, suppose that v = (0, 1)
itself is initial. Then we have an Auslander-Reiten triangle of the form

Wio—1,) = E— W(O,i)[l] - W(ri*—l,i*)[l]'

In this case, our formula for f,(y) includes a factor of y;, and Trop(y;)(8w) is simply the i-th
coordinate of g,. Our claim then follows from the interpretation [8, Section 6] of g-vectors as
a change of basis between the summands of a tilting object and the indecomposable projectives
W1y, -+ Wiomy} (see also [26, Theorem 3.23(ii)]).

Now, suppose that D is multiply-laced and let D be the simply-laced diagram that folds
to D. Note that for u € Rl and v € (R, we have u-v = v(u) - v¥(v). By Propo-
sition 10, Trop(F,(y))(—gy) is equal to the minimum value that the linear function Y
Y - (=X zer-1(w) 82) takes on the Newton polytope Py (where 7 € v~1(%)), and we thus
have Trop(F,(y))(—g)) = > sev-1(w) Trop(F5(y))(—8z). It follows from the definitions that
[(y) = v(f5(y)) for any ¥ € v~!(7). The equality A,(—gY) = 6w ry for D thus follows from
the same equality for D. |
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Proof of Proposition 8. Let m(y) be a Laurent monomial in {y;, F,(y)}, and denote by G =
G(g) := Trop(m(y)) the piecewise-linear function that is the tropicalization of m(y). (Recall
that by convention the variables g are the tropicalizations of the variables y.) The domains of
linearity of the function G is a coarsening of —N(B"), so the function G is uniquely determined
by the integer vector (G(—gfy/) |y el e ZMl. By Theorem 10, any vector in Z"l can arise in
this way. It follows that m(y) is uniquely determined by its tropicalization G' by the formula

PRV,
m(y) =TT, f-(y) ¢ &), m
Example 1. We illustrate Theorem 10 for the exchange matrix
0 1 0
B=|-1 0 -1
0 1 0

of type As. In this case, we have IT = {0, 1,2} x {1, 2,3} and i* = 4 —i. We tabulate g, F,,(y),
and f,(y) below:

i g+ F’y(}’) f'y(Y)
(0,1) | (1,0,0) 1 s
(0,2) | (0,10 I =
(0,3) | (0,0,1) 1 pallinl
(171) (_17170) 1+Z/1 ﬁ
(I+y1)(I+ys)
El’ 2; ((_1’ 1, _? Lty +ys+yiys + yiyeys 1+y1+y3zf|}y11y3-?1ﬁ11y2y3
1,3) | (0,1,-1 1+ 3 L
_ 1+y1+y3+—‘y_iy§3+y1y2y3
(27 1) (07 07 1) 1+ Y3 + Y2ys3 (+y1) (I +ysty2y3)
(2,2) | (0,—1,0) 1+ s - (1+y11+y1y2)(1+y3+y2y3)
(2,3) | (~1,0,0) 1+y + O
’ ' Y1 yiy2 (Fys) (A+u1 +y1y2)
Taking v = (1,2) as an example, we have

A, (g) = min(0, g1) + min(0, g3) — min(0, g1, 93,91 + 93,91 + g2 + 93)

and one can verify that it takes value 0 on all negatives of g-vectors except for —g ) where it
takes value 1.

Example 2. Consider the following exchange matrix of type Bs.

0 1 0
B=|-1 0 1
0 -2 0

We have II = {(¢,7) € [0,3] x [1,3]} and 7(¢,5) = ((t—1) mod 4, j). We tabulate the g-vectors,
the g¥-vectors, the F-polynomials, and the polynomials f,(y) in Figure 2.

7 Examples of Mp as a configuration space

The space My, , can be identified with the configuration space of n distinct points on PL. In
this section, we investigate similar descriptions of Mp in the cases D = B, and D = C),,. We
also consider the question of whether M p is a hyperplane arrangement complement.

So far we have considered Mp as a complex algebraic variety. However, the equations (3.1)
make sense over the integers, and we may also consider M p as a scheme over Z. In particular,
in this section we will also consider Mp(F,), the set of Fy-points of Mp, where F, is a finite
field.

Throughout this section, we use the description of II from §3.2.
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i _g,z _g{ F'y()’) f'y(Y)
1 1
y1(1+y2+2y2y3+y292)
(0,1) 0 0 1 IHy1+v1y2+2y192y3+v1Y293
0] 0] (14y3)*
_ ya(l+ys)®
(07 2) 1 1 1 1+y2+2y2y3+y2y3
s 0
=, =N
(1,1 | |1 1 1+ T
-1 -1
1,2) | | o 0 1+ y1 + 19 Tt
-1 [—2
(1,3) 0 0 L+y1 + y1ye + y1yeys 1+y11-7-_511y—21ﬁf//12y2y3
1 1
1ty +
21) | |-1| | |-1 L+, W) (14 42)
[—17] [—1] 2
(2,2) | |1 -1 Lty + 2+ 201y + 1y t+ (I+y2) (A4y1 +y1y2+y192y3)
! ) ) 2419293 + 20195Y3 + Y1953 (uitny)fee)
= 0 = = 0 = F ( )
2,2)\Y
(2,3) _11 _12 L+y2 +y2u3 (T+y1+y1y2+y1y2y3) L ty2+y2y3)
1 1] Fla(y)
2y
(3,1) 0 0 L+y1 + y1y + 2019293 + Y1293 %
0] 0] (1+y2+y2y3)? Fz,1)(y)
_ _ ; 2 Y21Y2Y3 3,)\Y
(3a 2) 01 01 L+ y2 + 2y2y3 + Y2Y3 Fi2,2)(y) (1+y2+2y2y3+y293)
= 0 = = 0 = 1 2 ,
+y2+2y2y3+y2y
(3,3) 01 01 L+ys (1+y3)(1+y2+y2y§)

Figure 2. g-vectors, F-polynomials, and f,(y) in type Bs.

7.1 Hyperplane arrangements

Let Hy, Hy, ..., H, be (affine) hyperplanes in C", with the assumption that the hyperplanes are
defined over the integers. Let Z(C) := C" — (H1 UH2U---U H,.). By our assumption Z(R) and

Z(F,) are also well-defined. The following result is well-known [30, 25].

Theorem 11.

1. There exists a polynomial x(t) so that x(q) = #Z(F,), where ¢ = p™ is a prime power

with sufficiently large p.
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2. The number of connected components |mo(Z(R))| of the real hyperplane arrangement com-
plement Z(R) is given by (—1)"x(—1).

3. The cohomology ring H*(Z(C),C) is generated by the classes of dlog f;, where H; = {f; =
0}, and we have Y, dim(H(Z(C),C)) t* = (—t)"x(—1/t). Thus the Euler characteristic
of Z(C) is equal to x(1).

7.2 Type A,

Let D = A, _3 with n > 4. Then II can be identified with the diagonals of a n-gon P,. We
write u;; for the u-variable indexed by a diagonal (4, j). Then the relations defining M4, , are
given by (1.1). These relations have appeared a number of times in the literature, for example
see [1, 9]. Let My, denote the configuration space of n (distinct) points (21, 22, ..., 2,) on PL.
Then the identification

(2 — zj11)(Zig1 — 7)) (7.1)

w —
Y (2 — 2) (Zik1 — 2j41)

of u;; with a cross ratio gives an isomorphism My, , = Mg,. There is a well-studied Deligne-
Knudsen-Mumford compactification ﬂo,n, and ./K/lvom =M A,_s is an affine variety that sits
between My, and My, that is, we have open inclusions My, C ./K/lvo,n C Mon.

Let Gr(2,n) denote the Grassmannian of 2-planes in C". Let I1(2,n) C Gr(2,n) denote the
open subset where the adjacent cyclic minors A; ;11 are non-vanishing. Then ﬁ(2,n) is a full
rank cluster variety of type A,_s, see [17, Section 12.2]. Let Gr(2,n) C II(2,n) be the open
subset where all Pliicker coordinates A;; are non-vanishing. This is the subset denoted X in §4.
Then My, can be identified with the quotient of (ir(2, n) by the diagonal torus 7" sitting inside
GL, that acts on Gr(2,n). The isomorphism My, = Gr(2,n)/T is an instance of Theorem 4
for D = A,,_3. In the Gr(2,n) cluster algebra, we have the primitive exchange relation

A jAiv11 = Dijp1livi + A1l

Aijr1Ait,

where A;;11 and Aj ;i1 are frozen variables. Thus (7.1), or equivalently w;; = X2 Ao
,] = sJ

agrees with the formula for u, in Theorem 4.

The geometry and topology of My, is very well-studied; see for example [9]. We recall
some basic facts in the context of Theorem 11. Gauge-fixing 21, 2,1, 2, to 0,1, 00, we have an
identification

Mon(k) = {(22,23, ., 2n—2) € K" | 2z; # zj and z; ¢ {0,1}}

for k a field. In particular, Mo (k) is the complement in k"3 of the hyperplane arrangement
with hyperplanes
Zi—ZjZO, ZZ'ZO, 1—ZZ'ZO.

We may compute that # Mo, (Fy) = (¢ —2)(¢—3)--- (¢ —n+2). By Theorem 11, the number
of connected components of Mg ,(R) is given by

[mo(Mon(R))| = |(=3) - (=4) -~ (=n + 1)| = (n = 1)!/2.

7.3 Type B,

By Theorem 4, Mp can be identified with A(B)/T(B) for any full rank extended exchange
matrix B of type D. One such choice of B, and thus of A(B) is given in [17, Example 12.10].
Let C[X,,42] be the ring generated by the Pliicker coordinates of the Grassmannian Gr(2,n+2).
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Recall that I' is the two-element group whose non-trivial element maps i ¢+ i. Consider the
following functions in C[X,,12], labeled by I'-orbits of sides and diagonals in the polygon Poy 42
with vertices {1,2,...,n+1,1,2,...,n+ 1}:

[a,a] = Agg = Agnt2 (1<a<n+1)
{[a’b]7[aa6]}'_>Aab (1§a<b§n+1)
{[a, B], [EL, b]} = Aal_; = Aa,n—i—?Ab,n—l—2 — A (1 <a<b<n+ 1)

Let V,, be the space of 2 x (n + 2) matrices such that all the above functions are non-vanishing,
and let T, 11 = (C*)"*! act on V;, by scaling the first n + 1 columns. Then the action of
SLo X141 on V, is free.

Proposition 13. We have an isomorphism Mp, = SLa \Yo/n/TnH.

Using the action of SLy we can gauge-fix the last column of M € V,, to [0,1]7, and using
the action of T,,41, we may gauge-fix the first entry of columns 1,2,...,n+ 1 of M to 1. Thus
modulo the action of SLg xXT},11, every point in V,, can be written in the form

1 1 1 --- 1 0
21 22 23 o Zpy1 1
where z; € C, and two such matrices with parameters z = (z1,...,2,41) and 2’ = (27,...,2/,,1)
are equivalent if z' — z = c1, where 1 is the all 1-s vector. We may thus identify Mp, with
a subspace of C"*1/C = (21,...,2,41)/C - 1. For these matrices, the cluster variables A,; are
equal to 1, and we have
Agp = 2p — 24 (I1<a<b<n+1)

(7.2)
Apg=1l—z+2, (1<a<b<n+1)

We recognize the hyperplanes (7.2) as the Shi arrangement [28].
Proposition 14. Mp_ is isomorphic to the complement in C"*1/C of the Shi arrangement.

Among many well-known properties, we obtain the following as immediate consequences
using Theorem 11: (a) #Mp, (F;) = (¢ —n —1)", (b) the number of connected components
|To(MBp, (R))| = (=1)"(#MBp, (Fq)|q=—1) is equal to (n+2)", (c) the cohomology H*(Mp,,, C)
is generated in degree one by dlog A, as A varies over the hyperplanes (7.2), and (d) |[x(Mp, )| =

n".

7.4 Type C,

By applying Theorem 4 to [17, Example 12.12], we obtain a description of M¢, . Recall that I’
is the two-element group whose non-trivial element maps i <+ i. Consider the space Matg ;41 of
2 x (n+ 1) matrices

Yyir Y12 o Yin+l
Y21 Y22 Y2n41

and the cluster variables

{[ava[a?E]}'_)Aab:ylay%%iylbyQa (1§a<b§n+1)
{[a,E],[&,b]}HAagzw (1<a<b<n+1)

(7.3)
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labeled by T'-orbits of sides and diagonals in the polygon Po,yo with vertices {1,2,...,n +
1,1,2,...,n + 1}. These functions generate the ring of invariant functions C[Matg ,+1]°, iso-
morphic to a cluster algebra A(B) of type C, (when frozen variables are inverted). Here,
S = diag(t, 1/t) is the group of 2 x 2 diagonal matrices with determinant 1. The cluster auto-
morphism group is T = (C*)"*! x (Z/2Z) where (C*)"+! = (C*)"+1/{(—-1,~1,...,—1)) acts on
Matsg ,,+1 by rescaling columns (with the element (—1,...,—1) acting trivially on S\Matsy 1),
and the non-trivial element of the group (Z/27) acts by swapping the two rows.

Remark 4. Note that in contrast to the B, case ([17, Example 12.10]), the B-matrix of [17,
Example 12.12] is full rank but not really full rank. For example, for n = 2 we may choose an
initial cluster so that we have

0 1 0 2
—92 0 -1 0
B for type Bo = | 1 0 and BfortypeCo= |1 0
1 -1 1 =2
~1 0 -1 0

respectively, where the rows are labelled by 13,11,12,13,23. This explains why the cluster
automorphism group 7' in our discussion is disconnected.

On the locus where all cluster variables are non-vanishing, such 2 x (n + 1) matrices can be
gauge-fixed, using S and (C*)"*! C T to the form:

11 .- 1 1

z1 29 -+ zZp 1 (7.4)

and the non-vanishing of the cluster variables is equivalent to the non-vanishing of the linear
forms

Zi — Zj, zi + 24, 11—z, 14 2z, 2. (7.5)

Let Z, denote the space of matrices of the form (7.4) where the linear forms (7.5) are non-
vanishing. There is still a free action of Z/27Z on Z,, acting by swapping the two rows, which
induces (21,...,2n) — (1/21,...,1/2,). By Theorem 4, we obtain

Proposition 15. We have an isomorphism Mc, = Z,/(Z/27).

This isomorphism is valid over the integers even though (7.3) involves the scalars 1/2 and
1/2i: this is because the scalars cancel in any T-invariant ratio of cluster variables.

Proposition 16. We have
#Mc,(Fg) =(a—n—-1)(¢=3)(¢—=5)-(¢—2n+1)

for char(q) > 2 and

Imo(Me, (R))| = = (2"(n + 1)! + 2™n!) = 2" (n + 2)nl.

N |

Note that |mo(Mc, (R))] = [(#FMc, (Fy))|q=—1|, agreeing with Theorem 11, even though we
do not know whether M, is isomorphic to a hyperplane arrangement complement.
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Proof. For a field k, the points of M¢, (k) in general come from Z,(k), where k denotes the
algebraic closure of k.

First, suppose that k = F, with char(q) > 2. Let Fq denote the algebraic closure of ;. Then
the Galois group is topologically generated by one generator o, called the Frobenius automor-
phism. 1t acts as the field automorphism o(x) = 29, and furthermore, we have o(z) = =z if
and only if x € F,. The map 7 : Zn(F .) — Mg, (F,) commutes with the action of . Thus if

w(z)=ue€ ./\/lcn( q), we have

ue Mc,(Fy) & o(u) =u e o(n(z)) =7(z) & n(o(2)) = n(2),

and we have two possibilities: (1) o(z) = z, or (2) o(z) = 1/z. For case (1), we are just counting
# 2, (F,). Imposing the conditions (7.5), we get

B2(Fy) = (- 3)(a—5) (g — 20— 1),
For case (2), the equation o(z) = 1/z is equivalent to ZZ+1 =1 for i =1,2,...,n. There are
q + 1 solutions to the polynomial equation z4t! —1 in F,. Two of the solutions are x = +1.
The other ¢ — 1 solutions lie in F2, since 2l =1 = 291 =1 = 29 = 2. Thus in

case (2), we are counting n-tuples (21, z2,...,2,) € Fg2 satisfying the condition 29t =1 and
the conditions imposed by (7.5). The conditions z; # £1 are automatically satisfied, so we get

(¢—1(g—=3)---(¢—2n+1).
In sum, taking into account the two-to-one covering Zn — Mg, , we have
1
#Mc, (Fg) = 5 ((2¢ =20 =2)(¢ = 3)(g—5) -~ (¢ - 2n+1))
=(¢g—n—-1)(g—3)(¢—5) - (¢—2n+1).

(Note that this point count is also the same as the hyperplane arrangement complement with
hyperplanes z; + zj, z; — 2,1 + 2;, 1 — z;, though we do not know an explanation for this.)

Next let us consider kK = R, so k = C. In this case, o is replaced by complex conjugation. So

the same argument says that we should consider the two cases (1) z = z, or (2) z = 1/z. For
case (1), we are looking at Z,(R) and by Theorem 11 we get

[m0(Za(R))| = 2"(n + 1)!

since #2,(Fy) = (¢ —3)(q—5)--- (g —2n — 1).
For Case (2), we must have z; = exp(i6;) on the unit circle, where 6; € (7, n]. The conditions
(7.5) give
92'759]', 91750, 92‘7571', 07,—{—0]750
Thus the quantities |61],...,|0,| lie in (0,7) and satisfy |0;| # |0;]. There are n! regions in |6
space, and 2" sign choices going from |6;| to 6;, giving
|m0(Zn(SY))] = 27nl.

In sum, taking into account the two-to-one covering Zn — Mg, , we have
1
|To(Mc, (R))| = 5 (27 (n + 1) +2"n!) = 2" 1 (n + 2)n!,
as claimed. |

The variety M, can be identified with a subvariety of M4, _,. Sending (z1,...,2,) to

11 -1 1 1 --- 1 1

Z1 Z9 - Zp 1 —zZ1 o —2Zn 1 (76)

maps Mg, into M, ,. Note that the non-vanishing of (7.5) is equivalent to the non-vanishing
of all minors in (7.6), and that (z1,...,2,) and (1/21,...,1/2,) represent the same point in

MA27L—1 °
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7.5 Type D,

We do not know a simple description of M p in this case. Indeed, the point counts we have ob-
tained show that Mp cannot be a hyperplane arrangement complement. In type D4, numerical
computations indicate that for p # 2, we have

206 — 231p + 93p% — 16p° + p* if p=2 mod 3,

9 5 4. (7.7)
208 — 231p+93p~ — 16p° +p* ifp=1 mod 3.

(Mo, (Fp)| = {

Substituting p = —1 in (7.7), we get 547. We do not know for sure that Mp,(R) has 547
connected components, but see §11.4.
For type D3, numerical computations indicate that for p # 2,3, we have

IMp, (F,)| = —2318 + 2644p — 1156p> 4 244p> — 25p* + p° + (—36 + 5p)ds(p) — da(p) .

where we define d3(p) = 0 for p = 2 mod 3 or 2 for p = 1 mod 3 and similarly d4(p) = 0 for
p=3 mod 4 or 2 for p=1 mod 4.

Substituting p = —1, we get 6388. We do not know whether Mp, (R) has 6388 connected
components, but see §11.4.

7.6 Type G,

Numerical computations give

(p—4)? ifp=2 mod 3,
(M, (Fp)| = 2 :
(p—4)°+4 ifp=1 mod 3.
Substituting p = —1, we get 25, which we expect to be the number of connected components of
Mg, (R).

8 Positive part

In this section, we define the nonnegative subspace Mp >o of Mp(R) and show that it is
diffeomorphic to the generalized associahedron of DV.

8.1
We define the positive part Mp ~o C Mp(R) as the subspace
Mp o :={x € MpR) | uy(z) > 0 for all v € II}
and the nonnegative part Mp > C MD(R) by
Mp >0 = Mp >0 C Mp(R).
Intersecting with the stratification (3.6), we obtain

Mpzo=| [Mpso  where  Mpso=Mp 0N Mp(R).
F

Let P be an integer polytope and N (P) denote its normal fan. It is well-known [20, Chapter
4] that the nonnegative part X N(P),>0 of the projective toric variety X/(p) is diffeomorphic to
the polytope P. The following result thus follows from Theorem 8.
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Theorem 12. There is a face-preserving diffeomorphism between Mp >o and the generalized
associahedron of DV .

The positive part Mp > is identical to the positive part Xy (pv) - of the ambient projective
toric variety, and Mp ~¢ is equal to one of the connected components of the smooth manifold

Mb(R).

8.2

The space Mp has a distinguished rational top-form Q(Mp), called the canonical form, that
can be described in a number of ways. Suppose B is a full rank extended exchange matrix of type
D. The cluster algebra A(B) has a natural top-form Q which in any cluster (x1,x2,..., Znim)

can be written (up to sign):

dx dx
T Tn+m

which is the natural top-form on the corresponding cluster torus (C*)"*™. The cluster auto-
morphism group T(B) can be identified with a subgroup of (C*)"*™, and the quotient group
(C*)"*t™ /T (B) is again an algebraic torus S = (C*)™. The inclusion (C*)"*™ C X (B) identi-
fies S birationally with Mp (note that neither S nor Mp contains the other, but the two share
a common dense open subset). The torus S has a natural top-form, and the canonical form
Q(Mp) is the image of this form under the birational isomorphism between S and Mp.

Another way to obtain the canonical form of M p is via Theorem 8: any toric variety Xp has
a canonical rational top-form Q(Xp), which is simply the (extension of the) natural top-form of
the dense algebraic torus in Xp. Restricting Q(X y(pv)) to Mp gives a top-form on Mp which
equals Q(Mp).

The pair (/K/lVD,./\/lD,zo) is nearly a positive geometry in the sense of [2], with Q(MD) =
Q(Mp) as canonical form: the residue of Q(Mp) along a divisor Mp(F) is equal to the
canonical form Q(Mp(F)), which is simply the product of canonical forms corresponding to

the factorization of Proposition 4. This follows from the similar statement concerning X (pv),

proven in [2, Appendix G]. However, M p is an affine variety rather than a projective variety,
so it is not a positive geometry in the strict sense.
In the case D = A,,_3, we have Mp = Mg ,, and the canonical form can be written as

d22‘~-dzn_2
(22 —21)(23 — 22) -+~ (21 — zn)

Q((Moyn)>0> =

where (21, 2n,—1,2,) = (0,1, 00) as in §7.2, and denominator factors equal to co are understood to
be omitted. This form is also called a cell-form in [10] and the condition that Q((Mo)>0) only
has poles along the boundary divisors of /\70,n (and not elsewhere in My ,) is [10, Proposition
2.7]. Combining with the above discussion, we have

Proposition 17. The pair (Mg, (Mon)>0) is a positive geometry with canonical form Q((Mon)>0)-

9 Positive tropicalization

In this section, we consider the positive tropicalization of M p. We use our results to resolve a
conjecture of Speyer and Williams [29] on positive tropicalizations of cluster algebras of finite
type. We refer the reader to [29] for background on positive tropicalizations.

Let R = 7, R((t'/™)) denote the field of Puiseux series over R. We define val : R — RU{oc}
by val(0) = oo and val(z(t)) = r if the lowest term of x(t) is equal to at” where a € R*. We
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define R~o C R to be the semifield consisting of Puiseux series x(t) that are non-zero and such
that coefficient of the lowest term is a positive real number.

A point u(t) € Mp(Rxo) is a collection u(t) = {u,(t) € R0, € II} of (positive) Puiseux se-
ries satisfying the relations from Definition 1. We define the positive tropicalization Trop.o Mp
as the closure of valuations

Trop.o Mp := {val(u,(t)) en € RT | u(t) € Mp(Ro)} C R™.

Lemma 3. The subspace Trop.qMp is a (not complete) polyhedral fan inside the linear space
RIT,

Proof. We use the identification Mp = XPrin /TP from Theorem 5. According to Proposi-
tion 8, there is an invertible monomial transformation between the functions u, = f, and the set

of functions {y1,...,yn} U{F;(y) | v € II"}. Since each F,(y) is a positive Laurent polynomial
in the y;-s, it follows that each w,(y) is a subtraction-free rational function in the y;-s. Thus

the map (uy)yern — (y1,%2,--.,¥yn) induces an isomorphism Mp(R~o) = RZ,. It follows that
we have a homeomorphism Trop.oMp = R". The embedding of Trop.,Mp in the (larger
dimensional) linear space R!! endows it with the structure of a polyhedral fan. |

Theorem 13. The fan Trops, Mp is isomorphic to the cluster fan N'(BY).

Proof. Under the isomorphism Trop.o Mp = R", the fan structure of Trop., Mp gives a
complete fan in R™ whose maximal cones are the common domains of linearity of the piecewise
linear functions Trop(u(y)). By Proposition 8, we can equivalently take the common domains
of linearity of the functions Trop(F,(y)), v € II". It is well-known (see for example [6, Section
11.1]) that the resulting fan is the normal fan of the Newton polytope of the Laurent polynomial
[ er+ F(y). By Theorem 2, we deduce the isomorphism of fans Trop.o Mp = N(BY). [

Now let A(B) denote a cluster algebra of finite type, and X (B) the corresponding cluster
variety. Using the set of cluster variables x.,, v € II and coefficient variables @, y1,..., ZTpim, we
have an embedding X (B) < C"l*™  We define Trop., X (B) c RIM*™ as the closure of the
image of X (B)(Rxo) under the map val : R~o — R. Note that the tropicalization Trop. o X (B)
depends only on the cluster algebra A = A(B) and not on the choice of initial cluster.

The projection map (., ;) + (21,2, .., Tpim) from RITH™ to R*™ (onto the initial
cluster variables) identifies Trop. o X (B) with a complete polyhedral fan in R"+™.

Proposition 18. Suppose that B is of full rank and has finite type D. Then Trop~ X(B)
modulo its lineality space L is isomorphic to Trops, Mp.

Proof. The translation action of the lineality space L on R"™™ is simply the tropicalization
of the action of the automorphism torus T'(B) (4.1). Thus B is of full rank if and only if L
has dimension m if and only if T(B) is of dimension m. In particular, Trop.q X (B)/L is a
polyhedral fan of dimension n.

Via the isomorphism of Theorem 4, each u, = f, € C[Mp] can be identified with a monomial
in the cluster and coefficient variables z, v € II and zy,41,...,%y4m. We thus have a linear
projection map p : RHI+m — RIMI (the tropicalization of the rational map sending x-s to u-
s) mapping Trop., X (B) surjectively to Tropso Mp. The fibers of p are exactly the orbits
of the lineality space L acting on Tropso X (B). Tt follows that the fans Trop., X (B)/L and

Trop.o Mp are isomorphic. |

Noting that the fans N (BY) and N (B) are combinatorially isomorphic, we deduce from
Theorem 13 and Proposition 18 the following conjecture of Speyer and Williams [29, Conjecture
8.1]. The principal coefficient case was established in [22] and we thank Christian Stump for
drawing our attention to this work.
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Corollary 2. Suppose that B is of full rank and has finite type. Then Trops X(B)/L is
combinatorially isomorphic to the complete fan N(B).

10 Extended and local u-equations

In this section, we first study two additional sets of equations satisfied by wu-variables, the ez-
tended u-equations and the local u-equations. In other words, we give some further distinguished
elements in the ideal Ip. s

In type A, the extended u-equations were used by Brown [9] to define what we call M4, _,;
we see here that they can be interpreted as arising from all the exchange relations of the cluster
algebra, rather than just the primitive exchange relations.

10.1 Extended u-equations

An extended u-equation is an equation which holds in C[Mp] of the form
[Tus +][w =1 (10.1)
v v

where o, 3, are nonnegative integer parameters. All the primitive u-equations R, in Definition 1
are examples. Corollary 1 gives a class of extended u-equations for each D. It would be desirable
to have a uniform (instead of case-by-case) description of the extended u-equations coming from
Corollary 1 similar to the description of the relations R,. This would follow from a solution to
the following problem, which we believe is open. (Recall that the primitive exchange relations
are described in Proposition 2.3.)

Problem 10.1. Give a uniform, root-system theoretic, description of all the exchange relations
in a cluster algebra of finite type with universal coefficients.

We now present explicitly extended u-equations for all the classical types A, B, C, D, and also
for type Go. In types A and D, the only extended u-equations we know come from Corollary 1,
and we conjecture that in simply-laced types these are the only ones. In types B and C, we
find more extended u-equations than those from Corollary 1. Indeed, any extended u-equation
for type Aap,—3 (resp. D,,) gives one for type Cy,_; (resp. Bp—1), but not all of these come from
Corollary 1. We conjecture that all extended u-equations in multiply-laced type come from
folding.

A similar analysis of extended u-equations for the types E and F' can be found by a lengthy,
but finite computation which we do not present here.

In the following, we will use the indexing of II from §3.2. For two disjoint subsets I and J,
define

U[J = H Ui,j- (10.2)

iel jeJ

Note that Uy ; and Uy are not necessarily equal.

10.1.1 Type A

Let {1,2,--- ,n} = AUBUCUD be a decomposition of [n] into cyclic intervals. Then we have
the extended u-equation

UA,C + UB,D =1. (10.3)
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Each equation depends on the choice of four cyclically ordered points a, b, ¢,d: A = {a+1,...,b},
B = {b+1,...,¢}, C ={c+1,...,d} and D = {d+1,...,a}, and thus there are (Z) equations
in total, in bijection with the exchange relations of the type A cluster algebra. These equations
arise from Corollary 1. See [31, Proposition 7.2] for the exchange relations of the universal
coefficient cluster algebra of type A.

For A = {i}, C = {j}, the equation (10.3) becomes the primitive u-equations, R;; = 0. As
discussed in [4, 9], it is natural to interpret these U’s as cross-ratios of n points on P!: denote
Uac = [a,blc,d], and (10.3) becomes [a,blc,d] + [b,c|d,a] = 1. Together with the identity
by definition [a, b|c, €][a, ble,d] = [a,b|c,d], the equalities [a,b|c,d] + [b, c|d,a] = 1 invariantly

characterize cross-ratios of n points, namely [a, b|c, d] = ﬁ%ﬁ:;
10.1.2 Type C
Extended u-equations for type C,_1 arise via folding Ag,, 3. For a decomposition {1,2,...,n,1,...

[2n] = AU B UC U D into cyclic intervals, the image of (10.3) gives the extended u-equation
for C),—1 (which become the primitive ones for A = {i}, C' = {j}). For example, if we choose
A = {1} and C = {n+1}, we have

o _ _ _ 2
L —upy =V, n} 2,0 = Hu[iﬂ H ij]
i=2

2<i<j<n

which is the primitive u-equation Ry;7 = 0. For C5, in addition to the 6 primitive u-equations
given in (3.3), we have 3 more equations:

upiq)upig) + U3z = 1, (10.4)

and its cyclic rotations.

Let us count the number of extended u-equations for C,,_1 we have obtained. There are (22)
equations (10.3) in type Ag,_3. Of those, (g) are equal to its mirror image. For the remainder,
both the equation and its mirror image map to the same equation in type Cj,_1. Thus we have
obtained n(n_l)(222_4n+3) extended u-equations for C),_;. Note that this number is greater than
the number of exchange relations of type C,,_1. For example, for Cs, there are 6 exchange

relations, but we have found 9 extended wu-equations.

10.1.3 Type D
We now consider type D,,. We use the notation (10.2) and also define (here a < b means a

precedes b in )
U = H uaijui, ﬁj = H “a,bH“Z'

a<bel i€l a<bel el

We now describe two types of extended u-equations. (These equalities were discovered empri-
cally, but it should be relatively straightforward to prove them by induction.) First, similar to
(10.3), for a cyclically ordered partition ALUBUC U D = {1,2,--- ,n}, we have

Uc,a +Up,pUasUp,cUppUpUp = 1. (10.5)

We allow D to be empty here, in which case (10.5) becomes UO,A+UA,BUB,CUBUB = 1. Second,
for a cyclically ordered partition AU BUC = {1,2,--- ,n}, we have

UaUa,g + ﬁCUB,C =1. (10.6)

Note that B can be empty here, in which case we have Ua + Uc = 1. In the first and second type
2
we have 4 (7)) +3(%) and 6(3)+2(}) equations, respectively, thus in total there are w

3

1
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extended u-equations. It is not difficult to see that this is equal to the number of (unordered)
pairs of exchangeable cluster variables. We have n? cluster variables, i(n4 + n? — 2n) pairs of
compatible cluster variables, and 2(2) pairs of cluster variables where the compatibility degree
is greater than one. The remaining pairs of cluster variables are exchangeable.

It is straightforward to obtain the primitive u-equations for type D,. In (10.5), choosing
A ={i}, C ={j} (including the degenerate case with D = (), thus j = i—1), we have

L —uj; = UDU{i},BUB,jU{D}UBUB

where B = {i+1,---,j—1} and D = {j+1,--- ,i—1}. In (10.6), take B = (), and choosing A =i
or C' =1 we have

1—u; = U{i+17...7i_1} ;o l—wu; = U{H_L.A.’i_l} .

For example, for n = 4, we have 52 extended u-equations of the form (10.5) and (10.6), including
the 16 primitive u-equations in (3.4).

10.1.4 Type B

Finally, we consider type B, by folding D,. We identify u; = u;, and the two types of
equations become

Uca+UppUapUscUppUf =1,  UalUap+UcUpc =1. (10.7)

We have %ﬂun_?’) such extended u-equations in total: note that each equation (10.5) has
a distinct image in B,_1 but two of the equations (10.6) map to a single one in B,_;. Again,
we note that this number is greater than the number of exchange relations in type Bj_1.

The primitive u-equations can be recovered by setting A = {i}, C = {j} (also B = ) in
the second one). For example, for n = 4, we obtain 34 extended u-equations including the
12 primitive ones of (3.5). Let’s write the additional 22 equations as dihedral orbits of sizes
8,8,4,2:

. 2 _
8eqs: uzu41 + uipuzzuy =1,
8eqs: up2uiUUl 3U23 + Uuguz 4 =1,
4egs:  wiuigulz+ugupguzg =1,

2eqs:  ujpuiug +uzquzug = 1.

There are 22 exchange relations in type Bs.

10.1.5 Type G

As in §3.2.5, let us call the 8 u-variables a;, b; for ¢ = 1,...,4 that can be thought of as labelling
the edges of an octagon (ai,b1,...,aq,bs). Folding Dy, we obtain 18 extended u-equations for
(9, the primitive u-equations

a] + a2a§a4bgb3 =1,b; + agaibzb§b4 =1, +cyclic, (10.8)
together with

a1by + aZasbabs = 1, azby + azaibsbs = 1,a1a2by + azasbs =1, +cyclic. (10.9)
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10.2 Local u-equations

The relations R, and the extended u-equations are global in nature: they involve many wu,
variables which are “far away from each other”. We now describe a class of local u-equations.
Using them one can show that all u-variables can be solved rationally in terms of u-variables of
any acyclic seed; see also [4]. This has implications for canonical forms; see (12.1).

We first recall the X-coordinates for Fock and Goncharov’s cluster X-variety. For an exchange
relation ' = M+M’, we have a cluster X-variable X = M/M’. Now, let us consider a primitive
exchange relation in X (B):

Ty Ty = M + M "

where M’ only involves frozen variables. We recall that the isomorphism of Theorem 4 identifies
the rational function - with w,. Thus the cluster X-variable X, := M /M’ can be identified

with uy/(1—u,) € (C[./\/l D] which is equal to a Laurent monomial in the u,-s using the relations
R,. By [18] or [19, Proposition 3.9 or (8.11)] the variables X satisfy the relation

X)X = [JA+ X)) JJQ+ Xm1) (10.10)

i—] 7

or, equivalently, the variables u, satisfy the relation

U(t—1.5 Wt 4 - Qi
(t 1’]) (tvj) — H(l _ u(t,i))a” H(l _ u(t—l,i)) i, (1011)

1 - u(t_lvj) 1 - u(tvj) Z—)] ]%7,

For the convenience of the reader, we give some examples of (10.10), noting that the passage
between X-variables and wu-variables is completely compatible with folding.

10.2.1 Type A

For type A,_3 we have u-variables u; ; for 1 < i < j—1 < n, corresponding to the n(n—3)/2
diagonals of n-gon. We have the same number of local u-equations, one for each “skinny”
quadrilateral:

/) 141
J+1
XijXit1j41 = (L4 Xij1) (1 + Xig ) (10.12)
or
Uj Uit1,5+1 1 1

= . 10.13
1— um 1-— ui+1,j+1 1-— ui,j+1 1— ui+17j ( )

10.2.2 Type C

By folding As,_3, we obtain local u- equations for type C,_1. The local u-equations take the
form of (10.12); for the special case of j = 1, it reads

2
X{iﬂX[m,m] = (14 Xpiir)™
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10.2.3 Type D
We use the notation for u-variables from §3.2.3. The n? local u-equations for type D, read
XijXip15r1 = (14 Xijr1) (1 + Xip )
Xi1iXiip1 = (1 + Xi11) (1 4+ X)) (1 4+ X5)
XiXim =1+ Xiin
XX =1+ X1

. (10.14)

10.2.4 Type B
By folding type D,,, we obtain local u-equations for type B, _; (see §3.2.4). The local u-equations
are
Xii 1 X141 = (1 + Xpi ) (1 + Xjiv1 )
X[i—l,%]X[i,m} =(1+ X[z'—uTu)(l + X[i,%])Q (10.15)
X Xigrign = 1+ Xt

together with cyclic rotations.

10.2.5 Type FE

Finally, for E,, with n = 6,7, 8, we use the identification (2.1) to index u and X variables. When
B is bipartite, i.e. every vertex is either a source or a sink in the induced orientation of D, we
have r; = h/2 + 1 does not depend on 7, where h is the Coxeter number. The Coxeter number
is even in types Fg, E'7, Eg, and I is identified with m = 7,10, 16 copies of I respectively. We
index the nodes of FE,, as shown below:

O—O——O——0--------- O 0
1 2 3 4 n—2 n—1

The local u-equations take the following form:

Xty X)) = (U4 Xgrirn) (T + Xgr,i—) (1 + X(t—i—l,n))éi’s , foroddi<mn,

(10.16)
Xty Xt = T+ X)) (L + Xpi41y),  for even i <n, (10.17)
Xitn) Xtr1n) =1+ X3y, (10.18)

fort =1,2,--- ,m in all these cases. We have n x m equations in total.

10.2.6 Types F; and Go

By folding F we obtain local u-equations for Fy, and by folding D4 we obtain those for Ga.

11 Connected components and sign patterns

The permutation group S, acts on the moduli space My, (R), permuting the n points and
permuting the connected components. The presentation of My, (R) using u;; and the relations
(1.1) depends on the choice of a dihedral ordering and the action of the symmetry group S,
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is obscured. In this section, we use the extended u-equations to investigate the connected
components of M p(R), with the hope of uncovering an appropriate symmetry group for Mp in
other types. While our results here are more speculative, we are able to construct new classes
of u-equations.

A further motivation for studying connected components of Mp(R) is the application to
string amplitudes where it is important to consider canonical forms of different connected com-
ponents of Mg ,,(R); see §12.2 for a brief discussion.

We also define an analogue of an oriented matroid for M p, called a “consistent sign pattern”,
and it is conjectured that the number of consistent sign patterns is equal to the number of
connected components.

11.1 Consistent sign patterns

A consistent sign pattern for type D is an element (s,) € {+, —}!T such that for each extended
u-equation (10.1) [[, uy” + [[,wy” = 1, we have that at least one of the signs [], 577 and

[T, sg” is positive. In other words, (s,) are possible signs for some solution (u,) of extended
u-equations. We could also call a consistent sign pattern a “uniform oriented matroid” for the
u-variables.

In [4], we made the following conjecture.

Conjecture 2. The number of connected components of Mp(R) is given by the number of sign
patterns of u-variables consistent with the extended u-equations for D.

11.2 Type A

We consider D = A,,_3. The space Mg ,(R) has (n—1)!/2 connected components, corresponding
to the dihedral orderings of n points. In the positive connected component (Mpg )0, all the
cross ratios wu;; are positive, indeed, we have 0 < w;; < 1. In other connected components of
My, some of the u;j-s are negative. We find that the extended u-equations exclude those sign
patterns for which both [a, b|c, d] and [b, c|d, a] are negative. Empirically, we find that precisely
(n—1)!/2 consistent sign patterns are allowed by the extended u-equations (10.3), and this count
agrees with the number of connected components of Mg, (R).

Let us now consider the problem of finding new u-variables for other components of Mg ,(R),
that is, we seek cross-ratios that are positive on that component. It suffices to consider the order-
ing that is obtained from the standard one by an adjacent transposition, e.g. (1’,2,3"--- /n/) =
(2,1,3,---,n). Using the following identities for the cross ratio [a, b|c,d] (see §10.1.1):

1 [a, blc, d]

m7 [aac|ba d,] = T g

[a7b|d7 C] = [b, C‘d, a]

we find that the u-variables in this new ordering include

—In, 12,3 —In, 12,3 —
u/1,3 _ [TL,, 1/’2/731} _ [n,2’173] _ [77/7 ‘ ) ] _ nigny ’ '7 ] _ Uu1,3 ’ (111)
1,2(3,n] L2511, 2]0,0+1]  u24---U2p
u’u = [n’, 1/‘i/—1,i/] = [n,2|i — 1,i] = [n, 1]i—1,4][1,2|i—1,1] = uy ju2;,
1 1

wh, = [, 2] —1,i') = [2,1]i—1,i] = T
9~y 3 )i

ué,i = [2/73/|i,_17i/] = [1>3|1_17Z] = [172‘Z_1>Z][273|Z_17Z] = U2,;U3,i ,

and all other u’s are unchanged. These new u;]-—s are positive in the connected component given
by the ordering (2,1,3,---,n), and furthermore they satisfy the extended u-equations (for this
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ordering). In other words, the (invertible) signed monomial transformation (11.1) sends the
extended u-equations for u;; to a permutation of the extended u-equations for the u; i and thus
exposing a hidden S,-symmetry of these equations.

11.3 Type C

From the analysis of §7.4, we know that M, (R) has 2" !n!(n + 1) connected components.
Computationally, we find that this agrees with the number of consistent sign patterns.

There are two types of components in Mg, (R) corresponding to two types of configurations of
the (2n+2)-gon with labels 4,7 for i = 1,2,--- ,n+1: (A). 2" !n! components for polygons with
central symmetry e.g. 1,2,---,n+1,1,2,--- n+l; (B). 2" (n+1)! components for polygons
with reflection symmetry avoiding vertices, e.g. the ordering 1,2,--- ,n+1,n+1,---,2,1. Unlike
type A, our investigations indicate that the compactification (arising from u-equations) of these
two types of components have differing boundary combinatorics: for any component in (A),
combinatorially it is a cyclohedron (the generalized associahedron of type C), while for any
component in (B), combinatorially it is an associahedra. We expect that this can be proven via
a careful analysis of the extended u-equations, and here we illustrate it for the simplest example,
Cy = Bs.

The extended u-equations are given by (3.3) and (10.4), plus cyclic rotations. The positive
part with all u-s positive corresponds to the ordering 1,2,3,1,2,3, which cuts out a hexagon.
We can see the other 3 orderings in (A) by making a signed monomial transformation of the
u-variables. For example, for the ordering 2,1, 3,2, 1, 3, we find that the 6 new variables can be
obtained by a monomial change of variables:

1 U13] 1
Uy = ————, Uper = ————F Upp) = ————, 11.2
W wpryupy) - Ul12)¥[22] U [23] - Y122 "123] )
U = U3, Uy = U[li]“%ﬂ]u[ﬂ]a Upz3) = “[251“[223]“[33]'

It is straightforward to check that these 6 new variables satisfy identical extended wu-equations
for the ordering 2,1, 3,2,1,3. More generally, under this kind of transformation, similar to the
type A,_3 case, we find that for any ordering in (A) the new variables satisfy identical extended
u-equations, and the corresponding component is combinatorially a cyclohedron.

Let us now consider orderings in (B). For example, for the ordering 1,2, 3, 3,2,1, we find that
the 6 new variables are given in terms of the old ones by

, U] ;o1 1

W = ——1 Wy = ——, T , (11.3
T s M upy # g )
1
S _ _ A - - = I
Upyg) = U[13]U[23)U[33] Ul23) = U[21)U[22)U[23]s Y23 U3

The 9 extended u-equations become the following ones for the 6 new variables:

Ufig)upiz) + Uppayuiiz) = 1 U Ulag) T gy = L, ufog) (Urg) + Uz) =1, (11.4)
Wg + Ug U ey = L g T Uizt = L Uy T Uy Uos iy = 1
Ujrg) + Ufig Uz = 1, Ulgg) + Uzl = 1 (1 + Uiz g uje) = 1.

Note that u’m] is special: from the third and the last equations, it is easy to see that ufz?
take the value 0, and thus UI[QQ] = 0 does not correspond to a facet. The other 5 variables do

} cannot

correspond to facets, and from the equations we see that requiring all ' > 0 cuts out a pentagon
instead. In general, we expect that for any ordering in (B), such a transformation give equations
of this type, where certain «’ cannot reach zero, and (an appropriate closure) of the component
has the combinatorics of a (type A) associahedron.
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11.4 Types D, and Dj

We were unable to determine the number of connected components of Mp, (R). However, we
can obtain a consistency check by comparing the number of consistent sign patterns with the
point count over [F,.

Recall from the point count (7.7) in type D4, we predicted that M p(R) has 547 connected
components. By a direct computation, we checked that this is equal to the number of consistent
sign patterns of u-variables with respect to the extended u-equations in §10.1.3. Similarly, the
prediction of 6388 in the D5 case computationally agrees with the number of consistent sign
patterns of u-variables.

11.5 Type G5

As we have discussed in §7.6, we expect that there are 25 different connected components for G,.
Furthermore, the point count Mg, (F,) is not polynomial, and thus Mg, is not a hyperplane
arrangement complement. Computationally, we find that there are 25 consistent sign patterns
for the 18 extended u-equations from §10.1.5.

We now investigate the connected components of Mg, (R), and note some new features. The
positive component has 0 < a;,b; < 1 as usual. But suppose by is made negative; to wit we put
by = —b} with b} > 0. As in our discussion for types A and C, we rearrange all the extended
u-equations to put them again in the form of (monomial;) + (monomialy) = 1. Quite nicely,
the 36 exponent vectors of these monomials lie in an 8-dimensional cone, that is, all 36 vectors
can be expressed as a positive linear combination of eight of them. The 8 generators can be
associated with the new variables

-1 2 /-3 —3;p—1;7—23—-1 2 -1
Tr1 = b4 , Lo = a1a3a4b3b4, xr3 = b1a3 a4 52 b3 b4 , T4 = a2a3a4b2b3, Irs = bQ N
—1;—1 —1;—1
y1 = bs, Y2 = ay b3 ) Y3z = ag bg
(11.5)

and using these variables, we get 18 equations (monomial); + (monomial)y = 1, written in terms
of the x’s and y’s, all with positive exponents. Eight of these are “primitive” u-equations

Ty 4 2373 = 1, T + TaT5YTY2y3 = 1, x5 + 2175y Y5y3 = 1, (11.6)
T4+ xlmgy%ygyg =1, T5 + w%mg =1 (11.7)
g1 +yiriaiaelysys =1, yo +yirexsaiyiyi =1, s+ yiadwszayiyi =1 (11.8)

As usual these equations tell us that if the z,y > 0, then we also have z,y < 1. But note an
interesting feature of the equations for the y; that we also saw for C),: both monomials contain
a factor of y;, and therefore we cannot set any of the y’s to zero. Thus the only boundaries of

this connected component are associated with the z; — 0 for ¢ = 1,...,5; and we have found
an unusual binary realization (in the sense of [4]) of a pentagon.
Suppose instead we now set a; to be negative, that is, a; = —a} with o’ > 0. Repeating the

same analysis something more interesting happens. The set of 36 exponent vectors associated
with the monomials of the extended u-equations span a cone with 12 generators. The monomials
associated with these 12 generators are

-1 3 3 2 -1 —1
r1=a, , xo = ayazbibybs, x3 =0b3", xg =0y, (11.9)
ro—1 -2 —1;—1;—1 3 37 12 r 2 —1p—1 -2 —1;—1;—1
T5 = a10ay G5 °-ay by by, e = azaybab3zbs, w7 = ajaibsbiay by, wg =az a, b, by,
(11.10)
’ 2 —1p—1 —1,-2;-1;—1
Trg9 = a1a2blbga4 b3 y Tr10 = a3b2, r11 = agbg, T12 = Qo a3 bQ b3

(11.11)
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and all the extended u-equations can be written (albeit not uniquely) as a sum of two monomials
in the x’s with positive coefficients. Of course, twelve of the equations are of the form x;+
(monomial) = 1, so all the z’s are restricted to lie between 0 and 1. But the twelve exponent
vectors in eight dimensions satisfy four relations which can be expressed in many equivalent
ways, for instance

2. .2 2 2. .2 2 2 2
THTITETY = T1T4TG, TETATETY = T1X3T7, TioTaT8 = T1X3, T3 = T124. (11.12)

So in the language of these x-variables, we have monomial equations with positive exponents,
but also satisfying non-trivial constraint relations. Further study of this particular region reveals
it to be a binary realization of a hexagon. It is natural to conjecture that the phenomenon we
have seen in this G5 example is generic-when studying different connected components using u-
equations, the set of exponent vectors will be a pointed cone, and that the equations will always
force all variables to lie between (0,1). But the variables will satisfy additional monomial
constraints.

12 Outlook

We close with a few comments on open directions for future exploration.

12.1 Understanding Real Components of Cluster Configuration Space

An open question immediately suggested by our investigations (see §11) is understanding all
the connected components of the real points of cluster configuration spaces. For A, _3, there is
a beautiful picture, where the complete space is tiled by “binary associahedra” corresponding
to all (n—1)!/2 orderings of n points on the projective line, and there is a similar complete
picture of all the orderings for ), by folding. These examples are especially easy to understand
since we have a “linear model” for My ,, in terms of a hyperplane arrangement. The connected
components can also be easily understood in these examples, directly studying the space of
solutions of the u-equations with different sign patterns. In general, Mp is not a hyperplane
arrangement complement and it would thus be interesting to systematically study the question
of connected components directly from the u-equations defining the space, as we have done in
some examples in §11.

It is natural to conjecture that some or all of the other real components of cluster configu-
rations spaces (suitably compactified using the u-equations) are also positive geometries, and it
would be interesting to determine their canonical forms.

In connection with determining canonical forms for general components, we state here without
proof, a simple expression for the canonical forms of the positive component we have studied
above, not in terms of cluster variables, but directly in terms of w-variables. Recall that that
the u, are in bijection with all the cluster variables. Consider any acyclic cluster (x.,,- -+, x,).
Then, the canonical form is simply given by taking the wedge product

- /\ d“% (12.1)
“72

As we noted in §10.2, acyclic seeds have the following feature: all the u, variables can be
expressed rationally in terms of those in the initial seed. This idea can be extended to give
canonical forms for other connected components of cluster configuration spaces. As a simple
example, let us consider the description of the component discussed in §11 for the G2 case, where
by = —b) < 0. We can readily check that all of the (x,y) variables can be rationally solved for
in terms of either (z2,z3) or in terms of (x3,x4). The canonical form is then given as

Q = dlog 2 dlog = dlog dlog T
1—x9

€3 €3
. 12.2
1—x3 1—x3 1— x4 ( )
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12.2 Open and Closed Cluster String Amplitudes

The stringy canonical forms of [3] can be applied to the cluster configuration space Mp, and
we obtain the cluster string amplitude. For a cluster algebra A(B) of full rank and of type D,
the cluster string integral is defined to be

n+m
Tos)i= [ oMo [T#5™ T o™, (12.3)
Mbp >0 yell i=n+1

where {37 | v €e T} U{s; | i € [n+ 1,n + m|} are parameters chosen so that the product

[T en 25 ™ is T-invariant, and thus descends to a function on Mp ~g. Choosing B = BP"  we
may use Theorem 5 to rewrite (12.3) as

(X, {c}) = / del X Foly) (12.4)

R0 ~yEIT+

where (X, {c}) are related linearly to (s;, sy). By [3, Claim 2], (12.4) converges when the point X
belongs to the generalized associahedron P(c) = Zwenﬂu cy P, where P, is the Newton polytope
of F,(y). By [3, Claim 2] the leading order of Zp(X, {c}) is the canonical function Q(P(c)) of
P(c) evaluated at X:

lim (o)"Zp (X, {c}) = QP())(X).

a’—0
(We refer the reader to [3, 2] for background on canonical functions and canonical forms.) In
particular, the poles of Zp(X,{c}) as o’ — 0, all of which are simple, correspond bijectively to

the facets of the generalized associahedron of DV. By [3, Section 9] and Theorem 10, we may
also rewrite

ID(U)Z/M QMp,so) [T w5 (12.5)

vell

and the convergence condition is the very simple condition U, > 0. By Proposition 8, the
uy and {y;, F;,} are related by an invertible monomial transformation, and thus {U, | v € II}
and {X1,...,X,} U{c, | v € I} are related by an invertible linear transformation. (The
matrix of this linear transformation has entries given by the integers Trop(F,(y))(—gy,) that
appeared in §6.) We see from (12.5) that the u-variables u, are reverse-engineered from the
cluster string integral: they are those monomials in cluster variables making the domain of
convergence explicit.

As explained in [3, Section 7], for generic exponents X, we expect that varying the cycle of
integration (to something other than the cycle Mp ~o) will span a space of integral functions
of dimension equal to the absolute value of the Euler characteristic |x(Mp(C))|. Indeed, it is
especially natural to integrate over any of the other real connected components of the cluster
configuration space, directly generalizing the basis of all (tree-level) open string amplitudes
associated with type A.

We can also define the analog of “closed string” cluster amplitudes. The simplest object we
can define (as in [3]) is the “mod square” of the open string integral

Tlosed ({17, 7}) = /M o Moo )T 5% A oMb o) T 55" (12.6)
D

vell vyell

where in order for the integrand to be single-valued, we must have that the exponents (77 differ
from U, at most by integers.
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As we have remarked, it is plausible that real components of cluster configuration space other
than the region associated with u, > 0 provide us with many different positive geometries ./\/lg),
with associated canonical forms Q(/\/l%)). In this case we can extend the closed string integrals
to be more generally labelled by pairs of these positive geometries,

1 d 7 3 'U. — ; _a'U
Tt (0D = [ i) TT g™ neemi) T g™ (12.7
oMy Mp(©) Jen Jeh
It is clear that a complete understanding of the space of open and closed string integrals
will go hand-in-hand with a similarly complete understanding of the space of all connected real
components of the cluster configuration space.

12.3 Beyond finite type

Finally, the most obvious open question is whether the notions of cluster configuration space
presented in this paper can naturally be extended beyond finite-type cluster algebras. It is
interesting to note that, as we have seen in (12.5) above, in the finite type case, the introduction
of the w-variables is naturally reverse engineered, starting from the definition of the cluster
string amplitude, see also [3]. This definition can be extended in various ways to define natural
“compactifications” of the infinite-type configuration spaces, as recently been explored for the
case of Grassmannian cluster algebras [5]. In these examples, the reverse-engineering of u-
variables does not work as it does in finite type: amongst other things the polytope capturing
the combinatorics of the boundary structure in these cases is typically not simple. But there
may be other choices of stringy integral that are more natural from the perspective of finding
good u-variables and “binary” realizations of general cluster configuration spaces.

A A lemma in commutative algebra

Lemma 4. Let f : A — B be a surjective homomorphism of Noetherian commutative rings with
identity. Let S C A be the multiplicative set generated by elements x1,x2,...,x, such that

f(x1), f(z2),..., f(zp) are not zero-divisors in B. (A1)
Suppose that

1. the localized homomorphism S~'f : ST'A — S™'B is an isomorphism, and

2. for each i =1,2,...,p the induced homomorphism f; : A/(x;) — B/(f(x;)) is an isomor-
phism.

Then f is an isomorphism.

Proof. Let K denote the kernel of f. Let a € K be a nonzero element. Suppose that x;a # 0
in A for all . Then the image of a in S™'A is nonzero and it is in the kernel of S~1f: S~™1A4 —
S~1B. This contradicts (1). Thus Ma = 0 for some monomial M in the z;-s. Replacing a by
M’a for some other monomial M’, and using (A.1), we may assume that a € K and x;a = 0 for
some i =1,2,...,p.

If @ € (x;), then by (A.1), we have a = z;a; for a nonzero element a; € K. Repeating,
we either find a nonzero element ¢’ € K such that o’ ¢ (x;), or we have an ascending chain
of ideals (a) C (a1) C (a2) C ---. In the former case, the image of a’ in A/(z;) is nonzero
and in the kernel of f;, contradicting (2). Thus we are in the latter case. Since z; is not a
unit and A is Noetherian, the chain of ideals stabilizes to a proper ideal (a’) = I € A, and
we thus have (a’) = (a”) where o” = x;a’ and z™a’ = 0 for some n > 0. This is impossible:
letting m be minimal such that za’ = 0 we find that 2" 'a” = 0 which implies 27" 'a’ = 0, a
contradiction. [



42

N. Arkani-Hamed, S. He, and T. Lam

Acknowledgements

We thank Mark Spradlin and Hugh Thomas for many discussions related to this work and for
closely related collaborations. We thank the anonymous referees for a number of corrections and
helpful suggestions to the exposition. T.L. was supported by NSF DMS-1464693, NSF DMS-
1953852, and by a von Neumann Fellowship from the Institute for Advanced Study. N.A-H. was
supported by DOE grant DE-SC0009988. S.H. was supported in part by the National Natural
Science Foundation of China under Grant No. 11935013, 11947301, 12047502, 12047503.

References
[1] Arkani-Hamed N., Bai Y., He S., and Yan G., Scattering forms and the positive geometry of kinematics,
color and the worldsheet, JHEP 2018, Article number: 96 (2018), arXiv:1711.09102.
[2] Arkani-Hamed N., Bai Y., and Lam T., Positive geometries and canonical forms, JHEP 2017, Article
number: 39 (2017), arXiv:1703.04541.
[3] Arkani-Hamed N., He S., and Lam T., Stringy canonical forms, JHEP 2021, Article number: 69 (2021),
arXiv:1912.08707.
[4] Arkani-Hamed N., He S., Lam T., and Thomas H., Binary Geometries, Generalized Particles and Strings,
and Cluster Algebras, arXiv:1912.11764.
[5] Arkani-Hamed N., Lam T., and Spradlin M., Non-perturbative geometries for planar N = 4 SYM ampli-
tudes, JHEP 2021, Article number: 65 (2021), arXiv:1912.08222.
[6] Arkani-Hamed N., Lam T., and Spradlin M., Positive configuration space, Comm. in Math. Phys. 384
(2021), 909-954, arXiv:2003.03904.
[7] Assem I, Schiffler R., and Shramchenko V., Cluster automorphisms, Proc. Lond. Math. Soc. (3) 104 (2012),
no. 6, 1271-1302, arXiv:1009.0742.
[8] Bazier-Matte V., Douville G., Mousavand J., Thomas H., and Yildirim E., ABHY Associahedra and Newton
polytopes of F-polynomials for finite type cluster algebras, arXiv:1808.09986.
[9] Brown F.C.S., Multiple zeta values and periods of moduli spaces Mo ., Ann. Sci. Ec. Norm. Supér. (4) 42
(2009), no. 3, 371-489, arXiv:math/0606419.
[10] Brown F., Carr S., and Schneps L., The algebra of cell-zeta values, Compos. Math. 146 (2010),731-771,
arXiv:0910.0122.
[11] Brown F. and Dupont C., Single-valued integration and superstring amplitudes in genus zero,
arXiv:1910.01107.
[12] Chapoton F., Fomin S., and Zelevinsky A., Polytopal realizations of generalized associahedra. Dedicated to
Robert V. Moody. Canad. Math. Bull. 45 (2002), no. 4, 537-566, arXiv:math/0202004.
[13] Dupont G., An approach to non-simply laced cluster algebras, J. Algebra 320, 4 (2008), 1626-1661,
arXiv:math/0512043.
[14] Fei J., Combinatorics of F-polynomials, arXiv:1909.10151.
[15] Fei J., Tropical F-polynomials and general presentation, arXiv:1911.10513.
[16] Fock V.V. and Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Ec. Norm.
Supér. (4) 42 (2009), no. 6, 865-930, arXiv:math/0311245.
[17] Fomin S. and Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154(2003), no. 1,
63-121, arXiv:math/0208229.
[18] Fomin S. and Zelevinsky A., Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3,
977-1018, arXiv:hep-th/0111053.
[19] Fomin S. and Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112-164,
arXiv:math/0602259.
[20] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H. Roever
Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993. xii+157 pp.
[21] Hohlweg C., Lange C., and Thomas H., Permutahedra and generalized associahedra, Adv. Math. 226 (2011),

608-640, arXiv:0709.4241.


https://doi.org/10.1007/JHEP05(2018)096
http://arxiv.org/abs/1711.09102
https://doi.org/10.1007/JHEP11(2017)039
http://arxiv.org/abs/1703.04541
https://doi.org/10.1007/JHEP02(2021)069
http://arxiv.org/abs/1912.08707
http://arxiv.org/abs/1912.11764
https://doi.org/10.1007/JHEP03(2021)065
http://arxiv.org/abs/1912.08222
https://doi.org/10.1007/s00220-021-04041-x
http://arxiv.org/abs/2003.03904
https://doi.org/10.1112/plms/pdr049
http://arxiv.org/abs/1009.0742
http://arxiv.org/abs/1808.09986
https://doi.org/10.24033/asens.2099
http://arxiv.org/abs/math/0606419
https://doi.org/10.1112/S0010437X09004540
http://arxiv.org/abs/0910.0122
http://arxiv.org/abs/1910.01107
https://doi.org/10.4153/CMB-2002-054-1
http://arxiv.org/abs/math/0202004
https://doi.org/10.1016/j.jalgebra.2008.03.018
http://arxiv.org/abs/math/0512043
http://arxiv.org/abs/1909.10151
http://arxiv.org/abs/1911.10513
https://doi.org/10.24033/asens.2112
https://doi.org/10.24033/asens.2112
http://arxiv.org/abs/math/0311245
https://doi.org/10.1007/s00222-003-0302-y
http://arxiv.org/abs/math/0208229
https://doi.org/10.4007/annals.2003.158.977
http://arxiv.org/abs/hep-th/0111053
https://doi.org/10.1112/S0010437X06002521
http://arxiv.org/abs/math/0602259
https://doi.org/10.1016/j.aim.2010.07.005
http://arxiv.org/abs/0709.4241

Cluster configuration spaces of finite type 43

(22]
23]

24]
(25]

(26]

27]
(28]

29]
30]

(31]

Jahn D.; Léwe R., and Stump C., Minkowski decompositions for generalized associahedra of acyclic type,
arXiv:2005.14065.

Lam T. and Speyer D., Cohomology of cluster varieties. I. Locally acylic case, Algebra and Number Theory,
to appear, arXiv:1604.06843.

Muller G., Locally acyclic cluster algebras, Adv. Math. 233 (2013), 207-247, arXiv:1111.4468.

Orlik P. and Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences/, 300. Springer-Verlag, Berlin, 1992. xviii+325 pp.

Padrol A., Palu Y., Pilaud V. and Plamondon P.-G., Associahedra for finite type cluster algebras and
minimal relations between g-vectors, arXiv:1906.06861.

Reading N., Universal geometric cluster algebras, Math. Z. 277 (2014), no. 1-2, 499-547, arXiv:1209.3987.

Shi J.-Y., The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in Mathematics, no. 1179,
Springer-Verlag, Berlin/Heidelberg/New York (1986).

Speyer D. and Williams L., The tropical totally positive grassmannian, Journal of Algebraic Combinatorics
22 (2005), 189-210, arXiv:math/0312297.

Stanley R.P., An introduction to hyperplane arrangements, Geometric combinatorics, 389-496, IAS/Park
City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007.

Yang S.-W. and Zelevinsky A., Cluster algebras of finite type via Coxeter elements and principal minors,
Transform. Groups 13 (2008), no. 3-4, 855-895, arXiv:0804.3303.


http://arxiv.org/abs/2005.14065
http://arxiv.org/abs/1604.06843
https://doi.org/10.1016/j.aim.2012.10.002
http://arxiv.org/abs/1111.4468
http://arxiv.org/abs/1906.06861
https://doi.org/10.1007/s00209-013-1264-4
http://arxiv.org/abs/1209.3987
https://doi.org/10.1007/s10801-005-2513-3
http://arxiv.org/abs/math/0312297
https://doi.org/10.1007/s00031-008-9025-x
http://arxiv.org/abs/0804.3303

	1 Introduction
	2 Background on cluster algebras and generalized associahedra
	3 The cluster configuration space MD
	4 MD as a quotient of a cluster variety
	5 M"0365MD as an affine open in a projective toric variety
	6 Properties of F-polynomials
	7 Examples of MD as a configuration space
	8 Positive part
	9 Positive tropicalization
	10 Extended and local u-equations
	11 Connected components and sign patterns
	12 Outlook
	A A lemma in commutative algebra
	References

