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Abstract
Dependence on constant availability to an external localization service is often unreliable and
infeasible in mobile robots. In this paper, we take inspiration from a continuous fish motion
model, the persistent turning Walker (PTW), to devise a strategy which is able to achieve 2D and
3D coverage in an unknown environment in the absence of a localization service, such as a global
positioning system (GPS). This is achieved by converting the continuous-time dynamical system
into a discrete-time Markov chain which is then shown to exhibit strongly connected properties
that are verifiable through numerical methods. The aforementioned proposed framework can also
be used to study the continuous-time dynamics of other biological systems and evaluate their
properties. The performance of the PTW model is also compared with two existing random search
strategies, simple random walks (SRW) and correlated random walks (CRW) by using analytical
bounds, simulation results, and statistical tests. The simulation results show that the proposed
PTW algorithm covers a given search-space at a faster rate compared to the CRW and SRW models.
Hence, the PTW may be effectively used as a coverage strategy by mobile robots in underwater or
underground environments where the availability of a GPS cannot be guaranteed at all times.

1. Introduction

Mobile sensing agents can be deployed in a given
environment to find objects of interest. For instance,
deploying a fleet of autonomous underwater vehicles
(AUVs) to find a lost ship in the ocean [1–5]. A group
of aerial robots can also be used to identify poten-
tial areas to execute search and rescue tasks after an
earthquake [6, 7]. The environments which an agent
is expected to cover can be more formally referred
to as search-spaces. Ideally, an optimal coverage strat-
egy should enable an agent to cover the maximum
area in the least amount of time. In the literature,
this is known as the coverage problem, and the goal
is to find a trajectory for a mobile agent such that it
maximizes the area visited in the search-space while
avoiding existing obstacles [8–10].

In nature, animals incorporate an innate sense to
search for their food or prey even in the presence of
uncertainties in the environment. These uncertainties
might be the presence of obstacles or an unknown
environment altogether. The search strategies
exhibited by animals can nonetheless be thought

of as coverage algorithms since animals tend to
cover the entire environment in a constant effort to
search for their potential food source or prey. Several
recent works which propose coverage algorithms
inspired by animal behavior are given in [11–14].
Statistical analysis for search strategies observed in
animals is given in [15], where the authors compare
two variants of the random walk model, correlated
random walks (CRWs) and Levy walks (LWs). LWs
are identical to random walks but with step sizes
that follow a heavy-tailed probability distribution.
The authors in [15] investigate the Levy-modulated
CRW which combines the properties of correlated
and LWs. Another bio-inspired search strategy, called
the Levy-taxis, was also introduced in [16] which
successfully located odor plumes significantly faster
than CRW, LWs, and systematic zigzag patterns. In
[17, 18], the authors combine LWs with gradient
search to localize targets in unknown environments,
while [19] compares various bio-inspired search
strategies in 2D for agents with limited perception.
In recent works [20], authors exploit the chaotic
behavior of a bio-inspired motion controller, the
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Braitenberg vehicle, to justify coverage in a search
space through a combination of theoretical and
simulation results.

Another category of coverage algorithms, not
inspired by nature, are also devised extensively in
the literature and they enable an agent or a group
of agents to cover an entire search-space successfully
[21–25]. These algorithms can be classified on the
basis of whether the agent has prior knowledge about
the global obstacle map of the search-space or not
[9, 22]. Coverage algorithms in known environments
can be designed to perform in an efficient and pre-
dictable manner since the optimal movement pat-
tern of the agent can be devised beforehand, a com-
mon example being the lawn mower strategy [26, 27]
and the spiraling strategy [28]. These algorithms usu-
ally rely on the availability of an external localization
service (such as a global positioning system (GPS))
which enables the agent to keep track of the area cov-
ered and yet to be covered. However, the availability
of a localization service cannot be relied upon in cer-
tain practical applications, such as underground or
underwater environments. Therefore, it is important
to evaluate coverage strategies that do not rely on GPS
and are able to cover the entire search-space effec-
tively. Bio-inspired search strategies offer the advan-
tage that there is no dependence on the constant
availability of an external localization service. A com-
prehensive survey reviewing the advantages of using
bio-inspired behavior for AUVs is available [29].

We propose a coverage algorithm inspired by a fish
motion model in [30, 31]. This model is termed as
the persistent turning Walker (PTW) and is charac-
terized by a constant speed (or a constant step size)
at each instant of time. In [32], the authors show
that the large-scale time dynamics of this model are
of a diffusive type and provide an analytic expres-
sion for the diffusion coefficient. In this paper, we
extend the PTW model to 3D and then justify that
the PTW model can be used as an effective cover-
age strategy in a 2D and 3D environment. Extend-
ing on our preliminary work in [33], we show in
this paper the coverage properties of the model by
using reachability analysis based on Markov chains.
The continuous-time dynamical system of the PTW
model is first converted into its respective Markov
chain by using the generalized cell mapping (GCM)
method. This is followed by formulating the obser-
vations seen in real fish trajectory data as mathemat-
ical hypotheses. These hypotheses are then verified
against the formulated Markov chain. The coverage
of the PTW model is then proved by using reacha-
bility analysis and the rate of coverage is compared
with existing random walk strategies. The entire pro-
posed framework establishes a procedure which can
be used to evaluate the continuous-time dynamics of
other biological systems as well.

Our main contributions are as follows: (1) we
propose a 3D version of the PTW model which can
be used to perform coverage in a 3D environment.
(2) We show that the PTW model can be used as
a randomized search strategy that does not require
a localization service to perform coverage in a 2D
and 3D environment. In order to show this, we
use GCM methods to model the movement of the
fish in position space using a discrete-time Markov
chain (DTMC) [34–36]. The DTMC is then veri-
fied against hypotheses using a computer program
and then translated to a digraph of a position-space
motif which is then shown to be strongly connected.
This property is further extended to show that the
entire search-space is connected. This justifies that
the PTW model in 2D and 3D can be used as an
effective coverage strategy in a GPS-denied environ-
ment. (3) We propose a framework that can validate
the properties of a continuous-time biological sys-
tem. The proposed framework converts a continuous-
time system into a discrete-time system which is then
converted into a DTMC. The DTMC is evaluated
against specifications written in a computer program
or other formalisms used in model checkers, such as
linear temporal logic [37, 38]. This systemic approach
enables us to verify nontrivial temporal or spatial
properties of a continuous dynamical system. In addi-
tion, we also experimentally validate that the PTW
outperforms two similar random search strategies
that can also be used to perform coverage in GPS-
denied environments. Although these experimental
results are expected, they complement our theoretical
results. Contrary to previous works, which mainly use
simulations to evaluate the effectiveness of coverage
algorithms, we use the values of transitional proba-
bilities to show analytically that the upper bound on
the expected area covered by the PTW model is always
greater than or equal to the other models. We also give
a quantitative analysis by comparing the mean area
covered by each of the strategies using the Wilcoxon
Mann Whitney test. In addition, simulation results
are also provided which confirm that the PTW model
performs better area coverage than the SRW and CRW
schemes.

The rest of the paper is organized as follows:
section 2 contains the problem formulation of the
coverage task and introduces the three random walk
strategies. Section 3 shows the extension of the
two-dimensional PTW model to three dimensions.
Section 4 introduces the framework which is used to
find the backtracking probability associated with the
PTW model. Section 5 justifies the coverage of the
search-space using reachability analysis in 2D and 3D
environments. Section 6 provides an analytical com-
parison of the coverage of the PTW, CRW, and SRW
models. Finally, section 7 contains simulation results
while section 8 concludes the paper with some future
insights.
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2. Problem formulation

In this section, we first present a background on three
random search strategies: the simple random walk
(SRW), the correlated random walk (CRW), and the
PTW [30, 31]. We then formulate a coverage control
problem in a bounded search-space.

2.1. Random walks
We review the random walks model in this section. At
every step, the direction of motion is sampled from
a probability distribution. Let γ be the constant step
size and Φ be a random variable depicting the head-
ing with respect to the positive x-axis in a 2D plane. A
sample of Φ from a distribution f(φ) in the kth itera-
tion is given by φk. The motion model for a random
walk in 2D can be given by the following equations,

rk+1 = rk + γ

[
cos φk

sin φk

]
, φk ∼ f (φ), (1)

where r = [x, y]T ∈ R
2×1.

We first consider the SRW model and the CRW
model. The difference between the SRW and the CRW
strategies is the distribution f(φ) from which the angle
of motion is sampled. In SRW, the distribution is
uniform and can be given as:

P(φk+1 = φi) =
1

Ns
, (2)

where φi is one of the Ns possible values of the head-
ing. As can be seen in (2), the heading at the next
time instant, k + 1, given by φk+1, is not correlated
to the heading at the present time instant, φk. In
other words, for the SRW model, φk+1 is randomly
selected from one of the Ns possible headings and then
a step vh is taken in that direction. Here v denotes the
constant speed while h is the discretization step size
(the choice of these variables is described in detail in
section 4.1).

In the CRW model [39], the heading at time step,
φk+1 is dependent on its present value, φk with a cer-
tain probability (say α). For CRW, fCRW(φk) denotes a
probability distribution given by the following

P(φk+1) =

⎧⎪⎨⎪⎩
α; if φk+1 = φk

1 − α

Ns − 1
; if φk+1 �= φk

. (3)

It is worth mentioning here that as the value of α gets
closer to 1, we get a perfectly CRW (the agent always
has the same heading direction) and as the value of
α gets closer to 0, we get an uncorrelated random
walk (subsequent heading directions of the agent not
dependent on one another).

The aforementioned models can be simulated in
a bounded search-space by incorporating collision
avoidance behavior near the boundaries of the space.
A simple approach can be to check if the next step, vh
in the direction of φk+1 lies outside the boundaries of

the search-space. If the step lies outside the bound-
aries, then the next heading φk+1 can again be sam-
pled from Ns possible headings. The process can be
repeated until the next step, vh lies inside the bound-
aries of the search-space. This approach enables the
model to remain inside a bounded space by exhibiting
collision avoidance behavior near its boundaries.

2.2. Persistent turning Walker in 2D
The PTW model is a representation depicting the
movement of a special species of fish, Kuhlia Mugal
in two dimensions [30, 31]. The PTW model is char-
acterized by a constant swimming speed v and a cor-
relation between angular velocities, w at consecutive
instances of time. Denoting the position of the fish by
r and its heading byφ, the following dynamical system
represents the PTW model

dr = v

[
cos φ
sin φ

]
dt (4)

dφ = w(t)dt (5)

dw(t) = −v

[
1

ξ
(w(t) − w∗(t))dt − σdW

]
, (6)

where v is a constant speed, ω(t) is the angular veloc-
ity, σdW is a Wiener process of variance σ2 and ξ is a
constant. The time for the fish to hit the wall is given
by τW = dW/v, where dW is the distance between the
current position of the fish and the point of impact on
the wall (see figure 1). The point of impact refers to
the point on the wall which the fish will hit if the fish
keeps moving along the current heading direction.
Moreover, φW denotes the angle between the heading
of a fish and the normal direction that is perpendicu-
lar to the tangent line of the boundary at the point of
impact. Then, the target angular velocity, w∗ is given
by,

w∗(t) = k̂W
sgn(φW)

τW
, (7)

where k̂W is a scalar constant.
Equations (4)–(7) denote the motion model for

a single fish inside a circular tank [30, 31]. As seen
in (6), the target angular velocity, w∗(t) enables the
fish to avoid collisions with boundaries of the tank by
finding the distance from the wall ahead of itself and
the relative direction of its heading angle with respect
to the wall. Since these two terms are calculated at
a single point of impact, they can be calculated for
any smooth shaped surfaces. Equation (6) can thus be
used as a general collision avoidance behavior for any
arbitrarily shaped obstacle which lies ahead of the fish
at any given time instant. The change in angular veloc-
ity dw(t) depends on the value of w∗(t) and a random
component, σdW (4)–(7). When the fish is far from
the wall, σdW primarily governs its motion and when
the fish is relatively closer to the wall, w∗(t) depicts its
wall avoidance behavior. It is worth mentioning here
that the given motion model results in the fish having

3
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Figure 1. Observable parameters of the PTW model. Reproduced from [31]. CC BY 4.0.

Figure 2. Movement of the agent in the 2D search-space.

smooth trajectories as shown in [30, 31]. The only sit-
uation where the above model will not enable the fish
to avoid the collision or have an abrupt or nonsmooth
motion will be when at time t = 0, the value of τW is
negligible or close to zero. In this situation, the fish
might demonstrate behavior that is not predicted by
the model, which is not considered in this paper.

2.3. The coverage problem
Consider a bounded and connected search-space,
Ω ∈ R

D, where D ∈ {2, 3} is the dimension of the
search-space. We denote the search-space inR

D byΩD

and discretize it into a square grid such that there are a
total of NT = nD grid cells, where n denotes the num-
ber of cells in each dimension of the search space (see
figure 2(a)).

Let ci denotes the grid cell at the ith position of the
grid. Then the discretized search-space ΩD is given by,

ΩD = {ci}, i = 1, . . . , NT. (8)

We consider a mobile robot deployed in the
search-space Ω. The robot at any time t, is represented
by the robot’s center r(t), where r(t) ∈ {R2,R3}. We
consider the following assumptions.

Assumption 2.1. The speed of the robot is constant.
Assumption 2.1 is to satisfy the constant speed that

is dictated by the PTW model (4)–(6), where the fish
is moving with a constant speed and a varying head-
ing. This assumption can be ensured for the robot by
fixing the speed v and step size h as constants.

Then, the motion dynamics of the robot at a given
time instant t is as follows,

r(t + δt) = r(t) + hu, (9)

where u ∈ {R2,R3} is an input velocity vector.

4
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Figure 3. Flow map of the proposed methodology.

Define

ΩD
c (t) = {ci|ci(t) has been visited till time t}, (10)

and

ΩD
c̄ (t) = {ci|ci(t) has not been visited till time t},

(11)
where (10) and (11) satisfy ΩD

c ∪ ΩD
c̄ = ΩD. We say

that a search-space is covered if,

lim
t→∞

|ΩD
c | → nD, (12)

where |Ωc| is the cardinality of the set Ωc, and nD is
the total number of grid cells in the D-dimensional
search-space.

2.4. Problem statement
Given that the robot does not possess any localiza-
tion service and has no means of knowing which cells
are covered, we aim to design the control input u
in (9) such that the robot is able to cover a given
search-space in minimum possible time t. We pro-
pose to solve this problem by using the PTW model
as a random search strategy. In order to apply PTW in
a three-dimensional search-space, and to justify and
quantify the coverage performance, we aim to solve
the following four problems,

Problem 1. Extend the two-dimensional
continuous-time and continuous state PTW model
to a three-dimensional model.

Problem 2. Discretize the PTW model into a DTMC
model suitable for GCM techniques.

Problem 3. Justify the full coverage of the search-
space using the PTW model.

Problem 4. Show that the PTW model outperforms
other types of random walks by providing faster
coverage.

We propose solutions to each of the aforemen-
tioned problems in the subsequent sections. The pro-
posed methodology is also shown in figure 3.

3. Extending the PTW to 3D
environments

In this section, we address problem 1 which involves
extending the two-dimensional PTW model to three
dimensions. Let the heading of an agent on the

xy-plane and yz-plane be given by the azimuth angle
φxy and the altitude angle φyz (see figure 4). Then,
we can denote the heading by a vector φ ∈ S2 where

φ =
[
φxy φyz

]T
. Likewise, if we denote the position

of the agent by r ∈ R
3 where r =

[
x y z

]T
, then the

dynamic equations governing the motion model in
3D can be given as follows (see figure 4),

dr =

⎡⎣v cos φxy cos φyz

v sin φxy cos φyz

v sin φyz

⎤⎦ dt (13)

dφ =

[
wxy(t)
wyz(t)

]
dt (14)

dwxy(t) = −v

[
1

ξxy
(wxy(t) − w∗

xy(t))dt − σxydW

]
(15)

dwyz(t) = −v

[
1

ξyz
(wyz(t) − w∗

yz(t))dt − σyzdW

]
,

(16)

where v denotes the constant speed of the agent, along
the x, y and z axes. Likewise, wxy is the angular veloc-
ity on the xy-plane and wyz is the angular velocity
on yz-plane while the scalar constants v, ξ and σ are
similar to those described in equations (4)–(7). The
subscripts xy or yz denote the value of that parameter
on the respective plane. Similarly, the target angular
velocities, w∗

xy and w∗
yz on the xy and yz planes are

given by,

w∗
xy(t) = k̂Wxy

sgn(φWxy )

τWxy

(17)

w∗
yz(t) = k̂Wyz

sgn(φWyz )

τWyz

. (18)

The proposed 3D model can be visualized as the 2D
model being simultaneously satisfied on two orthog-
onal planes. In our case, these are the xy and yz
planes.

4. Discretizing the PTW model

In this section, we address problem 2 in section 2.4
by using the GCM method [35, 36]. GCM con-
verts a dynamical system into discrete-time finite-
state Markov chain (DTMC) described by a one-step
transition probability matrix. To derive this transition
matrix, we first convert the continuous-time PTW

5
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Figure 4. Visualization of 3D PTW model.

model into a discrete-time PTW model. Then, the
space of the position state is discretized into geomet-
rical cells. These cells are used to initiate simulated
trajectories for the GCM using the discrete-time PTW
model. The number of trajectories connecting one
cell to another cell are used to formulate the one-step
probability transition matrix.

4.1. Time-discretization of the PTW model
Consider the 2D PTW model given in (4)–(7). Let h
denotes the Euler discretization time step. Then the
discretized 2D PTW model is given by

rk+1 = rk + v

[
cos φk

sin φk

]
h (19)

φk+1 = φk + wkh (20)

wk+1 = wk − v

[
1

ξ
(wk − w∗

k )h − σ
√

hWk

]
(21)

w∗
k = k̂W

sgn(φWk
)

τWk

, (22)

where Wk is a zero-mean Gaussian random variable
with a variance equal to 1. The Euler Maruyama
method discretizes the continuous-time dynamical
system to a discrete-time dynamical system with an
accuracy of the order of

√
h, and ideally h 
 1 as

shown in [40]. Likewise, the discretized 3D PTW
model is given by,

rk+1 = rk +

⎡⎣v cos φxyk
cos φyzk

v sin φxyk
cos φyzk

v sin φyzk

⎤⎦ h (23)

φk+1 = φk +

[
wxyk

wyzk

]
h (24)

wxyk+1
= wxyk

− vxy

[
1

ξxy
(wxyk

− w∗
xyk

)h

− σxy

√
hWk

]
(25)

wyzk+1
= wyzk

− vyz

[
1

ξyz
(wyzk

− w∗
yzk

)h

− σyz

√
hWk

]
. (26)

In the next section we discretize the position
search space that will be used to evaluate the coverage
performance of the PTW model.

4.2. Discretization of the position state-space
As shown in figure 2(a), the search space is discretized
into NT square cells, where each cell has a length
denoted by l. In order to ensure that the fish can only
transition to a cell which is adjacent to the current cell,
we set l = vh where v is the constant speed and h is the
discrete time step.

Remark 4.1. Due to the constant step size vh, tran-
sitions from a cell to itself might occur. In the pro-
cess of deriving the transition matrices via GCM, we
ignore these transitions. Since we are deriving the
transition matrices for evaluating area coverage by the
PTW model, staying in the same cell implies that the
cell has already been covered. However, the same cell
transitions cannot be ignored if we want to theoreti-
cally analyze the rate of convergence of the coverage
algorithm, which we leave it for future work.

Consider a 3 × 3 moving motif as shown in
figure 5(a). We label each grid cell by ci where i ∈
I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. At any time instant, k, the

6
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Figure 5. Search-spaces in 2D and 3D.

Figure 6. Movement of position-space motif with time.

state rk can be assumed to be at cell c9 of the moving
motif. Let N = {c1, c2, c3, c4, c5, c6, c7, c8} be the set of
all adjacent cells to cell c9 as shown in figure 6. Under
the setup l = vh, at any given time instant k, we can
approximate the motion of the fish by a transition
from cell c9 to any of its adjacent cells in N .

Let rk = [xk yk]T, and define xci(min), yci(min),
xci(max), and yci(max) to denote the minimum
and maximum xy values of the grid cell ci,
respectively. Then we define the mapping
g : [xci(min), yci(min), xci(max), yci(max)] →I\{9} such
that g(rk+1) = ci if xk+1 ∈ [xci(min), xci(max)) and
yk+1 ∈ [yci(min), yci(max)), i.e. any value of rk+1 can be
mapped to a grid cell ci ∈ Nc,9. To determine ci for
rk+2, we map rk+1 to the cell c9, and then ci ∈ Nc,9 is
evaluated for k + 2 as explained above. This process
can be visualized as the 3 × 3 position-space motif
moving at each time instant such that rk always maps
to the center grid cell c9 of the motif, as shown in
figure 6.

In order to discretize the position variable for the
3D PTW model, we define a 3 × 3 × 3 position-space
motif as shown in figure 5(b). This results in a total
of 27 grid cells in a given motif (see figure 7). At any
time instant, rk can be mapped to the grid cell at the
center of the position-space motif i.e. c27. At the next
time instant, rk+1 can be mapped to ci where ci ∈ Nc,27

and |Nc,27| = 26.

4.3. Using GCM to obtain a probability transition
matrix

In the position-space motif, we denote the transi-

tion between cell c9 to cell ci by the state si where

i ∈ {1, . . . , 8}. In the 2D case, there are 8 possible

states or transitions from the cell ci to its neighbor-

ing cells. Likewise, in the 3D case, there are a total of

26 possible transitions from the center grid cell i.e. c18

to the neighboring cells (see figure 7). Similar to the

2D case, we define the transition from c18 to ci by the

state si where i ∈ {1, . . . , 27}\{18}.

We now identify the one-step transition proba-

bility matrix Pr(s = sj|s = si) for the 2D discretized

PTW model where i, j = 1, 2, . . . , 8. We use Monte

Carlo simulations (105 samples) of the discrete-

time system given in (19)–(22). The values for v, ξ

and k̂W were taken to be the same as identified in

[30, 31]. However, the value of σ in (21) deter-

mines the amount of stochasticity exhibited in the

PTW model and can significantly affect the amount

of Gaussian noise in the model. Hence, we select

the value of σ such that it satisfies certain proper-

ties seen in the real fish data from [30]. This can be

achieved by using a systematic approach using the

model verification techniques described in the next

section (section 4.4).

7
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Figure 7. 3D motif.

Let the total number of simulated trajectories be
denoted by nf ∈ N and the length of each trajectory
by kf ∈ N. Then, each nth trajectory can be mapped
to a vector

sn = [sn
i,0, sn

i,1, . . . , sn
i,k, sn

i,k+1, . . . , sn
i,kf

], (27)

where sn
i,k ∈ {s1, s2, s3, s4, s5, s6, s7, s8} represents the

state at time instant k of the nth trajectory.
The transition probability is a matrix P = [pij]

where pij is the probability to go from state si to state
sj. The probability pij can be estimated from the data
as,

pij =
nij∑Ns
l=1 nil

, (28)

where nij is the total number of times there is a tran-
sition from state si to sj and

∑Ns
l=1 nil represents the

total number of times there is a transition from state
i to any other state l where l ∈ {1, 2, 3, 4, 5, 6, 7, 8}
and Ns = 8. Equation (28) can be viewed as a maxi-
mum likelihood estimator with the probability values
getting more consistent as the sample size increases
[41]. Hence, it is possible to estimate a consistent
transition matrix with a large enough sample size. To
avoid the case where the fish might collide with the
wall at the initial iterations, we consider the following
assumption,

Assumption 4.1. The simulated trajectories always
start sufficiently far away from the boundary of the
search-space.

The transition matrix represents an incremental
change in the position and heading of the agent. How-
ever, this incremental change may be infinitely large
if the agent is about to have a head-on collision with
an obstacle. To rule out these cases, we assume that
the fish starts away from the boundary so that it can
incrementally change its position in a manner to avoid
collisions with the obstacles.

Remark 4.2. All possible positions in the search-
space are used to generate trajectories for the GCM.
Therefore, the transition matrix obtained by the
GCM represents an average model for the entire

search-space. Figure 8(b) shows the structure of the
transition matrix which is satisfied irrespective of
whether the fish is near the boundary or far away
from the boundary. The transitional probabilities col-
ored blue are greater than zero, the ones colored red
are equal to zero and the ones colored white are of
negligible values.

The one-step transition matrix can be converted
to its associated digraph. In the GCM framework,
conversion to a digraph is done in the following way:
each state in the given Markov Chain can be con-
sidered as a vertex in the digraph. For pij > 0, there
exists a directional edge connecting vertices i and j.
An example of the one-step transition matrix for the
2D case is shown in figure 8(a), and the digraph for
the transition matrix having the structure shown in
figure 8(b) is given in figure 9.

Using the mapping mentioned for the 3D case, a
given nth trajectory can be represented by a vector sn

as defined in (27). The probability transition matrix
can similarly be estimated for the 3D PTW model by
counting the number of state transitions in the sim-
ulated trajectories by using (28) where Ns = 26. The
transition matrix of Markov Chain for nf = 100 and
kf = 50 is given in appendix B. The characteristics of
the 3D model are similar to that of the 2D model. The
diagonal entries of the transition matrix being close
to unity indicate that the model resists change in its
current direction and only changes its direction in an
incremental manner.

The DTMC model obtained depends on several
choices of parameters during the discretization pro-
cess. Even though we can infer properties of the iden-
tified transition probability matrix, it is difficult to
guarantee that all matrices identified will satisfy the
properties we have observed. In the next section, we
will provide systemic guarantees by evaluating the
discretized model.

4.4. Evaluation of discretized model
An important property suggested by real fish trajec-
tories in [30] is that the backtracking probability is
negligible. A couple of other properties include the

8
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Figure 8. Transition matrix of 2D PTW model.

Figure 9. Digraph for 2D transition matrix. The circles denote the vertices while the arrows denote the arcs connecting the
vertices. To maintain clarity of the transitions we have omitted showing the transition from s2 to s5 and s5 to s8 in this diagram.

dominance of the diagonal terms along with a non-
zero probability of transition to its neighbors’ neigh-
boring states. In this section, we evaluate the dis-
cretized model and tune several design parameters of
the model, such that the aforementioned properties
are satisfied by the DTMC. The desired system prop-
erties are first expressed in the MATLAB language
and are then verified to determine whether or not the
DTMC satisfies the given properties.

PTW model specifications. Let the backtracking
probability, PBT, be defined as follows,

PBT =

{
P(sk+1 = si|sk = si+4), ∀ i ∈ {1, 2, 3, 4}

P(sk+1 = si|sk = si−4), ∀ i ∈ {5, 6, 7, 8}
,

(29)
where P(sk+1 = si|sk = si+4) denotes the probability
of being in state si at time instant k + 1 given the state
at the previous time instant is si+4. At time instant
k, suppose sk = s5, then sk+1 = s1 would imply back-
tracking at time instant k + 1. Likewise, if sk = s4 and
sk+1 = s8 or if sk = s2 and sk+1 = s6, then both of these

examples can be viewed as cases where backtracking
holds true.

We now evaluate the three properties exhibited by
the PTW model. The first one involves analyzing the
upper bound on the backtracking probability of the
model. The second one finds the lower bound on the
probability of being in the same state at two consecu-
tive instances of time. Lastly, the third property deter-
mines the lower bound on the probability to transi-
tion from a state si to any of its neighbors’ neighboring
states. These properties can be stated as follows,

(a) PBT � ε1.

(b) P(sk+1 = si|sk = si) � ε2, ∀ i ∈
{1, 2, 3, 4, 5, 6, 7, 8}.

(c) P(sk+1 = si|sk ∈ {(sadj
i )adj}) � ε3, ∀ i ∈

{1, 2, 3, 4, 5, 6, 7, 8},

where sadj
i is a set containing the states adjacent to state

si, while (sadj
i )adj are the states neighboring to those

adjacent states. This implies that sadj
1 = {s8, s2}

and sadj
8 = {s1, s7}, while for any j /∈ {1, 8},

9
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sadj
j = {sj−1, sj+1}. This in turn implies that s1,

(sadj
1 )adj = {s8, s2, s7, s3}, (sadj

2 )adj = {s1, s8, s3, s4} and
similar logic can be followed to determine the
adjacent states of neighboring states for any state si.
The values of ε1, ε2, and ε3 can be found by analysis
or using a software program, such as MATLAB.
(Appendix A shows in detail how it can be done for a
2D state transition matrix.)

Remark 4.3. The specifications formulated for the
PTW model are simple enough that they can be ver-
ified by a simple computer program. For complex
specifications which have temporal or spatial corre-
lations between them, probabilistic model checkers
can be used to verify the models against the given
specifications.

A careful examination of the discretized PTW
model (19)–(22) shows that the properties exhibited
by the discretized model largely depend on the value
of σ and the dimensions of the discretized grid cell
(vh) selected for GCM in section 4.2. If the value of
v is taken to be constant as shown in real fish trajec-
tories, then the selection of σ and h values prior to
the discretization process can affect the values of ε1,
ε2 and ε3 considerably. We use a computer program
to evaluate the range of values of σ and h such that
the Markov chain of the 2D PTW model satisfies the
following: (1) ε1 ≈ 0, (2) ε2 > 0 and (3) ε3 > 0. Any
combination of h andσ values in that particular range
can then be used to discretize the PTW model such
that it satisfies the aforementioned properties.

In order to achieve the above, the PTW model
can be discretized using different values of σ and
h where σ ∈ [σmin,σmax] and h ∈ [hmin, hmax]. After
discretization, the GCM method can be used to find
the corresponding Markov chain. To evaluate ε1 for a
particular value of σ and h, we consider the Markov
chain of the 2D PTW model to start from an ini-
tial state, si where i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. For each
si, the probability to transition into the state where
backtracking holds true is evaluated. As seen in speci-
fication (a), ε1 constitutes the upper limit on the back-
tracking probability for any state si in the DTMC (8
states). The same procedure can be repeated to evalu-
ate ε1 for the DTMC representing the 3D discretized
PTW model (26 states). Likewise, to find ε2 for the
DTMC of 2D PTW model, the same process can be
repeated but this time, ε2 represents the lower bound
on the probability to remain in the same state. Again,
this represents 8 cases to be evaluated for the DTMC
of the 2D PTW model and 26 cases for the 3D PTW
model. Lastly, ε3 constitutes the lower bound on the
probability to transition from a given state to any of
the states adjacent to its neighboring states.

In the 2D case, for 340 � σ � 600, ε1 = 0,
ε2 > 0 and ε3 > 0. For each value of σ, a range of
values of h satisfies the three aforementioned prop-
erties. Let hσ denote the maximum value of h for a
particular value of σ that satisfies the three given

properties. In the 2D case, for σ = 600, hσ = 0.01,
ε1 = 0, ε2 = 0.48 and ε3 = 0.02. As the value of σ

increases, the value of hσ that satisfies the above con-
ditions also tends to increase and a similar trend can
be seen for smaller values of σ. This was evaluated for
hmin = 0.01, hmax = 0.2, σmin = 0 and σmax = 2000.
Similarly, the values of σ and h such that ε1 = 0,
ε2 > 0 and ε3 > 0 can also be evaluated for the 3D
case. For a given value of h, the effect of increasing
σ values on the transition matrices in 3D and 2D is
shown in appendix B.

5. Using PTW as a coverage strategy

In this section, we address problem 3 in section 2.4
and use reachability analysis to show that the PTW
model guarantees coverage of the search-space. Our
goal is to show that under the PTW model, the robot
will visit every cell in the search-space with nonzero
probability. This problem would seem straightfor-
ward, if we use GCM to obtain a probability transi-
tion matrix for the entire position-space. However,
this will be computationally prohibitive. Instead, we
use the already derived Markov chain of the moving
position-space motif from section 4.3 to show that the
digraph of the entire search space is connected.

5.1. Reachability analysis
In order to evaluate the reachability of the entire
search-space in 2D, we consider 3 × 3 search-space
motifs. These motifs can be placed next to one
another to make the entire search-space as shown in
figure 5(a). Note that these motifs are not similar to
the position-space motifs, which were introduced in
section 4.2. This is because the position-state motif is
considered as a moving motif in time (figure 6) and
its Markov chain is shown in figure 8(b). In order
to evaluate reachability of the entire search-space, we
first show the inter-motif reachability of the search-
space motifs. We evaluate the former by using the
derived Markov chain of the moving motif and use
this property to show the connectivity of the entire
search-space. Finally, we prove that any cell in the
search-space can be reached from any other cell with
a non-zero probability. We prove this for both the 2D
and 3D cases.

In figure 10, we show a general representation
of the inter-motif reachability in two dimensions.
Suppose at time instant k the agent is at cell c9 of
the search-space motif M9, where Mi refers to the
ith search-space motif in the 2D space. Then, in
figure 10(a), we show all possible transitions to the
neighboring overlapping motifs such that each tran-
sition starts from cell c9 of the current motif at time k
to cell c′9 of the next motif at time k + 1. These transi-
tions are represented by a star-digraph in figure 10(b).
Finally, this representation is expanded to the entire
search-space that yields a digraph GA composed of the
overlapping star-digraphs, as shown in figure 10(c).
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Figure 10. A representation of the inter-motif reachability in two dimensions. Sub-figure (a) shows possible transitions between
neighboring motifs such that each transition starts from cell c9 of the current motif to cell c′9 of the next motif. These transitions
are represented by a star-digraph in (b). Finally, the number of motives is expanded in (c) to cover the entire area.

Lemma 5.1. Under the Markov chain of the moving
3 × 3 motif in 2D (see figure 9), the digraph GA of the
2D search-space is strongly connected.

Proof. We need to show that the edges in the star-
digraph in figure 10(b) indeed exist under the Markov
chain shown in figure 9. To do so, note that, for
example, cell c′9 in motif M7 is equivalent to cell c7 in
motif M9 for the transition from M9 to M7. Therefore,
the probability of moving from the position-space
motif M9 to the position-space motif M7 is equiva-
lent to the probability of moving from cell c9 to cell
c7 inside the position-space motif M9. Let ci

sa−→cj

denote a transition from cell ci to cell cj under the

state sa. Let ci
sa−→cj

sb−→cl be a sequence of transitions
first from cell ci to cell cj under the state sa and then
from cell cj to cell cl under the state sb. Then, under the
Markov chain shown in figure 9, there is a probability
of moving from cell c9 to cell c7 by, for example, the
following transition sequences:

c1
s5−→c9

s7−→c7, (30)

c2
s6−→c9

s7−→c7, (31)

c3
s7−→c9

s7−→c7, (32)

c4
s8−→c9

s7−→c7, (33)

c5
s1−→c9

s7−→c7. (34)

Note that the sequences c8
s4−→c9

s7−→c7 or
c6

s2−→c9
s7−→c7 do not exist as there are no edges

between s4 and s7 or between s2 and s7 in the Markov
chain shown in figure 9. The transition sequences
(30)–(34) imply that M7 is accessible from M9.
Following the same analysis, we can find the transi-
tion sequences that imply the accessibility of motifs
M1 − M8 from motif M9. This implies that the
star-digraph in figure 10(b) exists with a non-zero
probability. Applying the same analysis in the expan-
sion of the motifs in figure 10(c) yields a connected
graph composed of union of all star-digraphs.

In order to show that the digraph of the search-
space is strongly connected, we need to prove that
for any two cells, ci, cj, if cell cj is accessible from cell
ci, then there exists a sequence of transitions such
that ci is also accessible from cell cj. Consider, for
example, the transition from cell c1 to cell c9 in M9

(see figure 11). Then, under the Markov chain shown
in figure 9, the following transition sequences are
possible:

c1
s5−→c9

sk−→ck where k ∈ {3, 4, 5, 6, 7}. (35)

To prove the strong connectivity of the digraph
GA, we need to show that for any of the transition
sequences in (35), there always exists a path such that
c1 in M9 is accessible from c9 of M9.

Consider the overlapping motifs in figure 10(a).
For k = 3, the transition sequence in (35) implies
movement into the cell c5 of the overlapping motif M2

(see figure 11). Then, under the Markov chain given
in figure 9, the following transition sequence starting
from c5 in M2 is possible,

c5
s1−→c9

s7−→c7. (36)

The cell c7 in M2 is equivalent to cell c1 in M9. Hence,
there exists a path such that c1 in M9 is accessible
from c9 in M9. Likewise, due to the symmetry of the
motif, similar analysis can be applied to show that
after a transition from ck to c9 where k ∈ {3, 5, 7},
there always exists a path, such that, ck is accessible
from c9.

We can now extend a similar analysis to consider
the transitions from cl to c9 where l ∈ {2, 4, 6, 8}. For
l = 2, figure 11 shows a sequence of transitions which
shows the existence of the following path,

c2
s6−→c9

s4−→c4
s2−→c3

s8−→c2. (37)

Note that the above path exists within the position
motif and does not involve any of the overlapping
neighboring motifs. Similar to c2, we can show that
there always exists a path such that cl is accessible from
c9 where l ∈ {4, 6, 8}. Hence, using the same analysis
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Figure 11. A representation of the strong connectivity of the digraph GA of the search-space. In (a) we show an example of a
transition in M9. Then, all the possible transitions possible in M9 under the Markov chain in figure 9 are shown in (b). In (c) we
show an example of a path which leads to cell c7 in M2 or c1 in M9. Similarly, (d) shows an example of a possible transition in M9,
(e) shows all the possible transitions under (d) and (e) shows the shortest possible path which leads back to c2.

for any two cells ci and cj in the position-space, we can
always show that there exists a path such that if ci is
accessible from cj, then cj is also accessible from cell
ci. This proves the strong connectivity property of the
digraph GA of the position-space, hence, completing
the proof. �

Lemma 5.2. Under the Markov chain of the moving
3 × 3 × 3 motif in 3D, the digraph GA of the 3D search-
space is strongly connected.

Proof. The proof of this lemma follows the same pro-
cedure of the proof of lemma 5.1 for the 2D case. Sim-
ilar to figure 10, we can construct overlapping motifs
of the 3D position-space motif of figure 7 to cover a
sub-volume. We then show that a union of star-graphs
exists under the Markov chains of the position-space
motifs in 3D. We can then show that for any two
cells, ci and cj, if ci is accessible from cj, then cj is
also accessible from cj. Hence, this proves that the
resulting digraph of the entire search-space is strongly
connected.

�

Theorem 5.1. Any cell in the 2D or 3D discretized
search-space can be reached from any other cell with a
non-zero probability.

Proof. Let MA be the Markov chain associated with
the digraph GA of the entire search-space. In lem-
mas 5.1 and 5.2 we proved that the digraph GA of
the 2D and 3D search-spaces are strongly connected.
This implies that the probability of reaching any state
of MP from any other state strictly larger than zero.
In other words, if an agent starts from any cell in the
search-space, it is able to reach any other cell with a
non-zero probability. �

Remark 5.1. When the agent is at a cell adjacent to the
boundary of the entire search-space, then we need to
account for the possibility of colliding with the walls.
This depends on the curvature of the boundary, the
size of the robot, as well as the discretization size of
the position-space motif. Hence, to avoid collision we
need the discretization to be small enough such that
the maximum possible in the position space enables
the agent to switch direction at least parallel to the
wall.

Remark 5.2. The digraph constructed from the
Markov chain of the moving motif in (figure 9) shows
the least connected graph which can be used to ensure
coverage of the entire search-space. Any value of σ
which results in a digraph having additional con-
nected nodes than shown in figure 9 can be used to
justify coverage in the same manner as described in
this section.

6. Comparison with other strategies

In this section, we compare the area coverage of the
PTW model with two other random walk strategies,
the SRW and the CRW. The transition matrices of
these strategies are shown in Figure 12). It is also triv-
ial to extend the coverage proof of the PTW model
and show that if an agent uses either of these models,
the probability of an agent to reach any grid cell in the
search-space is greater than zero. Hence, starting from
any cell, the agent is able to reach any other cell in the
search-space using either of the three strategies.

We now compare the performance of the SRW
and CRW with the PTW. Let X be a discrete random
process such that at time i, Xi = 1 if the robot visits
an unexplored cell at time i, and Xi = 0 if the robot
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Figure 12. Transition matrices of simple random walk (SRW), correlated random walk (CRW) and persistent turning Walker
(PTW) models.

visits an explored cell at time i. Let the discretized
time step of a trajectory be denoted by h, where h is
a constant. Then, given a trajectory of length k, i.e.
t = 0, h, 2h, . . . , kh, the area covered during this tra-
jectory is defined by

Ak =

k∑
i=0

Xi, (38)

where each cell has a unit area. Note that the
area definition (38) implicitly implies that the cells
ci−1, ci+1 ∈ Nc,i, i.e. the cells ci−1, ci and cells ci, ci+1 are
adjacent to one another.

The expected number of cells or expected area
covered till time t can be given as

E[Ak] = E

[
k∑

i=0

Xi

]
=

k∑
i=0

E[Xi]. (39)

We consider the following assumption,

Assumption 6.1.

P(X0, X1, . . . ., Xk) = P(X0)P(X1) . . .P(Xk). (40)

In any of the strategies (SRW, CRW, or PTW), the
agent has no means of knowing whether the cell it
is visiting at time t has been covered prior to time t.
This is because the agent neither has a localization ser-
vice nor keeps a record of the cells it has visited or yet
to be visited. Hence, the aforementioned assumption
can be justified since the probability of covering an
already explored cell and the probability of covering
an unexplored cell is independent of one another.

In view of assumption 6.1, the expectation (39)
reduces to

E[Ak] =
k∑

i=0

(0 × P(Xi = 0) + 1 × P(Xi = 1))

(41)

=

k∑
i=0

P(Xi = 1). (42)

We say that an agent exhibits backtracking under a
given algorithm at a time instance k if the agent moves
to the same grid cell which was visited at time instant

k − 1. Let PBT denote the backtracking probability of
a search algorithm. Consider a neighborhood of the
agent’s current position, then if the only cell that has
been visited by the agent, other than the cell that the
agent is occupying, is the cell that the agent comes
from, then for each neighboring cell, we have that

P(Xi = 1) = 1 − PBT.

If there are other cell that has been previously visited
by the agent, then

P(Xi = 1) < 1 − PBT.

There for a particular algorithm, we can compute an
upper bound for the area coverage as

E[Ak] � Uk = k(1 − PBT).

Theorem 6.1. Consider that at time instant k, UPTW
k ,

UCRW
k and USRW

k represent the upper bounds for the
expected area covered by the PTW, CRW and SRW
algorithms, respectively. Then for all values of k, the
following hold:

UPTW
k � UCRW

k , (43)

and
UPTW

k � USRW
k . (44)

Proof. Given the definition of the upper bound, the
conclusion is true because PPTW

BT � P
CRW
BT and P

PTW
BT �

P
SRW
BT . �

Remark 6.1. Unfortunately, we cannot claim that the
expected area covered by an agent using the PTW
model will always be greater than or equal to the
area covered by the SRW or CRW models. How-
ever, since the upper bound for the area covered by
PTW is greater than the upper bound for the area
covered by the SRW and CRW, we can compare the
search performance through numerical simulations
using statistical tests. This will be performed in the
next section.

13



Bioinspir. Biomim. 16 (2021) 056009 A Khan et al

Figure 13. Figure comparing the rate of coverage using three different coverage strategies.

7. Simulation results

In this section, we show simulation results for the pro-
posed PTW model and compare the area coverage
with the SRW and CRW models.

7.1. Simulation results
In order to visualize the area covered by an agent, the
3D PTW model was simulated for k = 10 000 itera-
tions. The area covered, A was calculated as follows:

A =
NX

NT
Ass, (45)

where NX denotes the number of blocks (or grid cells)
which have been covered by an agent, NT is the total
number of blocks in the search-space, and Ass is the
area of the search-space. Likewise, the rate of area
coverage, RA can be given as follows,

RA =
A

K
, (46)

where A is the area covered by an agent over K
iterations.

Figure 13 shows the percentage of area covered
by an agent with respect to time using each of the
aforementioned coverage strategies. In the 2D case,
a rectangular workspace of 1.5 × 1.5 was considered
while in the 3D case, the workspace was extended to
1.5 × 1.5 × 1.5. The space was divided into a grid
where each grid cell was 0.1 × 0.1 (2D) and 0.1 ×
0.1 × 0.1 (3D). The simulation was done with the fol-
lowing parameters: σ = 30, kw = 0.4, ξ = 0.024, v =

0.8,α = 0.9 and h = 0.01. Note that the step size of
the agent vh is 0.008 which is much less than the size of
the grid cell 0.1. This implies that each iteration does
not ensure that the agent will move to a different grid
cell compared to the current one, at the next time step.
However, this does not affect our results since we are
interested in comparing the rate of coverage between
different coverage strategies, and having a constant
step size in each of these models still enables us to
perform a fair comparison with one another. Since

α ≈ 0.9 for the PTW model (see figure 8(a)), we used
the same value for the CRW for a fair comparison.
Also, the position and heading variables at iteration
k = 0 were kept constant across all three models in an
experiment.

Figure 13 shows that the SRW model covers the
area of the search-space at a much slower rate com-
pared to the other two coverage strategies, while the
PTW model covers more area in less number of
iterations. As shown in figure 13(a), after 5000 iter-
ations, an agent using SRW is able to cover approxi-
mately 15% of the search-space while the CRW cov-
ers close to 43%. The PTW model performs exceed-
ingly well compared to both of the other strategies
since it is able to cover almost 90% of the search-
space in the same amount of time. We can see a sim-
ilar trend for the 3D case (see figure 13(b)), where
the rate of coverage is again highest for the proposed
PTW model. The figure shows the results for the ini-
tial 10 000 iterations. It is straightforward to visualize
that as the number of iterations becomes very large,
it will ultimately enable the agent to cover the entire
search-space.

Figure 14 shows sample trajectories of the agent
when it uses each of the three coverage strategies in
3D. The starting position of the agent is denoted by
the black dot in each graph and is kept constant in
each coverage strategy to enable a fair comparison. It
can be seen that the agent covers a significantly larger
part of the search-space using the PTW model com-
pared to the SRW and CRW models. This agrees with
the results in figure 13 which shows a similar trend.

Mann Whitney test [42] is a non-parametric sta-
tistical test that is used to compare the difference
in means of two arbitrary distributions. Since the
area covered until time t follows an ordinal scale and
can have any arbitrary distribution, it is natural to
consider the Mann Whitney Wilcoxon test for our
purpose. The parameter of interest in our case is the
mean of the distribution which represents the cov-
ered area. If the mean area covered by strategy 1 and
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Figure 14. Figure comparing the area covered by an agent using three different coverage strategies in a 3D search-space.

strategy 2 are denoted by μ1 and μ2, then we can state
the null hypothesis as follows,

H0 : μ1 = μ2. (47)

We are interested in comparing the areas covered,
we can state the one-sided alternative hypothesis as
follows,

H1 = μ1 > μ2. (48)

We used a sample set containing Monte Carlo sim-
ulations for each of the strategies, the PTW, CRW,

and SRW. The sample-set contained the number of
cells covered by each of the algorithms at the end of
10 000 iterations (for 3D). For all three algorithms,
the initial position and initial heading angle were kept
the same so that the starting conditions affect the
area coverage. We used a significance level, α = 0.05
for all our results. The mean area covered by the
3D PTW model was significantly higher than the 3D
CRW model (Z = 7.7, p = 5.4 × 10−15) and the 3D
SRW model (Z = 12.2, p = 1.3 × 10−34). The results
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Table 1. Results of the Wicoxon test in 3D.

Algorithm 1 Algorithm 2 Z-value p-value Result

PTW CRW 7.7 5.40 × 10−15 μ1 > μ2

PTW SRW 12.2 1.30 × 10−34 μ1 > μ2

CRW SRW 12.2 1.3 × 10−34 μ1 > μ2

are summarized in table 1 and can be given as follows,

E(APTW) > E(ACRW) > E(ARW). (49)

Hence, the mean area covered by the PTW model is
greater than the mean area covered by the CRW model
and the SRW models. All the aforementioned results
in 3D can also be visualized in 2D and are given in
appendix B.

7.2. Discussion
The 2D and 3D simulations along with the Mann
Whitney statistical test results suggest that the PTW
model achieves a faster rate of area coverage compared
to the SRW and CRW strategies. These results are not
surprising as the probability to move backwards in the
PTW model is negligible while in the other two mod-
els, it is greater than zero. Hence, it is expected that the
rate of area coverage for the PTW model will be faster
than the other two models. Nevertheless, these exper-
imental results are important to justify the faster rate
of coverage exhibited by the PTW model. Addition-
ally, these findings complement the theoretical result
in theorem 6.1 which does not prove that the expected
area covered by the PTW model is always greater than
the expected area covered by the other two strategies.

It is also important to note here that the rate
of coverage, RA, using either of the aforementioned
strategies will be much less as compared to other
deterministic search methods, such as the lawnmower
strategy [43]. The lawnmower strategy would require
a lesser number of iterations to cover the entire grid.
This is because these deterministic strategies rely on
a localization service to keep track of the cells which
the agent has visited and still has to visit. Based on
this information, the agent moves in an optimal man-
ner to ensure coverage of the entire search-space in
less amount of time. This is not the case for the PTW
model, which allows coverage of the entire search-
space without any information about the agent’s loca-
tion. The lawnmower strategy also requires the agent
to know the obstacle map of the search-space before-
hand, like the shape of the search-space or the pres-
ence of any obstacles, and generally works well in a
rectangular search-space. This is not the case in the
PTW model where the search-space can be of any
arbitrary shape and the agent does not need to know
any information about its dynamics. Moreover, since
the PTW incorporates a dynamic collision avoidance
term, it allows the agent to avoid unanticipated obsta-
cles (static or time-varying) while still being able to
cover the search-space.

8. Conclusions and future work

To conclude, in this paper we proposed using the
motion of fish as a coverage algorithm (in 2D and 3D)
in GPS-denied environments. Compared to existing
random search strategies, the proposed algorithm is
able to cover the search-space at a faster rate. This
is shown analytically by finding out the theoreti-
cal bounds on the backtracking probabilities of each
model in addition to the simulation results. In future
work, we aim to extend this model for multiple agent
cases, which can again be inspired by the social inter-
action model of a school of fish.
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Appendix A. Analyzing the values of
ε1, ε2, ε3

In this section, we provide an overview of the pro-
cess that was followed to find the values of ε1, ε2, ε3

for the 2D transition matrix shown in figure 8(a). The
same process can be used to find the values of the
parameters in the 3D case as well.

As shown in section 4.4, ε1 represents the largest
possible backtracking probability associated with any
given state si. Let P(si|sj) denote the probability of
transitioning into state si, given the previous state
is sj. Then, for a transition matrix generated using
σ = 515, we can use 29 to find ε1 as follows,

ε1 = max {P(s1|s5),P(s2|s6),P(s3|s7),P(s4|s8),

P(s5|s1),P(s6|s2),P(s7|s3),P(s8|s4)} . (A.1)

It can be seen in figure 8(a), that ε1 = 0 for σ = 515.
Likewise, ε2 is the minimum possible probability to
stay in the same state. Again, we can use the definition
in property (b) in section 4.4, to find the value of ε2
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Table B1. Wicoxon test results in 2D.

Algorithm 1 Algorithm 2 Z-value p-value Result

PTW CRW 12.2 9.60 × 10−35 μ1 > μ2

PTW SRW 12.2 8.80 × 10−35 μ1 > μ2

CRW SRW 12.2 1.1 × 10−34 μ1 > μ2

Figure B1. Coverage in a 2D search space.
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Figure B2. Transition matrix in 3D search space.

Figure B3. Effect of σ on backtracking probability.

as follows,

ε2 = min {P(s1|s1),P(s2|s2),P(s3|s3),P(s4|s4),

P(s5|s5),P(s6|s6),P(s7|s7),P(s8|s8)} (A.2)

ε2 corresponds to the minimum value which occurs
on the diagonal of the transition matrix. For σ = 515,
this corresponds to ε2 = 0.38. Lastly, for any given
state si, ε3 corresponds to the minimum probability
to transition into states which are adjacent to the si’s
neighboring states. Using property (c) in section 4.4,
ε3 can be given as follows,

ε3(s1) = min{P(s1|s8),P(s1|s7),P(s1|s3),P(s1|s2)}
(A.3)

ε3(s2) = min{P(s2|s1),P(s2|s3),P(s2|s4),P(s1|s8)}
(A.4)

ε3(s3) = min{P(s3|s1),P(s3|s2),P(s3|s4),P(s3|s5)}
(A.5)

ε3(s4) = min{P(s4|s2),P(s4|s3),P(s4|s5),P(s4|s6)}

(A.6)

ε3(s5) = min{P(s5|s3),P(s5|s4),P(s5|s6),P(s5|s7)}

(A.7)

ε3(s6) = min{P(s6|s5),P(s6|s4),P(s6|s7),P(s6|s8)}

(A.8)

ε3(s7) = min{P(s7|s5),P(s7|s6),P(s7|s8),P(s7|s1)}

(A.9)

ε3(s8) = min{P(s8|s7),P(s8|s6),P(s8|s2),P(s8|s1)}.

(A.10)

Then ε3 can be given by,

ε3 = min {ε3(s1), ε3(s2), ε3(s3), ε3(s4), ε3(s5),

ε3(s6), ε3(s7), ε3(s8)} . (A.11)
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For the transition matrix given in figure 8(a), it can be
seen that ε3 = 0.02.

Appendix B. Supplemental results

See table 2 and figures B1–B3.
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a novel search strategy for finding odor plumes in turbulent
flow-dominated environments J. Phys. A: Math. Theor. 42
434010

[17] Nurzaman S G, Matsumoto Y, Nakamura Y, Koizumi S and
Ishiguro H 2009 Biologically inspired adaptive mobile robot
search with and without gradient sensing IROS 2009
IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(Piscataway, NJ: IEEE) pp 142–7

[18] Nurzaman S G, Matsumoto Y, Nakamura Y, Koizumi S and
Ishiguro H 2009 Yuragi-based adaptive searching behavior
in mobile robot: from bacterial chemotaxis to Levy walk
ROBIO 2008. IEEE Int. Conf. Robotics and Biomimetics
(Piscataway, NJ: IEEE) pp 806–11

[19] Puljiz D, Varga M and Bogdan S 2012 Stochastic search
strategies in 2D using agents with limited perception IFAC
Proc. Vol. 45 650–4
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