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Abstract—Algorithms for multi-agent systems to locate a
source or to follow a desired level curve of spatially distributed
scalar fields generally require sharing field measurements among
the agents for gradient estimation. Yet, in this paper, we propose
a distributed active perception strategy that enables swarms of
various sizes and graph structures to perform source seeking
and level curve tracking without the need to explicitly esti-
mate the field gradient or explicitly share measurements. The
proposed method utilizes a consensus-like Principal Component
Analysis perception algorithm that does not require explicit
communication in order to compute a local body frame. This
body frame is used to design a distributed control law where
each agent modulates its motion based only on its instantaneous
field measurement. Several stability results are obtained within a
singular perturbation framework which justifies the convergence
and robustness of the strategy. Additionally, efficiency is validated
through robots experiments.

I. INTRODUCTION

An important problem in swarm robotics is the deployment
of multiple robots in order to achieve source seeking or
level-curve tracking behaviors in a scalar field. In source
seeking problems, agents are tasked with finding the location
that minimizes or maximizes the scalar field while in level-
curve tracking, agents are tasked with tracking a trajectory
that achieves a constant field value. The field can represent
environmental characteristics such as chemical concentrations,
light intensities, or heat. These two problems have various
applications including environmental monitoring, source sig-
nal localization, exploration, hazardous regions mapping, and
search and rescue [16], [17], [20], [25], [27].

The dual problems of source seeking and level curve
tracking have been extensively studied in the literature. In
[6], [8], [15], [32], agents exchange field measurements to
estimate and climb the field gradient. A gradient-based strategy
is presented in [31] where agents split into subgroups that
each steer towards a source. Alternatively, solutions based on
extremum control are developed for one agent in [12], [13] and
for multiple agents in [21], [24]. Although extremum control
is simple to implement, the agents still need to exchange some
estimated parameters. A cooperative control law is designed
in [33] for two agents such that one agent estimates the field
gradient and the other one follows it. Independent of gradient
estimation, algorithms are designed in [9], [10] for a 2-
agent system but require communicating field measurements.
Relying on communication channels to share measurements is
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practically challenging such as in underwater mobile sensor
networks [22].

Inspired by a school of fish seeking darker areas [7], the
Speeding-Up and Slowing-Down (SUSD) strategy is devel-
oped for source seeking without gradient estimation in [35]
and [34] for 2-D and 3-D environments, respectively. The
SUSD strategy requires a common motion direction that can
be computed locally and without explicit communication only
for 2-agent and 3-agent systems in 2-D and 3-D, respectively.
Differently, in [2] we used a leader-follower consensus-on-a
sphere to obtain the common motion direction where agents
are assumed to be able to measure the velocity directions of
their neighbors.

In this paper, we propose a distributed strategy composed
of two layers for perception and control. In the perception
layer, each agent uses the relative positions of its neighbors to
learn a geometric body frame. In the control layer, each agent
modulates its motion based on the body frame and a locally
measured environmental field value. The interplay between the
two layers results in an indirect distributed active perception
strategy where the controlled behavior of the agents enhances
the information contents of the instantaneous measurements of
the field and relative positions. The strategy enables a swarm
to perform collective source seeking and level curve tracking
of scalar fields without the need to explicitly estimate the field
gradient or explicitly exchange field measurements.

The primary novelty of this work is in utilizing the Oja
Principal Component Analysis (PCA) flow [5], [29], [36] to
agree on a frame to coordinate the motion. This allows us
to solve the main challenge in this paper which is to design
a motion direction that all agents compute locally without
communication. The PCA perception algorithm works as a
consensus law with an input formed by the covariance of the
relative positions of the neighboring agents. This is different
than the existing consensus laws where the input is formed
by the headings of neighbors [26]. Additionally, the PCA
perception algorithm captures the changes in the spatial shape
and orientation of the swarm, which represents an indirect
feedback signal of how the field is affecting the motions of
other agents. Since the relative positions are locally measured,
then the PCA flow achieves consensus without requiring the
agent to exchange data among them.

The first contribution of this paper is utilizing a PCA per-
ception algorithm on relative positions to achieve a consensus
in the body frame. The second contribution is a distributed
control law that accomplishes both the missions of source
seeking and level curve tracking. The third contribution is
deriving the information dynamics, not only for source seeking
and level curve tracking but for general control laws. The
fourth contribution is obtaining input-to-state stability results©2020 IEEE
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within a singular perturbation framework analysis for (1) the
convergence of the SUSD search direction to the negative
gradient direction, and (2) the convergence of the swarm
trajectory to the source location or to the desired level curve.
The last contribution is validating the proposed strategy via
experiments conducted via the Georgia Tech Robotarium [30]
and the Georgia Teach Miniature Autonomous Blimps [11].

Preliminary results of this paper appear in our two confer-
ence papers [1], [3]. In this paper we derive the information
dynamics for a generic control law within a distributed active
perception algorithm that has not been introduced in [1], [3].
As a significant difference, in this paper we do consider the
nonlinearities of the field in both the dynamics derivation
and convergence analysis, which are ignored in [1], [3]. This
allows us to refine the convergence neighborhood around the
desired equilibrium. Additionally, while in [1], [3] we only
proved that the SUSD direction converges to the negative
gradient direction, in this paper, we also prove that the swarm
converges to either the source location or the desired level
curve. Furthermore, the conference papers do not include any
experimental results. A longer preprint of this paper can be
accessed in [4], which contains a generalization of the control
laws and analysis to incomplete graphs.

II. PROBLEM FORMULATION

Consider a swarm of M agents each located at position
ri ∈ R2. The interaction between the agents is described by
an undirected visibility graph, G ⊆ V × E where V is the set
of all agents, and E is the set of all edges. We consider the
following assumption.

Assumption II.1. The graph G ⊆ V × E is undirected and
complete. i.e. (i, j) ∈ E and (j, i) ∈ E for all {(i, j) ∈ E}.

A generalization of the control laws and analysis to incom-
plete graphs is available in a longer preprint of this paper
which can be accessed in [4].

Assumption II.2. Each i-th agent knows the relative positions
(rj − ri) for all j 6= i.

In practice, robots can be equipped with sensors to measure
the relative positions of their neighbors with respect to their
local frame, which is less challenging than requiring the global
positions [28].

Furthermore, suppose there exists a scalar field z : R2 → R.
The analytical expression of the field function z is not known,
but each agent can only measure its value z(ri) at its current
position ri(t).

Assumption II.3. The field is assumed to be real analytic,
time-invariant and bounded, i.e. 0 ≤ z(ri) ≤ zmax, and has a
unique minimum at the source location r0 where z(r0) = 0.

We require smoothness because later we design the speed
of each agent to be proportional to the field measurement.
However, non-smooth fields might be transformed into smooth
fields using, for example, stochastic modeling, as in [34]. The
field needs to be real analytic, so in the convergence analysis
we can apply Taylor approximation.

Consider zd ∈ R to be a desired level curve field value,
where a level curve is the set {r|z(r) = zd, ∀r ∈ R2}.

Assumption II.4. The desired level curve {r|z(r) = zd} is
connected.

Finally, let the motion of each agent be described by

ṙi =
dri
dt

= ui, i = 1, · · · ,M, (1)

where ui is a local control law to be designed.

Problem Statement. Without explicitly estimating the field
gradient and without explicitly communicating field measure-
ments, design the local control law ui, such that the swarm
autonomously steers towards either the source location r0, or
the desired level curve {r|z(r) = zd, ∀r ∈ R2}, and keeps
tracking it.

III. THE DISTRIBUTED ACTIVE PERCEPTION STRATEGY

We propose a strategy that is composed of two layers for
perception and control as illustrated in Fig. 1. In the perception
layer, each agent learns from the relative positions a time-
varying locally computed body frame. The motion of each
agent is designed in the control layer based on the perceived
body frame and the locally measured environmental field
value. The interplay between the two layers results in an
active perception of the spatial gradient of the environmental
property. In what follows, we first present the perception
algorithm and then the distributed control law.

Fig. 1: The two layers of the active perception strategy.
A. The PCA Perception Algorithm

Let each computes the covariance matrix C(t) ∈ R2×2

given by

C(t) =
M∑
k=1

(
rk(t)− rc(t)

)(
rk(t)− rc(t)

)ᵀ
, (2)

where rc = 1
M

∑M
k=1 rk is the center of the swarm. Prin-

cipal Component Analysis (PCA) computes the directions of
maximum (minimum) variation of a data set [18]. Applying
PCA on the covariance matrix (2), each agent locally computes
the eigenvectors q(t) and n(t) of (2) corresponding to the
largest and smallest eigenvalues, λq and λn, respectively. The
eigenvectors q(t) and n(t) represent the direction of the maxi-
mum and minimum variances of the data, with the eigenvalues
giving the variances of the data along each direction. We define
the PCA body-frame to be (q(t),n(t)), where q(t) and n(t)
are orthonormal vectors in R2.

Let (q̂, n̂) be an estimate of the true PCA body-frame
(q(t),n(t)), which is given by the Oja PCA flow [5], [36]

dq̂

dτ
= (I − q̂q̂ᵀ)C(t)q̂, n̂ = Rq̂, (3)
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where R is a 90◦ counterclockwise rotation matrix. Observe
that we use the argument τ instead of t to emphasize that for
any given covariance matrix C(t) at time instant t, agent i
runs (3) at a different time scale τ .

Assumption III.1. For the covariance matrix (2), λq 6= λn.

This is to ensure the eigenvectors q and n are uniquely
defined which ensures the mathematical correctness of the
derived dynamics and convergence results obtained in this
paper. In practice, due to sensing errors on measuring relative
positions, it is unlikely to have λq = λn.

B. The Distributed Active Perception Control Law

Given the PCA body frame (q(t),n(t)) obtained by (3), we
propose the control law

ui(t) = k1(zi(t)− zd)n(t) + k2q(t), (4)

where zi(t) and zd are the measured and desired field values,
respectively. The parameters k1, k2 ∈ R are positive tuning
parameters. To intuitively explain the control law (4), we
simulate it in Fig. 2 for a 2-agent system in a scalar field.
In this example, q is along the line-of-sight between the two
agents, and n is perpendicular to the line-of-sight. When
zd = 0 and k2 = 0, then agent i speeds up or slows
down along the direction n depending on the local field
measurement zi(t). Since the two agents are moving in the
same direction at different speeds, then eventually they steer
towards the minimum of the field. On the other hand, when
zd 6= 0 and k2 = 0, the two agents approach the level curve
{r|z(r1) = z(r2) = zd}. Finally, when zd 6= 0 and k2 6= 0,
then the first term k1(zi(t)−zd)n(t) steers the 2-agent system
towards the desired level curve, while the second term k2q(t)
moves the swarm along the level curve.

Remark 1. The PCA flow dqi

dτ = (I − qi(τ)qᵀ
i (τ))Cqi(τ)

can be viewed as a consensus law. However, its input is the
local covariance C, not the sum of headings

∑
j∈Ni

qj as
in the classical consensus law q̇i = (I − qiq

ᵀ
i )
∑
j∈Ni

qj
which requires agents to communicate qj . Therefore, agents
can agree on a common direction by only observing local
positions. Additionally, the solution of the PCA consensus
is determined by the environmentally-driven positions of the
agents which is different than the heading consensus where
the agreement is solely dependent on the initial headings.

IV. THE INFORMATION DYNAMICS

Let zdc = zc − zd where zc is the field measurement at the
center rc = 1

M

∑M
l=1 rl. Define Nc = ∇z(rc)/‖∇z(rc)‖ to

be a unit-length vector along the direction of the field gradient
at the center rc. Then, using (1) and (4), we obtain

żdc =
‖∇zc‖
M

M∑
l=1

[k1(zl − zd)〈Nc,n〉+ k2〈Nc, q〉]. (5)

Observe that zdc → 0 if and only if zc → zd for the level
curve tracking, or zc → 0 for the source seeking. However,
to analyze the convergence of the origin zdc = 0 of (5), we

need the dynamics of the two principle directions (q̇, ṅ) =
(dqdt ,

dn
dt ).

Remark 2. The dynamics (dndt ,
dq
dt ) are different from (dn̂dτ ,

dq̂
dτ )

given by the PCA flow (3), which describes the dynamics of
learning the body frame from a given covariance matrix C(t)
at time instant t.

In what follows we derive the dynamics of the body frame
(q̇, ṅ) first for a general control law ul, and then for the
proposed control law (4).

The following result presents the dynamics of the PCA body
frame for a general control law, ui.

Lemma IV.1. Let Assumption III.1 holds. Then, when the
agents move according to (1), the dynamics of the body frame
are

ṅ = −κq, q̇ = κn, (6)

where κ = 1
λq−λn

∑M
k=1〈q,uk〉〈rk − rc,n〉 +

1
λq−λn

∑M
k=1〈q, rk − rc〉〈uk,n〉.

See proof in Section VIII. It is interesting to observe that
the actions of the neighbors in uk are present in (6) not due
to communication, but due to the distributed active perception
algorithm where the body frame is obtained via the PCA (3).

We then derive the dynamics of the body frame under the
proposed control law (4).

Lemma IV.2. Let Assumption III.1 holds. Then, using the
motion dynamics (1) along with the control law (4), the
dynamics of the body frame for source seeking and level curve
tracking with complete graphs are

ṅ = −k1
1

λq − λn
wᵀqq, (7)

q̇ = k1
1

λq − λn
wᵀqn, (8)

w =
M∑
k=1

(zk − zc)(rk − rc). (9)

See proof in Section VIII. To find the relationship between
n and the gradient ∇zc, we approximate the measurement
zk = z(rk) by Taylor expansion with respect to the center
rc. Since according to Assumption II.3 the field function z is
analytic, then we can write

zk − zc = 〈rk − rc,∇zc〉+ νk, (10)

where ∇zc = ∇z(rc) is the gradient in the vicinity of the
center rc, and νk = O‖rk − rc‖ represents the higher-order
terms.

Then, we obtain the following result.

Lemma IV.3. Let Assumption II.3 and Assumption III.1 hold.
Then, using the motion dynamics (1) along with the control
law (4), the dynamics of the body frame for source seeking
and level curve tracking with complete graphs are

ṅ = −k1‖∇zc‖
λq

λq − λn
〈Nc, q〉q − ν̂q, (11)

q̇ = +k1‖∇zc‖
λq

λq − λn
〈Nc, q〉n + ν̂n, (12)
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(a) zd = 0, k2 = 0 (b) zd 6= 0, k2 = 0 (c) zd 6= 0, k2 6= 0

Fig. 2: The blue arrows are the velocities which turn red at the end time. The circular curves are the field level curves.

where Nc = ∇zc
‖∇zc‖ , and ν̂ = k1

λq−λn

∑M
k=1 νk〈rk − rc, q〉.

See proof in Section VIII.
Since n and q are orthonormal, we can write qqᵀ = I −

nnᵀ. Hence, we can reform (11) as

ṅ = −k1
λq

λq − λn
‖∇zc‖(I − nnᵀ)Nc − ν̂q. (13)

Note that the second term in (13) vanishes when νk = ν for
all agents. i.e. the field is linear, or when the agents are at the
same level curve.

Remark 3. The first term in (13) represents a consensus-on-a
sphere control law [26]. This is interesting since although we
are explicitly applying (4) with (3), the direction n is implicitly
tracking the negative direction of the gradient −Nc.

V. CONVERGENCE ANALYSIS

Recall that the PCA flow (3) runs in the time scale τ , while
the control law (4) runs in the time scale t. That is, for each
time instance t, each agent runs (3) for some time τ . Let
the relationships between the control time t, and the PCA
perception time τ be dt

dτ = ε, where ε ∈ (0, 1). This implies
that τ = t−t0

ε , where τ0 = 0. Using this relationship, the
perception and control dynamics in the singular perturbation
framework are

ṙi = k1(zi − zd)n + k2q, ∀i, (14)
ṅ = g1(·), (15)
q̇ = g2(·), (16)

ε ˙̂q = (I − q̂q̂ᵀ)Cq̂. (17)

where g1(·) and g2(·) are the general information dynamics
equations given by (7) and (8). The control dynamics (14)-(16)
are viewed as a slow system whereas the perception dynamics
(17) are viewed as a fast system.

In what follows, we first obtain the conditions under which
we prove that (A) the SUSD direction n converges to the
negative gradient direction −Nc , and the conditions under
which we prove that (B) trajectories z(rc) − zd for level
curve tracking, or of z(rc) for source seeking, are ultimately
bounded.

A. Convergence of the SUSD Direction

Define

θ = 1 + 〈Nc,n〉, (18)

where θ → 0 when n→ −Nc. i.e. when the swarm is moving
in the negative direction of the field gradient. Additionally,
define

ψ = 1− 〈q, q̂〉, (19)

where ψ → 0 when q̂ → q, i.e when the PCA perception
algorithm converges to the exact eigenvector of the covariance
matrix C. We then obtain the coerced slow and fast systems

θ̇ = k1‖∇zc‖
λq

λq − λn
θ(θ − 2) + δ, (20)

εψ̇ = −(λq − λn)ψ(1− ψ)(2− ψ) + εη, (21)

where δ is viewed as an input disturbance due to the nonlinear-
ity of the field, and η represents the interconnection between
the coerced slow and fast systems. They are defined by

δ = − k1

λq − λn
ϑ〈Nc, q〉+ 〈n, Ṅc〉,

η = ± k1

λq − λn
(
ϑ± ‖∇zc‖λq

√
θ(2− θ)

)√
ψ(2− ψ),

(22)

where ϑ =
∑M
k=1 νk〈rk−rc, q〉, and 〈n, Ṅc〉 = 1

‖∇zc‖n
ᵀ(I−

NcN
ᵀ
c )∇2zc(k1(za − zd)n + k2q), where za is the average

field measurement and ∇2zc is the hessian matrix of the field.

Proof. of (20) and (21). To derive (20), we take the time
derivative of (18) and apply (13) of Lemma IV.3 for ṅ. On
the other hand, we derive (21) by the following steps. By the
Chain rule, dq̂dτ = εdq̂dt , or dq̂

dt = 1
ε
dq̂
dτ . Hence

dψ

dτ
= ε

dψ

dt
= −ε〈dq

dt
, q̂〉 − 〈q, dq̂

dτ
〉. (23)

From (3), we obtain

〈q, dq̂
dτ
〉 = (1− ψ)

(
λq − 〈q̂,Cq̂〉

)
. (24)

Write q̂ = 〈q̂, q〉q + 〈q̂,n〉n. Hence

〈q̂,Cq̂〉 = λq(1− ψ)2 + λnψ(2− ψ). (25)

Substituting (25) into (24) yields

〈q, dq̂
dτ
〉 = (λq − λn)ψ(1− ψ)(2− ψ). (26)

On the other hand, using (12), we obtain

〈dq
dt
, q̂〉 =

k1

λq − λn
(
‖∇zc‖λq〈Nc, q〉+ ϑ

)
〈n, q̂〉, (27)
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where ϑ =
∑M
k=1 νk〈rk−rc, q〉, and 〈n, q̂〉 = ±

√
ψ(2− ψ).

Substituting (26) and (27) in (23), we obtain

dψ

dτ
= ε

dψ

dt
= −(λq − λn)ψ(1− ψ)(2− ψ) + εη, (28)

where η is as defined by (22).

We first let ε = 0 in (20) and (21) to analyze the stability
of the resulting decoupled reduced and boundary systems (29)
and (34), respectively. Then, we analyze the stability of the
coupled system of (20) and (21) by deriving ε∗ ∈ (0, 1) such
that for all ε ≤ ε∗, some of the stability results of the reduced
and boundary systems, (29) and (34), hold for the coupled
system.

1) Stability of the Reduced System: The coerced reduced
system is given by

θ̇ = −k1‖∇zc‖
λq

λq − λn
θ(2− θ) + δ = f(t, θ, δ). (29)

Note that, when θ ∈ {0, 2}, then n = ±Nc which implies
that 〈Nc, q〉 = 0 and nᵀ(I −NcN

ᵀ
c ) = 0. Hence δ vanishes

at the equilibria θ ∈ {0, 2}. Additionally observe that δ = 0
when ∇2zc = 0 and νk = 0, ∀k, i.e. when the field is linear.

The following result describes the stability of the origin of
the reduced system.

Theorem V.1. Consider the reduced system (29). Suppose
there exists a lower bound µ1 > 0 such that ‖∇z(rc)‖ > µ1.
Then the equilibrium θ = 0 of the unforced system f(t, θ, 0)
is asymptotically stable in which whenever θ(0) ∈ [0, 2),
then θ(t) → 0 as t → ∞. Furthermore, for an input
disturbance satisfying |δ| ≤ k1ε1

λq

λq−λnµ1, where ε1 ∈ (0, 1),
the equilibrium θ = 0 of forced system f(t, θ, δ) is locally
input-to-state stable.

Proof. Consider the domain D1 = {θ|θ ∈ [0, 2)} i.e.
〈Nc,n〉 6= 1. Let V1 : D1 → R be a Lyapunov candidate
function defined by

V1 =
θ

2− θ
, (30)

where V1 = 0 if and only if θ = 0. Additionally, V1 →∞ as
θ → 2. For the unforced system f(t, θ, 0), we obtain

V̇1 = −2k1‖∇zc‖
λq

λq − λn
V1 ≤ 0. (31)

Since V̇1 = 0 if and only if θ = 0, then the origin of the un-
forced system f(t, θ, 0) is asymptotically stable. Additionally,
V̇1 → −∞ as θ → 2. This along with the fact that V1 → ∞
whenever θ → 2 and ‖∇zc‖ > µ1 > 0, implies that D1 is a
forward invariant set, and thus θ ∈ [0, 2) for all t.

For the forced system f(t, θ, δ), we obtain

V̇1 ≤ −2(1− ε1)k1µ1
λq

λq − λn
V1, ∀|θ| ≥ ρ(|δ|), (32)

where ρ(|δ|) = 1−
√

1− (λq−λn)|δ|
k1ε1λqµ1

is a class K function in

the domain [0, k1ε1
λq

λq−λnµ1]. Let α1(|θ|) = α2(|θ|) = |θ|
2−|θ|

which are class K functions that satisfy: α1(|θ|) ≤ V1(θ) ≤

α2(|θ|)1. Therefore, using Definition 3.3 of local input-to-state
stability in [14], and according to Theorem 4.19 in [19], the
origin of the forced system f(t, θ, δ) is locally input-to-state
stable.

Remark 4. In Theorem V.1 we showed that the set {θ|θ ∈
[0, 2)} is forward invariant. By If we modify V1 in (30) to be
V1 = 2θ

1−θ , where V1 : [0, 1) → R, then we can show that
V̇1 satisfies (32). Hence, using the same argument in proving
Theorem V.1, we can show that the set {θ|θ ∈ [0, 1)} is also
forward invariant.

Lemma V.2. The assumption in Theorem V.1 that the input
disturbance satisfies |δ| ≤ k1ε1

λq

λq−λnµ1 is valid whenever
‖∇z(rc)‖ > µ1 where

µ1 =
|ϑ|+

√
|ϑ|2 + 4ε1λq(λq − λn)(|za − zd|+ k2

k1
)‖∇2zc‖

2ε1λq
,

(33)

in which ϑ is as defined in (22). See proof in Section VIII.
Observe that Theorem V.1 implies that wherever the swarm

is in a landscape where ‖∇z(rc)‖ > µ1, then the SUSD
direction n follows the negative gradient direction −N . Since
according to Assumption II.3 the field has a unique minimum,
then the bound µ1 defines a neighborhood around the source
location r0 where the magnitude of the gradient ‖∇z(rc)‖ is
dominated by the higher-order terms.

2) Stability of the Boundary System: By setting ε = 0 in
(28), we obtain the boundary system

dψ

dτ
= −(λq − λn)ψ(1− ψ)(2− ψ). (34)

Observe that in (34), λq and λn are constants with respect
to the time scale τ . Additionally, system (34) is at equilib-
rium when ψ ∈ {0, 1, 2}. The desired equilibrium ψ = 0
corresponds to q̂ = q, and the undesired ψ = 1 and ψ = 2
correspond to q̂ = ±n and q̂ = −q, respectively. We have
the following result for origin of the boundary system

Theorem V.3. The origin of the boundary system (34) is
asymptotically stable uniformly in λq and λn, in which when-
ever at τ = 0, ψ(0) ∈ [0, 1), then ψ → 0 as τ →∞.

Proof. Let D2 = {ψ ∈ R|ψ ∈ [0, 1)} which is equivalent to
0 < 〈q, q̂〉 ≤ 1. Then let V2(ψ) : D2 → R be a Lyapunov
candidate function defined by

V2 =
ψ

1− ψ
(35)

where V2 ≥ 0 and V2 = 0 if and only if ψ = 0. Furthermore,
V2 →∞ as ψ → 1. Using (34), we obtain

dV2

dτ
= −(λq − λn)(2− ψ)V2 ≤ 0, (36)

where in D2, dV2

dτ = 0 if and only if ψ = 0. Furthermore,
since from Assumption III.1 (λq−λn) 6= 0, then dV2

dτ → −∞
as ψ → 1. This along with the fact that V2 → ∞ whenever

1For more details about the definitions of class K functions, the reader is
referred to Definition 4.2 of [19].
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ψ → 1 implies that D2 is a forward invariant set, and thus
ψ(τ) ∈ [0, 1) for all τ . Let W1(ψ) = W2(ψ) = V2 which
implies that W1(ψ) ≤ V2 ≤ W2(ψ). Consequently, according
to Theorem 4.9 in [19], we can conclude that the equilibrium
ψ = 0 of the boundary system (34) is asymptotically stable,
uniformly in λq and λn.

3) Stability of the Unforced Coupled System: Substituting
for δ = 0 in (20) and (21), we obtain the unforced coupled
system

θ̇ = k1‖∇zc‖
λq

λq − λn
θ(θ − 2) , f(t, θ(t), 0, 0), (37)

εψ̇ = −(λq − λn)ψ(1− ψ)(2− ψ) + εη , g(t, θ(t), ψ(t), ε),
(38)

where η = ±k1‖∇zc‖ λq

λq−λn

√
θ(2− θ)

√
ψ(2− ψ).

Theorem V.4. Consider the coupled system given by (37) and
(38). Assume that 0 < µ1 ≤ ‖∇zc‖ ≤ µ2 <∞ and 0 < χ1 ≤
λq − λn ≤ χ2 < ∞ where µ1, µ2, χ1 and χ2 are constants.
Furthermore, assume that ε < εd where

εd =
2(1− d)µ1χ

3
1

dk1µ2
2χ

2
2

, (39)

in which d ∈ (0, 1) is a constant. Then the origin (θ, ψ) =
(0, 0) is uniformly asymptotically stable in which whenever
θ(0) ∈ [0, 2) and ψ(0) ∈ [0, 1), then (θ(t), ψ(t)) → (0, 0) as
t→∞.

Proof. Consider (t, θ, ψ, ε) ∈ [t0,∞)× [0, 2)× [0, 1)× [0, ε0].
Then, the origin (θ, ψ) = (0, 0) is the unique equilibrium
of 0 = f(t, 0, 0, ε) and 0 = g(t, 0, 0, ε). Moreover, 0 =
g(t, θ, ψ, 0) has a unique root z = h(t, θ) = 0.

In the proof of Theorem V.1, we showed that the positive
definite V1(t, θ) = θ

2−θ satisfies (i): α1(|θ|) ≤ V1(t, θ) ≤
α2(|θ|) where α1(|θ|) = α2(|θ|) = |θ|

2−|θ| are class K
functions, and, since ‖∇zc‖ ≥ µ1 and λq

λq−λn ≥ 1, (ii):
∂V1

∂t + ∂V1

∂θ f(t, θ, 0, 0) ≤ −%1U
2
1 (θ) where %1 = 2k1µ1 is a

constant, and U1(θ) =
√

θ
2−θ is a continuous scalar function

that vanishes only when θ = 0.
Similarly, in the proof of Theorem V.3, we showed that

the positive definite V2(t, ψ) = ψ
1−ψ satisfies (iii) W1(ψ) ≤

V2(t, ψ) ≤ W2(ψ) where W1(ψ) = W2(ψ) = ψ
1−ψ

are class K functions, and, since (λq − λn) ≥ χ1, (iv):
∂V2

∂ψ g(t, θ, ψ, 0) ≤ −%2U
2
2 (ψ), where %2 = χ1 and U2(ψ) =√

ψ(2−ψ)
1−ψ is a continuous scalar function that vanishes only

when ψ = 0.
For the interconnected system, we have (v):

∂V1

∂θ [f(t, θ, ψ, ε) − f(t, θ, h(t, x), 0)] = ∂V
∂θ [f(t, θ, 0, 0) −

f(t, θ, 0, 0)] = 0 where we used the fact that f is independent
of ψ and ε. Similarly, since V2 does explicitly depend on t and
θ, we have (vi): ∂V2

∂t + ∂V2

∂θ f(t, θ, ψ, ε) = 0. Finally, we derive
(vii): ∂V2

∂ψ [g(t, θ, ψ, ε)− g(t, θ, ψ, 0)] = εη ≤ ε%3U1(θ)U2(ψ),
where %3 = 2k1µ2

χ2

χ1
.

Through (i) to (vii), we satisfy all the assumptions required
by Theorem 5.1 in [23]. Hence, according to Theorem 5.1
in [23], for every d ∈ (0, 1), v(t, θ, ψ) = (1 − d)V1(t, θ) +
dV2(t, ψ) is a Lyapunov function for all ε < εd where εd is

given by2 (39). This implies that the origin (θ, ψ) = (0, 0) is a
uniformly asymptotically stable equilibrium of the singularly
perturbed system given by (37) and (38) for all ε ∈ (0, εd).

B. Convergence of the Swarm Trajectory

In this section, we study the convergence of the swarm to
either the source location or the desired level curve. Define
zdc = zc− zd. This implies that zdc = 0 if and only if zc = zd.
Taking the time derivative, żdc = żc = 〈∇zc, ṙc〉. But, using
(14), ṙc = 1

M

∑
k[k1(zk−zd)n+k2q] = k1(za−zd)n+k2q

where za = 1
M

∑
k zk is the average field measurement.

Note that , using (10), za = 1
M

∑
k zk = 1

M

∑M
k=1[zc +

〈∇zc, rk − rc〉 + νk] = zc + ν where ν = 1
M

∑M
k=1 νk and

1
M

∑M
k=1〈∇zc, rk − rc〉 = 0. That is the difference between

the average and center measurements equals to the average of
higher-order terms. Then we obtain

żdc = k1‖∇zc‖(zdc + ν)〈N ,n〉+ k2‖∇zc‖〈N , q〉, (40)

where ν = za − zc. Note that, even when 〈N ,n〉 = ±1
which implies 〈N , q〉 = 0, zdc = 0 is not an equilibrium to
(40) due to the existence of ν. In the following, we present a
boundedness result for the trajectory zdc (t).

Theorem V.5. Suppose ‖∇z(rc)‖ > µ3 where µ3 > 0 is a
constant. Furthermore, suppose −1 ≤ 〈N ,n〉 ≤ −ε2 and
|ν| ≤ ν̄, where ε2 ∈ (0, 1) and ν̄ > 0 are constants. Then, the
solutions of (40) are uniformly ultimately bounded.

Proof. Let V3 : R → R be a Lyapunov candidate function
defined by V3 = 1

2 (zdc )2, where V3 = 0 if and only if zdc = 0.
Then we obtain

V̇3 ≤ −2k1µ3ε2(1− ε2)V3, ∀|zdc | ≥
k1ν̄ + k2

√
1− ε22

k1ε22
,

(41)

where V̇3 = 0 if and only if zdc = 0. Let α3(|zdc |) = α4(|zdc |) =
1
2 |z

d
c |2 be class K functions. Then α3(|zdc |) ≤ V3 ≤ α4(|zdc |).

Therefore, according to Theorem 4.18 in [19], the trajectories
of the system (40) are uniformly ultimately bounded.

Note that we proved in Remark 4 that the required assump-
tion −1 ≤ 〈N ,n〉 ≤ −ε2 < 0 can be satisfied. Further, note
that, (41) implies that the zdc trajectories of (40) will converge
to a strip around the desired level curve and the strip is defined

by {rc||zdc | ≤
k1ν̄+k2

√
1−ε22

k1ε22
}. If we only consider source

seeking, i.e. k2 = 0 and zdc = zc, then the zc trajectories
of (40) will converge to a neighborhood around the source
location defined by {rc||zdc | ≤ ν̄

ε22
}.

VI. EXPERIMENTAL RESULTS

In [1], [3], we presented several simulation results. Here
we validate the model through experiments. In the first ex-
periment, we used the Georgia Tech Miniature Blimps [11]
with light sensors to perform source seeking in a physical
light field. The diameter of each blimp is about 0.7 m and
the dimensions of the experimental space are about 4 m ×

2We derived εd by using (5.12) in [23] using all the corresponding
coefficients derived in (i) through (vii).
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4 m. To make the minimum at the source, we inverted the
field by using 1

zi
instead of zi. We set ε = 0.01, k1 = 1,

k2 = 0 and zd = 0 in (17). Snapshots of the experiment are
shown in Fig. 3. Despite that initially 〈N ,n〉 > 0 and the
potential noisy measurements, the two blimps are able to find
the source.

Fig. 3: The two blimps initially have 〈N ,n〉 > 0.

For the second experiment, we implemented the level curve
tracking using four mobile robots at the Robotarium [30]. We
used a virtual nonconvex field with mathematical expression
given in [1]. We set zd = 2, ε = 0.01, k1 = 2, and k2 = 0.5.
In Fig. 4 we present the trajectories of the robot. Despite the
graph is incomplete, the swarm is able to track the desired
level curve smoothly.

Fig. 4: Four robots in a nonconvex field.

VII. CONCLUSION

In this paper, we proposed a distributed active perception
strategy for source seeking and level curve tracking without the
need to explicitly estimate the field gradient or explicitly share
measurements among the agents. We obtained several stability
results in a singular perturbation framework justifying the
robustness and convergence of the algorithms. The simulation
and experimental results suggest the efficiency of the proposed
model. In the future, we consider the incomplete graph case.
Additionally, we will design control laws for different swarm
applications within the proposed framework of distributed
active perception.
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VIII. PROOFS OF THE INFORMATION DYNAMICS

Proof of Lemma IV.1. The covariance matrix satisfies Cn =
λnn, and Cq = λqq. Since with Assumption III.1, the
eigenvalues and eigenvectors of C are uniquely defined, then
their derivatives exist. Thus, taking the derivative, we obtain

Ċn + Cṅ = λ̇nn + λnṅ, (42)

Ċq + Cq̇ = λ̇qq + λqq̇. (43)

Inner product both sides of (42) with the eigenvector q, and
both sides of (43) with the eigenvector n

〈q, Ċn〉+ 〈q,Cṅ〉 = λ̇n〈q,n〉+ λn〈q, ṅ〉, (44)

〈n, Ċq〉+ 〈n,Cq̇〉 = λ̇q〈n, q〉+ λq〈n, q̇〉. (45)

Since C is symmetric, then Ċ is also symmetric. This implies
that 〈q,Cṅ〉 = 〈Cq, ṅ〉 = λq〈q, ṅ〉. Similarly, 〈n,Cq̇〉 =
〈Cn, q̇〉 = λn〈n, q̇〉. Using these along with the fact that
〈q,n〉 = 〈n, q〉 = 0, we obtain from (44) and (45)

〈q, ṅ〉 = − 1

λq − λn
〈q, Ċn〉, (46)

〈n, q̇〉 =
1

λq − λn
〈q, Ċn〉. (47)

Since n and q are orthonormal, then we can write

ṅ = 〈q, ṅ〉q, q̇ = 〈n, q̇〉n. (48)

Substituting (46) and (47) in (48)

ṅ = − 1

λq − λn
〈q, Ċn〉q (49)

q̇ =
1

λq − λn
〈q, Ċn〉n. (50)

Taking the derivative of the covariance (2), we obtain

Ċ =

M∑
k=1

[(ṙk − ṙc)(rk − rc)
ᵀ + (rk − rc)(ṙk − ṙc)

ᵀ].

(51)

But using (1)

ṙk − ṙc = uk −
1

M

M∑
l=1

ul =
1

M

M∑
l=1

(uk − ul). (52)

Hence, substituting (52) in (51)

Ċ =
1

M

M∑
k=1

M∑
l=1

(uk − ul)(rk − rc)
ᵀ

+
1

M

M∑
k=1

(rk − rc)
M∑
l=1

(uk − ul)
ᵀ

=
M∑
k=1

[
uk(rk − rc)

ᵀ +
(
rk − rc)u

ᵀ
k]. (53)

Finally, substituting (53) in (49) and (50) leads to the desired
result (6).

Proof of Lemma IV.2. Substituting the control law (4) in (53),
using the fact that

∑M
k=1(rk − rc) = 0, we obtain

Ċ =
M∑
k=1

k1(zdk − zdc )
[
n(rk − rc)

ᵀ + (rk − rc)n
ᵀ
]
, (54)

where zdk = zk − zd and zdc = zc − zd. We then derive

〈n, Ċq〉 = k1

M∑
k=1

(zdk − zdc )〈rk − rc, q〉. (55)
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Finally, since zdk − zdc = zk − zd − (zc − zd) = zk − zc,
we obtain (7) and (8) by substituting (55) in (49) and (50),
respectively.

Proof of Lemma IV.3. Substituting (zk − zc) from (10) into
(9) yields

w =
M∑
k=1

[〈rk − rc,∇zc〉(rk − rc) + νk(rk − rc)]. (56)

But,
∑M
k=1〈rk − rc,∇zc〉(rk − rc) =

∑M
k=1(rk − rc)(rk −

rc)
ᵀ∇zc = C∇zc. Hence

w = C∇zc +
M∑
k=1

νk(rk − rc). (57)

Finally, using ν̂ = k1
λq−λn

∑M
k=1 νk〈rk− rc, q〉, and substitut-

ing (57) in (7) and (8) yields the claimed (11) and (12).

Proof of Lemma V.2. In order for ρ(|δ|) to be a real num-
ber, we must have

√
1− (λq−λn)|δ|

k1ε1λqµ1
≥ 0 which implies

that ‖∇zc‖ > µ1 ≥ (λq−λn)|δ|
k1ε1λq . But |δ| ≤ |δ1| + |δ2|

≤ k1
λq−λn |ϑ| + k1|za−zd|+k2

‖∇zc‖ ‖∇2zc‖, where ϑ =
∑
k νk〈rk −

rc, q〉 and ∇2zc is the Hessian matrix. Then we must have
‖∇zc‖ > 1

ε1λq |ϑ|+ (λq−λn)(k1|za−zd|+k2)
k1ε1λq‖∇zc‖ ‖∇2zc‖. Solving this

inequality yields the desired result (33).
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