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Abstract
We address the problem of optimally scheduling automated vehicles crossing an intelligent
intersection by assigning vehicles with priorities and desired speed. An idealized inter-
section traffic model is established for the development and verification of the required
algorithms. We formulate the intersection scheduling problem as a mixed integer program-
ming (or MIP) problem which co-designs the priority and traveling speed for each vehicle.
The co-design aims to minimize the vehicle waiting time at the intersection area, under a
set of safety constraints. We derived a contention-resolving model predictive control (or
MPC) algorithm to dynamically assign priorities and compute the vehicles’ traveling speeds.
A branch cost formulation is proposed for the decision tree constructed by contention-
resolving MPC based on time instants when collisions might occur among vehicles. Based
on the priority assignments, a decentralized control law is designed to control each vehicle
to travel with an optimal speed given a specific priority assignment. The optimal priority
assignment can be determined by searching the lowest cost path in the decision tree. The
solution computed by contention-resolving MPC is proved to be optimal given the condition
of immediate access (or CIA) required in real-time scheduling. The effectiveness of the pro-
posed method is verified through simulation and compared with the first-come-first-serve
(or FCFS) and highest-speed-first (or HSF) scheduling strategies.
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1 Introduction

Urban cities are becoming overcrowded with automobiles, leading to growing traffic con-
gestion at traffic intersections. The traffic light has been the most commonly used device
for intersection scheduling since 1868. However, while traffic lights ensure the safety of
conflicting movements at intersections, they also cause increased delays, fuel consumption,
tailpipe emissions and even fatal accidents (Dimitrakopoulos and Demestichas 2010). Fre-
quent stops and starts caused by traffic lights also frustrate drivers and passengers. Smarter
intersection scheduling is needed to better control vehicles at intersections (Rios-Torres and
Malikopoulos 2017), which is part of an overall intelligent transportation and smart cities
for the future.

Connected and automated vehicles provide significant new opportunities for improving
intersection efficiency. A recent study showed that changing the intersection scheduling
from traffic lights to coordinating automated vehicles has the potential of doubling the
intersection capacity and reducing traffic delays (Tachet et al. 2016). With the introduction
of vehicle-to-vehicle as well as vehicle-to-infrastructure communication, automated vehi-
cles can assist drivers with better decision making and reduce fuel consumption, emissions,
and traffic congestion. Numerous research efforts have explored the scheduling and con-
trol of automated vehicles (Ahn et al. 2014; Zhang et al. 2015, 2017; Dallal et al. 2017;
Meng et al. 2018). Many works assume that the arrival times of automated vehicles at an
intersection satisfy a certain random process. Then based on the arrival times, they uti-
lize a first-come-first-serve (or FCFS) scheduling mechanism, so that controllers can be
designed to coordinate the crossing speed of vehicles (Lee and Park 2012; Zhang et al.
2016; Malikopoulos et al. 2018). However, the FCFS mechanism may lead to poor schedul-
ing and possible congestion. For instance, FCFS schemes can give crossing orders in which
several faster vehicles must slow down to favor a slow vehicle, which may not be optimal in
the context of total traveling time or energy consumption. FCFS is conservative in the sense
that it prevents the intersection scheduler from reordering the entrance of automated vehi-
cles to the intersection. In those cases, the highest-speed-first (or HSF) scheduling, which
schedules the vehicles with higher speed to pass the intersection first, is another strategy for
intersection scheduling.

Optimization-based approaches have been proposed to compute the optimal schedule for
coordinating automated vehicles. The works in Jiao et al. (2014) and Lu and Kim (2017)
utilized a genetic algorithm to dynamically coordinate traffic at intersections and their
results were verified through simulation using real traffic data. In Hult et al. (2018), the
authors used mixed integer quadratic program (or MIQP) to compute an approximate solu-
tion to schedule the order of vehicles crossing the intersection. In Fayazi and Vahidi (2018),
the intersection scheduling problem was formulated as a mixed integer linear program (or
MILP) problem, and was solved by the IBM CPLEX optimization package. Although these
methods can obtain an optimal or a local optimal solution for intersection scheduling, the
major disadvantage is the computation requirement. The optimization problem formulated
in intersection scheduling is usually nonlinear and non-convex, which is inherently difficult
to solve and takes long time for the optimization solvers to find the optimal solution.

Recent works showed encouraging results by using model predictive control (or MPC)
approach to coordinate vehicles (Lin et al. 2011; Frejo and Camacho 2012; Fukushima et al.
2013; Kim and Kumar 2014; Qian et al. 2015). MPC performs prediction-optimization iter-
atively to a predefined cost function (usually considering efficiency, ecological, and safety
objectives) while receding a finite optimization time horizon. In our previous work (Yao and
Zhang (2018) and Yao et al. (2017, 2019, 2020)), we proposed a contention-resolving MPC
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method, a sampling based algorithm based on the crucial events when contentions occur,
to co-design priorities and controls for networked control systems and traffic intersection.
The co-design problem is formulated as a mixed integer programming (or MIP) problem
and our method can provide a solution to this optimization problem with reduced demand
on computing resources. In this paper, we extend our previous work and provide more rig-
orous analysis for the solution obtained by contention-resolving MPC. We discovered that
the classical preemptive-repeat task model (Conway et al. 2003) can model the intersec-
tion scheduling behavior if the vehicle’s earliest arrival time is defined as the task request
time in scheduling theory. Based on this discovery, the main contributions in this work are
summarized as follows:

1) A new analytical timing model for preemptive-repeat tasks is developed to compute
timing states for the traffic intersection scheduling system. Based on the timing models,
we present a sufficient and necessary condition to determine the time instants when
contentions occur and compute the significant moments when a vehicle actually enters
the intersection and when the intersection is not occupied by any vehicle. In Hult et al.
(2018) and Fayazi and Vahidi (2018), these significant moments are determined byMIP
solvers. Based on these significant moments, the priority assignment and vehicle speed
control law design can be decoupled and we can construct a decision tree to efficiently
search all of the possible priority assignments.

2) Enabled by the significant moments, the infinite dimensional priority and control co-
design problem can be converted into a path planning problem on a decision tree.
Contention-resolving MPC algorithm assigns priorities only at the significant moments
when contentions occur, which are a finite number of time instances on the MPC opti-
mization horizon, therefore, the decision tree contains a finite number of branches and
each branch corresponds to one possible priority assignment. The optimal control law
design is embedded in the computation of branch costs. An optimal solution of prior-
ity assignments and vehicle speed control for the original co-design problem must be
a path from the root of the decision tree to one of the terminal leaves. Different from
the work which use a genetic algorithm (Yan et al. 2013; Jiao et al. 2014; Lu and Kim
2017) or an MIP solver (Fayazi and Vahidi 2018; Hult et al. 2018) which can also find
the optimal solution, our method searches through a greatly reduced number of possi-
ble paths in the decision tree, which provides scalable methods that eliminate the need
for an exhaustive search to find the optimal solution. To the best of our knowledge, the
use of a decision tree to design the schedule and control for vehicles at intersection has
not previously been documented in the literature.

3) We present a new formula to compute branch costs in the decision tree that is con-
structed by contention-resolving MPC. The branch cost function can handle cases
where a vehicle’s entrance to the intersection can be delayed multiple times. In addition,
we find an analytical solution to distributively compute the optimal speed for each vehi-
cle, which tremendously reduces the computation workloads, because the branch cost
can be directly calculated based on the analytical solution instead of solving another
optimization problem as in Yao et al. (2020).

4) Assuming the vehicle scheduling behavior in a traffic intersection system follows basic
requirements and the condition of immediate access (or CIA) in real-time schedul-
ing theory, we prove that CIA is a necessary condition for the contention-resolving
MPC to find the global optimal solution for the formulated scheduling and control co-
design optimization problem. In addition, we also study the case where CIA assumption
is violated for the intersection scheduling. We provide both numerical examples and
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theoretical analysis to discuss the optimality of the solution computed by contention-
resolving MPC without CIA condition. This contribution provides more insights about
when the contention-resolving MPC algorithm can find the optimal solution.

Comparing with our previous works, the CIA condition is a new discovery which has not
been addressed in any of our previous work. Moreover, in work Yao et al. (2019), we only
compared the solution computed by contention-resolving MPC with FCFS and illustrated
how our method can find a better solution than FCFS, but the performance was the same as
the priority assignment under the HSF strategy for the specific case studied. In this paper,
the contention-resolving MPC method is further compared with HSF scheduling strategy
in more cases. Simulation results illustrate significant improvements using our proposed
method compared to both FCFS and HSF.

This paper is organized as follows. In Section 2, the coupled priority assignment and
MPC design problem is formulated. In Section 3, we introduce an analytical timing model
to compute the significant moments of the crucial events. In Section 4, we present the
contention-resolving MPC algorithm to design priority assignments and vehicle speed con-
trol. Simulated case study results using the proposed method are presented in Section 5.
Section 6 is the conclusion.

2 Problem formulation

We propose an idealized traffic model at a simplified intelligent intersection to serve as the
launchpad for the development of control and scheduling co-design methods. Consider N

automated vehicles traveling along a single lane closed track that has a “figure-eight” shape
as shown in Fig. 1. Vehicles in the closed track travel in the direction marked by the arrows
in the middle of the lanes. The track consists of a shaded intersection area where two straight
line tracks intersects. The four ends of the intersections are marked as two entrances and
two exits depending on the direction of travel. Each exit is connected back to an entrance
by a circular arc. Let S represent the length of the straight line between an entrance and the
corresponding exit, D represent the length of each of the two circular arcs, and L represent
the length of a vehicle. Note that there is no restrictions on the radius of the circular arc.
The circular arc can also be replaced by other shapes (no self intersection) with equal length
that connect an exit with an entrance.

Fig. 1 Example of a one lane intersection. Vehicles follow directions indicated by arrows
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The motion of the i-th vehicle, for i =1, ..., N , is modeled as

ẋi (t)=ui(t), xi(t0)=x0
i (1)

where xi(t) and ui(t) denote the position and speed of vehicle i respectively at each time
t . The initial position is x0

i , where x0
i = 0 is when the front end of a vehicle is at one

of the two entrances of the intersection, which is assigned to each vehicle. The orientation
of vehicle is assumed to be automatically controlled by a heading controller onboard the
vehicle, which is not considered in this paper. We assume that vehicle speed is continuous
and can be directly controlled outside of the intersection area, but the value of the vehicle
speed should be bounded as

0≤ui(t)≤ui,max (2)

where ui,max > 0 is the maximum speed limit. To further simplify the problem setup, we
require each vehicle passes through the intersection with a constant speed ui,int satisfying
ui,int<ui,max for all i. The speeds outside of the intersection can be controlled and can have
sudden jumps from ui(t) to ui,int when vehicles arrive at the intersection, and from ui,int to
ui(t) when vehicles exit the intersection.

When the position of any portion of a vehicle is in the intersection area, the intersection
is considered occupied by that vehicle. When multiple vehicles occupy the intersection at
the same time, a contention occurs. We make the following assumption when a contention
occurs:

Assumption 1 At any given time, only one vehicle can occupy the intersection.

This assumption guarantees that no collisions occur among vehicles when they are
passing the intersection.

Remark 1 Even though the “figure eight” track in this paper may appear to be oversimpli-
fied and limited for real-world traffic intersections, we have found it quite useful for the
design of the optimal priorities and control laws. Such idealized models are not untypical
in control systems research, such as the broadly adopted “inverted pendulum” models. The
main advantage that the idealized intersection traffic model provides is that all the timings of
contention events are deterministic and hence predictable with an analytical model we pro-
posed. Before we can address real world traffic where the arrival of vehicles are in general
stochastic, we may need to completely solve the co-design problem in such a deterministic
setting. We will discuss possible extensions in the “conclusions and future work” section.

2.1 Priority-based scheduling

A half cycle is a duration of time between the event when a vehicle’s front end enters an
intersection through one entrance and the next event when the same vehicle enters the inter-
section again, but through a different entrance. Let αi[ki] denote the time when vehicle i

enters the intersection after having traveled through ki half cycles. For any index ki , Ci is
the amount of time from the instant when the front end of the vehicle arrives at one entrance
to the time instant when the rear end of the vehicle i leaves the intersection throught the
corresponding exit, i.e. Ci = S+L

ui,int
. An time γi[ki] is the time instant when the rear end of

vehicle i leaves the intersection for the ki-th half cycle, satisfying

γi[ki]=αi[ki]+Ci . (3)
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When there is no contention among vehicles, it is trivial that all the vehicles should travel
with their maximal speed in order to minimize the total traveling time. The following
equation needs to be satisfied if no contention occurs:

αi[ki]=γi[ki −1]+Ti, (4)

where Ti is the least amount of time for vehicle i to travel through the ki-th half cycle,
namely,

Ti = D − L

ui,max
. (5)

When a contention occurs to vehicle i while it is passing the intersection for the ki-th
time, Eq. 4 will not hold because it may be interrupted by other vehicles. We introduce the
delay variable δi[ki] to represented the total amount of time that vehicle i is delayed caused
by yielding to other vehicles for the intersection. We also define α̃i[ki] as the earliest time
that vehicle i can arrive at the intersection, i.e., the vehicle travels with its maximal speed
ui,max without considering possible contentions with other vehicles. The initial values for
α̃i[1] are x0

i /ui,max. The delayed arrival time and the earliest arrival time then satisfy the
following equations:

αi[ki]= α̃i[ki]+δi[ki], α̃i[ki +1]=αi[ki]+Ci +Ti . (6)

Using the concept of the earliest arrival time, we can then mathematically define the crucial
event of contention between vehicle i and j .

Definition 1 If there exist indices i and j such that the intersection between two time
intervals, [α̃i[ki], α̃i[ki]+Ci) and [α̃j [kj ], α̃j [kj ]+Cj ), is not empty, then a contention
between vehicle i and vehicle j will occur at a moment during the intersection between the
two time intervals.

In other words, when there is no delay, if the intersection occupation time of vehicle i

overlaps with that of vehicle j , then a contention occurs between vehicles i and j . One of
the vehicles needs to be delayed to avoid the contention.

When contentions occur, priorities are needed to determine which vehicle enters the
intersection first. Each vehicle i is assigned a unique priority number pi(t), in which case
contentions can be resolved by comparing the priorities pi among all vehicles that are
competing for the access to the intersection.

Definition 2 A priority assignment is a tuple P(t) = (p1(t), ..., pi(t), ..., pN(t)) ∈
P({1, ..., N}), where pi(t) is the priority assigned to vehicle i at time t and such that for
each i and j in {1, ..., N}, we have pi(t)<pj (t) if and only if vehicle i is assigned higher
priority than vehicle j at t . Here P({1, ..., N}) is the set of all permutations of {1, ..., N}, so
the value of pi(t) is a positive integer in {1, . . . , N}, such that pi(t) �=pj (t) if i �=j .

When a contention occurs and a specific priority assignment is given, we make the
following assumption.

Assumption 2 When a contention occurs at time t , the vehicle with the smallest pi(t) gets
access to and enter the intersection at time t .
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This assumption follows the convention in the scheduling literature of giving smaller
numbers to the higher prioritized tasks (Conway et al. 2003). Based on the Definition 2,
each vehicle has a unique priority number. Therefore, there exist no tie among the priority
assignments when a contention occurs.

The intersection access times of lower prioritized vehicles are delayed by higher priori-
tized vehicles. A lower prioritized vehicle can enter the intersection right at or after the time
instant when all the higher prioritized contended vehicles pass the intersection. We make
the following assumption that

Assumption 3 (the CIA Condition) If a contention occurs at time t and pi(t)+1=pj (t),
then vehicle j enters the intersection at time γi[ki], where ki is the number of half cycles
vehicles i has passed through during the time interval [t0, t].

With Assumption 3, the lower prioritized vehicle j cannot enter the intersection after the
time instant γi[ki]. This assumption is also used in the priority-based real-time scheduling
mechanism from Conway et al. (2003), where no inserted idle time should be allowed if
there are one or more tasks waiting to use the shared resource. FCFS and HSF are also based
on this assumption. For the convenience of later references, we call this assumption the
condition of immediate access (or CIA). We will show that the CIA is a necessary condition
for finding a global optimal solution for the co-design problem.

Consider the example in Fig. 2 where the earliest arrival times of all three vehicles are
the same and their intersection occupation time interval overlaps with each other, which
means a contention occurs. Let the priority assignment be p1(α̃1[1])=1, p2(α̃2[1])=2 and

Fig. 2 Illustration of scheduling three vehicles. The upper three sub-figures show the earliest arrivals for each
vehicle when contentions are not considered. The forth sub-figure shows the intersection occupation time
after priorities are assigned to resolve the contention that occurs at α̃2[1]. The colored rectangles represent
intersection occupation intervals when there is no delay and the shaded colored rectangles represent the true
intersection occupation intervals. The bottom sub-figure shows the significant moments tw , which will be
introduced in Section 3
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p3(α̃3[1])=3. Because of the intersection occupation of vehicle 1, vehicle 2 has a time delay
δ2[1], shown by the blue arrow. The time instants α2[1] and α̃2[2] are changed according
to Eq. 6. Also, because of the intersection occupation of vehicle 1 and 2, vehicle 3 has the
longest time delay δ3[1], shown by the red arrow. The time delay δ3[1] increases if vehicle 3
travels with a lower speed between time α̃2[1] and γ2[1]. In other words, the value of δi[ki]
is a function of vehicle speed ui(t) satisfying

∫ γi [ki−1]+Ti+δi [ki ]
γi [ki−1] ui(t)dt =D − L. If ui(t) is a

constant within time interval [γi[ki−1], γi[ki−1]+Ti+δi[ki]], then δ[ki]=(D − L)/ui(t)−Ti.
The time delays δi[ki] also depend on priority assignments P(t). One example is that if we
exchange the priority assignments between system 1 and 3, then vehicle 1 has the longest
time delay.

In summary, the time delay variables δi[ki] are implicit functions of Ci , Ti , ui(t) and
P(t). In Section 3, we will present a timing model which can accurately compute δi[ki] and
update αi[ki] given a specific priority assignment.

2.2 Formulation of model predictive control

We formulate a contention-resolving model predictive control problem to compute opti-
mal priority assignments P∗(t) = (p∗

1(t), ..., p
∗
N
(t)) and an optimal vehicle speed u∗(t) =

(u∗
1(t), ...u

∗
N
(t)) on a time interval [t0, tf ]. The times t0 and tf are the starting and end-

ing points of the MPC time horizon, respectively, and t0 and tf will move forward in time
when the MPC is initiated. Given initial states x(t0)=(x1(t0), ..., xN(t0)) and initial controls
u(t0)=(u1(t0), ..., uN(t0)), the co-design method is to find values for the optimal P∗(t) and
u∗(t) by solving the optimization problem

min
P(t),u(t)

N∑

i=1

Ki∑

ki=1

∫ αi [ki ](P(t),u(t))

γi [ki−1](P(t),u(t))

1

2

[
ui,max−ui(t)

]2 dt (7)

s.t. (1), (2) ∀t ∈ [t0, tf ], (3), (6),
δi[ki]≤�t, (8)

xi(γi[ki −1])=S+L+(ki −1) · (S+D) + x0
i ,

xi(αi[ki])=ki · (S+D)+x0
i for all i and ki (9)

where Ki is the largest index of the half cycle which vehicle i has traveled satisfying
γi[Ki] ≤ tf . The notations γi[ki −1](P(t), u(t)) and αi[ki](P(t),u(t)) represent that these
time instants are implicit functions of priority assignment P(t) and vehicle speed u(t). The
cost function aims to increase the speed as much as possible to increase the intersection
capacity. If a contention happens and a vehicle needs to slow down or stop, then the cost
increases. The interval [α[ki], γi[ki]] is not included in the formulation because ui(t) is
fixed to be ui,int. A set of constraints (1), (2), (3) and (6) need to be satisfied for all times
t ∈ [t0, tf ]. To ensure fairness, Eq. 7 represents that we require all the time delay variables
δi[ki] to be less than or equal to a constant Δt , where Δt is the maximal time delay that can
be tolerated by a vehicle. Equation 8 is the boundary condition by the definitions of γi[ki]
and αi[ki].

Since u(t) is a vector of real numbers and P(t) is a vector of integers at each time t , the
contention-resolving MPC problem is a mixed integer optimization problem (or MIP). It is
a nonlinear and non-convex optimization problem that is difficult to solve. And the MIP
associated with contention-resolving MPC is hard to be solved using existing optimization
techniques, for two reasons. First, the priority assignments pi(t) cannot be replaced by
constant real numbers, because the relaxation will not add new freedom to the search for



Discrete Event Dynamic Systems

optimal solutions. Second, the cost function for each i is not an explicit function of the
priority assignment P(t), hence convex optimization cannot be applied.

3 Analytical timingmodel

Even though the traffic system evolves continuously in time, due to the constrained occu-
pation of the intersection, there are certain moments in time that are more significant than
other moments. The earliest arrival time α̃i[ki], the intersection entrance time αi[ki], and
intersection exit time γi[ki] are called significant moments. In our proposed framework of
contention-resolving MPC, the earliest arrival time α̃i[ki] will initiate or re-initiate the com-
putation of contention-resolving MPC controllers to determine the control effort ui(t) and
the priority value pi(t) for all i. And γi[ki] and αi[ki] are the lower and upper integral lim-
its of the cost function of MPC. In order to obtain the significant moments, it is necessary to
compute δi[ki], which is not easy since we need to consider how many vehicles are compet-
ing for the intersection and whether they will be delayed. We leverage the task scheduling
theory and model the prioritized intersection scheduling as one of the preemptive-repeat
problems.

3.1 Preemptive-repeat tasks

In task scheduling theory (Conway et al. 2003), if a task’s occupation of a shared resource
can be interrupted by the arrival of another task, then the task is called a preemptive task.
Suppose the interrupted task needs to occupy the shared resource for a length of time C.
If the task can continue its occupation of the resource until a total occupation time of C,
then the task belongs to the type of preemptive-resume. On the other hand, if the task has
to restart its occupation of the resource after it is preempted, regardless how much time
it has occupied the resource before the preemption, then the task belongs to the type of
preemptive-repeat. A preemptive-repeat task will finish request the shared resource only
when it occupies the shared resource for an uninterrupted time window of length C.

We model the earliest arrival time α̃i[ki] as the resource requesting time of a task in
scheduling theory and define the total process time of this task to be the intersection occupa-
tion timeCi . If there are no other vehicles which have the same earliest arrival time as α̃i[ki],
this task can start processing. If there are no other task j having contention with task i, i.e.
no contention occurs to vehicle i within its ki-th half cycle, then there is no preemption and
task i can finish the processing. If there exists a task j such that i and j have a contention
and j is assigned a higher priority than i, then the processing of task i is preempted by j and
the whole processing of task i will be repeated at γj [kj ]. Task i may be preempted by the
arrival of another higher prioritized task again until there is an uninterrupted time window
of length Ci for task i. This time window is the true intersection occupation time interval of
vehicle i. The preemption mechanism guarantees that the order of entering the intersection
follows the priority assignment and satisfies the CIA assumption. The task repeating mech-
anism guarantees the physical constraint that there is no interruption once a vehicle enters
and occupies the intersection.

3.2 The timing states

In our previous work (Shi and Zhang 2015; Shi et al. 2017), we developed the significant
moment analysis (or SMA) method and established timing models that can compute δi[ki]
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for the preemptive-resume tasks and the non-preemptive tasks, which are different from the
preemptive-repeat tasks for the traffic intersection scheduling problem. Here we use SMA
to derive a new analytical timing model for the preemptive-repeat tasks, which has not been
presented in Shi and Zhang (2015) and Shi et al. (2017).

Definition 3 At each time t within the time horizon [t0, tf ] of contention-resolving MPC,
we define the timing state variable Z(t) = (D(t), R(t), O(t)) as follows. The dynamic
deadline variable is D(t) = (d1(t), ..., di(t), ..., dN(t)), where di(t) denotes how long
after time t the next request of task i will be generated. The remaining time variable is
R(t) = (r1(t), ..., ri(t), ..., rN (t)), where ri(t) is the amount of time needed after time
t to complete the processing of current task i. The dynamic response time variable is
O(t) = (o1(t), ..., oi(t), ..., oN(t)), where oi(t) denotes the length of time from the time
when the most recent request from task i is generated to the minimum of (a) the time when
the most recent request from task i is completed and (b) the current time t , i.e.,

oi(t)=min{γi[ki], t}−αi[ki], if t ∈ [αi[ki], αi[ki +1]). (10)

The initial values for the timing states Z(t) are

di(t0)=
{

Ti +Ci, if α̃i[1]=0
0, otherwise

, ri(t0)=
{

Ci, if α̃i[1]=0
0, otherwise

, and oi(t0)=0.

3.3 Timingmodel for intersection scheduling

We divide [t0, tf ] into a set of disjoint sub-intervals [tw, tw+1) such that resource requests
from any task are only generated at tw , but not at any other time point within (tw, tw+1).
Hence tw equals to α̃i[ki] for some i. Since the previous request from task i has to be ful-
filled before a new request can be generated, the dynamic deadline must satisfies di(t

−
w ) = 0

where t−w denotes t → tw while t < tw e.g. the limit when t approaches tw from the left. If
the values of the dynamic deadlines are known at tw , then tw+1 can be computed by

tw+1= tw+min
{
d1(tw), ..., dN(tw), tf −tw

}
. (11)

An illustration of computed tw is shown in Fig. 2.
The evolution of Z(t) within any sub-interval [tw, tw+1) can be derived as follows:
At time t = tw: We first discuss the value of [di(t), ri(t), oi(t)] at times tw . For any task

i, the values of the state vector at time tw , i.e. [di(tw), ri(tw), oi(tw)], depend on whether an
new request of task i is generated at tw .

(1) If task i generates a new request at tw , then we have that di(t
−
w ) = 0. In this case, the

state vector [di(t), ri(t), oi(t)] is updated as
di(tw)=Ti +Ci, ri(tw)=Ci, oi(tw)=0. (12)

(2) If task i does not generate a new request at tw , i.e. di(t
−
w ) �= 0, then there is at least

a task j such that dj (t
−
w ) = 0, j �= i. There are three different cases that need to be

discussed. The first case (2a) is that task i has completed processing, i.e. ri(t−w ) = 0.
The second case (2b) is that task i is being processed, i.e. ri(t

−
w ) > 0 and task i has

higher priority than task j , i.e. pi(t
−
w ) < pj (t

−
w ). Then the timing states of task i is

not affected by the new request from task j . Hence, there exist no jumps for the value
of timing states of task i,

di(tw)=di(t
−
w ), ri(tw)=ri(t

−
w ), oi(tw)=oi(t

−
w ). (13)
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The third case (2c) is that task i is being processed, i.e. ri(t−w ) > 0, but task i has lower
priority than task j , i.e. pi(t

−
w ) > pj (t

−
w ). In this case, the new request from task j

preempts task i, so that the timing states of task i are reset to

di(tw)=Ti +Ci, ri(tw)=Ci, oi(tw)=oi(t
−
w ). (14)

In particular, di(tw) and ri(tw) are reset to their initial values as in Eq. 12.

We define Si,j = {t ∈ [t0, tf ] : pi(t) < pj (t)} which is a set containing all the time
instants when task i is assigned with higher priority than task j . The complement of set Si,j ,
denoted as Sc

i,j = {t ∈ [t0, tf ] : pi(t) > pj (t)} is the set containing all the time instants
when task i is assigned with lower priority than task j . Following from Eqs. 12–14, we can
express the evolution of the timing states di(t) for task i from t−w to tw as:

where sgn is defined by sgn(q) = 1 if q ≥ 0 and sgn(q) = 0 if q < 0 and the notation
is defined to be 1 if a time instant t ∈ S and 0 if t /∈ S for any set S. The mean-

ing of Eq. 15 is as follows. For case (1) where di(t
−
w ) = 0, we have sgn(di(t

−
w )) = 0 and

1− sgn(di(t
−
w ))=1. Then the first term [1− sgn(di(t

−
w ))](Ti +Ci) in Eq. 15 equals Ti +Ci

while the second and third terms in Eq. 15 equal 0, which agrees with Eq. 12. For the case
(2c) where di(t

−
w )>0, ri(t−w )>0 and pi(t

−
w )>pj (t

−
w ), we have equivalent representations

of these three conditions as sgn(di(t
−
w ))=1, sgn(ri(t−w ))=1 and while both

1− sgn(ri(t−w )) = 0 and resulting in
Therefore, when case (2c) occurs, the second term in Eq. 15 equals Ti +Ci while the first
and third terms are 0, which agrees with Eq. 14. As for the case (2a) where di(t

−
w ) > 0,

ri(t
−
w ) = 0, we have sgn(di(t

−
w )) = 1 and 1− sgn(ri(t−w )) = 1. For the case (2b) where

di(t
−
w ) > 0, ri(t

−
w ) > 0 and pi(t

−
w ) < pj (t

−
w ), we have sgn(di(t

−
w )) = 1, sgn(ri(t−w )) = 1

and . Either (2a) or (2b) occurs, we can see that sgn(di(t
−
w )) = 1 and

, as Eq. 13. Similarly, we can
derive the evolution of the timing states ri(t) and oi(t) as

At time t ∈ (tw, tw+1): For the deadline variable di(t), it decreases constantly with the
rate ḋi (t) = 0 if there are another higher prioritized tasks occupying the shared resource
while task i is waiting to use the share resource, i.e., ri(tw) > 0. The decreasing rate ḋi (t)

equals −1 otherwise. The total amount of time when ḋi (t) = 0 within [tw, tw+1) can be
computed

sgn(ri(tw))
∑

q∈HPi (tw)

rq(tw),
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where HPi (tw) = {j ∈ {1, . . . , N} : pj (tw) < pi(tw)} is the set of all indices of vehicles
which have higher priorities than vehicle i at time tw . Therefore, the deadline variable at
time t is

di(t)=di(tw)−max

⎧
⎨

⎩
0, t−tw−sgn(ri(tw))

∑

q∈HPi (tw)

rq(tw)

⎫
⎬

⎭
, (18)

where the function max guarantees that the amount of time when ḋi (t) = −1 will not be
a negative value. This equation is different from the equations for preemptive-resume and
non-preemptive tasks published in our previous work (Yao et al. 2020). As for the remaining
time and dynamic response variables, the evolution rules are

ri(t) = max

⎧
⎨

⎩
0, ri(tw)−max

⎧
⎨

⎩
0, t−tw−

∑

q∈HPi (tw)

rq(tw)

⎫
⎬

⎭

⎫
⎬

⎭
,

oi(t) = oi(tw)+sgn(ri(tw))min

⎧
⎨

⎩
t−tw, ri(tw)+

∑

q∈HPi (tw)

rq(tw)

⎫
⎬

⎭
(19)

These equations are identical to the equations for preemptive-resume tasks, which has been
addressed by our previous work (Yao et al. 2020).

Combining all of the evolution rules leads to the timing model of intersection scheduling,
which computes the value of Z(t) at time t , given the initial state variable Z(t0), the vehicle
timing parameters (Ci, Ti) for all i and a specific priority assignment P(t0 ∼ t), where
P(t0∼ t) is a simplified notation to represent the priority assignment for all vehicles during
the time interval [t0, t]

Z(t)=H(t; Z(t0), (α̃i[ki], Ci, Ti)i=1,...,N ,P(t0∼ t)). (20)

Here we use the function H(·) to represent the timing model, which consists of a set of
analytical algebraic and differential Eq. 11 and Eqs. 15–19.

The timing model is then used to calculate the time delay δi[ki] needed in Eq. 7 for the
MPC problem formulation. Furthermore, δi[ki] is also needed in Eq. 6 to compute αi[ki]
and the γi[ki] which are needed in Eq. 8. By the definition of the variable O(t), we have
δi[ki]=Z2N+i (α̃i[ki +1]−)−Ci , where Z2N+i (α̃i[ki+1]−) denotes the (2N+i)-th element
of Z(αi[ki +1]−).

4 Contention-resolvingMPC algorithm

The formulated co-design problem (7) is a nonlinear and non-convex problem that is dif-
ficult to solve. We convert this difficult problem into a path planning problem that can
be solved iteratively by first generating all the possible priorities. The conversion is based
on the insight that priorities only need to be assigned when a contention occurs, which
only happens at the significant moments α̃i[ki]. Then the optimal vehicle speed control are
designed based on the assigned priorities and significant moments. In this approach, the
co-design of priorities and vehicle control can be decoupled. Then using sampling based
methods, such as the A-star algorithm, the priority assignment can be determined.
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4.1 Construction of decision tree

We use the timing model to determine when contentions occur by checking the following
Proposition,

Proposition 1 Contention happens at time t if and only if the following conditions hold:

N∑

i=1

sgn(ri(t))≥2,
N∑

i=1

sgn(ri(t
−))≤1 and t = α̃i[ki] for some i and ki (21)

where t− represents limit from the left.

Proof Based on Definition 3, if a vehicle i has not finished the current intersection occupa-
tion at t , then ri(t)>0 and sgn(ri(t))=1. Since ri(t) is always non-negative, sgn(ri(t)) ≥ 0
for all t . Therefore,

∑N
i=1 sgn(ri(t)) ≥ 2 is equivalent to two or more vehicles want-

ing to access the intersection, which means a contention is occurring at time t . Since∑N
i=1 sgn(ri(t

−)) ≤ 1 means that no contention happens at time instants before t that are
close to t , the result follows.

Based on the contention times, we can construct a decision tree. Figure 3 shows an exam-
ple of decision tree. In the decision tree, each leaf represents a contention time satisfying
Proposition 1. We denote the contention time by tcl where l is the index of its correspond-
ing leaf. At each contention time, there are only a finite number of vehicles competing for
the access to the intersection. Each possible assignment of the priority to the finite number
of vehicles will produce a branch of a decision tree. The construction of the entire decision
tree is not necessary for contention-resolving MPC algorithm. However, for the purpose of
clearly presenting the concept for the sampling based optimization method, we now briefly
describe how the tree can be fully constructed.

The decision tree construction starts from the root v0 associated with the MPC start-
ing time t0. The construction is performed iteratively. During the construction, if a leaf
has no branches pointing out from it, then it is called unexpanded. At each iteration, new
branches are generated from unexpanded leaves and new leaves are generated at the end
of each branch. For an unexpanded leaf l, let �(tcl ) denote the set of vehicles having con-
tentions at a contention time tcl . And we define M as the number of elements of �(tcl ). And
let Pm denote the m-th permutation in P({1, ...,M}), so m ∈ {1, 2, ..,M!}. For leaf l, we
generate M! branches from it. Each branch corresponds to a unique choice of the priority
assignment in P({1, ...,M}). The m-th branch expands from vl and connects to a new leaf
vj+m based on Pm, where j is the number of existing leaves in the tree before we generate
new branches from leaf vl . The contention time represented by leaf vl,j+m is the next con-
tention time occurs after tcl scheduled by priority assignment Pm. Different branches may
end with different next contention times after tcl . The iterative construction terminates when
the contention times of all unexpanded leaves are greater or equal to tf . And we call these
unexpanded leaves terminal leaves and assign tf to them as their contention times.

An example of scheduling three vehicles for four consecutive contentions is shown in
Fig. 3. The upper part of the figure shows the constructed decision tree and the lower part
shows the intersection occupation scheduled by the priority assignments along the path with
green arrows. Notice that in this example, the second earliest arrival of vehicle 1 is delayed
by vehicle 2 at tc2 and vehicle 3 at t

c
5 . This is because at these two contention times, vehicle 1

are assigned with lower priority. This is a scenario which was not considered in our previous
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work (Yao and Zhang 2018) and motivates us to propose a new formula for branch costs,
which will be presented in the next section.

4.2 Branch cost

After constructing the decision tree, we define a cost for each branch. Along one branch
(l, j) whose associated priority assignment is Pm, we first calculate the significant moments
αi[ki] and γi[ki] for all i and ki such that tcl ≤αi[ki]≤ tcj ,

Z(t) = H(t; Z(tcl ), (α̃i[ki], Ci, Ti)i=1,...,N ,Pm),

δi[ki] = Z2N+i (α̃i[ki +1]−)−Ci, αi[ki]= α̃i[ki] + δi[ki],
γi[ki] = αi[ki]+Ci, α̃i[ki +1]=γi[ki] + Ti . (22)

Based on the computed δi[ki] from Eq. 22, if there exists any i and ki such that δi[ki]>�t ,
then the priority assignment Pm is infeasible because under such priority assignment, the
constraint Eq. 8 is violated. We define the corresponding branch cost wl,j = +∞ if Pm is
infeasible. If Pm is feasible, then branch cost wl,j is defined as

wl,j =
N∑

i=1

wi
l,j (23)

where wi
l,j is the cost of vehicle i and it can be computed by solving the following opti-

mization problem based on the significant moments calculated along a branch. Let ki be the

Fig. 3 Decision tree to solve the co-design problem for a finite time window. The blue circle represents the
root v0, grey circles and dots represent internal leaves. The decision tree is expanded in the direction of the
arrows, which represent the branches. The colored rectangles in the lower part of the figure represent the
time delay δi . The starting time of the colored rectangles is the earliest arrival time α̃. The shaded colored
rectangles represent the intersection occupation time of each vehicle under the assigned priorities
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smallest index satisfying γi[ki] > tcl and ki be the largest index satisfying γi[ki] ≤ tcj . If

ki ≤ ki , then

wi
l,j =

ki∑

ki=ki

min
ui (t)

∫ αi [ki ]

γi [ki−1]
1

2

[
ui,max−ui(t)

]2 dt (24)

s.t. (1), (2), (9) and given γi[ki −1], αi[ki]
where ri[0] is defined to be t0 for all i. The meaning of Eq. 24 is as follows. If the ki-th
intersection occupation of vehicle i is completed between the contention times tcl and tcj , i.e.
γi[ki]∈(tcl , tcj ], then the cost of the (ki−1)-th half cycle, traveled between [γi[ki−1], αi[ki]],
is included in the branch cost wl,j . If no intersection occupation of vehicle i is completed
within [tcl , tcj ], i.e. ki > ki , then wl,j =0. This branch cost formulation ensures that all costs
included in one branch are determined and will not be changed by the priority assignments
at or after time tcj . The cost of the incompleted (ki+1)-th half cycle will be included by the
branches following the branch (l, j).

Figure 4 shows an illustration of the defined branch cost for the blue and green paths
in Fig. 3. The different priority assignments at tc5 cause different branch cost computations.
In the blue path, the cost of vehicle 1 consists of two intervals because another contention
occurs at tc10. In the green path, the cost of vehicle 1 involves only one interval because
the next contention occurs after time tf . The optimal vehicle control design is embedded
in the branch cost calculation. We need to solve the optimization problem (24) to obtain
the optimal control law u∗

i (t). In the next section we present an analytical solution for this
optimal control problem.

Remark 2 Along any arbitrary path in the decision tree, all the significant moments are
deterministic and can be computed by the timing model. For any γi[ki] along this path, we
can always find the consecutive contention times tcl and tcj such that γi[ki]∈[tcl , tcj ) and the
cost of the half cycle before γi[ki] is added in the branch cost. This guarantees that no cost
is left out between branches.

The optimal vehicle control design is embedded in the branch cost calculation. We need
to solve the optimization problem (24) to obtain the optimal control law u∗

i (t). In the next
section we present an analytical solution for this optimal control problem.

Fig. 4 Illustration of branch costs along paths. The ending time of the shaded colored rectangles represents
γi . The dashed rectangles represent the time intervals [γi [ki ], αi [ki + 1]) to compute the branch costs wi

l,j
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4.3 Analytical solution of the optimal vehicle control

For a vehicle i at the time instant γi[ki −1], if this vehicle will not have any contention
with other vehicles within its ki th half cycle, then the actual arrival time αi[ki] = α̃i[ki].
Therefore, vehicle travels with its maximal speed limit ui,max within the ki th half cycle.
Consider the case when vehicle i will have a contention with other vehicles, but vehicle i is
assigned with the highest priority, i.e., pi(t

c
l ) = 1. To minimize the cost in Eq. 24, vehicle

i should travel through the intersection with its maximal speed ui,max because it has the
highest priority when contention occurs and no other vehicles can delay it from entering the
intersection. If vehicle i will have a contention with other vehicles, but vehicle i is assigned
with lower priority, i.e., pi(t

c
l )>1, it can only enters the intersection after all vehicles with

higher priorities leave the intersection area. The optimal speed for vehicle i can be computed
through solving a constrained optimization problem:

min
ui (t)

∫ αi [ki ]

γi [ki−1]
1

2

[
ui,max−ui(t)

]2 dt with constraints (1), (2), (9). (25)

We first show that this problem has feasible solutions.

Lemma 1 Given γi[ki −1] and αi[ki], a feasible solution always exists under constraints
(1), (2) and (8).

Proof If αi[ki] = α̃i[ki], the unique feasible solution is that a vehicle travels with the
maximal speed ui,max. If αi[ki] > α̃i[ki], vehicle i can travel with a lower speed, u0i =
(D − L)/(αi[ki]−γi[ki −1]). Since (3) and (6), we have α̃i[ki] = αi[ki −1]+Ci +Ti =
γi[ki−1]−Ci+Ci+Ti =γi[ki−1]+Ti . Therefore, we have Ti = α̃i[ki]−γi[ki−1], which gives
us the result ui,max=(D−L)/Ti =(D − L)/(α̃i[ki]−γi[ki−1]). Because αi[ki]>α̃i[ki], we
have u0i <ui,max. Therefore, u0i =(D − L)/(αi[ki]−γi[ki−1]) is a feasible solution which is
continuous within the time interval [γi[ki −1], αi[ki]] and satisfies (2).

Then we can compute the optimal control law for vehicle i within the time window
(γi[ki −1], αi[ki]).

Theorem 1 The optimal solution for (24) must satisfy

u∗
i (t)=

D−L

αi[ki]−γi[ki −1] = D−L

Ti +δi[ki] , t ∈[γi[ki −1], αi[ki]] for someki ≥1. (26)

Proof We use a constrained optimization argument based on Sethi and Thompson (2000).
Using the cost function (24), the system dynamics (1), and the control constraints (2), it
follows that for each vehicle i, the Hamiltonian is defined as

Hi(t, xi, ui)= 1
2

(
ui,max−ui

)2+λi(t) · ui +μi,1(ui −ui,max)+μi,2(−ui) (27)

where λi(t) is the Lagrange multiplier, and μi,1 ≥ 0 and μi,2 ≥ are the constant Kuhn
Tucker multipliers for the inequality constraints ui −ui,max ≤ 0 and −ui ≤ 0. The terminal
cost Ψi(t, xi, ui) is 0 since there is no terminal cost in the original cost function in Eq. 24.
Therefore, the Euler-Lagrange condition becomes

λ̇i =− ∂Hi

∂xi
=0, λi(αi[ki])= ∂Ψi

∂xi

∣
∣
∣
αi [ki ]

=0.
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Then λi(t)=0 for all t ∈ [γi[ki −1], αi[ki]]. The necessary condition for optimality is

∂Hi

∂ui

=−ui,max+ui(t)+λi(t)+μi,1−μi,2=0.

Therefore, the optimal vehicle speed is a constant given by u∗
i (t)=ui,max−μi,1+μi,2. Then

(1) gives

xi(t)=xi(γi[ki −1])+u∗
i (t) (t−γi[ki −1]) , t ∈[γi[ki −1], αi[ki]]. (28)

Using the boundary condition xi(αi[ki]) = xi(γi[ki −1])+D−L from Eq. 8 and setting
t =αi[ki] in Eq. 28, we then have the equality

xi(γi[ki − 1])+D−L=xi(γi[ki − 1])+u∗
i (t) (αi[ki]−γi[ki −1])

which produces the first formula for u∗
i (t)= D−L

αi [ki ]−γi [ki−1] where ki ≥1. Due to Eqs. 3 and 6,
we can derive αi[ki]= α̃i[ki]+δi[ki]=αi[ki−1]+Ci+Ti+δi[ki]=γi[ki−1]−Ci+Ci+Ti+δi[ki]=
γi[ki−1]+Ti+δi[ki]. Therefore, we have αi[ki]−γi[ki−1]=Ti+δi[ki], which gives us the
second formula in Eq. 26.

Theorem 1 computes the analytical solution of the optimal speed for vehicle i, given the
speed of vehicle j and the significant moments from the dynamic timing model. With this
solution, we can directly compute the branch cost. The pseudo code to compute each branch
cost is presented by Algorithm 1. The algorithm solves the optimal control design iteratively
in the order of priorities.

4.4 Costs for searching algorithm

Based on the decision tree, the MIP problem in Section 2.2 can now be converted to the
problem of finding a path from t0 to tf such that the whole cost along the path is lowest.
Among all the paths in decision tree, the lowest cost path can be found by path planning
algorithms and the priority assignments and control commands along the lowest cost path
will be the solution for the MIP problem (7). However, constructing the entire decision tree
would be exhaustive and unrealistic when considering a relatively large number of control
systems or a long time window. we propose a search algorithm that only needs to construct
a subtree of the decision tree while we are searching for the optimal path. This method is
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inspired by the A-star algorithm (Hart et al. 1968) that has been widely used for online path
planning in robotics, which has been found to significantly reduce computation time.

The A-star algorithm will iteratively generate and search the leaves starting from the root
and terminate when it reaches a terminal leaf. To use the A-star algorithm, we define leaves
in two categories: i) If a leaf has been generated and all its child leaves have been generated
by the search algorithm, then we call such a leaf closed. ii) If a leaf has been generated
and at least one of its child leaves has not been generated by the search algorithm, then we
call such a leaf open. If a leaf is open and its parent leaf is closed, then the leaf is called a
frontier leaf. All frontier leaves are added to a set called the frontier list, which keeps track
of the leaves that can be expanded by the A-star algorithm. The frontier list is a sorted list
where all the leaves in it are sorted according to a function

Cf (vl) = Cg(vl) + Ch(vl) (29)

from the smallest to largest value where l is the index of a leaf. The function Cg(vl) is called
the stage cost, which is the sum of branch costs along the path starting from the root to the
current leaf vl and Ch(vl) is the minimal future cost from the current leaf vl to a terminal
leaf where the minimization is over all priority assignments and allowable controls.

Since the path from the root v0 to a leaf vl is unique, the stage cost can be computed
using Cg(vl) = Cg(vp) + wp,l where p is the index of the parent leaf of vl . For the A-
star algorithm to work, an estimation Ĉh(vl) of future cost (also called the heuristic cost) is
needed for which Ĉh(vl) ≤ Ch(vl) for all vl , so the estimated cost Ĉf (vl) = Cg(vl)+Ĉh(vl)

equals to the actual cost Cf (vl) when vl is a terminal leaf. Since if no contention occurs, all
the vehicles can travel with their maximal speed limit. Therefore, we can estimate the future
cost Ĉh(vl) as

Ĉh(vl) = 0, (30)

During the search by the A-star algorithm, all leaves v in the frontier list are sorted
according to the value of Ĉf (v), from the smallest to the largest. At each iteration, the A-star
algorithm expands the leaf with the smallest Ĉf by generating all its child leaves and then
removes the expanded leaf from the frontier list. All its child leaves are added to the frontier
list. The heuristic cost Ĉh(vl) will make it possible to search the most promising paths first,
and the optimal solution can be found without examining all possible paths. Therefore, the
search algorithm leveraging A-star does not generate the entire decision tree.

In addition to the frontier list, we also have a generated set which consists of all leaves
which have been generated by the A-star algorithm. Each leaf vl in the generated set is
also assigned a pointer PT (vl) which equals the index of its parent leaf so that the A-star
algorithm can backtrack from it to its parent leaf.

4.5 Contention-resolvingMPC algorithm

Algorithms 2–4 present the pseudocode for our proposed algorithm based on the A-star
algorithm to solve the optimization problem (7). Algorithm 2 presents the search algorithm.
The optimal path search starts from the root v0. The search algorithm keeps updating two
sets, which are the frontier list and the generated set.
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Algorithm 3 backtracks the path from the selected terminal leaf to v0 when case (1)
is satisfied in the search algorithm. The backtracking starts from the terminal leaf vl and
utilizes the pointer PT (vl) to obtain the parent leaf vp. The optimal priority assignment
P∗(t) for the time interval between the contention time instants of vp and vl equals the
priority assignment along the branch connecting vp and vl . Then we repeat this process with
vl and vp replaced by vp and the parent leaf of vp , respectively. We repeat the backtracking
process to obtain the optimal priority assignment P∗(t) until the contention time instant
equals t0. Algorithm 3 returns the optimal priority assignment P∗(t) for all t ∈ [t0, tf ] to
the main program in Algorithm 2.

Algorithm 4 expands the selected leaf from the frontier list when case (2) is satisfied in
the search algorithm. It utilizes Proposition 1 to determine the next contention time after a
contention time t . Then it calls Algorithm 1 to compute the optimal control u∗

i (t) and com-
pute the branch cost wl,j+m. Algorithm 4 returns the child leaf vj+m, the next contention
time tcj+m and the branch cost wl,j+m to the main program in Algorithm 2.
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Fig. 5 Illustration of the subtree constructed by the proposed search algorithm. The blue circle represents the
root v0. Green circles represent leaves in the frontier list. Solid black arrows represent branches generated by
the algorithm and dashed green arrows represent the estimate cost Ĉh(vl). The red arrows represent the path
with lowest cost

The searching algorithm does not generate the whole decision tree. Instead, it efficiently
generates a subtree without losing optimality. At each iteration of the searching algorithm, it
determines which leaf to expand further by selecting the leaf vl with minimal Ĉf cost. Once
the selected leaf is a terminal leaf, the lowest cost path is found. Figure 5 is an illustration of
the subtree constructed by our algorithm described above, using the same example as Fig. 3.
Compared with the entire decision tree in Fig. 3, some internal leaves in the subtree are
open because our algorithm does not expand every leaf but intelligently expands a subset of
leaves without losing optimality. Once the construction of the subtree reaches the terminal
leaf, our algorithm backtracks the path along the red arrows. The total number of branches
generated by the algorithm is 11, which reduces the computational workload for generating
the entire tree.

4.6 Optimality of Contention-resolvingMPC

In this subsection, we prove that our algorithm finds the optimal solutions P∗(t) and u∗(t)
which minimize (7) given the CIA assumption.

Proposition 2 The CIA assumption is a necessary condition for contention-resolving MPC
algorithm to find the global optimal solution.

Proof We prove the contrapositive of this proposition: if the CIA assumption is relaxed,
then there are situations where a better solution exists compared to the solution computed
by contention-resolving MPC.
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Fig. 6 Illustration of further delaying the arrival of a vehicle

Assume that a contention occurs among vehicle i and some other vehicles at time α̃i[ki].
Then after the computation of contention-solving MPC, the priority assignment is deter-
mined and the time delay of vehicle i, δi[ki], can be computed by Eq. 20 given the priorities
computed by MPC. And we assume after k0−1 half cycles, the second contention occurs
to vehicle i at time α̃i[ki +k0] and the time delay of vehicle i is δi[ki +k0]. For the k0−1
half cycles between the time interval [α̃i[ki]+δi[ki]+Ci, α̃i[ki +k0]], vehicle i can travel
with its maximal speed. Figure 6 shows an illustration of the considered case. According
to Eq. 26, the optimal speed for vehicle i within [γi[ki −1], αi[ki]) is u∗

i (t) = D−L
Ti+δi [ki ] and

within [γi[ki +k0−1], αi[ki +k0]), the optimal speed is u∗
i (t)= D−L

Ti+δi [ki+k0] . The cost under
such schedule can be computed as

JMPC =
(

ui,max− D−L

Ti +δi[ki]
)2

(Ti +δi[ki])

+
(

ui,max− D−L

Ti +δi[ki +k0]
)2

(Ti +δi[ki +k0]).
Now we consider the case where the actual arrival time of vehicle i is further delayed by

Δ at the first contention time, i.e., vehicle i arrives at the intersection at α̃i[ki]+δi[ki]+Δ. All
the earliest arrival times after time α̃i[ki]+δi[ki]+Δ are also delayed by Δ. And we assume
the delay Δ does not affect the schedule of other vehicles and introduce more contentions.
The cost under such schedule can be computed as

J (Δ) =
(

ui,max − D−L

Ti +δi[ki]+�

)2

(Ti +δi[ki]+Δ)

+
(

ui,max − D−L

Ti +δi[ki +k0]−�

)2

(Ti +δi[ki +k0]−Δ)

where Δ>0. Then, if we take the difference of these two costs, we have

JMPC−J (Δ)= (D−L)2(2Ti +δi[ki]+δi[ki +k0])(δi[ki +k0]−δi[ki]−Δ)Δ

(Ti +δi[ki])(Ti +δi[ki +k0])(Ti +δi[ki]+δi[ki +k0])Ti

(31)

From Eq. 31 we can see, if 0 < Δ < δi[ki +k0] and δi[ki +k0]−δi[ki]−Δ > 0, we have
JMPC > J(�). In other words, if the time delay δi[ki +k0] is greater than δi[ki], then we
can always find a � satisfying 0 < Δ < δi[ki +k0]−δi[ki] and the cost J (Δ) will be less
than JMPC. In the case where δi[ki +k0] > δi[ki], contention-resolving MPC can only find
a sub-optimal solution if Assumption 3 is relaxed.

A numerical exmaple where the conditions 0<Δ<δi[ki+k0] and δi[ki+k0]−δi[ki]−Δ>0
are satisfied will be presented in Section 5.3 to further justify the proof above.
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Theorem 2 Based on Assumptions 1, 2 and 3, the Algorithm 2 finds the optimal solution
P∗(t) and u∗(t) for the optimization problem formulated by Eq. 7.

Proof Since all branch cost is non-negative, Ĉh(vn) ≤ Ch(vn) for all vn is satisfied. From
Hart et al. (1968), if Ĉh(vl) ≤ Ch(vl) for all vl , the A-star algorithm finds the minimal total
cost from v0 to a terminal leaf.

Remark 3 After contention-resolving MPC algorithm computes the optimal solution P∗(t)
and u∗(t) for all t ∈ [t0, tf ], only the P∗(t) and u∗(t) for the first sub-interval t ∈ [t0, t1],
where t1 is the significant moment computed by Eq. 11. Then at time instant t1, the con-
tention resolving MPC will be triggered again. The decision tree will be reconstructed with
t1 replaced by t0 and tf replaced by tf +t1−t0. Then the P∗(t) and u∗(t) will be applied for
the sub-interval t ∈ [t1, t2]. And the process repeats.

Remark 4 Since the set P({1, ...,M}) contains all possible priority assignments, it also
includes the priorities following the FCFS and the HSF rules. Therefore, the priorities
assigned by the FCFS and HSF strategies are represented by paths in the decision tree, but
not necessarily the path with the minimal cost. Therefore, our method can guarantee to find
a better or same solution as FCFS and HSF strategies.

Remark 5 And since all the scheduling strategies and the optimal solution are based on
Assumption 3, we will also provide a insight discussion about the cases where Assumption
3 is relaxed in Section 5.3.

5 Case studies

This section presents the simulation results obtained by the proposed method implemented
in Matlab. We compare our proposed method with first come first serve scheduling (or
FCFS) strategy and highest speed first (or HSF) strategy and demonstrate that our optimal
scheduling method can provide a better solution than FCFS and HSF.

In the simulation, we consider 5 vehicles traveling on the figure eight track. The vehicle
length L is 15 feet. We choose S and D such that S+L= 0.75 miles, D−L= 6 miles. Let
tf =25 minutes and the speed limit of the first vehicle be u1,max=1.25 miles per minute (75
mph). Let the speed limit of the other four vehicles be the same, u2,max=u3,max=u4,max=
u5,max = 1 mile per minute (60 mph). The intersection speed ui,int = 0.75 mile per minute
(45 mph) for all i.

5.1 Contention-resolvingMPC VS FCFS

For the first studied case, we set the initial positions to be x0
1 = 4.25, x0

2 = 4.85, x0
3 = 3.25,

x0
4 =0.75 and x0

5 =0 miles. In this setup, vehicle 5 arrives at the intersection at time 0. The
earliest arrival times of vehicles 1,2,3 and 4 are 2, 1.9, 3.5 and 6 minutes, respectively. The
algorithm only takes 0.12 seconds to find the solution for this example. The total cost is
0.3758.

The intersection occupation result is shown in Fig. 7. The vehicle speed design is shown
in Fig. 8. Four contentions occur in the time interval [0, 25]. The first contention occurs at
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Fig. 7 Intersection occupation for scheduling five vehicles. The y axis value 1 means that the vehicle is
occupying the intersection, 0 means that the vehicle has not arrived at the intersection, and 0.5 means that
the earliest arrival of a vehicle is delayed by a contention. The black crosses mark the time instant when a
contention occurs

time 2. Although the earliest arrival time of vehicle 2 is smaller than vehicle 1, the priority
assignment computed by our method gives vehicle 1 higher priority (which is different from
the priority assigned by the FCFS strategy) because it has a higher speed limit than vehicle
2. At time 3.5, the second contention occurs between vehicles 2 and 3, which creates the
possibility that vehicle 2 can be delayed twice. Our method can solve this problem and
determines that the optimal priority assignment is that vehicle 2 crosses the intersection

Fig. 8 Optimal vehicle speed of scheduling five vehicles. The shaded areas mark the time interval when a
vehicle is crossing the intersection
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before vehicle 3. Twomore contentions occur at 14 and 20 minutes, and vehicle 1 is assigned
a higher priority to resolve these two contentions.

For comparison, if we always assign higher priority to the vehicle which arrives at the
intersection first, i.e. following the FCFS strategy, and use regular MPC to design the vehicle
speeds, then the cost would be 0.5114, which is 36% higher than our solution. While the
example is simple, the simulation results show that our method performs better than the
FCFS. Notice that in this specific simulation case, vehicle 1 always has highest priority,
which agrees with the HSF scheduling strategy because vehicle 1 has the highest traveling
speed. However, HSF is not always the optimal solution, which will be shown in the next
subsection.

5.2 Contention-resolvingMPC VS HSF

In the previous simulated case, the optimal priority assignment is the same as the priority
assignment under HFS. However, if we change the initial condition, the HFS will not be
optimal and we will show that our optimal priority assignment can perform significantly
better than HSF strategy.

Let the initial condition to be x0
1 = 1, x0

2 = 3, x0
3 = 4, x0

4 = 5 and x0
5 = 0 miles. In this

setup, vehicle 5 arrives at the intersection at time 0. The earliest arrival times of vehicles
1,2,3 and 4 are 4, 3, 2 and 1 minutes, respectively. The contention-resolving MPC algorithm
only takes 0.09 seconds to find the solution for this example. The total cost is 0.4662.

The decision tree constructed by contention-resolving MPC is shown in Fig. 9. Six con-
tentions occur in the time interval [0, 25]. Therefore, the total number of leaves in the fully
constructed decision tree is 26 = 64. And we can see that using the A* inspired searching

Fig. 9 Decision tree constructed by contention-resolving MPC. Blue numbers represent branch costs wl,j .
The black numbers under leaves represent contention time instant tcl . The red numbers above leaves represent

estimated total costs Ĉf (v). The red arrows represent the path with lowest cost
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algorithm, contention-resolving MPC only needs to generate 24 leaves to find the optimal
solution.

The intersection occupation result where the vehicles are scheduled under the optimal
priority assignment is shown in Fig. 10 and the vehicle speed design is shown in Fig. 11.
The first contention occurs between vehicles 1 and 3 at time 9.8, marked by the black cross.
The second contention occurs between vehicles 1 and 2 right after the first contention at
time 10, marked by the purple cross. As we can see from Fig. 10, although the maximal
speed limit of vehicle 1 is larger than vehicle 3, the priority assignment computed by our
method assigns vehicle 3 with higher priority (represented by the branch between leaf 1
and 3 in Fig. 9). The intuitive reason for such solution is that vehicle 3 only needs an extra
0.2 minutes to pass the intersection when the first contention occurs, while vehicle 1 needs
1 minute to pass the intersection. Therefore, assigning vehicle 3 with higher priority leads
to a smaller cost. Under such priority assignment, the optimal speed u∗

1(t) of vehicle 1 is
reduced to 1.2 miles per minute, which is shown within the time interval [5, 10] in Fig. 11.
Vehicle 1 only needs to slightly sacrifice its maximal speed to resolve this contention while
vehicle 3 travels with its maximal speed. Then at the next contention time 10, the second
contention occurs between vehicles 1 and 2, which creates the possibility that vehicle 1 can
be delayed twice. Our method can resolve this issue and determine that the optimal priority
assignment is that vehicle 1 has higher priority than vehicle 2. Seen from Fig. 11, under this
priority assignment, the optimal speed of vehicle 2 is 6

7 miles per minute within time interval
[4, 11] minutes. Similar situations occur twice at 15.8 and 21.8 minutes, where vehicle 1 is
assigned with a lower priority than the first contended vehicle and a higher priority than the
second contended vehicle.

0 5 10 15 20 25
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0.5
1

Vehicle 1

0 5 10 15 20 25
0

0.5
1

Vehicle 2

0 5 10 15 20 25
0

0.5
1

Vehicle 3

0 5 10 15 20 25
0

0.5
1

Vehicle 4

0 5 10 15 20 25

Time (minutes)

0
0.5

1
Vehicle 5

Fig. 10 Intersection occupation for scheduling five vehicles. The y axis value 1 means that the vehicle is
occupying the intersection, 0 means that the vehicle has not arrived at the intersection, and 0.5 means that
the earliest arrival of a vehicle is delayed by a contention. The black crosses mark the time instant when a
contention occurs
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Fig. 11 Optimal vehicle speed of scheduling five vehicles. The shaded areas mark the time interval when a
vehicle is crossing the intersection

For comparison, if we always assign higher priority to the vehicle with the highest speed
limit, i.e. vehicle 1 always has highest priority following the HSF strategy, and use regular
MPC to design the vehicle speeds, then the cost would be 1.4235, which is 205% higher
than our solution.

5.3 Numerical results without the CIA assumption

In this subsection, we will discuss cases where the CIA assumption is relaxed and show
a numerical example where the contention-resolving MPC can only find a sub-optimal
solution.

Consider 2 vehicles traveling on the figure eight track. Let the speed limit of the first
vehicle be u1,max=1.5 miles per minute (90 mph). Let the speed limit of the second vehicle
be u2,max = 1 mile per minute (60 mph). The intersection speed is ui,int = 0.75 mile per
minute (45 mph) for all i. The initial positions are x0

1 = 4.8 and x0
2 = 0 miles. All the other

parameters are the same as previous simulations.
Figure 12 shows the intersection occupation results of vehicle 1 and vehicle 2 with and

without CIA assumption. With the CIA assumption, we can see two contentions occur
between vehicle 1 and vehicle 2 within the time horizon [0, 25]. The first contention occurs
at 7 minutes. To resolve this contention, vehicle 1 is assigned with higher priority and it
leaves the intersection at 7.2 minutes. Therefore, vehicle 2 can only enter the intersection
at or after time 7.2 minutes. Under Assumption 3, the speed of vehicle 2 is decreased to be
6
6.2 miles per minute for the time window [1, 7.2] such that vehicle 2 arrives at and enter the
intersection at time 7.2 minutes. And it leaves the intersection at 8.2 minutes. Then vehi-
cle 2 travels with its maximal speed and arrives at the intersection at time 14.2 without any
contention with vehicle 1. The second contention between vehicles 1 and 2 occurs at time
21.2. Vehicle 1 is also assigned with higher priority than vehicle 2 to resolve this contention.
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Fig. 12 Intersection occupation for scheduling two vehicles. The First two sub-figures show the intersection
occupation results of vehicle 1 and vehicle 2 computed by contention-resolving MPC under Assumption 3.
The third sub-figure (from top to bottom) shows the intersection occupation time of vehicle 2 with an extra
0.4 minutes time delay. The forth sub-figure shows the intersection occupation time of vehicle 2 with an extra
1 minutes time delay

Therefore, vehicle 1 enters the intersection at at time 21.2 and leaves the intersection at time
22.2. Vehicle 2 travels with a reduced speed 6

7 miles per minute and arrives at the intersec-
tion at time 22.2 and leaves the intersection at time 23.2. The corresponding speed design for
vehicle 2 with CIA is shown by the second sub-figure in Fig. 13. The total cost under such

scheduling and control co-design solution is J1 =
(
1 − 6

6.2

)2 ·6.2+
(
1 − 6

7

)2 ·7 = 0.1493.

Fig. 13 vehicle speed design of scheduling two vehicles
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Case 1: if we relax the CIA assumption and let vehicle 2 be delayed for 0.6 minutes at
the first contention (as shown by the third sub-figure in Fig. 12), then vehicle 2
travels with a reduced speed 6

6.6 miles per minute and arrives at the intersection
at time 7.6, which is 0.4 minute after the time instant when vehicle 1 leaves the
intersection. Since vehicle 2 is delayed for an extra 0.4 minutes compared to the
case with the CIA assumption, the next earliest possible arrival time of vehicle 2
after time 7.6 is 14.6, which is also delayed for an extra 0.4 minutes compared
to the case under the CIA assumption, shown by the sub-figure in the middle of
Fig. 12. At the earliest arrival time 14.6, vehicle 2 does not contend with vehicle
2 so it can travel with its maximal speed within time [8.6, 14.6] and enter the
intersection at time 14.6. The next earliest arrival time of vehicle 2 after time 14.6
is 22.6 where second contention occurs. Vehicle 1 is also assigned with higher
priority than vehicle 2 to resolve this contention. Therefore, vehicle 1 enters the
intersection at at time 21.2 and leaves the intersection at time 22.2. Vehicle 2
travels with a reduced speed 6

6.6 miles per minute and arrives at the intersection
at time 22.2 and leaves the intersection at time 23.2. The corresponding vehicle
speed design is shown by the third sub-figure in Fig. 13. The total cost under

this schedule and vehicle speed control is J2 =
(
1 − 6

6.6

)2 · 6.6 +
(
1 − 6

6.6

)2 ·
6.6 = 0.1091, which is less than J1. This numerical result shows that if the CIA
assumption is relaxed, contention-resolving MPC cannot find the global optimal
solution. A solution which leads to smaller cost than the solution computed by
contention-resolving MPC may exist.

Case 2: if we relax the CIA assumption and further delay the arrival of vehicle 2 at the
first contention, as shown by the bottom sub-figure in Fig. 12, then vehicle 2
travels with a reduced speed 6

7.2 miles per minute and arrives at the intersection
at time 8.2, which is 1 minute after the time instant when vehicle 1 leaves the
intersection. Then the next two earliest possible arrival times of vehicle 2 after
time 7.6 are 15.2 and 23.2 minutes. At both arrival times, vehicle 2 does not
contend with vehicle 1 which reduces the number of contentions. It can travel with
its maximal speed within time [9.2, 25]. The corresponding vehicle speed design
is shown by the bottom sub-figure in Fig. 13. The total cost under this schedule

is J3 =
(
1 − 6

7.2

)2 · 7.2 = 0.2, which is greater than J1 and J2. This example

shows that further delaying the arrival of a vehicle not only affect the cost of
the co-design optimization solution, it can also change the number of contentions
in the future, which changes the structure of the decision tree. From Eq. 31, if
� ≥ δi[ki +k0], i.e., the extra time delay is large enough such that the second
contention will not occur, then we have δi[ki +k0]−δi[ki]−� < 0, which leads
to JMPC < J(�). Therefore, further delaying the arrival of a vehicle to avoid
the second contention cannot reduce the cost computed by contention-resolving
MPC.

6 Conclusions and future work

Coordinating automated vehicles at traffic intersections is a challenging problem that is
of compelling ongoing research interest, owing to the limitations of traditional traffic
light, FCFS and HSF scheduling approaches. We presented a novel method to co-design
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a b

Fig. 14 Examples of realistic intersections setup that “figure eight” shaped road is related to. a The equivalent
two-lane intersection as the “figure eight” set up. b A complicated four-lane intersection

priority assignments and control the travel speeds of vehicles at an idealized intelli-
gent intersection. Our simulation results demonstrated promising improvements using the
contention-resolving MPC method, compared with the FCFS and HSF scheduling methods.

The idealized traffic model is quite similar to a two-lane intersection as Fig. 14a, where
arrival times of a new vehicle (arriving at the red dashed line) are predictable. For future
work, we may change the distribution of the vehicle arrival time to obey Poisson distri-
butions. This “two-lane” intersection is the basic problem because it is an element of a
complicated intersection where a vehicle can turn right, go straight, or turn left, as shown in
Fig. 14b. Each red node is one contented area that can be viewed as the intersection area in
the idealized model. For future work, we will develop contention-resolving MPC for traffic
control and scheduling at such multi-lane intersections.
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