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Abstract— Detecting inaccurate smart meters and targeting them for replacement can save significant resources. For
this purpose, a novel deep-learning method was developed based on long short-term memory (LSTM) and a modified
convolutional neural network (CNN) to predict electricity usage trajectories based on historical data. From the
significant difference between the predicted trajectory and the observed one, the meters that cannot measure electricity
accurately are located. In a case study, a proof of principle was demonstrated in detecting inaccurate meters with high

accuracy for practical usage to prevent unnecessary replacement and increase the service life span of smart meters.

Index Terms—electricity measurement, smart meter, malfunction detection, deep learning, sequential data analysis,

LSTM, CNN, recurrence plot.

I. INTRODUCTION

A. Rationale
SMART meters are important and popular electrical metering equipment used in the construction of a

smart grid [1] [2]. Almost two billion smart meters will be installed worldwide by 2020, and the smart



grid will serve nearly 80% of the world’s population according to the Navigant Research Report [3]. The
report projected that by 2020 China alone is expected to have more than 435 million smart meters installed
compared to 132 million for the United States [3]. Smart meters can have various malfunctions; in
particular, their measurements can be inaccurate and these meters need to be replaced to ensure the
measurement accuracy. The smart meters in China are mandatorily replaced after eight years of service,
but most of them are still in good conditions at that time. If inaccurate smart meters can be replaced as
needed in a targeted fashion, a huge amount of money and human resources will be saved. For example,
if the smart meters’ average service life span increases from 8 to 12 years using the replace-as-needed
approach, it could save about 12 million dollars per year in China alone (assuming each smart meter is 60
dollars). However, manually checking all smart meters on a regular basis is labor-intensive. Therefore, it
is more feasible to apply an intelligent system using electricity measurement data to identify inaccurate

smart meters.

B. Previous Studies on Smart Meter Analyses

With the ever-increasing broad applications of smart meters, massive data of smart meters are collected
every moment. The meters’ big data provide a good source for data analyses of smart meters’ performance.
To detect inaccurate smart meters, one approach is to collect historical data before the malfunction and
then model it for predicting the malfunction. A number of related studies have been conducted along this
line. Based on the Smart Metering Electricity Customer Behavior Trials (CBTs) data conducted by the
Irish Commission for Energy Regulation (CER), Silipo et al. [4] used a K-means algorithm and an auto-
regressive model to predict the future usage of energy. However, their approach was not applied to
malfunction detection. Similarly, Cosmo et al. [5] used the same data set to explore the relationship
between electricity consumption and time-of-use tariffs.

A number of studies targeted malfunction detection of smart meters. Wu et al. [6] implemented a



Shewhart-CUSUM method to identify smart meter malfunction using data in the summer season only.
Zufferey et al. [7] introduced artificial neural networks to predict short-term load and photovoltaic of
smart meter profiles. By analyzing the malfunction of electric power systems’ big data, Sheng et al. [8]
developed a big data modeling method for identifying abnormal data based on matrix theory. He [9]
analyzed smart meters’ historical abnormal data to study the malfunction occurrence probability and
malfunction type of smart meters, and he also used neural networks to predict a malfunction. Yang et al.
[10] proposed a smart meter malfunction identification model based on abnormality analysis. Yao et al.
[11] proposed three reliability prediction methods to estimate smart meter lifetimes based on big data and
fault classification. Gajowniczek et al. [12] proposed an approach to predict the electricity load for the

next 24 hours.

C. Previous Studies on Malfunction Detection

Although these methods are valuable, they have room to improve. None of them reached a good
accuracy for large-scale usage. No study has applied any cutting-edge deep learning method for smart
meter malfunction detection, even though deep learning methods have been successfully used for several
other malfunction detection problems in recent years. For example, Nikovski et al. [13] proposed a
predictive model for losses in electrical distribution networks to detect power theft. Zhang et al. [14]
employed a deep learning method to detect traffic accidents from social media data. Kim and Cho [15]
proposed a method combined with long short-term memory (LSTM) network, a convolutional neural
network (CNN), and a deep neural network (DNN) to extract complex features. These studies motivated

us to apply deep learning for smart meter malfunction detection, as presented in this paper.

D. Paper Outline
This paper focuses on detecting inaccurate smart meters, instead of other types of malfunctions or

electricity theft detection. It is arranged as follows: Section II introduces methods for data collection and



data cleaning, as well as detection and diagnosis strategies, whereas LSTM and CNN methods are used to
build inaccurate smart meter detection models. Section III describes and analyzes the performance, as well

as shows experiments and results. Finally, Section IV provides conclusions.

II. METHOD

The formulation and workflow of the method used in this paper are shown in Fig. 1. In this system, the
current, voltage and power usage of every single user are recorded by a submeter, while the total current,
voltage and power usage of a residential area (e.g. an apartment) are recorded by the master meter. A few
submeters may be out of order, where the meter reading has a measurement error rate above a given
threshold (e.g. 10%). These submeters are referred to as inaccurate submeters. The master meter, however,
is under routine maintenance and can be assumed accurate within a negligible error rate. The system
collects data from all submeters and the master meter. Then, the task can be formulated as a malfunction
detection problem to identify inaccurate submeters if any by using electricity usage data. For the
malfunction detection, the method used in this paper adopts LSTM to predict the reading of the master
meter based on the data collected from submeters and historical data. Then the predicted value is compared
with the actual master meter reading. If the predicted value is significantly different from the actual master
meter reading for a period of time (determined by a devised metric, named lag to be introduced in Section
II D 2), the detection task will predict the presence of inaccurate meters in the residential area, which
causes the diagnostic work to be activated. At this time, a TS-RP (Times Series-Recurrent Plot) CNN

model is used to identify and classify every submeter to predict whether it is accurate.

A. Data Collection and Description
First, the data used in this study was collected from two residential areas. The smart meter being studied

has five technical specifications: 1) a rated power of 1100 W, 2) a rated voltage of 220 V, 3) a rated current



of 5 A, 4) arated frequency of 50 Hz, and 5) an error rate of 2%. The data is unique compared to previous
studies. For example, Silipo et al. [4] predicted electricity usage for different groups of meter IDs, using
a data set based on questionnaires completed by users, but they did not record instantaneous current and
voltage values, which are included in this paper’s analysis. In addition, unlike their data set, the data set
used in this study not only records submeter data but also master meter data for a specific residential area.
Therefore, their data cannot be used in the problem formulated here.

After concatenating all the data and renaming the columns, the data sets of current and usage (including
master meters and submeters) were collected. The master meter has three phases and submeters have only
one phase. For a single submeter, three values are collected: voltage, current and electricity usage. The
voltage and current tables have 102 columns and 3038 rows each. The voltage and current were collected
every 15 minutes in the master meter and every hour in the submeters, which are real-time measurements.
The 102 columns of voltage and current tables include region ID, user ID, system ID, phase, multiplier,
date, and 4x24 real-time data. Meanwhile, the everyday usage table has six columns and 65,534 rows.
The 6 columns of everyday usage include number (from 1 to 65,534), region ID, user ID, system ID, date,
and usage. Each submeter has a unique user ID and system ID, and the user ID is chosen as the primary

key of this data set.

B. Data Cleaning and Preprocessing

There are redundant data and invalid data in the data sets. If a single ID’s recording (a row in dataset),
at the same date and time, appears more than once, then only the first recording is used, and others are
regarded as redundant. The invalid data were removed as well, whose Sum of Submeters at each day,
named SSub, is larger than the master meter’s measurement, which is unrealistic since the submeters
measure the electricity consumption of the subbranches from the master meter and other power losses

between the master meter and the submeters. Upon removing these data, the time feature was formatted,



for example, the weekday, month and year, with respect to electricity usage. A date is converted into a
one-hot encoding in 22 (7 weekdays+12 months+3 years) dimensions including the weekday, month and

year.

C. Data Analysis

The data source will be introduced, the metric that is used in the system, and the data distribution. The
desensitized data were collected from two residential areas called Hua Yuan (residential area A) and Dong
Hui (residential area B). Residential areas A and B collected the voltage readings and the electric current
readings of 104 submeters every hour from August 2014 to August 2016. In addition, the master meters
of residential area A and B recorded real-time voltage and current every 15 minutes. All the data in this
paper were synchronized in corresponding records after data cleaning and preprocessing.

After the data cleaning, the formula to calculate the measurement residual error (including the
transmission power loss) for one day is shown below:

E = Winaster — Xi=1 Wsun, (1)

where E represents the daily “residual error” between the master meter and SSub, W, 4 sterr r€presents the

daily reading of the master meter, and Wy,,;,, represents the reading of i-th submeter over n submeters at

that day. In the raw data, the errors between the master meter and submeters are small, most of the relative
errors do not exceed 2%, which indicates high accuracy of collected data. In addition, these meters are
new at the time of data collection; so, it is assumed that there is no inaccurate meter.

With the data distribution, one possible approach to detect malfunction is to check and compare the
residual error. The residual error distribution of different times roughly follows a normal distribution;
however, the mean and variance of distributions vary in different seasons, as shown in Fig. 2. It means the
usage changing factors (such as weather changes, acquisition of new appliances, change in consumption

patterns, etc.) are mixed up with potential measurement errors from the submeters. Therefore, one cannot



simply use the residual error distribution to detect malfunction. Inspired by [16], which provided a
successful example for neural network methods to detect an abnormality, in this study various deep neural
network models were explored to identify significant measurement errors from smart meters in a robust
way. The method actually does not intend to predict electricity usage, but rather to detect abnormalities in

the residual error independent from various usage changing factors.

D. Detection and Diagnosis of Malfunction

The overall workflow includes prediction task for residual error, detection task for malfunction
injection in a residential area, and classification task for inaccurate submeters, as shown in Fig. 1.
Two efficient deep neural networks, LSTM and CNN, are respectively applied to predict the presence
(injection) of malfunction in the smart meters inside a residential area, then classify which smart meter is
inaccurate. A sliding window detection procedure is proposed to detect the malfunction injection in a
residential area. LSTM [17] is a popular deep learning architecture for prediction in time-series data
[18][19]. Benefiting from the gated recurrent architecture, LSTM is able to discover both short- and long-
range relationships inside given time-series data, which is an essential capability for the residential area’s
error prediction task. CNNs are widely used in image recognition and sequence tasks like natural language
processing [20]. CNN produces a strong response to a spatially local pattern when the convolution kernels
capture specific 1D or 2D information of feature maps. In the sequence classification task, the abnormal
patterns are distinguished from normal patterns by the classification of CNN. Also, because of shared
weights in the architecture, CNN can save significant memory and time in training and prediction,

fulfilling the efficiency needs raised by processing a large number of submeters.
1) Residual Error Prediction Based on LSTM

In order to predict the residual error vs. time, a two-layer LSTM is used. The input is the features of the

residential area including the historical data of residual “error” (float, the error between SSub and the



master meter), “master” (float, the measurement of the master meter), “com_date”(int, the time interval
between the current date and the base date), “weekday” (list, 7-dimension one-hot code), “month” (list,
12-dimension one-hot code), “year” (list, 3-dimension one-hot code, years 1, 2, 3 in this case), and
“number” (int, the number of submeters in the current residential area). The output is the predicted residual
error in the future. The architecture of LSTM is described as Fig. 1. Both LSTM-1 and LSTM-2 have 30

dimensions, followed by a dense layer. LSTM calculates a hidden state h; as follows:

fe = o(xUS + he_ W) (2)
0 = o(x,U° + hy_ W?°) (3)
C; = tanh(x U8 + h,_;W8) (4)
Ce=0(fi * Couq +ir x Cp) (5)
h; = tanh(C,) * o; (6)

where: I, f,and o are the input, forget and output gates, respectively. W is the recurrent connection
between the previous hidden layer and the current hidden layer. U is the weight matrix that connects the
input to the current hidden layer. C is a “candidate” hidden state that is computed based on the current

input and the previous hidden state. C is the internal memory of the unit.
2) Sliding Window Detection Procedure

The prediction process aims to tell if there are inaccurate meters in the residential area for the future
days by using a sliding-window detection procedure described in Fig. 1 with two predefined parameters,
threshold ¢ and window size L. The residual error between the predicted value and the observed value at a
certain day is referred to as the daily prediction error (DPE). In each step, if not all the DPEs in the window
exceed the threshold, the window moves forward with a one-day stride. Keep sliding until all DPEs inside
the window exceeds the threshold t, possible inaccurate meters are considered in this residential area. If

no such a window is found, it is assumed that there is no inaccurate meter in this residential area.



To evaluate the prediction performance, commonly used metrics for a regression task such as RMSE
does not reflect the prediction purpose of this study. The devised evaluation metric in the experiment is
called “lag,” which is defined as the length between the predicted starting date of the malfunction and the
actual starting date of the malfunction. When all DPEs inside the window exceed the threshold, the left

edge of the window is considered as the predicted starting date of malfunction.

3) Classification of Submeters Based on TS-RP CNN

The detection of inaccurate meters is formulated as an inaccurate submeter classification task for each
submeter (accurate vs. inaccurate). In this task, I1D-CNN with sequential input and 2D-CNN (VGG16)
with matrix input are implemented and compared. Then, the novel TS-RP CNN is built by merging the
two types of input.

Much like [21], a 1D-CNN architecture is applied to classify the sequence data, as shown in the bottom
half of Fig. 3. To fully utilize the information in the dataset, such as the frequency features, recurrent plots
(RP) is applied in the CNN architecture, similar to [22]. RP is a tool for nonlinear data analysis. It
visualizes a square matrix, whose elements correspond to those times when a state of a dynamical system
recurs [23]. The main advantage of RP is that it can show the phase-space transformation information of
the sequential data, even when the data is short-term [24], which is believed to be complementary to the
time-series feature. The RP conversion is implemented by using the class library SciPy [25]. Transfer
learning [26] is used from VGG16 pre-trained by the ImageNet dataset [27]. A dense layer is added at the
end to obtain the 1D output. As a combination of these two models, the TS-RP CNN has two types of
input, where the matrix input (RP) is sent to the VGG model and the sequential input is fed into the 1D-
CNN model. Then, the two outputs are merged after a dense layer to get the final result. The combined
signal is activated by a sigmoid function after the element-wise addition. At first, the sequential input is

replaced with the matrix input. The accuracy of the result improves but still cannot have a good area under



the curve (AUC) enclosed by the receiver operating characteristic (ROC) curve. Because both sequential
input and matrix input enclose various features, these two inputs are combined with two paths as shown
in Fig. 3. By comparison with a single-input model, the accuracy of the combined inputs greatly improved.
This shows that the sequential input and the PR phase-space input assist each other in the model (that is
also why the adding operation outperformed concatenation). Phase-space features have been examined by
several researchers. For example, a study [28] recently used fast Fourier transform as a layer in a deep
neural network, where a 1D sequence input was converted to 2D phase features using multi-frequency
decomposition (MFD). However, they neglected the information inside the original sequential data, while
TS-RP CNN utilizes the sequential data as a parallel input. So far, the model is the first to combine time
series and corresponding RP as the dual input branched for CNN. Thus, the method is called a time-series
(TS) and RP (recurrence plot) CNN, or TS-RP CNN method. The networks in this study are trained with
Keras [29] with TensorFlow [30] backend on a Nvidia Geforce 1080ti GPU. The code and example

datasets are available online at https://github.com/minoriwww/MeterDetection.

III. EXPERIMENTS AND RESULT

A. Data Generation for Inaccurate Submeter

The data in residential area A was thoroughly inspected by humans and no submeter has shown an
abnormal reading as all meters were new. Thus, it is assumed that both the submeters and the master meter
were accurate. To simulate a real-world residential area with inaccurate meters, the malfunction was
embedded on purpose, i.e. a certain offset into a random number of submeter readings. The offset for an
inaccurate submeter is a shift in the reading value (in comparison with the actual value) with respect to
time, according to the technical specifications of smart meters. The relationship of shift and time can be

constant, linear or even exponential. In this work, it is considered linear with random noises.


https://github.com/minoriwww/MeterDetection

To generate inaccurate submeter data (negative samples), 30% of submeters were randomly selected
with random starting times for malfunction and injected the malfunction factor into every selected
submeter’s daily usage, the start date. It is worthwhile mentioning that 30% of submeters were chosen for
the purpose of method validation. The method can be used for detecting a single malfunctional submeter.
The injection process is expressed as:

Usagenewi) = (1 +a - (i —s))-Usage(i) + N,i = s (7)
where i represents the date sequence, a represents a restriction of error percentage per day, which is set
to 0.01 in this paper, and N represents the random noise. For proof of principle, this formula only
represents a likely scenario of the error trend based on our experience. The 1% drift per day is not based
on real-world data and may be too large, but our model should be able to detect smaller drift in a longer
time frame when the total drift reaches a certain threshold in a similar way. To reflect realistic but
challenging user scenarios, it is assumed that the injected error to be restricted to a much lower amount
than the typical error between SSub and the reading of the master meter; otherwise, the error would be too
obvious to ignore by any method. By injecting the malfunction factor into a submeter, recurrence plots for
the corresponding submeter and the residual error (from Equation 1) are changed accordingly, while the
reading of the master meter remains unmodified.

The final generated data contains a certain proportion of positive and negative samples by sampling.
Those data will be used in the detection task for malfunction injection and the classification task for
inaccurate submeters. The former requires modeling based on whether the residential area contains
inaccurate submeters by detecting the abnormality in the residual error trajectory between SSub values of
the residential area and the master meter values vs. time. The latter requires the model to identify which
submeters have malfunction injections. When applying to real-world applications, this system is expected

to work seamlessly.



B. Result of Residual Errors Prediction Based on LSTM

As described in the LSTM model in Section II D (1), a sequence of known master meter residual errors
with a certain window (number of days) is used for training to predicting the master meter residual errors
of the following days. By shifting the windows, the residual errors can be predicted over time. An example
of predicting master meter residual errors is shown in Fig. 4(a). Most of the predicted values closely trace
the observed values. Meanwhile, to select the most effective window size for training the LSTM model,
different window sizes were tested and the result shows that time window sizes from 40 (days) to 80 (days)
had lower mean square errors (MSEs) between the predicted values and observed values, which is less
than 0.005, and a comparatively lower standard deviation, as shown in Fig. 4(b). Herein, the window size
for the following experiments is set to 40 days. Then, the time series data was divided into sample 1 (day
1 to day 40), sample 2 (day 2 to day 41)..., etc. and 730 such samples were generated. The 730 samples
were split into a training set of 703 samples and a testing set of the remaining 27 samples. It is worth
mentioning that although there are some overlapping days between training and testing samples, such a
setting reflects real-world applications and can be considered independent between training and testing
samples from the machine-learning perspective.

For the malfunction injection detection task, predicted residual errors by LSTM is compared with the
observed residual error E in Equation 1 in the test set. If E overflows the range between the Upper Bound
(UB) and Lower Bound (LB) consistently according to Equations 8 and 9, the residential area is regarded
as including one or more inaccurate submeters:

UB =p +t (8)
LB =p—t 9)

where p represents the predicted result of LSTM and t represents the threshold of the procedure.



Figure 5(a) shows a detection example when the residential area has a malfunction generated as
described in Section III A. The parameters of the procedure are set to t=0.5 and L =4. It detects
malfunction with a lag of 65 days. Figure 5(b) shows a test case of a residential area where no inaccurate
submeter was detected under the same parameter settings. If the residential area had malfunctioning

meter(s), the predicted and measured values were sent to the inaccurate submeter classification task.

C. Result of Malfunction Submeter Classification Based on TS-RP CNN

The receiver operating characteristic (ROC) curve and precision-recall curve (PRC) are metrics used to
evaluate the classification results. A 5-fold cross validation was implemented, and the mean area under
the curve (AUC) is chosen as the evaluating standard. The result for the dataset generated by Eq. 8 is
shown in Fig. 6, whose mean AUC of the ROC curve is 0.82+0.07 and the mean AUC of the PRC is
0.84+0.11. When AUC is significantly above 0.5, the result is also statistically significant, although the
actual p-value may be hard to calculate. Hence, we believe our result is sufficient to demonstrate proof-
of-principle.

Because normal electric meters represent the majority of day-to-day usage, the proportion of normal
meters has been tested from 0.5 to 0.9 to reveal the influence of different proportions of positive samples
(normal electric meters) in data generation. Results show that the mean AUC of ROC curve remains stable
above 0.7 AUC of the ROC curve despite the proportional changes. Considering real-world applications,
the proportion of a positive sample can be higher, which could be a future work after obtaining a larger

dataset.

D. Comparison among Various Classical Methods
LSTM is compared with several classical methods. The same input data is used and compared with

Bayesian ridge regression [31], elastic net [32], gradient boosting regression [33] and LSTM methods on



residual error prediction. Figure 5(c) shows the comparison, indicating that the values predicted by the
LSTM method have a higher probability of finding inaccurate meters as shown by the pink shading than
other methods.

Following the standard in the detection task to check the test value in between LB and UB, a similar
standard is made to measure the performance of different regression methods: to count the number of days
with predicted E falling below the lower bound (observed value minus threshold) or jumping above the
upper bound (observed value plus the threshold). The percentage of counted days to total days is calculated
as the measurement, designated as target rate. The result is shown in Table 1, which coincides with the
pink shading in Fig. 6. These results show that LSTM and GBR outperformed others in most situations.
LSTM performed better than GBR, with a target rate of 95.8% when the threshold equaled 8. A larger
threshold is less meaningful, as the accuracy has been high enough (close to 100%). This threshold is

henceforth used in the detection procedure.

E. Analysis of Different Model Configurations

To compare the combined model mentioned before with the single input models using TS-RP CNN, the
AUC of ROC curve for matrix-input and sequence-input was computed. Table 2 shows that AUC is 0.52
when the sequence data is taken as input and AUC can reach 0.82 when both the sequence data and the
matrix data are taken as input with pre-training using the ImageNet dataset.

In addition to the VGG-1D CNN combination, other combinations are also tested as components of the
dual input network architecture: VGG+BiLSTM [34], ResNet50 [35]+1D-CNN and ResNet50+BiLSTM,
as shown in Table 2. These network combinations failed to outperform the VGG+1D-CNN combination

in the AUC metric.



4. CONCLUSION

In this paper, an approach is presented to detect inaccurate smart meters in residential areas. The TS-
RP CNN is proposed for an intelligent system of inaccurate smart meter detection. To the best of our
knowledge, this study is the first method to apply deep learning in malfunctional meter detection. The
main strategy of this approach is first to judge whether there are any inaccurate meters under the master
meter in a residential area using LSTM and then to identify which submeter fails using TS-RP CNN
model. It shows that TS-RP CNN successfully identified inaccurate meters inside a target residential area
with good accuracy. This paper has also demonstrated that the model reaches equivalent or better
performance than several conventional machine learning models. Compared to a single-input model, TS-
RP CNN is more comprehensive, where the sequence features in 1D-CNN and the recurrent features
(phase-space transformation of sequential data) can assist each other, thereby benefitting classification as

a whole.

Detection of inaccurate smart meters is important and valuable for targeted smart meter replacement,
especially for some countries that have a great demand for smart meters, but few researchers have worked
on this topic. This study provides some insight into the need for more accurate, longer-lasting smart
meters, with the hope that more researchers will work on this problem and other problems in the smart
meter field. Furthermore, the method is not only useful for increasing the service life span of smart meters,
preventing unnecessary replacement, but also provides a general framework for detecting malfunctions in
other instruments that generate sequential data, such as charging pile and engine.

There are some limitations of this study. Only the data set from a single location was used in this study.
The method needs to be tested using more data. In addition, different types of simulated submeter errors
in addition to the linear type used in this study should be explored. Preferably real malfunctional submeters

should be used for testing. These represent possible future studies.
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Fig. 1. Workflow of inaccurate smart meter detection. After the data collection, there are three tasks: (1) predicting residual error vs. time based on historical
data; (2) embedding a measurement error in some submeters and detecting accurate submeter appears in a residential area based on (1); and (3) following (2)
classifying whether each submeter is inaccurate.
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Fig. 2 Distribution of residual errors between master meters and SSub in different months.
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Fig. 3 Time series-recurrence plot (TS-RP) CNN architecture. Firstly, we apply the 1D-CNN architecture to classify the time series input. After the phase-
space transformation, the recurrent plot input is created and applied in 2D-CNN. Then, the two types of input branches are merged and applied in the TS-RP

CNN architecture to get the output. The colors in the figure are used to illustrate various components.
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Fig. 5 (a) A detection example of a residential area with malfunction. When the threshold is 0.5 and the window size is 4, the inaccurate submeters in that
residential area are detected. (b) shows that another residential area with the same parameter setting is not detected as including inaccurate meters. (c) shows
a comparison of regression result on the residual error prediction task when the threshold is 8. E is defined in Equation 1. The red line represents the
observed value of the measurement residual error, and other lines are the predicted values of the measurement residual error of using Bayesian Ridge, Elastic
Net, Gradient Boosting Regression, and LSTM. The pink area indicates that the difference to the observed value is less than the threshold. The predicted
values falling within this area are considered without inaccurate submeters.
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Table 1. Evaluation of the prediction of classical methods and LSTM

Classical Methods
Threshold LSTM
Elastic Net GBR
0.5 1 (1.4%) 5(6.9%) 5 (6.9%)
1 1 (1.4%) 13 (18.1%) 17 (23.6%)
4 13 (18.1%) 52 (72.2%) 42 (58.3%)
6 52 (72.2%) 58 (80.6%) 65 (90.3%)
8 66 (91.7%) 59 (81.9%) 69 (95.8%)

The numbers show the number of days with predicted E falling below the lower bound or jumping above the upper bound, and the percentage of counted
days to total days as the measurement (target rate, in parentheses)

Table 2. Comparison of different network architecture combinations

AUC of ROC

curve Single-input Modeling Dual-input Modeling
ix- TS-RP CNN
Fold number Sequence- 1\i’flatrg (VGG*+1D VGG* + ResNet50* +  ResNet50*+B
u input pu BiLSTM* 1D-CNN iLSTM
-CNN)
Fold 1 0.29 0.47 0.83 0.91 0.65 0.37
Fold 2 0.62 0.71 0.80 0.75 0.58 0.45
Fold 3 0.46 0.17 0.74 0.71 0.43 0.54
Fold 4 0.68 0.41 0.80 0.80 0.57 0.52
Fold 5 0.55 0.79 0.94 0.87 0.30 0.48
M‘;*t‘(‘l‘ )(*1 0.520.14 0.51+0.22 0.82+0.07 0.8140.07 0.510.13 0.60+0.13

* performed with pre-training using the ImageNet dataset.



