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Abstract—Classical source seeking algorithms aim to
make the robot reach the source location eventually. This
letter proposes a process-aware source seeking approach
which finds an informative trajectory to reach the source
location. A multi-objective optimization problem is for-
mulated based on rewards for both the search process
and the terminal condition. Due to the unknown source
location, solutions are found through Bayesian learn-
ing model predictive control (BLMPC). The consistency
of the Bayesian estimator, as well as the convergence
of the proposed algorithm are proved. The performance
of the algorithm is evaluated through simulation results.
The process-aware source seeking algorithm demon-
strates improvements over other classical source seeking
algorithms.

Index Terms—Iterative learning control, optimization,
predictive control for nonlinear systems, stochastic optimal
control.

[. INTRODUCTION

MOBILE robot is often tasked with the goal of locat-

ing the source of an unknown signal field, such as
magnetic force, heat, wireless signal, or chemical concen-
tration. Source seeking algorithms may have a wide range
of potential applications, including natural resource develop-
ment, search & rescue, wireless communication, and nuclear
threat reconnaissance [1]-[3]. Typical source seeking algo-
rithms aim to find the global maximum of the source field, i.e.,
the source location. Many gradient-based [3]-[5] and model-
based [1], [6]-[8] optimization techniques are utilized to solve
the problem. Most algorithms aim to guarantee that the robot
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eventually reaches the source location, but do not explicitly
take the optimality of the search process into consideration.

We formulate a process-aware source seeking problem to
compute an informative trajectory to reach the source location.
We are inspired by the optimal search theory [9] developed to
search for targets that might not emit any signal. The optimal
search process maximizes the probability of detecting a tar-
get subject to resource constraints. The process-aware source
seeking problem combines the objectives of optimal search
and source seeking as a multi-objective optimization problem,
which aims to utilize the search process detection information,
not just the signal gradient, to guide the process of source
seeking.

The main challenge of the process-aware source seeking
approach is that the location of the source is unknown, leading
to great difficulty in solving the multi-objective optimization
problem. We address this problem with the Bayesian learn-
ing model predictive control (BLMPC) [10], [11], where the
probability distribution of the unknown source location can
be learned online by a Bayesian estimator. The estimator is
updated with measurements that are collected sequentially. We
design a new search reward structure for the BLMPC that
incorporates the search reward and the reward of reaching the
source. We also propose a method to determine the planning
horizon of the BLMPC to reduce the number of measurements
required by the Bayesian estimator.

For offline BLMPC, bounded cumulative regret has been
proved [10], [11]. While for online BLMPC, we focus on the
convergence of one task execution which relies on the con-
sistency of the Bayesian estimator. Bayesian consistency has
been well studied when independent and identically distributed
(i.i.d.) measurements are used [12]. We prove Bayesian con-
sistency under non-i.i.d. (correlated and differently distributed)
measurements. To the best of our knowledge, this result does
not exist in the literature. We further prove that the robot tra-
jectory is guaranteed to converge to the desired source location
in finite time.

One especially challenging task in source seeking is in tur-
bulent source field where signal information is sparse and
expensive. For example, the robot often needs to stay at a cer-
tain location for a long period of time to collect enough signal
strength for measurement. We perform simulations in the sce-
nario of turbulent field where gradient-based algorithms cannot
apply. We compare our proposed algorithm with another
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gradient-free algorithm, the expected rate algorithm [7]. The
results show that our proposed algorithm can greatly reduce
the number of measurements and thus reduce the total search
time when measurements are costly, which is often the case
in turbulent signal field.

Il. BACKGROUND

Consider a robot seeking a signal source in a workspace
A that is discretized into grid cells. Let 6* € A" be the true
source location, which is unknown to the robot. An estimation
of 6* is represented by a random variable # € A" which obeys
a probability distribution 7w : A — [0, 1] such that 7 () is the
probability that the source is in cell 6.

Assumption 1: The true distribution for a single source is
89+ (0) where 8p«(6*) = 1 and 8p+(6) = O for & # 0*.

We review some relevant results in source seeking and
optimal target search.

Source Seeking: The source is able to emit certain signal
that can be measured by the robot. The signal field is rep-
resented by a scalar function Rgx : & — [0, co) modeling
the spatial signal distribution over the workspace. Consider an
arbitrary location x and the source location 8%, Rg«(x) reaches
its global maximum when x = 6*. For example, a simple
model Rg+(x) = exp(—|[x—8*||) can be used to model decreas-
ing sensor effectiveness as a function of distance between x
and 0*.

The problem of source seeking can be formulated as to
simultaneously estimate the source field and find its global
maximizer:

max Rg+(x). (1)

Optimal Target Search: In optimal search theory, the robot
will search for targets that do not necessarily emit any signal,
given the probability distribution of the target.

We assume that when the robot visits the cell where the
target is located, it is able to identify the target with cer-
tain probability a € [0, 1]. This leads to the introduction of
the detection function 8 : A x {0,1,2,...} — [0, 1]. Given
that the target is in cell x, B(x, m(x)) is the probability of
failing to detect the target on the first m(x) — 1 visits in
cell x and succeeding on the m(x)th visit [9]. For example,
let o be the probability of detecting the target on a single
visit in cell x given that the target is in cell x. Suppose each
visit has an independent probability of finding the target, then
B(x, m(x)) = a(1 —a)ym@-1,

Definition 1: If the target location # follows the distribution
m (6 ~ m), the probability of detection for any arbitrary cell
x is defined as

(&)

where m(x) — 1 is the number of visits that cell x has been
visited by the robot.

A cost function ¢ : X x X — [0, c0) is often introduced
such that c(x;, x;y1) is the cost for the robot to move from cell
x; to cell xjy.

The problem of optimal target search can be formulated as
to find the optimal trajectory X = [xp, ..., xy] that maximizes

Po~r (X) = m (X)B(x, m(x)),

the probability of detecting the target along the trajectory with
a given cost constraint:

N N—1
max _Zl:paw(xi) s.t. Z(;C(xf,xur])sa 3)
= =

where C is the given cost constraint.

[1l. PROBLEM FORMULATION

We formulate the process-aware source seeking problem as
a multi-objective optimization problem. One objective, inher-
ited from source seeking, is to estimate the source location
and reach the source eventually. Another objective, inspired by
optimal target search, is to utilize previous search process
detection information to refine the succeeding search process.

As is common in source seeking problem, we assume that
the robot is equipped with sensors to observe the environment
and can estimate the source location distribution m (#) through
signal field measurements. Different from typical source seek-
ing problem that ignores the measurement cost, we explicitly
introduce another cost function s : X' — [0, 00) to model the
measurement cost such that s(x) is the cost for the robot to
take a measurement at cell x. An information gain function
q : X — [0, 00) is also introduced such that g(x) represents
the reduced uncertainty on the source location distribution
when taking a measurement at cell x. The indicator variable
y € {0, 1} is used to indicate if a measurement is taken, where
y =1 means ‘yes’ and y = 0 means ‘no’.

Formulate the robot dynamics in discrete time as

)

in which x;,x;41 € X are the robot locations at time i and
i+ 1, u; € U is the applied input at time i. We assume that
within one step, the robot can only move to its adjacent cells
or stay at the current cell. Then the set of all possible control
inputs U contains the corresponding inputs that drive the robot
to nearby cells or remain in the current cell.

Consider the robot trajectory X = [xp, . .., xy] controlled by
the control input U = [up, ..., uy_1], with the measurement
decision ¥ = [yo, ..., yn]. The process-aware source seeking
problem is formulated as to maximize the overall detection
and information rewards during the trajectory under certain
cost constraint, with the terminal objective of reaching the
source:

Xip1 = f(xi, u;),

N N
max Z}:pew(xf) + Zl:)’x'q(xi)
s.t. xip1 =[x, up),
xy = arg max Rg=(x),
xeX

N-1 N
D et fGaw) + Y yisi) <C, (5)
i=0 i=1

where C is total cost constraint.

This problem contains the distributional estimation of the
source location m(#) which needs to be updated and solved
when new measurements are collected. We consider to uti-
lize the Bayesian learning MPC framework to find a feasible
solution of it in practice.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 27 2021 at 14:16:42 UTC from IEEE Xplore. Restrictions apply.



IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

V. BAYESIAN LEARNING MPC

We utilize Bayesian learning to learn the source location dis-
tribution and propose to break down this long horizon optimal
control problem into short horizon MPC problems by mea-
surements. In this way, we decompose the decisions of ¥ and
U and propose an iterative algorithm which is composed of
three steps: Bayesian estimation, planning horizon decision
and learning-based MPC.

A. Bayesian Estimation

There are many types of sensors that can be used to measure
the source field. Here we introduce an abstract sensor model
that can be adapted to different types of sensors. The sensor
measurement collected at cell x is then modeled as a noisy
observation z(x) of the signal function Rg(x). For example, if
the target is emitting a signal, and z(x) represents the num-
ber of such signals being detected within a given time Af.
We assume that 7 can be modeled as a random variable of
Poisson distribution with Rp(x)Af as the rate parameter. The
measurement model is then

exp(—Ro ) AD(Rp () A1)
z! '
Let z1.x be the measurements by the robot at locations x.j.
We further assume that the sensor is memoryless, which means

that the measurements are conditionally independent.
Assumption 2:

po@lx) = (©6)

P(zkl0, Z1:k—1, X1:k) = P(2k|B, k) = po(Zic|xk)- (7

Note that the memoryless assumption for sensor mod-
els are commonly used in the literature for target
search [1], [2], [6], [7].

We define mi(8) = p(€|z1:4. X1:x) as the posterior distribu-
tion of source location after k iterations. Therefore,

PO|z1:k—1, X1:6) = pB|Z1:k—1, X1:k—1) = Mi—1(),  (8)

followed by the fact that moving to a new location does not
affect the information on the source location until a measure-
ment is taken. Using the conditional independence assumption
for the sensor model, and applying the Bayesian rule, we
obtain

71 (0)Po (Zk|Xk)
> o h—1(O)pe (zk|xe)

The computation of the posterior distribution of the cur-
rent iteration m;(f) requires the posterior distribution of the
previous iteration m;_1(f) and the measurement observed at
the current iteration k. We will use mx(0) as a surrogate for
m(0) to solve the problem (5).

7 (0) = 9)

B. Planning Horizon

At each step, the robot can choose if a measurement is
taken based on the indicator variable y. In practice, the mea-
surements in neighboring cells are often highly correlated,
and frequent measurements may not be necessary. Since the
long horizon problem is broken down into short horizon prob-
lems by measurements, the planning horizon for each iteration
determines how frequently measurements should be taken. In

each planning window, the robot takes a measurement at the
first step, and proceeds without taking new measurements in
the next I steps.

The posterior mi(#) is a valid surrogate for w(f) until a
new measurement is taken. Consider entropy H(mi(0)) =
_Zaex mr(0) log mi(#), which is a measure of the aver-
age uncertainty of the estimated source location distribution
i (#). We choose g(-) o< H(mi(f)) to be the information gain,
s(-) = S to be the cost for taking a measurement. Since the
information gain will benefit the following planning for I
steps, the intuition of leveraging measurement benefits and
cost leads to the following choice of planning horizon I;:

L — KS
k= [H(rrk(e))J’

where « is a design parameter chosen according to S, and |- |
is the floor function such that |a| gives the closest integer less
than or equal to a.

(10)

C. Learning-Based MPC

The MPC problem can be viewed as an approximation of the
optimal control problem, which introduces a terminal reward
to address the truncated remaining part. Therefore, we trans-
fer the terminal constraint xy = arg max,.y Rp*(x) into the
terminal reward Tg~x, (x) = Eg~x, Ry (x).

Whenever a new measurement is taken, we initialize a new
planning window and solve an MPC problem with I; as the
planning horizon as follows:

I
max Ji = Z Do~y (Xifk) + AT, (X k)
k .
i=1
st Xtk = F ik, Uie),
-1
> Qs f i wip)) < Ci

i=0

(an

where m; is the posterior distribution of the source location
after kK measurements, x;x € X is the i-step-ahead prediction
of the robot location initialized at xojx, #;x € U is the corre-
sponding i-step-ahead control input, I} is the planning horizon,
C; is the cost allocated to the kth iteration and A is a parameter
that balances the search process reward and terminal reward
functions, which can often be chosen from 0.6 ~ 1.5 in
practice.

A control policy is obtained by solving the MPC
problem (11). Since the number of possible choices for each
uj|k is finite. The computation of the MPC policy U; can be
viewed as a path planning problem that can be solved by algo-
rithms such as the scenario tree search. The process-aware
source seeking algorithm based on Bayesian learning MPC is
summarized as Algorithm 1.

V. CONVERGENCE ANALYSIS

Under the assumption of single source, i.e., *(8) = 85=(8),
we can justify the convergence of the process-aware source
seeking algorithm (Algorithm 1).
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Algorithm 1: Process-Aware Source Seeking
Initialize prior mo(6@) with uniform probability
distribution over the discretized location space X’;
Initialize robot position xi;
Initialize iterator k = 1;
while source location not found do
Take a measurement zj at the current sample
location x;
Compute posterior distribution mx(#) using (9);
Decide the planning horizon [ using (10);
Obtain the optimal control policy by solving (11) and
move to the next sample location xj1;

end

A. Consistency of the Bayesian Estimator

Definition 2: The Bayesian estimator is (strongly) consis-
tent if m; (@), the estimated distribution of #, converges to the
true distribution &p+(#), with probability 1.

To prove the consistency of the Bayesian estimator, we first
prove Lemma 1 based on Assumption 3.

Assumption 3: The prior distribution mo(#) has non-zero
probability at 6*.

Lemma 1: The marginal likelihood of measurement
Pk@@lx) = Eo~mo)lpe(@x)] = 3 g mk(P)pe(z|x) converges
to the true measurement model, i.e., for any z, we have
limy_, oo Pr(2]X) = pe=(z]x), with probability 1.

Proof: Let Fi = o{(xs, Zs), § < k} be the o —filtration [13]
generated by the past sample locations and measurements.
According to Eqn. (9), the estimated probability of the true
source location satisfies the following equation,

Pox (Zi|xk)
log m . (68%) = log i1 (0%) + log ———— .
87k 871 gpk—](Zﬂxk)

Taking expectation on both sides, we have that

E[log 7x(6*)] = E[log mx_1(6™)] + E[log

= E[log 7x_1(6™)]
+ E[E[log Mlxk, fk-l]il
Dic—1(Zk|xk)
= E[log mx—1(60™)] + Eldk_1],

Po* (Zk|xk) ]
Pr—1(2k|xx)

where di_1 = Dxp(pes(z|x)||Pr—1(z|xk)) is the relative
entropy (Kullback—Leibler divergence) between pg=(z|xx) and
Dk—1(z|xx). Then the expectation of dy_; can be represented
as follows,

Eldi—11 = E[log 7 (6™)] — E[log m—1(6)].

For any n, taking summation over k from 1 to n on both
sides, we have

n
3" Eldi—1] = Ellog 7,(6*)] — log mo(8*) < —log mo(6*) < 00,
k=1

where the last inequality holds according to Assumption 3.

Therefore, take n — oo and we get

o0
Z]E[dk_l] < —logm(F*) < o0.
k=1

By Markov Inequality, we know that for any € > 0,

o0 1 o0

E Pld, = €] < — E E[d;] < oc.
€

k=0 k=0

We can then apply Borel-Cantelli Lemma and show that
P(dy = €,i.0.) = 0, which further implies lim;_,ocd; = 0,
with probability 1 for location-measurement sequences.

Moreover, since di > 0, by Tonelli’s Theorem, we have

E[Z d{| =Y Eld] < —logm(6*).
k=0

k=0

Since Y j, dk has bounded expectation, it must be finite
with probability 1.

Note that the total variation distance between two dis-
tributions is related to the relative entropy by Pinsker’s
Inequality:

Ipo=zlxi) — pr—1@Ix) l7v < /261,

where
lIpo~ (zlxi) — Pr—1@Ix)ll7v = sup |pex (@|xk) — Pr—1(zlxi)].
z
Letting k — co, by the convergence of di, we have
lim f |Pe+ (zlxk) — Pi—1(z|xe)ldz = 0,
k—oo J,
with probability 1.

According to Dominated Convergence Theorem, we further
have

f lim |pg» (z|Xk) — Pr—1(z|xx)|dz = 0.
k—o00

z

Moreover, since |pg= (z|xk) —Pr—1(zlxx)| = 0 and pg=(z]xr) —
Dk—1(z|xx) is continuous in z, then for any z,

lim [pg= (z|xx) — Pr—1(zlxx)| = 0,
k—oo

which means

lim P (z|xet1) = pox (2lxXkt1), (12)
k—00
with probability 1. |

Now we prove that the estimated distribution of 8 converges
to the true distribution §=(£) based on Assumption 4.

Assumption 4: For any (x,2), ps(z|x) is linearly indepen-
dent, i.e., for Vn > 0, if

c1pe, (Z|X) + c2pe, (Z|X) + - - - + Cppg, (2]X) =0

holds for all (x,z),thenci =cr=---=¢, =0.

Note that this assumption requires that the measurements
from different source locations can be eventually distin-
guished, which is usually satisfied in practice.

Theorem 1: The estimated distribution of 6 converges to
the true distribution 8g«(8), i.e., limg_, 0o 7k (0) = 8g=(8), with
probability 1.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 27 2021 at 14:16:42 UTC from IEEE Xplore. Restrictions apply.



IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

Proof: Note that

Por (Z)xk) — Pr—1(2|xk)

=[1 — m_1(0)Ipo+@x) + Y m_1(O)palxi). (13)
40*

Since mi(P) is bounded, there exists a convergent sub-
sequence {m; (0), m,(f), ...} which converges to m(6).
Since x; is also bounded, we could take a further sub-sequence
{X7, Xy, ...} which converges to X. Then take limit over
Eqn. (13) along {r1, 72, ...} and we have

[1 — oo (6)]per 2lxec) + Z oo (0)pe (Z|Xe0) = 0,
0#£0*
with probability 1.
According to Assumption 4, then for any convergent sub-
sequence, 1 — mo(0*) = 0,715(0) = 0 V& #£ 6* which
further implies

klim i (8) = 8+ (), (14)

with probability 1. |

Therefore, the consistency of the Bayesian estimator is
proved. It is worth noting that the consistency result here
does not require i.i.d. measurements that are required by the
consistency results in literature such as [12].

B. Convergence of Robot Movements

Based on the consistency guarantee of Theorem 1, we can
prove the convergence of our proposed process-aware source
seeking algorithm.

Assumption 5: The resource is sufficient, i.e., the cost
constraint in (11) will not be violated.

Definition 3: Define the reachable region S as the mini-
mal region that contains all possible robot locations for the
trajectory at a certain stage k, i.e., X = [xok, . ... X5 k] C Sk,
for all possible Xj.

We first prove Lemma 2 and Lemma 3 based on
Assumption 5.

Lemma 2: There exists a finite stage K, such that the source
location 0* is in the reachable region Sk, with probability 1.

Proof: For simplicity, we will only consider the scenario
when limy_, o mp = 8p+ holds, which happens with probabil-
ity 1 according to Theorem 1.

We denote the minimal gap as

= min |Tpsn ) — Toms (¥)] > 0, 15
€ x?glc,lgxleae(x) Brdgn (X)| = (15)

given the state space A’ is finite.

We prove the lemma by contradiction. Assume that for any
finite stage k, the true source location 6* is not in the reach-
able region S, ie., xjk # 6* for all i = 1,...,I. Since
limy_, o, m; = 8g+, for any € > 0 and M > 0, there must exist
K = 0, such that for k > K, we have

€
|7 (x) — 8 (x)| < lm,

Then we have |7 (x)| < Mgy for x # 6%, since the state space
A& is finite, we can always find finite M such that

> ) <is.
x£6* 6

€
[Torm (X) — Torss (0] < 3

Therefore, the objective Ji(Xj)
ATg~5gx (X1 k), that is

kX)) — ATgrgge (Xrg i) |
I
Z PO~y (Xijk) + ATprmy (X k) — AT~ ggu (Xpik)

i=1
Ik

P~ (Xilk)
)

i=1

<4288
-6 6 3

Therefore, for any X, X’ C S, if Tosge (X1,) < To~gye (x}k),

is close enough to

=

+ | AT o (1) — AT (ippi0)|

JiX) — Je(X") = Ji(X) — ATgrsye (%)
+ ATgsge (X) — ATgsge (X))
+ ATgrsye () — S (X))

€ €
A= — e+ A= <.
< 3 —+ 3{

Thus, the approximation will not change the order of
the possible terminal states. In other words, we have the
same optimal solution set of the following two optimization
problems,

areg max J (X = arg max Tg~.5,. (X).
[ chS;( (X1, ngSk B~8x (X)
Note that the update of our algorithm is given by
X = [arg max Ji(X = arg max Tp~.g,. (X
k1 = [ chS;( [10.91)7 ngSk B~bge (X)
= are max Eg~s.. Rg (x
ngSk]Eg 3« R (X)

= arg max Rg*(X).
gxesk o+ (X)

This implies the monotonicity of Rg«(xy), i.e., Rgs (X, 1) =
Ro=(xp), Yk = 0.

Since X is finite, {Rg+(xx)}; must be a bounded monotonic
sequence and thus converges to some value R*. Hence, there
must exist K > 0, such that for kK > K, we have

[Ro~s5e (Xk) — Rorsye (Xir1)| < €,

where € is the minimal gap defined in (15).

Note that at each update, if the algorithm moves to a new
location, Rg~s,. (xx) will change for at least €. This observation
implies that when k > K, we have x; = x* € X', where x* is
a local maximizer.

Since #* is the unique global maximizer, we have
limg_,0o Xk = 6%, with probability 1. This contradicts the
assumption that the true source location 8* is not in the reach-
able region Si. Therefore, there exists a finite stage K, such
that the true source location #* is in the reachable region
Sk, as long as limg_. oo mp = 8+ holds, which happens with
probability 1. |

Lemma 3: For a large enough stage K, if the true source
location 6* is in the reachable region Sk, the robot is guar-
anteed to reach the source location and stay there, with
probability 1.

Proof: Recall that J; = Zf": 1 PO~y (Xifi) + ATgromy (X1 1)
We know that when k is large, both pg~n, (x) and Tgrr, (x)
is maximized at 6*. Therefore, the reward J; is maximized
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(a) Without wind.

(b) With wind.

Fig. 1. Trajectories of our proposed process-aware algorithm (red) and
the expected rate algorithm (green) in different scenarios. The colormap
represents the mean rate of hits of the field.

TABLE |
COMPARISON BETWEEN PROCESS-AWARE ALGORITHM WITH
EXPECTED RATE ALGORITHM. RESULTS ARE AVERAGED OVER 20
STOCHASTIC SIMULATIONS

Trajecto: Total
Scenario Algorithm JECLOTY| ) feasurements | Search
Length T
une
Without || PFOCess- | rs4 76.4 636.7
Wind aware -
ﬁ"f’e"‘ 261.5 261.5 1569
ate
With Process- | 5957 65.1 601.2
. aware
Wind Expeciad
xpectet | 2527 252.7 1516.2
Rate

when X contains as many 6* as possible. This requires that
the robot takes the shortest path to reach the source location
and stay there. Therefore, the robot is guaranteed to reach the
source location and stay there with probability 1. |

Now we prove the convergence of our proposed algorithm.

Theorem 2: The robot movements controlled by the solu-
tion of the MPC problem (11) converges to the true source
location 8* in finite time, with probability 1.

Proof: From Lemma 2 and Lemma 3, we know that there
exists a finite stage K such that the robot reaches the source
location and stays there. Therefore, the solution to the MPC
problem will generate a robot trajectory that converges to the
source location. |

V1. SIMULATION RESULTS

We consider a source of chemical plume, which generates
plume particles in the 2D space. The field function is rep-
resented by the rate of hits, which is defined as the average
number of particles per unit time measured by the sensor at a
certain location. The rate of hits for a chemical plume source
can be given as:

(0 —x, V})KO(II9 ;Illz), (16)

Ry
Rp(x) = @exp(— °D

where R; is the rate at which the plume source releases the

plume particles in the environment, y = /Dt /(1 + ﬂﬂf—r) is
the average distance travelled by a plume particle in its life
time, a is the size of the sensor detecting plume particles, V

is the average wind velocity, D is the diffusivity of the plume
particles and Ky is the Bessel function of zeroth order.

Performance of the proposed algorithm is assessed by
numerical simulations. We perform the simulation for a model
of chemical plume where detectable particles are emitted at
rate R = 1, have a lifetime r = 2500, and propagate with
diffusivity D = 1. V = [0,0] in the absence of wind and
V = [0, 1] in the presence of wind. We assume the sensor
size a = 1, the robot takes Af = 5s to take a measurement
of the signal and 1s to move to the adjacent cells. For the
algorithm, we choose @« = 0.5, A = 0.8, x =10, § = 5 and
assume the resource is sufficient, i.e., the cost constraint will
not be violated.

We compare our proposed algorithm with another gradient-
free algorithm, the expected rate algorithm [7]. Some instances
of the trajectories are displayed in Fig. 1. The average trajec-
tory length, number of measurements and total search time
are demonstrated in Table I. As illustrated, our proposed algo-
rithm can greatly reduce the number of measurements and thus
reduce the total search time when measurements are costly,
which is often the case in turbulent signal field.

VII. CONCLUSION AND FUTURE WORK

In this letter, we presented the process-aware source seeking
algorithm, whose advantages were demonstrated by the analy-
sis and simulation results. Our proposed method can contribute
to multi-objective optimization problems by providing a gen-
eral approach to jointly optimize the process and the goal.
Future work may focus on extending this algorithm to the
case of multiple sources and multiple robots.
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