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Summary

Robustness of nonlinear systems can be analyzed by computing robust forward
invariant sets (RFISs). Knowledge of the smallest RFIS of a system, can help ana-
lyze system performance under perturbations. A novel algorithm is developed to
compute an approximation of the smallest RFIS for two-dimensional nonlinear
systems subjected to a bounded additive disturbance. The problem of computing
an RFIS is formulated as a path planning problem, and the algorithm developed
plans a path which iteratively converges to the boundary of an RFIS. Rigorous
mathematical analysis shows that the proposed algorithm terminates in a finite
number of iterations, and that the output of the proposed algorithm is an RFIS.
Simulations are presented to illustrate the proposed algorithm, and to support
the mathematical results. This work may aid future development, for use with

NA16NOS0120028; National Science
Foundation, Grant/Award Number:
CNS-1828678 and OCE-1559475,
S&AS-1849228; Office of Naval Research,
Grant/Award Number: N00014-19-1-2556
and N00014-19-1-2266; U.S. Naval
Research Laboratory, Grant/Award
Number: N0017317-1-G001 and
N00173-19-P-1412

KEYWORDS

1 | INTRODUCTION

System outputs are often affected by disturbances. It is
not necessarily a trivial task to establish a performance
bound on the performance of a nonlinear system, e.g.
for adaptive systems [20]. System performance in the
presence of additive disturbances can be obtained using
input-to-state-stability (ISS) [19] where the input repre-
sents a given disturbance. This may lead to a conservative
estimate of system performance, because the shape of a
ball corresponding to a particular norm may not always
be identical to the shape of a set within which the sys-
tem states stay. This can be understood as follows. The
unit circles for few different norms are shown in Figure 1.
Also from [15] it can be seen that the for a system of the
form x = f(t,x,u) such a system is called ISS if there
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higher dimensional systems.

computation algorithm, invariant set, nonlinear systems, path planning

is a class L function g, and a class K function y such

that x| < A (x(t)I,t = t0) +7 (SuP, <o 1u()]] ). For
a nonlinear system affected by additive disturbances, as
is the subject for this work, the input u can be replaced
by the disturbance, then it is quickly apparent that any
system state bounds based on the above mentioned ISS cri-
teria involves an upper-bound dependent on the norm of
the disturbance. This in addition to the shapes of unit cir-
cles shown in Figure 1 is sufficient to convince one that
there may be cases where an invariant set for a system,
which may be used to evaluate system performance, may
lie within sets shaped similar to the sets shown in Figure 1.
And so using the definition of ISS, and not explicitly find-
ing the shape of such an invariant set may leave significant
room for a conservative estimate of a system’s performance
bound.
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FIGURE1 Figure showing unit circles for different norms

A forward invariant set of a given dynamical system, is
a set such that all trajectories of the given system with ini-
tial conditions x(fy) within this set remain in the set at
all future times t > f;. A robust forward invariant set
(RFIS), is a forward invariant set for a given dynamical sys-
tem in the presence of a disturbance of known bounded
magnitude. If the smallest RFIS can be found around an
equilibrium point of a given system, then this RFIS pro-
vides the least conservative system performance estimate
around that equilibrium point in the presence of distur-
bances. This is because system performance bounds can
be formulated as bounds on system states, and the small-
est RFIS may be smaller than a ball corresponding to a
particular norm used in the definition of ISS.

Work on computing RFISs exists for linear systems
[16,26]. The authors in [16] develop procedures to com-
pute disturbance invariant (d-invariant) sets for discrete
time linear time-invariant systems, where the disturbance
inputs belong to a compact set. The work [26] deals with
robust control invariant sets for discrete time linear sys-
tems with bounded additive disturbances, and shows that
existence of a robust control invariant set can be verified
by solving a convex optimization problem. Literature exists
for computing polyhedral invariant sets for discrete-time
linear systems [6,7]. Computing robust control invariant
sets for piecewise affine systems has been addressed by [1].
The authors in [4] use Newton's method and the secant
method to find zeros for set-valued maps, and use this
technique in [3] to find invariant sets for dynamical sys-
tems. Recent results exist [27,28] for computing polyhedral
invariant sets, however these are developed for discrete
time linear autonomous systems. Finding the smallest
RFIS, has similarities with estimating the shape and size of
the domain of attraction of a given system. For a review of
techniques used for domain of attraction estimation, read-
ers are directed to [22,23]. It is worth mentioning that use
of sum-of-squares polynomials, along with optimization

approaches has been widely used for computing invariant
sets in the literature.

Work related to ours exists in [11], in which the
problem of computing extremal trajectories and associated
controllers is considered for a class of continuous-time
systems with given initial conditions. Also, [12] deals
with the largest estimate of the robust domain of attrac-
tion (LERDA), via the use of Lyapunov functions, and
sum-of-squares techniques. Further, [33] deals with devel-
oping a numerical sampling-based algorithm for comput-
ing largest tolerable disturbance sets such that certain state
constraints are satisfied. Our work is very closely related to
[2], where the foundations of viability theory are provided.
Viability is a special case of invariance, and the concept of
an invariance envelope [2] is similar to the smallest RFIS
that our work aims to compute. Further, [29] shows that
the viability kernel can be approximated by a sequence of
discrete viability kernels, for a certain type of differential
inclusions. This approach is similar to our work, where
the algorithm proposed iteratively produces estimates of
an RFIS, thus producing a sequence of sets which ide-
ally converge to the required smallest RFIS. Estimation of
reachable sets is another area of work related to the sub-
ject of this paper. Reachable set estimation deals with the
estimation of a set containing all possible reachable states
of a system given a set of initial states. Results related
to reachable set estimation exist for linear systems [37],
unmodeled systems via data driven approaches [10], and
also for nonlinear systems of the form x = f(x) unaffected
by disturbances [35]. Earlier mentioned sum-of-squares
approaches also find applications in computing barrier
certificates for obstacle avoidance [5], and for computing
“funnels” [17] used for guaranteeing system performance
within given bounds in the presence of disturbances.

A motivation for this work is related to model predictive
control (MPC) [25], which may require the use of special-
ized or set-based [31] techniques to develop a controller
meeting desired requirements [9]. As observed in [30,32],
knowledge of the domain of attraction of a system, or the
ability to estimate the shape and size of polyhedral invari-
ant sets, is beneficial for MPC design. There is also work
related to systems with non-ISS unmodeled dynamics [14],
which could benefit from set-based performance evalua-
tion that does not rely on ISS. More specifically, our work
is inspired by the curve-tracking problem [36], which is
important to the path-following control of autonomous
vehicles. Curve tracking controllers have been used for
applications such as obstacle avoidance using wheeled
robots, and marine sampling [21]. These controllers are
robust to real world disturbances, which is justified in [18,
19] by using tools like ISS. The authors in [19] analytically
find hexagonal RFISs for the curve tracking problem.
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The novelty of our work is that the problem of finding
the boundary of an approximation of the smallest RFIS
is formulated as a path planning problem. Path planning
algorithms, such as the A" [13] algorithm, are well known
to reduce computational effort, so we use the A” algorithm
as a part of the proposed RFIS computation algorithm.
Also, the proposed RFIS computation algorithm is able to
find an RFIS for general two-dimensional (2D) nonlinear
systems with bounded additive disturbances.

Although our work deals with two dimensional systems,
it is worth mentioning that creating an algorithm for find-
ing the shape of the smallest RFIS is not a trivial task, even
for a two dimensional system affected by disturbances. The
most significant contribution of this work is the ability
to generate an estimate of the shape and size of the least
conservative RFIS for 2D nonlinear systems with bounded
additive disturbances. This is helpful for generating the
tightest performance bounds for such nonlinear systems,
which is an open problem with significant practical and
theoretical value. We use path planning algorithms, and do
not rely on Lyapunov based approaches or sum-of-squares
relaxations based approaches, because as documented in
[8], such approaches can provide conservative results.
Generalizing this work to n-dimensional systems, and a
detailed performance comparison with other approaches
is outside the scope of this work and is left for future efforts.
Preliminary results, and problem formulations exist in our
previous efforts [22],[23]. In comparison to our earlier
work, the specific contributions of this paper are as fol-
lows. In [22] only a preliminary formulation allowing the
use of path planning algorithms for computing RFISs is
presented with preliminary versions of some proofs. In
[23] the above mentioned formulation is cleaned up, and it
is shown that the proposed algorithm appears to produce
correct shapes. In the current work, the notation used is
further cleaned up. Also in [22,23] a specific disturbance
function appears to be used in the mathematical formu-
lation, and in the result. In this paper, the formulation is
altered so that no specific form of a disturbance function
is required, but only discrete values/measurements of the
disturbance function are required. This is also shown in
the results where the RFIS computation algorithm pro-
duces results in the presence of different bounded func-
tions used as the additive disturbance functions affecting
the system dynamics. Further, for the first time, condi-
tions on the system dynamics, and on the disturbance
function and grid discretization are explicitly provided for
achieving an output from the proposed algorithm that is
an RFIS.

This paper is organized as follows. The required mathe-
matical notations and definitions are presented in Section
2. The problem formulation is presented in Section 3.
Details related to the proposed algorithm are presented in
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Section 4. Mathematical results are presented in Section 5.
Simulation results are presented in Section 6. Followed by
a concluding summary and discussion of future possibili-
ties in Section 7.

2 | MATHEMATICAL
PRELIMINARIES

Consider the system x(t) = f(x(t)) + 6(f). Here f : R? —
R2 Also, & : [0,400) — U, and U c R? is a compact
set. Here x(f) is a solution to x(t) = f(x(t)) + (t). Fur-
ther, f{-) represents system dynamics, and &(-) is a bounded
disturbance. For computational simplicity, the set V" is
defined as [—68p, 0] X [—80, 8], for some known value 6y €
[0, +c0). This box structure for 1/ is not essential, and can
be relaxed. The definition of an RFIS is given as below.

Definition 1 (Robust forward invariantset). Aset X C
IR" is an RFIS, if for all initial conditions x(t;) € X, and
all 6(t) € U the solution x(f) € X for all t > f,.

A connected curve that does not cross over itselfis called
a simple closed curve. A simple closed curve is defined
to be positively oriented if the interior region enclosed by
such a curve lies to the left as the curve is traced anticlock-
wise. Given a point py € R? on a positively oriented simple
closed curve, suppose one arrives at point p, by tracing
the curve anticlockwise. The tangent vector at p, is given
by the vector ]im” p1—po||-0P1 — Po)- The normal vector
at p, is obtained by rotating the tangent vector anticlock-
wise through x /2 radians. Such a normal vector is said to
point towards the ‘left’, or towards the interior region of the
given positively oriented simple closed curve, at point p,.
Figure 2 provides an illustration of the above terms related
to a simple closed curve. Given two points a and b belong-
ing to R?, let (a; b) denote the line segment joining points
a,and b. A set S € R" is a star-shaped set if thereisax € S
such that for all x € S, (X; x) lies in S.

Let P = {p), ....p,} and Q = {qy, ....q,} be two
sequences of equal length n consisting of points p, and
q; € R? respectively. Let the distance between sequences

Pand Qbe dx(P,Q) = Y1, lIpt — qill,-

3 | PROBLEM FORMULATION

In this section the problem of finding the smallest RFIS is
formulated, as an optimization problem.

3.1 | Problem statement

Using the notation and definitions in Section 2 the
problem of interest to this work is stated as follows. Con-
sider a system of the form
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FIGURE 2 A, A positively oriented simple closed curve is shown formed by segments joining vertices p,, ...
.j+ along these segments. Point x is lying in the interior region of a set whose boundary is a

Np, ..., N, are shown at intermediate points j,, ...

. Ps- Normal vectors

positively oriented simple closed curve, (x — j;, N;) > 0 for alli € {0, 1,2, 3,4}. B, Point y is lying in the exterior of a set whose boundary is a

positively oriented simple closed curve, (y — js, N4) < 0. C, Convention followed for measuring the angle a vector makes with the normal

vector at a given point

X(t) = f (D)) + 6(t) )

where f(x), 6(t) are Lipschitz locally in x € D, globally
in t € R respectively. The function é(f) is not known,
but &(t) € [—8g,6p] X [—8p, 8g], and &, is known. Start-
ing from an initial guess B C D, find the smallest RFIS
(see assumption 1) for the system in (1). The set D is
the region of interest. Functions f{-), 6(:) are assumed
Lipschitz, because this is required for uniqueness of solu-
tions, which is needed for the existence of an invariant
set [2,8,34].

Assumption 1. We assume that the smallest RFIS for
(1) with disturbance &(-) valued in [—8q, 0] X [—8¢, 6]
exists as a star-shaped RFIS contained in B. The small-
est RFIS has the smallest area among all RFIS in B,
and has a boundary that is a positively oriented simple
closed curve.

For any system of the form in (1), if there is a domain
of interest D € R2? which contains invariant sets, then
it is reasonable to assume that one such invariant set
will have smallest area. The boundary of such a set can
be approximated by a piecewise linear closed curve (see
Figure 3(a)). Details related to the choice of constructing
star-shaped RFISs, and whether B is needed to be invari-
ant or not, are provided further in the paper. Note that
conditions for existence of RFISs, or smallest RFISs are
beyond the scope of this paper, and not of interest to the
material at hand. The focus of this paper is producing a
computational algorithm for finding RFISs, and providing
appropriate output to the user if an RFIS can, or cannot
be found by the proposed algorithm in an initially guessed
set B.

A curve
N(x)
cos™! (a(v(x), N(x)))
— — Initial Optimal
— — — - Sub optimal -« Smallest RFIS
FIGURE 3 Illustrations: A, Types of solutions to the problem of

finding an RFIS. B, An illustration of the quantity a(v(x), N(x)) ata
point x € R2. The magnitude of the angle between vector v, and the
normal vector N is bigger than the magnitudes of the angles
between vectors v, and N, v; and N. All these angles are acute, so
by properties of the cosine function, the value of the cosine of the
angle between vector v; and the normal vector N is the smallest
compared to the other two vectors

3.2 | Motivation for using star-shaped sets
and path-planning algorithms

The literature [24] has results with the ‘contingent cone’
(or tangent cone) Cg(x) which uses distance between sets
to find convex invariant sets for systems of the form Xx(t) =
f(x(1)), with the assumption that solutions are unique.
This result holds for non-convex sets [8], and is further
extended to systems of the form x(f) = f(x(t), w(t)) in [2].
In both cases a set & is positively invariant if f(-) € Cs(x)
for all x € &. This can be replaced by f(-) € Cgs(x) for
all x € d& [8], where 0§ denotes the boundary of §. As
mentioned in [8], the geometric interpretation of the above
results is the following.

Definition 2 (Boundary condition). If for x € 4§
the derivative x(f) points inside & or is tangential to &,
then the solution x(f) stays in & .
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The above stated boundary condition can be intuitively
understood as follows. Consider particles suspended in a
flow field. If at every point on the boundary of a closed set,
any flow is directed only inward into the set, or at worst
directed along the boundary of the set, then no particles
can ever leave such a set. Because the moment a particle
reaches the set boundary, a particle is always acted upon
by a flow which pushes it inside the set, or pushes it along
the boundary of the set, but never pushes it outside the set,
simply because the flow never takes such an outward flow-
ing direction. Thus motivated, our work focuses on finding
an approximation of the smallest RFIS which we define as
follows.

Definition 3 (Approximation of the smallest RFIS).
An approximation of the smallest RFIS for the system
in (1), is a star-shaped set in B ¢ R? whose boundary
is a simple closed curve such that the above bound-
ary condition is satisfied, with disturbance 6(:) €
[=8p,8p] X [—6p,6pl, and such that this set has the
smallest area.

Consider a star-shaped set with a polygonal boundary
such that the boundary doesn't intersect with itself, i.e.
the boundary is a simple closed curve. Now consider tri-
angles formed by joining line-segments from a point X in
the interior of such a set, with two consecutive vertices
of the polygonal boundary. The sum of the areas of all
such triangles, is the area of the polygon. Thus minimiz-
ing the area of the polygon requires minimizing the area
of each triangle, which can be achieved by reducing the
lengths of the sides of the triangles. Next, it is shown that
existing path planning algorithms can efficiently solve the
problem of finding a star-shaped polygonal set satisfying
the boundary condition, and minimize its area.

3.3 | Discretization of the search space

Let us begin with an initial guess for the smallest RFIS
called B. A naive, brute force approach to find the small-
est RFIS would involve picking any n random points
ap, as, ...,an, then joining consecutive points ai, az;as, as;
as,ag;...;0p-1,0an, by line segments to form a simple
closed curve, and then verifying if definition 3 holds for a
set with the above simple closed curve as boundary. This
process needs to be repeated an infinitely many number of
times, until a result is achieved. Such a process may never
end. Then, one can resort to Lyapunov based methods,
which yield conservative results. So to get less conserva-
tive results, but also to reduce the number of points within
B which need to be examined, we discretize the space
in which an approximation of the smallest RFIS is to be
found, as follows. Consider set B, and a point X located
in its interior. A radial grid is superimposed on B with
grid lines emanating outward from X. This particular grid

FIGURE 4 A, Discretizing the search space to find the smallest
RFIS (dotted ellipse) contained within a initial guess set B. The
shaded circle is a point x located within B. B, Embedding a directed
graph structure - only partial graph structure shown

choice helps find star-shaped sets. To create this grid, select
N + 1 distinct points {bg, b1, ..., bn} from the boundary
of B. Then connect X to each point bg, by, ..., bn. Let the
index i € {0,1, ...,N}. For simplicity, choose b; so that
the angle 8; between each segment seg(b;; X) and the x-axis
is Ni;l The points by, by, by, and by are indicated on the
boundary of the square set in Figure 4(a). The set B is con-
vex by choice, and X is in the interior of B. So, B contains
all line segments joining X to each point b; by construc-
tion, i.e. it is star-shaped. Next, discretize each segment
seg(b;; X) into n + 1 grid points Py wherei € {0,1, ...,N},
je{0,1, ....n},and pj; = b; + @ Let set .4; be a set of
grid points {p;; € seg(b;;X)}. The sets A to Ay are illus-
trated by dashed line segments in Figure 4. The grid points
p;; belonging to each set .A; are marked by circles. Further,
embedding the graph structure described in the following
sub-section, allows converting the problem of computing
an approximation of the smallest RFIS into N + 1 separate
unconstrained optimization problems.

3.4 | Embedding a directed graph
structure

To produce positively oriented simple closed curves
around x € B, the following graph structure is proposed.
Excluding X, connect every grid point in set A4; to every
grid point in set .4;;;. Do not connect any grid point in a
set .4; to any other grid point in .4;, or to any grid point in
set .4;_1, i.e. paths cannot go radially towards X or clock-
wise around X. To produce closed paths, the index i wraps
aroundie.i+1 =0ifi = N,andi—1 = Nifi = 0. This con-
nects grid points (excluding x) in set Ay to grid points in set
Ay. An illustration of this graph structure, which is named
G’', is seen in Figure 4(b). Paths exist from grid points
Poos Po1, Po2 € Ajg directed to grid points p1o, p11, P12 € A1.
Similarly, directed paths exist from point pn» € An, to
pOiIltS Poos Po1, Po2 € Ap.
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By construction, if a set of paths is chosen from graph G’
to form a directed simple closed curve, then the set formed
by the region enclosed by such a curve contains x. This is
due to the fact that by-construction such a set formed is a
star-shaped set with a simple closed curve boundary. The
structure of graph G’ is chosen to help produce star-shaped
sets, which are essential to find a set of least area, as said
in Section 3.2.

3.5 | Formulation of an optimization
problem

The task of finding a smallest RFIS whose boundary is a
simple closed curve involves picking points from the graph
G’ so that a polygonal set is formed. So for each edge of the
polygon two points must be picked. Suppose for a particu-
lar edge, two points p;; € A;, and pi_1x € A1 are picked
wherei € {0,1, ...,N},j € {0,1, ...,n}, then let

N@i-1k. Pij) = Tx/2(Pij — Pi—1k)s (2)

The symbol I/, represents the rotation matrix in R?, i.e.

cos(z/2) —sin(x/2) 0-1
z/ z/ ]=[1 0]_ 3)

Irp2= sin(z/2) cos(x/2)

The definition of vector N(p;_yy. py) is understood as
follows. The goal is to construct a positively oriented sim-
ple closed curve, which forms the boundary of the small-
est RFIS (a polygon). A segment seg(p;_1):Py) joining
points p;, pi_1) is an edge of a polygon. This segment
seg(P_1)k: Py) 1s to be tested to find if it qualifies as a part
of the boundary of the required smallest RFIS, i.e. if the
boundary condition is satisfied. By definition, a posi-
tively oriented simple closed curve has its interior on the
left, and the exterior on the right when the curve is traced
anticlockwise. Also by definition of such a curve, the pos-
itive direction of the normal vector points inwards (i.e. to
the left). This is why the definition in (2) uses a rotation
matrix which turns the candidate segment seg(p;_y); Py)
anticlockwise by 7 /2 radians to get an estimated direction
of a “normal” vector N(p(;_yy. p;;)- Further the task of test-
ing if seg(p(;_yy: p;;) satisfies the boundary condition, is
done as follows. Let,

F() = {f(0) +8()lx € R?,

4)
5()6 {d{), ...,ds}X {d{),

,ds}},

here f(-),8(-) are from (1), and d; = —§& + 2’1‘;", n =
{0,1, ...,s}, where s € N. The set F(x) contains all vec-
tors which satisfy (1), at a point x € R2, and evaluated
over a set of possible discrete disturbances valued in U,
i.e. [<80, 60] X [—80, 60]. Note that to compute an RFIS, the
analytical form of é(f) is not needed. Only, the maximum,
minimum values that each component of (f) can assume,

are needed to sample the disturbance values in the set .

Further let two points p;; € A;, and pi_1x € Ai_1 be given,
and consider the following.

V*(Pij)
arg min (N(p(i—]}k\pij )v(py;)) .
- { V(py) € F(py) TG Mo, L INIHIVIE 0
N(p-vk. pi)- i [IN] Il = 0

(5
The vector v*(p;) represents a vector for which the term

(N(DG_1-P3;) v ()
[IN@g_1yep:) ||| v |
cosine of the angle between the vector N(pg_1y., p;), and

all vectors v(p;) € F(p;) satisfying (1) and affected by all

possible disturbance values that 6(-) can take. The term
(N(P(i—l)k\Pij)sV(Pij))

NG| [[vE ]l

v(pij) whose angle with respect to NP1 P;j) € [-90,90]

degrees (i.e. cosine of such an angle belongs to [0, 1]), is
a vector which points towards the ‘left’ of seg(p;_1yc; Py)s
or points along seg(p;_yy: Py)- If such a seg(p;_1y; py) is
selected as a candidate edge of a polygonal set, and sub-
sequent such choices are made to produce a polygon with
a positively oriented simple closed curve boundary, then
the edges of this polygonal set would satisfy the bound-
ary condition. Thus enforcing the boundary condition
for every seg(p(;_1)x; P;) requires finding vectors for every
(N(p(i—l)k’pij )vi(py;)) has

IN@eve2) | [V
minimum value. And by the definition of the cosine func-

tion, if this minimum value is positive, this implies that
a given seg(p;_py; p;) satisfies the boundary condition.
Thus we define, the cosine of the angle between v*(py),
and

has minimum value. This term is the

can take values in [-1,1]. Any vector

seg(P(_1): Pyj)» for which the term

(N(PG-1yks Pij)s V¥ (Pi))
IN@G—ves Pi) || [[v* @ip)ll
(6)

@ (V¥ (pyy), NP1k Pyy)) =

and N(p(_1y p;) as per (6). Also, from the above discus-
sion, enforcing the boundary condition requires a(-,-) >
0 for every seg(p;_yy: Py)- The quantity a ((v(), N(-)) is
illustrated in Figure 3 (b). It is worth noting that in Figure 3
(b) the quantity a ((v(-), N(-))) is in terms of the variable
x € R? (a continuous spatial variable). However for com-
putation purposes we have to discretize the search space,
as described in section 3.3. So here, and from now on the
quantity a ((v(-), N(:))) is written in terms of a point Py
in the discretized space. Also the normal vector cannot
be defined with relation to a smooth curve as shown in
Figure 3 (b) because we are trying to reconstruct/find piece
by piece, the curve which will form the boundary of the
required smallest RFIS. So a normal vector perpendicular
to a segment of such a curve being sought is represented by
N(pG_1)e- Py)» here p;_qy. p; are endpoints of the segment
under consideration.

Now the problem of computing an approximation of the
smallest RFIS can be formulated as the following optimiza-
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tion problems. For each i € {0,1, ...,N}, given a point
Pi-nk € Ai1, k € {0,1, ...,n} find a point p; € A;
minimizing the following
=N
Z c(Pii-1)ks Pij)s )
i=0
ji€{0,1,...,n}

where

c(Pi-vks Pij) = n(@(v* (piy), N1 piy))) + ||pis — || (8)

and

_J x, if xe[0,1]
nx) = { g, if x e [-1,0), where 2> 0. ©

Equations (7)-(9) can be understood as follows. The
goal is to use path planning algorithms to solve (7) and
get points which can be joined by line segments to form
a polygonal set which is also the smallest RFIS. Sup-
pose it takes a certain cost ¢(py;, p;_1)) to traverse along
seg(p_1)k: Py) Which is an edge of a polygon, (7) repre-
sents the total cost to traverse the boundary of the polygon.
The first term on the R.H.S. of (8) is called the boundary
criteria checker term, because it represents a component
of the cost which ensures that every seg(p;_y; p;) satis-
fies the boundary condition. So whenever an argument
a(-,-) = 0 is passed to the function 5(-), the output is
the argument itself, however if a(:,-) < 0, then the func-
tion 5(-) outputs a certain positive value g. Lemma 1 shows
that if g is a sufficiently large positive number, then the
boundary condition is satisfied for seg(p;_;y:p;)- The
second term in (8) penalizes points p; which are far from
the point X € B. If each point p;; € A; is picked as close
as possible to X, then this reduces the areas of the trian-
gleswith vertices pj;, X, pi—1)k, thus reducing the area of the
overall polygonal set as discussed in Section 3.2. Because
each term in (8) is positive, minimizing the overall cost
in (7) minimizes c(-,-) in (8) for each i € {0,1, ...,N},
and thus satisfies the requirements of definition 3. A path
planning approach, discussed below, can solve the above
optimization problems.

4 | LEVERAGING PATH PLANNING
ALGORITHMS

The following sections first provide some background
information about the A* path planning algorithm, and
then provide information on how it is used in this paper.

4.1 | Background information about the A
algorithm

Figure 5 shows a graph with a source node (shaded in
gray), a goal node (shaded solid black), and the current
node at which path planning has reached i.e. node ‘n’
The numbers mentioned on the links in Figure 5 are the

-
-

FIGURE 5 An illustration for A” based path planning

path costs, solid paths represent paths already taken to
reach node ‘n’, and the dashed paths represents paths not
taken yet. The task for the A" path planning algorithm is
to find a least cost path from the source node to the goal
node. For this, A” uses costs calculated as follows. The cost
to get to node ‘n’ from the source is 2 + 3 = 5, which
is represented as g(n), and the cost to go from node ‘n’
to the goal node is represented as h(n). This second cost
function h(n) is a heuristic cost, i.e. based on experience.
When these costs are added, it gives total navigation cost
fin) = g(n) + h(n) at a node ‘n’. It is realistic to assume that
actual values of g(n), h(n) are not available accurately. So,
the A" algorithm [13] uses an evaluation function of the
form f() = g+ ?1(-). Here g(-) is the estimated cost to go
from a source node to a given node ‘n’, and fl(-) is the esti-
mated cost-to-go to a goal node from a given node ‘n’. The
functions .31(-) and h(-) are known as estimated, and actual
heuristic costs. The function f(-) is chosen based on expe-
rience. As long as fl(-) < h(-), and the actual cost g(-) is
positive for traveling between any two consecutive nodes
in a given graph, then the A" algorithm terminates and
produces an optimal path [13] i.e. minimizes f(-). These
details can be found in [[13], Theorem 1]. As an example
of a heuristic cost, we can see that the cost to reach the goal
node from any node in Figure 5, is at least 1. So a choice
for an estimated heuristic cost function could be .fl(n) =1,
this way the requirement h(n) < h(n) is met. For further
detailed information on A’ readers are referred to [13].

4.2 | The proposed algorithm for finding
an approximation of the smallest RFIS

Path planning algorithms need a graph, a starting point
(source node), endpoint (goal node), and an evaluation
function to estimate the cost of a path. Readers are directed
to [13] for details on path planning. Finding the smallest
RFIS requires the set of source nodes and goal nodes to be
the same, so that the starting and ending point of the closed
path coincide. The A” algorithm [13] does not start plan-
ning a path if the source node belongs to the goal set. To
separate the source nodes from the goal set, a path must be
planned in at least two parts. The first part originates at a
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source node belonging to the set A and terminates in the
set Apnr, where N’ = [N /2|. The second part originates at
the node where the first part of the path terminated in a set
Apr, and the goal set is the set .A,.

Given a graph G’ as mentioned in Section 3.4, the fol-
lowing cases are considered for computing the evaluation
function £(-) required by A” to find an optimal path, which
is hypothesized to be the boundary of the smallest RFIS.
For (10)-(11),i € {1, ...,N},and j, k,I € {0,1, ...,n— 1}.
When traveling from a point (node) pi_1yx € .A;_; toa point
(node) p;; € Ai,

F i1y Piy) = 8(PG-1yks Pij) + fl(P(i—nk,pu), (10)
where ﬁ(p(,-_ 1k, Pij) = 0, and

E(pi-1k, Pij) = Pk Pij) + 821 Pa-vk), (A1)

with the only exception that the initial cost g(pa, pox) =
Oforalll,k € {0,1, ... ,n—1}.

Now, Algorithm 1 presents the pseudo code proposed to
find an approximation of the smallest RFIS, the operation
of Algorithm 1 is described in the following subsection.

4.3 | Operation of the RFIS computation
algorithm

The quantity r in Algorithm 1 is the iteration count with
the initial value 1, rpax represents the maximum number
of iterations. The values of n, N control the discretization
of the search space, the value of s controls the discretiza-
tion of the disturbance set. The sequence Py is initial-
ized to {bg, b1, ...,bn} wWhere each point b; € A;, i €
{0,1, ...,N}, lies on the boundary of the initial guess
B. Algorithm 1 generates sequence P, which iteratively
approaches the desired RFIS boundary. The variable o
measures if P, has converged to a particular sequence of
points, o is initialized to a value greater than e, where ¢ is
a small non-zero positive constant chosen by the user.

Let p,o represent a source node pg; € .Ag. During
every iteration r, the first segment of the resulting path is
planned starting from the point p,o to the goal set A,
where N’ = |N/2]. The points (nodes) picked by A
from the sets Ay, ..., Ay are stored into the sequence P,
in the order {pro,pr1.Pr2, -.-, Prav } The above process is
shown graphically in Figure 6. The second segment of the
resulting path is planned starting from the point p,nv €
An to the goal set Aj. The sequence P, is updated with
the points picked by A" from the sets Apryq, ..., Ay as
Pr = {Pro.DPr1s -, DrN, Pravr41)s - oo Pran-1). PN}, Where
pri € A, andi € {0,1,...,N}. Also let the sequence
P, = {0, ...,0} be initialized with N zeros as shown in
Algorithm 1. Sequence ¥, is updated in each iteration r
with boundary criteria checker terms as defined in (8). By
definition and from the discussion following (8), given two
points py -1y, Ppr; the boundary criteria checker term for

seg (Pr,i-1); Pr.i) is 1 (a(v* (Br), N(Pr -1y, Pr)))-

Algorithm 1 Compute an approximation of a robust for-
ward invariant set
Data: Sets A to Ay, graph G', f(-), po; € Ao, positive
numbers €, , € R, and n, N, 5, Fyax € N.
Result: P, ¥,
: Letr= I,N' = LNXZL,O' = 2€,P|] = [bu,bl, ,bN};
: Let pyg = poj € Ao, ¥y = {0,0,: - (velements) - -,0};
: while (¢ > ¢) and (r < ry,,) do
Use A* to find an optimal path from f,, € Ay to
the goal set Ayr;
5: Let j,n represent the point picked by A* in line 4
from the set Ay;
6: Store the points obtained above as the sequence

1
2
3
4

Pr = {ﬁr.ﬂae Ao»ﬁr.l € Ala ,ﬁr_N’ € AN’}
7: Store boundary criteria
checker  terms in  sequence ¥, =

{n (@v* @), NGBro, 5r1))) » -+ o 1 (@(* Br ), N@Brovrmys Benr ) }5
8 Use A* tofind an optimal path from j,n € An to
the goal set Ag;
9: Let j, x represent the point picked by A* in line 8
from the set Ay;
10: Let pr41 0 represent the point picked by A* in line 8
from the set Ap;

11: Update sequence P, as P, = {j,0 € Ao, -, Prn* €
AN, Prast € Anria, -+, prv € Anh

12 Update sequence ¥, as ¥, =
{21 (a0*Brv+2): NBrwr, Brivv 1)) »
<o, («(V*(Brn), NGrv-y, Brv))) }5

13:  Compute o, = dy(Py, Pr—1);

14 Lete = oy, Pro = Pre10 € Ao;

150 if (o > e)and (r < ry) then

16: r=r+1;

17: else if (o > ¢) and (r = ryax) then

18: display(“No approximation of smallest RFIS
found in ry. iterations.”);

19: P ={},% ={};

20: Go to line 31;

21: else if (¢ < ¢) then

22: if 3 ¢ ¥, then

23 display(“Approximation of RFIS found.”);

24: Go to line 31;

25: else

26: display(“Polygonal set found in iteration r,
but boundary condition violated.”),

27 Go to line 31;

28: end if

29: end if

30: end while
31: return P,,¥,;

The algorithm continues until the given maximum num-
ber of iterations rmax are performed, or if ¢ < ¢, i.e. the
sequence P, has converged to some sequence of points
chosen by the A” algorithm. If the maximum number of
iterations are reached and o > ¢, this means Algorithm 1
has not converged to a particular sequence of points, thus
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FIGURE 6 An illustration of planning the required path in two
halves, first from .4, to .Ay/, and then from Ay back to .4,. Note
that the set .A, is shown to not lie on a horizontal line segment
because any set can be chosen to be the set .A, as desired

the algorithm exists by returning empty sequences P,, ¥,.
On the other hand, if in a certain iteration r < rpax, We
have 6 < ¢, then the Algorithm 1 checks if g € ¥,. If
true, it means that for the least cost path that Algorithm
1 could find in the given initial set B, there is at least
one seg(Pr_1); Pr;) that does not satisfy the boundary
condition, and thus the result output by the algorithm
is not an RFIS. If either of the above events occur, the
user can change the initial guess, or change the location
of X, or change the spatial and disturbance set discretiza-
tion by changing values of n, N, s, or increase ryax and run
Algorithm 1 again. Further, if 6 < ¢, and § ¢ ¥, then
no seg(Pri-1y; Pr.i) violates the boundary condition, and
thus it is hypothesized that the result output by Algorithm
1is a candidate for an approximation of the smallest RFIS.
The following section proves the above hypothesis.

4.3.1 | Tie breaker rule

For any i € {0,1, ...,N} it is possible that when the A"
algorithm is trying to find an optimal path from a point
DPi-1k € Ai1 to the set 4;, there are multiple p;; € A;
providing a path of equal cost. In such situations a point
py with the largest index j € {0,1, ...,n} such that the
boundary condition is satisfied, is selected as a solution
to (7). This guarantees a unique solution to (7) for all i €
{0,1, ..., N}. Also based on the discretization of the search
space, choosing a point p; with the largest value of j gives
a point closer to X, which reduces the area of an RFIS.
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4.3.2 | Zero cost h(-)

Setting hi(-) = 0, may appear to make using A" algorithm
unnecessary, and may seem to make using Djikstra's
algorithm more appropriate. Also, even if setting hi(-) = 0
may result in Djikstra’s algorithm being used, yet using the
notation as mentioned in section 4.1, allows us to mold
the formulation along the lines of [13], and further allows
usage of results from [13] to prove convergence of the pro-
posed algorithm. This is a motivating factor for setting up
notation related to A” and using it in this work. Also, incor-
porating any experience to choose an appropriate function
h(-) has potential to reduce computation time significantly
[13]. For example, suppose after a few runs of the proposed
algorithm it is seen that the algorithm is not converging
to a convex shaped set, but to a star shaped set. Then, at
least from the results, an idea of the general size of the set
can be approximately formed. Based on this the f(-) cost
can be updated at each node to allow for possibly faster
convergence of the algorithm proposed in this work.

5 | MATHEMATICAL
JUSTIFICATION

The following result establishes lower bounds that g
in (9) must satisfy so that given a point p; 1k €
A1, the next point p; € A; is picked such that
a(v*(p,-j), NP1 Py) € [0,1], and as mentioned briefly
after (6), having a(v*(pg), N(pg_1Py) € [0,1]1s required
to enforce the boundary condition along seg(p_,yc; Py)-
Thus Lemma 1 establishes conditions on § which are
required for enforcing the boundary condition. Intu-
itively, this result can be understood as follows. The cost
functions described in section 3.5 are setup such that if
any segment is chosen by the proposed algorithm to be
a part of the boundary of the computed RFIS, then the
least navigation cost occurs along segments (paths) located
along the true boundary of the RFIS (in other words
along points/paths meeting the boundary condition). So
to prevent the proposed algorithm from picking a point,
which if chosen, would violate the boundary condition,
such points are simply assigned an extremely high navi-
gation cost, so that the path planning algorithm does not
pick them. In fact, it turns out that the exact value of the
cost to be assigned to such points, so they are not chosen,
is not hard to find. Such a cost assignment is done in our
formulation by assigning a value for the constant g, details
for which are available in Lemma 1 below.

Lemma 1. Let i € {0,1,...,N}, and jk €
{0,1, ...,n}, and X be any point in the interior of
the initial set B ¢ R2 Given a point p;_p, €
Ai_1, suppose there exists at least one j such that
a(v*(py)s NP> Py)) € 10,11, where p;; € A,
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Let pi be a node chosen by A”. If the constant g >
1+ max;; (||py — ||,). then a(v*(py+), N(Pi-1)k: Pij*))
€ [0,1].

Proof. Given a point p;_y., f(Pi-1k. pij) is the cost of
traveling to a point pj; as per the evaluation function
in (10). In every step of execution of the A™ algorithm
this term f (P-1k- Dij) is evaluated [13]. Evaluation of
f (P(—1)k Pij) requires evaluation of g(pi_1y. pi;) in (11),
Py Py) 10 (8), 1 (@(v*(piy), N(Pi-1yk: Piy))) in (9),
and a(v* (P N@g_1yis Py)) in (6). The quantity a(-) is
the cosine of the angle between vectors v*(p;), and
NP1 Py) and 50 a() € [-1,11. If a() € [-1,0),
then by definition in (9) we have n(a(-)) = g, and
if a(-) € [0,1], then by definition in (9) we have
n(a(-)) € [0,1]. Now let p;» € A; be a point such that
a(v* (pijr ). N(P—1k. Piy)) € [-1,0), and let p;» € A;
be a point such that a(v*(p;;), N(p_1x. pij+)) € [0, 11.
Then by the above discussion, and by the definitions of
7(.),and c(:, -y we have £ (p-. piy) = g+||piy — ||+
8(Pa-21 Pa-vk)- And 1 + |piss — X|| + 8@a-2)1: Pi-1k) 2
S(Pi-1k, pij+). So it is trivial to see that if § > 1 +
max;; (||py —X||,), then the cost f(pi—_ik. piy) to go
from pi_1x € Ai_1, to pij» € A, is greater than the cost
F(Pe-1k pij+) to go from pg_1k € Ai_1,topy- € A;. But
the A” algorithm always picks the optimal path, and by
the assumptions of this lemma, a point p;;- is available
such that a(v* (pi;+), N(pi-1yk, Pij+)) € [0,1]. Thus, A"
will pick point p;;- so that a(v*(p;«), N(pi_1k. pij*)) €
[0, 1]. This completes the proof. O

The next result shows that Algorithm 1 terminates in
a finite number of iterations, and as the discretization of
the search space becomes finer, the output of Algorithm
1 tends to an RFIS. The idea on which the below result
is based is as follows. Suppose a set is picked in which
we wish to seek an RFIS. If there is an RFIS in this set,
then the proposed algorithm can converge to it, only if the
discretization of the search space is such that all points
belonging to the boundary of this RFIS belong to the sets
A; in graph G'. So assuming that the discretization is so,
the algorithm proposed in this work searches for the RFIS.
Because as mentioned before Lemma 1, the formulation is
such that the least navigation cost occurs along the bound-
ary of the RFIS. So the proposed path planning algorithm
at some instant (i.e. on some segment set .4;) will thus pick
a point from among the points in graph G’ that belongs to
the boundary of the RFIS. Following this, to stay on the
least cost path, every point further picked for navigation
will also be on this least cost path, i.e. the boundary of
the required RFIS. If this keeps happening, and because
the path being planned is a closed path, at some instant
the proposed algorithm will simply be picking points it

has already picked. That is, every point picked on every
segment set A; in a current iteration will be the same as
the point picked in the last iteration on every set A4;. If a
sequence of these points is maintained every iteration, and
the points stored in a sequence in a current iteration are
compared with the points stored in the previous iteration,
then at some instant, the sequences will be identical. And
when this happens, the proposed algorithm will terminate
having found the RFIS formed by segments joining these
consecutive points stored in such a sequence. However, for
this to happen, the system under consideration must sat-
isfy some assumptions, i.e. the system must be generally
well behaved in every neighborhood under consideration
so that the system behavior at one end of a particular dis-
crete segment is not radically different from behavior at
the other end. These conditions are simply the Lipschitz
conditions as mentioned below.

Theorem 1. Let i € {0,1,...,N}, and j,k €
{0,1, ...,n}, and B C D C R? be a convex set. Suppose
a graph G' € Bwith points p;; € A, is given, X is a point
in the interior of B, g > 1 + max; ||p;; — X||, and for the
system in (1), f(-) is L-Lipschitz locally inx € D ¢ R?
with L > 0, 6(-) is y-Lipschitz globally in t € R with
y > 0. If there exists at least one RFIS whose boundary
is a simple closed curve, which is formed by joining con-
secutive segments seg(p_py; Py) Where points p;; € A;,
and pi_1k € Ai-1, then Algorithm 1 converges fo a
sequence P, in a finite number of iterations. Further, let
R be the setwhose boundary is formed by joining the seg-
ments seg(Pr.o0; Pr.a1), seg(Pra;Pra)s .-, S€(PrN-13PrN):
seg(Pr.; Pro), where p,; € P,. If n,N are arbitrarily
large, and y is arbitrarily small, then % is an RFIS.
Furthermore, & has the smallest area among all pos-
sible star-shaped RFISs that can be formed by joining
consecutive segments seg(p;_py; Dyj)-

Proof. Algorithm 1 uses A internally to pick points
pij € A so that £() in (10) is minimized. From (7),
(10) and (11) it is seen that minimizing (10) minimizes
(7). Also, it is given that there exists at least one RFIS
whose boundary is a simple closed curve, which is
formed by joining consecutive segments seg(p(;_1y; Py)
where points p;; € A;, and pg_i € Ai_1. This cou-
pled with the discussion of the boundary condition
in Section 3.5 implies that for a point p;_1)r € A
which belongs to an RFIS, there exists at least one
point p;; € .A; such that a(v*(py), N(pg_1y- Py)) €
[0, 1]. Now there exist only a finite number of nodes in
graph G’ which are to be searched by the A" algorithm,
and it is known that the A" algorithm converges in
finite iterations to its optimal path [13]. So this implies
that in a certain iteration r of Algorithm 1, A" picks
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a point p;_nr € A1 such that p; ,y is a vertex of
the above mentioned RFIS. Now by assumption we
have g > 1 + max;; ||pi; — X|| and as discussed above
for a given point p;_1x € Ai_1 which belongs to an
RFIS, there exists at least one point p;; € A; such that
a(v* (P): N(P_1yx- Py) € [0, 1]. Now invoking Lemma
1 we know that A picks such a point p;; € A;, and
repeating the above argument we get that every sub-
sequent point pi;1); € Ay and so on, picked by A"
satisfies the boundary condition i.e. a(:) € [0,1].
So by the definition of #(-) in (9) and the definition of
sequence ¥, in Algorithm 1 we see that no subsequent
entries in ¥, will contain g. This shows why we use line
22 in Algorithm 1 to verify that the result satisfies the
boundary condition, required for an RFIS.

From the pseudocode of Algorithm 1, all points p;; €
A, picked by A" are stored in a sequence P,. Further,
because A picks optimal points, and considering the
tie-breaker rule mentioned in subsection 4.3.1 allows
us to establish that for each i € {0,1, ..., N} there is
a unique point p,; € P, which minimizes (7). Let the
simple closed curve formed by joining such points p,;
be d%. Note that a curve formed by joining consecu-
tive points p,; € P, is a simple closed curve by virtue
of the construction of the embedded graph structure
described in Section 3.4. Now, using arguments exactly
similar to the ones in the first half of the previous
paragraph we know there exists some finite iteration
number r in which p,; will lie on 0%. And now again,
because there is only one optimal simple closed curve
02, and because A" picks optimal points, and because
Dri € 0%, implies that every subsequent point chosen
by A" and stored in P, will now belong to 3% . There-
fore, it is trivial to see that after a certain number of
iterations r, points stored in P4, will be identical to the
pointsin P,. At the end of thisiteration d,(P,, P,,;) = 0,
and Algorithm 1 will terminate. This completes the
first result required.

Now consider points p,; ;,p,; from P, where
seg(Pr;_1:Pr;) is an edge forming the boundary 0%
of the set Z#. By construction, and from Algorithm 1
we know that these points p,; ;,p,; are some
points pi_1jx € Ai-1, pij € A; respectively. So
seg(Pr,i—1: Pr.) can be represented by a seg(p(_y): p;;)-
Also by Lemma 1 we know that given a point
Di-1k € Ai_1, the A™ algorithm picks a point p;; € A;
such that a(v*(pg), NP1y Pg)) € [0,1]. So from
the definitions of a(-,-) in (6), v*(-) in (5) we know
0 < (NP1 Pyj)- v(py) for all vectors v(p;) € F(py).
Now by definition, such a vector v(pij) = f(pij)+6(-). For
use in Algorithm 1, the set F(-) contains such vectors
v(-) evaluated at discrete values that an unknown
disturbance function &(-) can take. However, in real-

ity, such disturbances would be parametrized by
time as per (1). So consider vipy) = f(pij) + 4(f),
and W(y) = f{y) + 6(f), where 1,1, are some time
instants, and points p;,y € seg(pi_1y:Pij)- Then
from above we get 0 < (N(pq1y Py V() +
v(y) — v(y)). Re-arranging, and using properties of
inner-products gives (N(p;_yy. py), v(¥) — v(py)) <
(N(PG-1)k> Py)s v()). Now using the Cauchy-Schwarz
inequality, and then substituting v(p), v(py)
in the above, and simplifying using assump-
tions gives |[(N(pG_1k. Piy)s v(¥) — v(pip))| <
INOI (| fG) = f@ip] + 18(t2) = 8(t0)]) <
N() (L|y—py| +7 |2 — t1]). Now because n,N are
arbitrarily large, enabling a fine discretization of
space, it is possible to pick points p;_;y, p; such that
the length of segments seg(p;_yy: p;;) are arbitrarily
small, so it is possible to have |y— p;_,-| < 2L, and
similarly as y is arbitrarily small, it is possible to
have y |t — 1] < = for any given f3, f;. This provides
[{N@G-vks pij)s v(y)— v(pij))| < e,i.e.fromabove —e <
(NP V) — v(py) < (NP1 Py VD)) -
So we see that as n, N become larger, and y becomes
smaller, then ¢ — 0, i.e. for any point y seg(Pi_ 1y Pi J),
the boundary condition is satisfied. Also this implies
that at vertices Pij the vectors v(:) € F(-) satisfy bound-
ary conditions along two segments which have a
common vertex at p;. This shows that any point on
the boundary 0% satisfies the boundary condition,
for disturbance 6(-) satisfying given assumptions, and
thus the set &% is an RFIS. Further this set is formed
by minimizing (7), the second term of which min-
imizesthe distance of each point p;; € .A; from an
interior point x. This results in decreasing the area of
triangles p(_1k, pij, X. Because all points p;; € A; are
on the optimal path, no further decrease in area of
individual triangles pg_1k, pij,X is possible. So sum-
ming the areas of all such triangles which lie in the
interior of 22 by construction, we have the RFIS &%
with least possible area. This completes the proof. O

The above result shows that Algorithm 1 outputs a set
which is an RFIS of minimum area. By construction the
set is star-shaped, so this also satisfies the definition of
an approximation of the smallest RFIS. Further, the ini-
tial guess B is not needed to be invariant, although it is
required to contain an RFIS. Also the sequence ¥, acts as
an indicator sequence, because it indicates to the user if
the boundary condition is violated, by inserting g € '¥,.
This is useful if it is not known whether an initial guess
B contains any RFISs. It is worth mentioning that despite
the conditions on the Lipschitz constant y for the distur-
bance function &(-) in the above result, simulation results
in Section 6 show the versatility of Algorithm 1 developed
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in this paper, when used with different disturbance func-
tions. Relaxing the assumptions for the above result, and
extending it to higher dimensions is left for future efforts.

6 | SIMULATIONS

Consider the curve tracking problem [21] as given below.

p = —sin(¢) (12)
b= (p— po)cos(@) — usin(@) +6(1).  (13)
The values of certain constants used for testing this
system in (12)-(13) with the proposed RFIS computation
Algorithm 1 are §p = 0.15, py = 1, u = 6.42 (this applies
to all results mentioned here in this section). The follow-
ing subsections provide an analysis of the results obtained
on performing various tests with the proposed algorithm.
Seven tests are considered as follows. Test 1 considers the
effects of changing initial guesses i.e. set B, and chang-
ing locations of the point X, on the output of the proposed
algorithm. Tests 2 to 4 consider the effects of different
bounded disturbance functions 6(f) on the output of the
proposed RFIS comutation algorithm, when used with the
problem in (12)-(13). Tests 5 and 6 plot trajectories (solu-
tions) of the problem in (12)-(13) for ten random initial
conditions in the area of interest. The time required for cal-
culating these is noted down. These results are provided
as a means to compare the algorithm in this paper with
one which would simply compute simulated system tra-
jectories and hope to construct an estimate of the smallest
RFIS from such simulation. This is done because a full
fledged comparison of the proposed approach with other
approaches existing in the literature is completely out of
the scope of the current manuscript, but at least such a
test shows the advantages of the algorithm proposed in this
work when compared to a naive unguided search. Test 7
simply shows that the algorithm proposed produces cor-
rect and expected shapes for the RFISs, this is verified by
testing the proposed algorithm with a simple system that
has nested circular trajectories.

6.1 | Testl

Figure 7 shows results output from Algorithm 1 for differ-
ent (rectangular) initial sets B, and corresponding different
X, when tested for finding RFISs for the system given in
(12)-(13). The outer square sets with solid lines are the dif-
ferent initial guesses B. The inner rhomboidal sets with
dotted lines are the outputs. To read Figure 7, readers must
look for points having the same color. For Example, the
solid purple rectangular set with square markers is an ini-
tial guess B for a particular test run. Corresponding to this,
the single purple point (square marker) at (1, 0) is X for this
run, and the dotted purple rhombus shaped set with square

markers is the output. Similarly, the solid black rectangu-
lar set with triangular markers is an initial guess B for the
next test run. Corresponding to this, the single black point
(triangular marker) at approximately (0.95, -0.01) is X for
this run, and the dotted black rhombus shaped set with
triangular markers is the output. This output set almost
overlaps with a few other output sets in Figure 7. This is
not bad, because searching around slightly different points
ie. ¥ = (1, 0) or (0.95, -0.01), should not provide widely
different results for an RFIS (if there is an unique small-
est RFIS). A similar discussion as above applies for the
sets and points shown in red and blue in Figure 7, so the
discussion has not been repeated. It is worth noting that
the initial guess set marked with a solid blue line and
blue asterisks as markers is the same as the initial guess
set shown with solid black lines and triangular markers.
Thus, as seen from Figure 7 changing the sizes of the ini-
tial guesses, or the discretization, or the location of x has
relatively less effect on the output. Although X located cen-
trally within B appears to provide smoother boundaries of
sets. For the first try (purple set with square markers), the
following values were used for Algorithm 1, n = 51,N =
59,5 = 630,rmax = 10,e = 0.1,§ = 4.5035 x 10'°. All
runs of Algorithm 1 which produced Figure 7 ended in
4 iterations, and took about 3 to 5.6 minutes to termi-
nate and output results. Note that all results are obtained
using MATLAB on a Microsoft Surface Pro 4 dual-core
tablet PC with 4GB RAM, 2.5GHz CPU. The times reported
above include time for setting up storage variables, and
post-termination plotting.

6.2 | Tests2to4

Figures 8 to 10 show verification of the proposed RFIS
computation algorithm when tested using the problem in
Equations (12)-(13) with different disturbance functions
as indicated below. It is worth noting that the purple set
shown in Figures 8-10 is the same purple output set shown
in Figure 7. So the amount of computation required for this
is similar to that mentioned above i.e. around 3 to 5.6 min-
utes. Figure 8 shows test results when the proposed RFIS
computation algorithm's result is tested using the problem
in Equations (12)-(13) along with the disturbance function
&(t) = 8o sin(t). Figure 9 shows test results when the pro-
posed RFIS computation algorithm's result is tested using
the problem in Equations (12)-(13) along with the distur-
bance function &(f) = Mta.rrlr'(r). Figure 10 shows test
results when the proposérd RFIS computation algorithm’s
result is tested using problem in Equations (12)-(13) along
with the disturbance function (t) = U(—8§y, ). The nota-
tion U(—8g, 8) is used to represent a uniformly distributed
random value in [—8&p, 8¢]. For each of these tests, and in
each of the Figures 8-10, the initial guess set B is shown
as a solid blue rectangle, and the pink/purple starred set
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FIGURE 7 Test 1: Results of choosing different initial guesses B
along with corresponding choices for x

is the computed RFIS output by the proposed Algorithm
1. The arrows in Figures 8-10 show the vector field direc-
tions, and solutions are shown in black dashed lines start-
ing from arbitrarily chosen initial conditions shown by
unfilled black square markers. From Figures 8-10 we see
that the set produced i.e. the pink/purple starred set output
by the proposed RFIS computation algorithm is invariant,
because the solutions (dashed black lines) do not appear
to leave the pink/purple starred set once they enter it. This
is expected, and verifies that the proposed RFIS computa-
tion algorithm works because the algorithm is used only
once with the problem in Equations (12)-(13), it does not
have any knowledge of the functional form of the dis-
turbance that affects the system in (12)-(13). When the
computed result is tested with different disturbance func-
tions as mentioned above, and as shown in Figures 8-10,
the trajectories computed do not leave the pink/purple set
with starred markers. This result shows that the proposed
algorithm works and it is not dependent on the form of the
additive disturbance used, as long as the magnitude of the
disturbance is known.

6.3 | Test5andé6

While a detailed comparison of the performance of this
proposed algorithm with other results from the literature is
beyond the scope of the current work, the results presented
in Figures 11, and 12 provide an insight into the perfor-
mance gained by using a path planning based approach
for RFIS computation as opposed to using simple trajec-
tory ensemble based RFIS computation. Computing the
trajectories shown in Figure 11 with ten random initial
conditions took around 6.507 seconds, when the problem
in (12)-(13) is used with a disturbance of the form é(t) =

'°'°5E AA A AR hoA A
0.8 0.9 1 1.1 1.2
p

FIGURE 8 Test 2: Results using a disturbance function of the
form 4(t) = &, sin(t)

FIGURE 9 Test 3: Results using a disturbance function of the
form &(t) = @mn—l(r)

&g sin(f). Similarly, computing the trajectories shown in
Figure 12 with ten random initial conditions took around
0.3406 seconds, when the problem in (12)-(13) is used with
a disturbance of the form &(f) = Mtan‘l(t). From
Figure 11, at least an idea of the smallest RFISs shape and
size can be achieved, but even doing this with sufficient
fidelity would require computing trajectories starting from
several initial conditions. On the other hand while com-
puting the trajectories as shown in Figure 12 takes lesser
time, but these trajectories do not provide any idea about
the shape or size of the smallest RFIS. This shows that tra-
jectory generation and subsequent RFIS computation is a
time consuming process. This is because, several (ideally
infinite) trajectories need to be considered. Then a set has
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FIGURE 10 Test 4: Results using a disturbance function of the
form 8(f) = U(—8g, 8;)

to be found such that the union of all such trajectories,
with all allowed functional forms of disturbances consid-
ered added to the system dynamics, stays within this set for
all time. For testing only 20 initial conditions and resulting
trajectories across two types of disturbances, already con-
sumes around 6.9 seconds. If infinitely many trajectories
(or at least a large number say ten thousand trajectories
are considered), a linear estimate for computation to gen-
erate trajectories just for two cases of disturbances is 57.5
minutes. This does not even include the time required for
an algorithm which has to combine all of this information
to produce an estimate for an RFIS. This analysis quickly
shows that the proposed approach, even if it takes a few
minutes to complete computation, is many times efficient
compared to a pure simulation based trajectory generation
approach for computing RFISs.

6.4 | Test7

The results in Figure 13 show the result of using the pro-
posed algorithm to compute an RFIS for a system with the
following dynamics.

x(t) = [0_1 (1)] x(t) (14)

As is obvious from the system dynamics, it is a sim-
ple linear system with complex eigenvalues, as a result
of which the trajectories are circular. The equilibrium
point is (0,0), and no disturbance is used for this sys-
tem. Details about the discretization used and other details
about settings used for the algorithm proposed, are avail-
able as reported in [23]. Thus it is obvious from the results
seen in Figure 13, that the proposed algorithm has the abil-
ity to produce sets of the correct shape. It is worth noting

0.05

-0.05 ' ' '
0.8 0.9 1 1.1 1.2

FIGURE 11 Test 5: A plot of ten system solution trajectories
using a disturbance function of the form 4(f) = &, sin(f). Black
square markers show initial conditions

0.05
S 0
.
Iy
-0.05 - - -
08 09 1 11 1.2

p

FIGURE 12 Test 6: A plot of ten system solution trajectories
using a disturbance function of the form &(t) = Z2%7 tan=1(1). Black
square markers show initial conditions

that the smallest RFIS for the problem in (14) as tested
in the absence of disturbances is the equilibrium point
itself, however due to discretization of the search space, the
result achieved is the smallest set closest to the equilibrium
point, that can be reached by the proposed algorithm.

7 | CONCLUSION AND FUTURE
WORK

In summary, this paper presented an algorithm for find-
ing the boundary of the smallest robust forward invari-
ant sets (RFISs) for two dimensional systems subject to
bounded additive disturbances. It has been shown that
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FIGURE 13 Test 7: Verifying that the proposed algorithm
produces correct shapes, testing on a simple problem with circular
trajectories

the proposed algorithm terminates in a finite number of
iterations, and outputs an RFIS of minimal area, with
precision only constrained by the discretization of the
search space. We have demonstrated that path planning
algorithms can be introduced as potential numerical algo-
rithms to compute an RFIS. The contribution of this paper
is that for the proposed algorithm, no specific form of
an additive disturbance function is required to be known
to compute the smallest RFIS of a system. Only dis-
crete values/measurements of the disturbance function
are required. This is also shown in the simulation results
where the RFIS computation algorithm's results are veri-
fied in the presence of different bounded functions used
as the additive disturbance functions affecting the system
dynamics. Further, conditions on the system dynamics,
and on the disturbance function and grid discretization are
provided for letting the proposed algorithm converge to
an RFIS.

7.1 | Future work

The benefit of using such path planning based algorithms
is computational efficiency associated with sampling of
the search space, required for computationally estimat-
ing RFISs. Future extensions to higher dimensions is
underway [34]. Future efforts may consider rapidly explor-
ing random tree (RRT) based approaches for estimating
the boundary of an RFIS. This is envisioned keeping in
mind that RRTs can operate in any dimensional space.
As an example for a three dimensional problem which
may possibly be solved without using higher dimensional

WILEY—22

approaches like RRTs, the space can be divided into two
dimensional planes, with the path planning approach
applied on each plane. Merging the results of each such
planar search, is one possible approach for estimating the
size of an RFIS in three dimensions.
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