2021 American Control Conference (ACC)
New Orleans, USA, May 25-28, 2021

A Laplacian Regularized Least Square Algorithm for Motion
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Abstract— The motion of an Autonomous Underwater Vehicle
(AUV) is often affected by unknown disturbances arising
from underwater flow fields. These disturbances may result
in large prediction errors when comparing the AUV’s expected
surfacing location (for example from dead reckoning) and the
AUV’s measured surfacing location. This error, referred to
as the Motion Integration Error, has been used by Motion
Tomography algorithm (MT) to reconstruct an estimate of
the underwater flow field. In this paper, we extend the MT
algorithm to solve the MT problem by introducing Laplacian
regularization that penalizes the non-smoothness of the pre-
dicted flow field. We propose an iterative algorithm to solve the
Regularized MT (RMT) problem. The convergence of the RMT
algorithm in the single vehicle case is theoretically justified. The
effectiveness of the algorithm for multiple vehicle applications
is validated through simulations with cyclonic flow field models.
We show that the RMT algorithm outperforms the parametric
MT in terms of estimation accuracy and convergence rate.

I. INTRODUCTION

Due to the lack of accurate position measurements (for
example from a global positioning service), Autonomous Un-
derwater Vehicle (AUV) navigation depends on an accurate
estimate of the spatially-distributed underwater disturbances,
also known as a flow field. Several algorithms have been
proposed in the literature that embed flow measurements and
ocean flow field predictions in order to enable AUV path
planning [1]. However, existing ocean flow models suffer
from coarse resolution, making their applicability in AUV
deployment minimal [2]. More recent work leverages the
AUV motion response to estimate the flow field, supported by
sensors onboard the vehicles [3], [4]. A specialized Gaussian
process regression scheme that exploits the incompressibility
of ocean currents was proposed in [5] and a nonlinear
observer was designed to identify an unknown vector field
parameterized by basis functions in [6]. However, these
methods require a prior model of the flow field or in-situ
flow velocity observations to counteract the underdetermined
nature of the problem.

In our previous work, we used the motion integration
error to create a high resolution flow field model [7], [8].
Our approach is inspired by inverse problems in tomography
theory in which the error is described by the difference in a
GPS measured surfacing position and a predicted surfacing
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position. The approach leverages the motion integration error
to infer the underlying flow field.

In general nonlinear tomography, inverse problems, such
as in seismic tomography, are usually ill-posed making it
difficult to find accurate solutions [9], [10]. In order to
overcome this issue, different regularization strategies have
been proposed in [11]. In addition, Gaussian radial basis
functions have also been used in [7] for a parametric flow
estimation. However, such implicit regularization tends to
under fit the data and favors an uniform flow field. Therefore,
the Gaussian radial basis function parametric MT predicts
less accurate results in comparison with the non parametric
MT when the flow is highly varying over the spatial domain.
A Dbetter solution is piecewise discretization, which can
approximate a large class of functions and do not embed
a prior model in the prediction. Therefore, it can capture the
flow dynamics better than the parametric MT.

While gradient-based methods have been applied to solve
nonlinear inverse problems [12] [10], the motion tomography
problem is non-differentiable due to the piecewise discretiza-
tion, which renders gradient-based approaches inapplicable
in our problem. Therefore, we proposed an iterative solution
that combines trajectory tracing and flow field estimation to
solve the MT problem. Starting from an initial guess of the
flow field, the AUV trajectory and the travel time weight
matrix are computed to update the flow estimate [7]. We
also derived in our previous work an analytical expression
for trajectory tracing that we used to prove the convergence
of the MT algorithm for a single AUV trajectory [13].

In this paper, we aim to alleviate the ill-posedness of the
inverse problem in piecewise discrete nonlinear tomography
by adding the Laplacian regularization in the MT objective
function. In the MT problem, the number of AUVs is limited
and the MT algorithm might generate a highly varying
flow field. To address this problem, we use the Laplacian
regularized least square (LapRLS) and we call the proposed
algorithm Regularized Motion Tomography. LapRLS is a
special case of the manifold regularization, which enforces
smoothness of solutions relative to the underlying manifold
by preserving the local geometrical structure of the data
space [14], [15]. Replacing the unknown manifold Laplacian
with the graph Laplacian results in the Laplacian regularized
least squares, which is an effective semi-supervised learning
algorithm that can measure the variability of the predictor
with respect to the empirical distribution. Therefore, it is
reasonable to apply the Laplacian regularization which favors
a relatively smooth solution and reflects the spatial variation
of the flow better than the parametric MT.

2017

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 04,2022 at 20:55:12 UTC from IEEE Xplore. Restrictions apply.



Further, we study the flow field dynamics as the RMT
algorithm proceeds. This allows us to derive the RMT error
dynamics, taking into account the regularization term. We
analyze the RMT properties and prove the convergence of
the RMT algorithm in the single vehicle case. Finally, we
validate our approach for multiple vehicles via simulations
using cyclonic flow field models. The simulations show that
the RMT algorithm can reconstruct the flow field without any
prior information and outperforms both the non-parametric
and Gaussian Radial basis function parametric MT algorithm.
Our proposed method can also be extended to solve general
nonlinear inverse problems where the Jacobian is not defined,
which impedes the application of gradient-based methods.

The rest of the paper is organized as follows. In Section
I, we introduce the Motion Tomography problem and we
formulate the RMT solution in III. In Section IV, we derive
the flow estimation dynamics and prove the RMT algorithm’s
convergence. Simulation results comparing the proposed
algorithm with previous work are provided in Section V.
Finally, a summary of the paper and future work is given
in SectionVI.

II. PROBLEM SETUP AND MOTION
TOMOGRAPHY

In this section we model the influence of the flow on the
vehicle trajectory and explain the MT problem. We consider
the AUV horizontal position 7(¢) € R? in the presence of
the ambient flow F(7(t)) = [F,(7(t)), F,(7(t))] € R? and
we model the AUV motion using a first order particle model
with constant control velocity S € R? . The net velocity
V(t) is the sum of the control velocity and the flow velocity:
V(t) = S + F(#(t)). Let 7(0) € R? be the initial position
and t%°* be the total travel time, then the AUV final position
F(t*°) € R? satisfies:

ttot

Attty = #(0) + / (s+FEw)a @)
0
We simplify the problem formulation by making the follow-
ing assumption.

Assumption 1: The control velocity S is known and the
flow field is time-invariant during ¢ = [0, t*°?].

Remark 1: As the travel time interval t*°? is typically sev-
eral hours, the difference between the true and the assigned
control velocity is usually negligible. Further, we can reduce
tt°t such that the error caused by a time-varying flow field
is minimal. Thus the assumption usually holds for realistic
AUV applications, see [7].

Suppose F'(r) is an initial estimate of the true flow field
F(7), then the predicted final position r(t'°%) follows:

r(t*%) = #(0) + ; (S + F(r(t)))dt (2)

While the AUV position can be measured at times t9 and ¢t°t,
the true flow F(r) is unknown. Hence, an offset between
the estimated final position r(¢"°*) and the measured final

position 7(¢*°') is observed. We refer to this offset as the

f(t'tot

- i (ttot
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Fig. 1: Illustration of MT mapping formulation. The pre-
dicted trajectories 7y; and ;1 are displayed in a discretized
domain.

motion integration error, defined using equations (1) and (2)

as follows:
ttot

d = ’F(ttOt) _ ’I’(ttOt) —
0

(F(f(t)) - F(r(t))) dt.

A. The MT Problem

The MT method computes a map of the flow field F' such
that d = 0. Let us discretize a domain D into P=nxn grid
cells with C* referring to the k" = h -+ s*n cell that exists
in the A'" column and the s*" row , 1 < k < P, as illustrated
in Fig.1. We assume the flow field within C* is constant and
we denote the estimated flow by F* = [FF, F}].

Let N be the number of AUVs and 77, j = {1,--- ,N}
their positions in domain D. We denote with t7-* the travel
time that AUV j spent in cell C*. Hence, 77 (¢'°t) follows:

P
I (1) = 7 (0) + Y t7F (87 + FF). 3)
k=1
Let F, = [F},--- ,FP]TF, = [Fyl7 7pr]T and F =
[F;,F,] be the flow field estimate. Further, we denote with
T7 = [t91,--. [ t7P]T the travel time vector where t7'! is
the travel time that the AUV j spends in cell C!. Given
F, we can compute 77 using trajectory tracing mechanism
introduced in [7]. We rewrite (3) as follows:

I (#19%) = 79 (0) + ¢S94 79 ' F @)

Let F be the true flow field and 77 the true travel time, then
7 (t*1) follows:

(%) = 7#7(0) 4+ t*°*S7 + TITF (5)
Combining (4) and (5) leads to MT error d/ for AUV j:
&/ =T/"F—TITF (6)

Let T € RY*P be the travel time matrix and d € RV *? the
MT error for all AUVs, we construct T = [T}, --.  TV],
T = [T, 7N], d, = [d},---,d)]" and d, =
L, ,dN)7, d = [d,,d,) = T F—T'F, F and F are
the true and predicted flow. The MT problem is to compute
F that minimizes the MT error norm:

*_

1
" ar%min §de||2 (7

Y

1
F* = argmin ~|d,||?>, F
F 2

x
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B. The MT Solution

As the flow field is spatially variant, the travel time matrix
T(F) is a nonlinear function with respect to the flow F and
accordingly the optimization problem (7) is nonlinear. Recall
that F is piecewise-constant, then Eq. (7) is not differentiable.
Thus, gradient based methods can not be applied to solve
(7). To deal with the nonlinearity in (7), we proposed an
iterative solution, [13] to correct the flow estimate using all
AUV trajectories simultaneously. Given an estimate of the
flow F; at iteration ¢, the travel time matrix T is computed
using F; to linearize Eq.(7). Hence, F;; is estimated

T(F;)d;

Fip1=F, +w AIE (®)
where 0 < w < 1 is a designed step-size parameter and
| T(F,)| = o(T(F;)TT(F;))? is the spectral norm. The flow
update (8) requires the MT error d; and the travel time T(F;).
Hence, we need to compute the AUV trajectories v/ using
the last estimate F; to update d; and T(F;).

Consider the travel time matrix T, the (k,j)th entry
indicates the contribution of flow k.th to the j.th projec-
tion measurement d’. As the number of trajectories N is
significantly less than the number of cells P, T is a sparse
rank deficient matrix. Therefore, the MT inverse problem is
a discrete ill-posed problem. To address this difficulty, we
propose the Regularized Motion Tomography (RMT).

III. REGULARIZED MOTION TOMOGRAPHY

Given that the flow is a piecewise constant function,
the MT algorithm exhibits flow differences between cells
that are crossed by different AUV trajectories. While the
total variation regularization generates piecewise constant
structures, the Laplacian regularizer favors smooth solutions.
Therefore, we apply the Laplacian regularizer to improve the
smoothness of the estimated field.

We denote with R € R”*” the discrete Laplace operator.
Thus R is positive semi-definite and its null space is 1-
dimensional and spanned by the vector 1 [16].

Remark 2: For clarity, let T; = T(F;) and notice that
TiTTi and AR R are positive semi-definite, therefore, so is
the quantity (T; ' T; + ARTR). Since T; "1 = ¥t = 0, and
the null space of R is 1, then the eigenvalues of (TiTTi +
ARTR) are positive and (T; ' T; + AR"R) is invertible.

LapRLS is a special case of the manifold regularization
framework, which preserves the local geometry of the data
space [14]. As we can measure the AUV position only at
tt°t, the number of trajectories is insufficient for an accurate
estimation. To address this problem, we use the Laplacian
graph penalty term that measures the spatial variation of
the flow. Hence, adding this regularization cost improves the
prediction and smoothes the flow estimate.

We modify the MT cost function with the Laplacian
regularizer term as follows:

1,Tx A
Fo 1 = argmin o [T'F, — T, |2 + 5 RF, |
F,

x

F, .41 = argmin %HTTFy ~TTE,|? + %||RFy||2 )
where ) is a positive regularization parameter which controls
the trade-off between a good fit to the measured data and
the regularized solution. Contrary to the LapRLS proposed
in [14], the cost function in Eq.(9) is nonlinear because the
travel time matrix T depends on F. Therefore we use an

iterative algorithm to solve Eq.(9). Inserting d; = TTF —
T, F and F = F; + AF in (9) leads to:

1 A
AF, ; = argmin =||d,; — T, AF,|*> + Z|R(F,; + AF,)|?
' AF,, 2 2 '

1 A
AF,; = aggmln §||dy,i - T;AFZJHQ + §||R(Fy,i + AF@/)”2

(10)

Setting the gradient of (10) to zero and given (T;'T; +
)\RTR) is invertible, then the optimal solution for (10) is:

AF; = (T, ' T; + AR"R)"}(T;d; — AR RF;)
Since the original problem is nonlinear, we update F;,;
(1D

where 0 < w < 1 is an appropriate step-length. The
regularized MT algorithm follows:

Fi+1 = F, + CUAF7

Algorithm 1: RMT flow field estimation

Data: Measured final position 7/ (¢'°%), j € [1,--- N]
1 Set ¢ = 0. Make an initial guess of the solutions F;
repeat
2 Trajectory tracing (2) to get T; and d;
3 Update the flow in all cells k

AF; = (T,T;" + AR"R)"}(T;d; — AR RF;)
Fiy1 =F; + wAF; (12)

4 until |AF;|| <e

IV. CONVERGENCE ANALYSIS OF RMT

For theoretical analysis, we will focus on the single vehicle
case. The nonlinear relationship between the AUV trajecto-
ries leads to some difficulties in the multi-vehicle analysis.
Therefore, we will prove convergence of the algorithm for
the multi-vehicle case in future work.

A. RMT Error Dynamics

In order to study the dynamics of F; as the algorithm
proceeds, we denote with 7 = [7y, 7] = TTF. Further, let
IeRP suchthat I=[1,---,1]7 , Y, = =1 Y, = 2%I
and Y = [Y,,Y,]. We compute in the following lemma an
analytical expression of F; as a function of Fy.

Lemma 1: Let the flow be updated according to (12), then:

Fipi=(1-w)™Fo+(1-(1-w™Y (@13
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~ T~

Proof: Apply d; =T F —
(12):

T, F; in the flow update

AF; = (T,T;" + AR"TR)"}(T;d; — AR"RF;)
— (T,T;" + \R"R)"Y(T,T F — (T,;T; + \R'R)F,)
— F; + (TT,” + \R"R)'T,T'F (14)
(T,T;" + \R"R)~

Insert M; = 1in (14), then F;; follows:

Fi1 =F, + wAF; = (1 — w)F; + oM, T, T F (15)

Recall that R'RI = 0 and Y = [Y,,Y,] where Y, = S |

and Y, = 21, then R'RY = 0 and M; 'Y, follows:
M 'Y, = (T,T;" + ARTR)Y
=T,T;,Y, = %TiTiTI (16)
Insert 7, = T FI in Eq.(16), results in the following:
MY, = tt%TiTTf‘zTiTI (17)
Insert T, I = *°* and multiply both sides with M;:
M,T,T F, = Y, (18)
The same steps for Y, leads to M<T»TTF~‘ = Y,. Hence

M,T; T F=YAsY = [tm, tmt]l then Y is a constant
vector that represents the average flow field along the AUV
trajectory. Now we can rewrite (15) as follows:

(1—w)™Fy+w Z(l —w)lY
§=0

Fi1=

Apply the geometric sum, then w Z;:o(l —w)yl =(1-(1-
w)™*1) and F; 1 follows:

Fii1=0—w)™Fo+(1-01—-w)hy
|
Since the regularization term penalizes the flow difference
between cells, we define Z; = VARF; as the estimate of
the flow variation and we expand the RMT state vector as
X; = [d;,Z;] . Now we derive the dynamics of the X;.
Lemma 2: Let the flow be updated according to (12), then

X; evolves according to the following dynamics:

Apply VAR on both sides of Eq. (21) leads to Z;1:

Zi+1 = Zi + OJ\/XRM,L (Tldz - \/XRTZz) (22)
Consider the MT error d,;; as follows:
~ T~
diy1=T F—T/Fiyy — (Ti1 - T) ' Fiyy  (23)

Inserting (21) in the first part of Eq.(23) leads to:

=T F— T, (F, + wM;(T;d; — VAR'Z))) + Cisy
=d; — T/ M;(T;d; — VAR'Z;) + Ciyy (24)

Combining Eq. (23) and (24) results in Eq. (19) and (20). &

In order to show the convergence of the RMT algorithm,
we derive in the following Lemma an upper bound on the
norm of the transition matrix A; when AF; # 0. We will
address the case AF; = 0 in the following theorem.

Lemma 3: Let the flow be updated according to (12) and
suppose that AF; # 0, defined in Eq.(12), then the spectral
norm of ||A;]| = (A A;)2 follows:

diJrl

Al =1 - w. (25)

Proof: Let L; = [T;,—V/AR'"]T and ©; = L;M,L;,

we can rewrite A; = I — wLiMiL;r = I — wO,. Inserting
M; = (L L;)~! in © results in:

0? = LML L,M,L]
=L;(L/L;)"'L/ LML/
=L,ML] =0,

Let u and kg be the eigenvector and the eigenvalue of
©;, then ©;u = O%u implies that keu = kHu . Hence
ke € {0,1} and the eigenvalues of A; are kx € {1,1 — w}.
Furthermore, given that M; is symmetric, then ©; is also
symmetric. Hence A; is symmetric. Given that the eigenval-
ues of A; are ky € {1,1 —w} > 0 and A; is symmetric,
then A; is positive definite. Further, M; has full rank which
implies that k4 = 1 only if AF; = LiTXi = 0. Since we
assumed that AF; = LZT X; # 0, we consider the case when
ka =1—w . Hence [|[A;]| =1 — w. [ |

Now we prove the convergence of the RMT algorithm.

Theorem 1: Suppose that Assumption 1 is true then
|IX;|| — 0 when i — oo.

Proof: We show that X; — 0 when ¢ — oo when

AF; = 0 and AF; # 0. Insert Eq.(13) in C;1; leads to:

Ciz1 = (T; — Tiz1) (1 — w)"™'F 1—(1 +hy
Ko AX. 4B, qoy Cort = (T T (1) R b (1 (1)
Consider T;Y and apply Y = [Y,,Y,]| where Y, = ;%I
where T
- - . Y, = ttotl an(g 7 = [fy,7y], then T;Y follows T, Y =
A, = IifTi M T, AT, MiRT o T'IF=73, tfﬁf Since Y-, tF = >, th ;= t*°!, then
wVARMT; I —wARM;R T; 1Y = T;Y and C;yq is simplified to:
M; = (T,;T;" + ARTR)~1, B; = [Ci11,0]7 and Ciyq = Ciy1 = (1—w)*H(T; = Tiy1) "Fo (26)
(Ti = Tit1) " Fiyy. W - - _ T .
te Eq.(19 B, =(C;11,0 d Xp:
Proof: Consider the flow update and insert Z; = e rewrite Eq.(19) using [Ci+1,0] " and Xo
VRF; in Eq. (12) : 1 i
. Xis1 = AX; +Cit1 = H AXo+y [Jac, @)
Fip1 =F; + wM;(T;d; — VAR'Z;) 1) st
2020
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Insert Eq.(26) in (27) results in the following dynamics:

+1 4

Xit1 = HA Xo+ Y []Ac

Jj=1l=j
1+1 1

,HA X0+25;HA1 -1 —T;)F,
j=1 l=j

where 8; = (1 — w)?. Consider ||T; —

that | T3> = 534, (8)° < (S )7
upper bound ||T; — TZ+1|| follows:

(28)

T; 11|l and notice
= (t'°%)2. Thus an

IT; = Tial| < NTall + | Tiga]] <70 45

We denote with o = 2¢*°* an upper bound for || T; — T;11||
and we apply Lemma 3, which implies that ||A;]| =1 —w
when AF; 5 0. Finally an upper bound for ||X; 41| follows:

i+1

Xiri]l < (1 —w) " [Xo| +0 ) (1 —wl (1 —w) I |Fo|

j=1
w) H[Xo|| + o (i + 1)(1 — w) || Fo |

Since (1 —w)™*1 — 0, then (1 — w)*™!||Xo|| — 0 when
i — o0. Considering the second term in (29), we use the
Maclaurin series theorem, to show that: Y~ i3" = (L B)
with 8 = 1—w. Hence the series ) ;- i3* converges. Further
Theorem 1 from chapter 11 in [17] states that if Y .- i3’
converges, then lim; . i3° = 0.

Hence, (i + 1)(1 — w)™! — 0 when i — oc0. As o
is bounded, then o(i + 1)(1 — w)™*! — 0 when i —
o0, and accordingly || X;|| — 0 when i — oo if AF; =
(T;d; — AR"RF;) # 0.

We consider in the following the case AF; = 0. Hence,
(T;d; = AR"RF;). Apply R'TRI =0 and T; I = ¢°t:

I'T,d; = t*'d; = \I'TR'RF; = 0

<@1-

(29)

Hence d; = 0 and RF; = 0 hold.
Recall that X; = [d;, ﬁRFi]T, then we conclude from
the two cases that ||X;|| — 0 when i — occ. |

V. SIMULATION RESULTS

In this section, we validate the RMT algorithm in (12)
for the multiple vehicle scenario and compare it with the
parametric MT algorithm introduced in [7]. Notice that we
proved in the theoretical analysis that the predicted flow
converges to a constant flow and the MT error d; — 0 in the
single vehicle case. The simulation for multi vehicles shows
that the RMT algorithm converges to a different equilibrium,
where the predicted flow is non-uniform field and d # 0.

Consider a square region D discretized in 100 cells by a
uniform cartesian grid. We simulate a time-invariant cyclonic
flow field modeled by:

—ay P ax
or/22 +y2 0 2m/22 4 42
Consider the parametric MT, we use 100 Gaussian radial

basis functions (GRBF) to model the flow field. Let ¢;(r")
be the GRBF with ¢; is the center, o; is the width of

F, =

the j.th GRBF and n; € R? the corresponding parameter.
We denote with 7% is the center of the k.th cell, then the
flow vector F* in the grid cell C* is modeled as F* =
2;001 mexp(%) Given ¢; and o, designed in [7],
we use the parametrlc MT algorithm to estimate 7;.

We navigate 18 vehicles in the domain D for observation
time horizon t** = 1 hour, where the first 9 AUVs travel
from the left of the domain to the right and the other 9
from the bottom to the top. We define the control speed
[IS]| = 0.5m/s.the time step At = 1s and we use a first
order particle model to simulate the AUV motion r7F =
riF=1 4 (87 + F(rik=1)) At. After we collect the simulated
final positions, we run the parametric MT algorithm, derived
in [7] and the RMT algorithm. The estimated flow is initially
null for both algorithms. The AUV trajectory is traced at
iteration ¢ using the current estimate of the flow field F,.
Further, the MT error d; and the travel time matrix T, are
computed in the trajectory tracing step to update the flow
estimate in the inverse step. We choose a = 2.5m/s, the
step size w = 0.1 and the regularization parameter A = 0.1.
We run the RMT and the parametric MT algorithms until
the MT error is ||d;|| < 1072m. Let F* be the discrete
value of the true flow in cell C*, we define the estimation
error in C* as e¥ = F* — F¥ and compute the root-mean

100 || & -
square RMS p = SA00 ||FE—Fk|2
and parametric MT algorithm.

to compare the RMT

Figure 2 shows that parametric MT flow error dp has
higher RMS than the RMT flow error, which aligns with
Figure 3. The RMT algorithm outperforms the parametric
MT in the center of the domain D, where the flow field
is highly varying. The GRBF parametrization favors more
a uniform flow field in comparison with the Laplacian
regularization. Therefore, the RMT algorithm captures the
spatial flow variation better than the parametric MT, in
particular in the right half of the field, see Fig.2. While the
RMT flow estimate has similar direction as the true flow field,
the parametric predicted flow field is in the opposite direction
of the true flow field. Further, Fig.3 shows that parametric
MT has a lower convergence rate in comparison with the
RMT and the overshoot of the RMS error of parametric MT
is higher than the overshoot of RMT. Finally, we deduce
from Fig.3 that the RMS error of RMT, 0.155m/s is less
than half of the RMS error of parametric MT 0.367m/s. The
regularization term AR 'R in the RMT algorithm allows us to
compute the exact inverse of the travel time matrix, (TiTTiJr
)\RTR)’l. For the parametric Mt algorithm, the travel time
matrix is singular and we are forced to approximate the
inverse, ﬁ, see [7] for more details. Further, increasing
the step size for parametric MT leads to divergence of the
MT error. Therefore, the RMT convergence rate is higher
than the parametric MT convergence rate.

In order to study the effect of regularization weight on the
estimation, we run the RMT algorithm with different values
of X and we compare it to the MT algorithm, presented in
Eq.(8). Fig.4 shows that the RMT algorithm outperforms the
MT algorithm. The MT RMS is more than double the RMS
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Fig. 2: A simulated true flow (black) ||F|| = 0.3975, RMT
predicted flow field (blue) and MT predicted flow field (red).

RMT Estimation Erro

parametric MT Estimation Error

RMS of Estimation Error

100 200 300 400 500 600 700 800
Iteration

Fig. 3: RMS Error of flow estimation with w = 0.1, A = 0.1.

035

RMS of Estimation Error

10 15 20 25 30 3 40 45 50 55 60
Iteration

Fig. 4: RMS Error of flow estimation for different A\ with
w=0.1and ||F|| =0.397m/s .

of RMT algorithm. Further, we notice that increasing A leads
to less overshoot, which is expected as the higher A is, the
smoother is the flow field. However, since the cyclonic flow
field is highly varying, we notice that the RMS error is worst
when A = 10. This can be explained by the fact that the
discrete true flow field is non smooth. However, when we
choose A < 1, increasing A from 0.01 to 1 leads to better
RMS error. Hence, we conclude that the choice of A is a
trade-off between overfitting, as RMT algorithm outperforms
MT algorithm, and underfitting as increasing A above some
threshold can degrade the accuracy of the estimation.

VI. CONCLUSIONS

In this paper, we extended the MT algorithm with the
Laplacian regularization to alleviate the ill-posedness of the
inverse step. We derived the RMT algorithm for multiple
AUVs and we studied the dynamics of the RMT error. This
allowed to prove the convergence of the RMT algorithm in
the single vehicle case. The simulation of the algorithm for
multiple vehicles showed that the Laplacian regularization
increases the convergence rate and improves the estimation
in comaprison with the GRBF parametric MT. In our future
work, we would like to explore different regularization tech-
niques, investigate collaborative exploration strategies and
incorporate new measurements in the RMT algorithm.
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