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Abstract— Multi-agent tracking of a moving target can be
modeled as a distributed optimization problem of a time-
varying objective function that has an optimum at the ideal
sensing states of the agents. The inputs to the objective
function are some observed parameters of the target which
are obtained from onboard sensory information. In particular,
due to recent progress in learning-based vision techniques, these
observed parameters may be of large dimensions which may
limit communication capabilities, especially for large groups of
coordinating agents. In cases where the analytical form of the
objective function is unknown or the gradient of the objective
function is difficult to estimate, which may occur due to a fast
moving target or the high dimensionality of the observation
parameters, gradient-based solutions may be inapplicable or
computationally prohibitive to apply. In this paper, we propose
a derivative-free distributed optimization algorithm based on
distributed active perception for multi-agent target tracking.
Our proposed method can optimize objective functions without
knowledge of the gradient and does not require communication.
We derive the information dynamics for general dimensions
which are used to analyze the tracking convergence. Simulations
and experimental results are provided.

I. INTRODUCTION

In surveillance and path planning, multi-agent target track-
ing is an important problem in designing how a swarm of
agents should move in order to maximize some information
of a target [1], [2], [3], [4], [5], [6]. In many cases, these
problems can be formulated as a distributed optimization
problem in which the optimum exists at the ideal sensing
states of each agent. For example, the authors of [7], [8]
both suggest information-based approaches to finding ideal
information improvements in an active sensing framework. In
particular, [7] proposes a decentralized approach to solving
multi-agent target-tracking problems, much like the objective
of this paper.

However, the approach proposed in [7] depends on the
gradient of the distributed objective function, leading to
possible difficulties if the gradient is ill-defined or difficult
to compute. In fact, many methods in the literature rely on
computing the gradient of the distributed objective function
in order to coordinate the multi-agent target tracking [9],
[10], [11]. While able to achieve good cooperative tracking
performance, these methods may no longer be applicable
when the sensing modality does not provide the necessary in-
formation to compute the gradient. For example, the gradient
of an objective function based on the distance of each agent
to the target requires the direction to the target, which may
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not be available in beacon-like ranging sensors (e.g. UWB
radios, acoustic beacons). In addition, even when a sensing
modality provides the necessary information to evaluate the
gradient, finding the gradient may be extremely difficult, for
example, in cases where the sensing information is extremely
high dimensional (e.g. vision methods). The recent success of
learning in vision-based perception, in particular, motivates
a need to develop novel control methodologies that can take
advantage of these new sensing capabilities.

As a result, we propose the use of our previous source-
seeking strategy, called Speeding-Up and Slowing-Down
(SUSD) [12], [13], to solve multi-agent target-tracking prob-
lems that can be formulated as distributed optimization
problems. The SUSD method does not require an expression
for the gradient and only relies on evaluations of the objective
function in order to minimize the objective function. The
application of our approach in this paper, therefore, yields
the following main contributions: i) designing of function
mappings that handle high-dimensional visual perceptual
information, ii) derivation of the optimization dynamics of
SUSD for general dimension and under complete graphs,
iii) convergence analysis of the formation control law while
perturbed by SUSD, iv) convergence analysis of the SUSD
method for distributed optimization problems, and v) vali-
dation for two case studies in simulation and experiments
using the Robotarium [14]. A video of the simulations
and experiments is provided at https://youtu.be/cL_
z8rHUsdM.

Our proposed framework would allow for the utilization
of recent learning-based high-dimensional vision techniques
that incur high communication costs. Learning-based vision
methods, such as those proposed in [15], [16], [17], [18],
[19], extract relevant features and information that can be
used to encode a scalar function mapping. The proposed
scalar function mappings, for example, then eliminate the
need to communicate high-dimensional vision data among
the agents. The distributed derivative-free SUSD optimiza-
tion algorithm, therefore, provides a promising solution to
challenging optimization problems of unknown, complex,
and time-varying functions.

The structure of the paper is as follows: Section II in-
troduces the distributed optimization problem with varying
perception methodologies, and in Section III we describe
the active perception framework of SUSD used to solve
the multi-target tracking problem. Section IV presents the
dynamics of the agents employing the SUSD control law
for multi-agent target tracking. Section V provides a con-
vergence analysis of our proposed method and Section VI
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validates our approach in simulation and experiments. We
conclude with comments on our approach and future work
in Section VII.

II. PROBLEM FORMULATION

Consider a swarm of M agents. Each agent is located at
a position ri ∈ Rd, where i = 1, . . . ,M . The interactions
among the agents are described by a graph G = {V, E} where
V = {1, . . . ,M} is the set of all nodes, and E = {(i, j)|i, j ∈
V} is the set of all edges. Let Ni = {j|(i, j) ∈ E} be the
set of neighboring agents, and let N̄i = {i}

⋃
Ni. A graph

is complete if each agent knows information about all other
agents, and is incomplete if otherwise.

Assumption 2.1: The graph is undirected and complete for
all time.

Assumption 2.2: Each agent i can locally measure the
relative positions (rj − ri) for all j ∈ Ni.
Suppose that the swarm is required to track a moving target.
The position of the target is denoted by r0 ∈ Rd and its
velocity is given by ṙ0 = u0.

Assumption 2.3: The speed of the target is unknown but
is bounded such that ‖ṙ0‖ = ‖u0‖ ≤ s̄.
Furthermore, suppose that each agent observes information
about the target denoted by Ii(t) = I(ri(t), r0(t)). The
dimension M of the space of I might be large such as that
of a stream of images. It is desired, due to communication
constraints, to not communicate the information I among
the agents. Let the velocity of each agent be described by

ṙi = ui, i = 1, . . . ,M, (1)

where ui is a control input to be designed based only on the
local available information.

The two main problems we consider in this paper are:
(i) design a perception mapping that transforms the local
information Ii into a scalar function, and (ii) design a
distributed active perception control law ui such that the
swarm collectively tracks the target. Integrating a distributed
high-dimensional perception mapping with a task-oriented
distributed control law is challenging especially when the
agents have constraints on the communication bandwidth.

III. THE PROPOSED FRAMEWORK

We propose the following framework for target tracking
described by the following procedure.

1) Perception: design an objective mapping z : M →
R such that zi(t) = z(I(ri(t), r0(t)) maps the local
information Ii to a scalar value. This function has to
satisfy the following requirement.
Assumption 3.1: The function z is required to be
smooth with a unique minimum.

2) Optimization and Control: design a distributed con-
trol law ui such that the agents collectively solve the
optimization problem

min
r1,··· ,rM

1

M

M∑
i=1

z(I(ri(t), r0(t)). (2)

The integration of the above two steps leads to a distributed
active perception algorithm where agents move in a way that
increases information about the target. It is challenging to
solve the optimization problem (2) as in general the gradient
of z(I(ri(t), r0(t)) is hard to be known. We overcome
this challenge in this paper by leveraging the derivative-free
SUSD optimization algorithm in [12], [13].

A. Mapping of Target Information

In this section, we present one information mapping that
incorporates the distance to the target, and another one that
incorporates vision information.

1) The Distance-Based Function: If distance to the target
is used as an information, then this information is maximized
by getting closer to the target. Consider the mapping

zi(I(ri(t), r0(t)) = ‖ri − r0‖2, i = 1, 2, . . . ,M, (3)

where r0 is the target location. Each agent can compute
(3) by using the measured relative position of the target.
Alternatively, agents can measure the distance (3) directly
using for example infrared or ultrasonic sensors.

2) The Image-Based Function: Next, consider function
mapping to handle high-dimensional visual perception in-
formation. In the literature, many neural network object
detectors have been proposed in order to identify what set
of pixels, usually described by a rectangle known as a
“bounding box”, contain a target. In general, these object
detectors can be described as a mapping g : I → B where I
is high-dimensional image space and B ⊂ R2×4 describes
the four pixel positions of the bounding box corners. In
this work, we consider a simulated 2D example, where
agents directly access the bounding line points in an image,
i.e. B ⊂ R2 in order to describe the two-pixel positions
between which contains the target. We assume the target is
represented by a circle with radius R and the pixel positions
are equivalent to having access to two relative angles, called
b1 and b2, that describe the angle of the agent to each edge
of the target. Fig. 1 demonstrates the 2D bounding line
perception function g.We can then produce a scalar function

Fig. 1: Visual explanation of the bounding line perception
function g.

that satisfies Assumption 3.1 by providing a desired angle
width bdes. We can then choose z as

z(b) = [bdes − (b1 − b2)]2. (4)

The full evaluation of the scalar function, given a position
r, a heading direction θ (which in this work is the SUSD
direction as detailed in [12], [13]), and an image sampling
function h : R2 × [−π, π] → I that represents an image
generated by a camera is z(g(h(r, θ))) which is smooth,
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and has a unique minimum at (b1 − b2) = bdes as required
by Assumption 3.1.
B. The Derivative-Free SUSD Optimization Algorithm

From the locally observed relative positions, each agent
computes the covariance matrix C ∈ Rd×d defined by

C =
M∑
k=1

(
rk − rc

)(
rk − rc

)ᵀ
, (5)

where rc = 1
M

∑M
k=1 rk is the center of the swarm. Let

{v1, . . . , vd} be the eigenvectors of the covariance matrix
(5) associated with the eigenvalues {λ1, . . . , λd}, ordered
from the smallest eigenvalue λ1 to the largest eigenvalue λd.
Observe that the eigenvectors of C produces the principal
components of the spatial distribution of the agents.

Let the velocity of each agent be described by (1). Then,
each agent modulates its motion by

ui = k1ziv1 + k2

∑
j∈Ni

(‖rj − ri‖2 − d2
ij)(rj − ri), (6)

where k1 and k2 are tuning constants. The first term in
(6) enables each agent to speed up or slow down, hence
the name (SUSD), along the motion direction v1,i based
on the function evaluation zi = z(I(ri(t), r0(t)). We call
the motion direction v1 the SUSD direction which is the
eigenvector of the covariance matrix (5) associated with the
smallest eigenvalue λ1. The second term in (6) enforces the
ith agent to maintain a desired distance specified by dij
with its jth neighbor. Pseudo code of the SUSD algorithm
is shown in Algorithm 1.

Algorithm 1 The Distributed SUSD Optimization

1: Input: number of agents M , initial positions ri(0),
desired distance dij , discretization step η, gains k1 and
k2, and total iterations K.

2: for Iterations k = 1, . . . ,K , do
3: for i = 1, . . . ,M , do
4: compute v1(k) = PCA{rl(k)}l=1M .
5: compute zi(ri(k)).
6: compute wij(k) = (‖rj(k)− ri(k)‖2 − d2

ij).
7: compute vi,f (k) =

∑
j∈Ni

wij(k)(rj(k) −
ri(k))

8: update ri(k+1) = ri(k)+η(k1zi(ri(k))v1(k)+
k2vi,f (k)).

9: end for
10: end for

Remark 1: The sign of the PCA eigenvector v1(k) in step
4 in Algorithm 1 is chosen such that 〈v1(k),v1(k−1)〉 ≥ 0.

IV. THE OPTIMIZATION DYNAMICS OF
HIGH-DIMENSION DISTRIBUTED ACTIVE PERCEPTION

In order to analyze the relationship between the SUSD
direction v1 and the function gradient ∇z(r), we need to
study the time-evolution of the SUSD direction v1 under the
agents velocity (1) and the control law (6). We call the time
derivatives of the eigenvectors of the covariance matrix (5)
the optimization dynamics.

In this section, we first study the optimization dynamics
under any control law, and then we obtain the closed-loop
dynamics under the motion (1) and control law (6). We obtain
several results for general dimensions and for incomplete and
complete graphs. To increase the readability of the paper,
we move all proofs of this section to the Appendix in
Section VIII.

Theorem 4.1: Under the motion system (1) with a general
control ui, the open-loop optimization dynamics are

v̇a =
∑
b6=a

κa,bvb, a = 1, . . . , d, (7)

where

κa,b=
1

λa−λb
vᵀ
a

M∑
k=1

[
(rk−rc)uᵀ

k + uk(rk−rc)ᵀ
]
vb. (8)

See proof in Section VIII.
Theorem 4.2: Under the motion system (1) and the control

input (6), the closed-loop optimization dynamics are

v̇a =
∑
b6=a

κa,bvb, a = 1, . . . , d, (9)

where

κa,b =
k1

λa − λb
vᵀ
a

M∑
k=1

zk

[
(rk − rc)v

ᵀ
1 + v1(rk − rc)

ᵀ
]
vb

+
k2

λa − λb

M∑
k=1

[
(rk − rc)s

ᵀ
k + sk(rk − rc)

ᵀ
]
vb.

(10)
See proof in Section VIII.
Using Taylor approximation, we write

zk − zc = 〈rk − rc,∇zc〉+ νk, (11)

where ∇zc = ∇z(rc) is the gradient at the center of the
swarm, and νk is the remaining higher-order components of
the field approximation.

Assumption 4.1: At each instant of time, the function z
is approximately linear around the vicinity of the center rc
and thus νk ≈ 0.
This assumption implies that z can be viewed as a piecewise
linear function. This is realistic only when the desired inter-
agent distances dij in (6) are small enough.

Theorem 4.3: Consider a complete graph. Assume As-
sumption 4.1 holds. Then, under the motion system (1) and
the control input (6), the dynamics of the SUSD direction
are

v̇1 =

∑
b6=1

vbv
ᵀ
b

λ1 − λb

 (k1C∇zc + k2Sv1) , (12)

where

S =
M∑
k=1

[
(rk − rc)s

ᵀ
k + sk(rk − rc)

ᵀ
]
. (13)

See proof in Section VIII.

V. CONVERGENCE ANALYSIS

Here, we first study the convergence of the formation
control law. Then, we study the convergence of the SUSD
direction to the negative direction of the optimized function
gradient. Finally, we study the target tracking convergence.
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A. Convergence Analysis of the Formation
Combining the motion system (1) along with the control

law (6), we get

ṙi = k1ziv1 + k2

∑
j∈Ni

wij(rj − ri), (14)

where wij = wji = (‖rj − ri‖2 − d2
ij).

Let rc = 1
M

∑M
i=1 ri be the center of formation. Then, we

obtain ṙc = k1
M

∑M
i=1 ziv1 + 1

M

∑M
i=1

∑
j∈Ni

wij(rj − ri).
Since wij = wji, then 1

M

∑M
i=1

∑
j∈Ni

wij(rj − ri) = 0.
This implies that

ṙc = k1zav1, (15)

where za = 1
M

∑M
i=1 zi is the average function value.

Hence, the center of the swarm is moving according to
(15). We then view the SUSD component, i.e. k1ziv1, in
(14) as a perturbation to the formation. We first obtain
ẇij = (

∂wij

∂ri
)ᵀṙi+(

∂wij

∂rj
)ᵀṙj =−2(ri−rj)

ᵀ(ṙi− ṙj). Then,
using (14), we derive

ẇij = −2k1(zi − zj)〈ri − rj ,v1〉 (16)

− 2k2

〈
ri − rj ,

m∑
m=1

[wim(rm − ri)− wjm(rm − rj)]
〉
.

Define w = [w12, w23, . . . , w(M−1)M ]ᵀ ∈ R
M(M−1)

2 to be a
vector of all wij . Let z = [z1, . . . , zM ]ᵀ ∈ RM .

Theorem 5.1: Consider the system (14). When k1 = 0,
the origin w = 0 of the unforced system of (16) is
asymptotically stable. On the other hand, for k1 6= 0, if ‖z‖
is bounded from above, then the origin w = 0 of the forced
system of (16) is input-to-state stable.

Proof: Let V1 = 1
4

∑
(i,j)∈E w

2
ij = 1

2

∑M
i=1

∑M
j=1 w

2
ij

be a Lyapunov candidate function where V1 = 0 if and only
if wij = 0 for all i, j. Then, when k1 = 0, we obtain

V̇1 = −k2

M∑
i=1

‖
M∑
j=1

wij(rj − ri)‖2 ≤ 0. (17)

Note that, since ṙc = 0, then this implies that the center
of the swarm is stationary, and hence it is impossible to
have ri = rj for all (i, j) unless all the agents start initially
from the same position. Hence, V̇1 = 0 if and only if
wij = 0 for all (i, j), and by using LaSalle Invariance
Principle we conclude that the origin of the unforced system
is asymptotically stable. On the other hand, when k1 6= 0,
we obtain

V̇1≤−(1−ε)k2

M∑
i=1

‖
M∑
j=1

wij(rj−ri)‖2, ∀‖w‖>ρ(‖z‖),

where ρ(‖z‖) =
√
M k1

2εk2
‖z‖ is a class K function as ‖z‖

is assumed to be bounded from above. Let α1(‖w‖) =
α2(‖w‖) = 1

2‖w‖
2 be class K∞ functions such that

α1(‖w‖) ≤ V1(w) ≤ α2(‖w‖). Then, according to The-
orem 4.19 in [20], system (16) is input-to-state stable.

B. Convergence Analysis of SUSD

Let N = ∇zc
‖∇zc‖ be a unit-length vector along the gradient

direction at the center of the swarm. Define θ = 1+〈N ,v1〉.

Then, we obtain θ̇ = 〈N , v̇1〉 + 〈Ṅ ,v1〉. Using (12), we
derive

θ̇ = −k1‖∇zc‖
∑
b6=1

λb
λb − λ1

〈N ,vb〉2 + δ1, (18)

where δ1 = 〈Ṅ ,v1〉+ k2

∑
b6=1

〈N ,vb〉〈vb,Sv1〉
λ1−λb

.
Theorem 5.2: Consider (18). Assume that ‖∇zc‖ ≥ µ

where µ > 0 is a constant. Then when δ1 = 0, the
equilibrium θ = 0 is asymptotically stable and thus whenever
θ(0) ∈ [0, 1), then θ(t) → 0 as t → ∞. Furthermore, when
|δ1| < εk1‖∇zc‖ for some ε ∈ (0, 1), then (18) is locally
input-to-state stable.

Proof: Let D2 = [0, 1) be a domain of interest. Let
V2 : D → R defined by V2 = θ

1−θ be a Lyapunov candidate
function where V2 = 0 if and only if θ = 0. Additionally,
V2 →∞ whenever θ → 1. Then, when δ1 = 0, we obtain

V̇2 ≤ −k1‖∇zc‖
θ(2− θ)
(1− θ)2

≤ 0, (19)

where, since ‖∇zc‖ ≥ µ, then V̇2 = 0 if and only if θ = 0.
Therefore, θ = 0 is asymptotically stable. Additionally, since
V̇2 → −∞ as θ → 1, then the domain D2 = [0, 1) is forward
invariant. When δ1 6= 0,

V̇2 ≤ −(1− ε)k1‖∇zc‖
θ(2− θ)
(1− θ)2

, ∀|θ| ≥ ρ2(|δ1|), (20)

where ρ2(|δ1|) = 1 −
√

1− |δ1|
k1‖∇zc‖ is a class K function.

Since it is assumed that |δ1| < εk1‖∇zc‖, then the set θ ∈
[ρ1(|δ1|), 1) is non-empty. Let α3(|θ|) = α4(|θ|) = |θ|

1−|θ|
be class K functions such that α3(|θ|) ≤ V2(θ) ≤ α4(|θ|).
Then, using Definition 3.3 of local input-to-state stability in
[21], and according to Theorem 4.19 in [20], system (18) is
locally input-to-state stable.
C. Convergence of the Tracking

Let zc = z(rc, r0). we derive żc = ( ∂z∂rc
)ᵀṙc + ( ∂z∂r0

)ᵀṙ0.
Then, using (15) and the definition ∂z

∂rc
= ∇zc and ∂z

∂r0
=

∇z0, we obtain

żc = k1zc‖∇zc‖(θ − 1) + δ2, (21)

where θ = 1+〈N ,v1〉, and δ2 = 〈∇z0, ṙ0〉. Note that, since
we ignore the higher-order terms in (11), then we substituted
for za in (15) the value za = zc +

∑M
k=1 νk = zc.

Theorem 5.3: Consider (21). Assume that ‖∇zc‖ ≥ µ
where µ > 0 is a constant. Additionally, assume that θ < 1.
Then when δ2 = 0, the equilibrium zc = 0 is asymptotically
stable and thus zc(t) → 0 as t → ∞. Furthermore, when
|δ2| ≤ s̄‖∇z0‖, then (21) is locally input-to-state stable.

Proof: Let D3 = [0,∞) be a domain of interest. Let
V3 : D → R defined by V3 = 1

2z
2
c be a Lyapunov candidate

function where V3 = 0 if and only if zc = 0. Then, when
δ2 = 0, we obtain

V̇3 ≤ −εk1‖∇zc‖z2
c , (22)

where, since ‖∇zc‖ ≥ µ, then V̇3 = 0 if and only if zc = 0.
Then the equilibrium zc = 0 is asymptotically stable. On the
other hand, when δ2 6= 0, then

V̇3 ≤ −ε(1− ε)k1‖∇zc‖z2
c , ∀|zc| ≥ ρ3(|δ2|), (23)
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where ρ3(|δ2|) =
√

|δ2|
ε2k1‖∇zc‖ is a class K function. Since

it is assumed that |δ2| ≤ s̄‖∇z0‖, then ρ3(|δ2|) ≤
√

s̄
ε2k1

is finite. Let α5(|zc|) = α6(|zc|) = 1
2 |zc|

2 be class K∞
functions such that α5(|zc|) ≤ V3(zc) ≤ α6(|zc|). Then, by
Definition 3.3 of local input-to-state stability in [21], and
according to Theorem 4.19 in [20], system (21) is locally
input-to-state stable.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we validate our approach by studying
three case studies: i) a 3D simulation using the distance-
based objective function, ii) a 2D simulation using the
image-based cost function, and iii) a 2D experiment using
the Robotarium and the distance-based objective function.
Videos of the simulations and experiments are provided at
https://youtu.be/cL_z8rHUsdM.
A. 3D Simulations

In this simulation experiment, we direct the target to
follow a path given by r0(t) =

[
cos t sin t 2t− 3

]ᵀ
. We

use a swarm of 6 agents where each agent evaluates zi using
(3). In (6), we set k1 = k2 = 1, and dij = 1.5 for all i, j.
As shown in Fig. 2, the agents are able to follow the target
along its trajectory while keeping the desired formation.

Fig. 2: A swarm of 6 agents tracking a moving target.

B. Vision-based Tracking Simulations

In this experiment, we apply the image mapping scalar
function in (4). We use a simulated target with R = 0.5
that follows the trajectory r0(t) = c0

[
cos(c1t) sin(c1t)

]ᵀ
,

where c0 = 6 and c1 = 0.006. In addition, we consider a sec-
ond scenario where the scalar function is allowed to be neg-
ative, i.e. (4) is modified to z(b) = [bdes−(b1−b2)], and the
target follows a trajectory r0(t) = c0

[
sin(c2t) sin(c3t)

]ᵀ
,

where c3 = 0.009 and c4 = 0.006. Note that in the second
trajectory, the agents can now back-up to turn and improve
their view of the target. Fig. 3 demonstrates the SUSD
approach using the two image mapping scalar functions.

C. Robotarium Simulations and Experiments

In this experiment, we implement our algorithm in mo-
bile robots at the Georgia Tech Robotarium. One of the
robots is used to represent the target which is designed
to be moving in a lemniscate shape according to r0(t) =
α
[
cos t cos t sin t

]ᵀ
, where α = 1 determines the ra-

dius of curvature. We then use three additional robots for
implementing the SUSD Algorithm. Each robot evaluates
the distance-based target information function according to
z(ri) = 2.5(‖ri−r0‖2)+0.2, where we added 0.2 so that the

Fig. 3: The image-based tracking case where blue rays
indicate b for each agent.

robots have a minimum nonzero speed. We set the desired
inter-agent distances in (6) to be d12 = d21 = 0.55, and
d13 = d31 = d23 = d32 = 0.5. We set the tuning parameters
in (6) to be k1 = 0.4 and k2 = 0.01. As seen from Fig. 4,
the swarm is able to continuously track the target throughout
its path while keeping a consistent formation.

Fig. 4: A swarm of 3 robots tracking a target robot outlined
by a circle. The trails show the trajectory of the target and
the center of the swarm.

VII. CONCLUSION

In this work, we have presented a new application of our
previous decentralized source-seeking strategy called SUSD
for use in solving distributed optimization problems. Our
application is supported by our analysis in the derivation and
convergence of the optimization dynamics along with case
studies in using the approach to solve a multi-agent target
tracking problem. In future work, we will consider the use
of this method for handling extremely high dimensional op-
timization problems, such as those found in the optimization
of deep neural networks.
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VIII. PROOFS OF THE OPTIMIZATION DYNAMICS

Proof: [Proof of Theorem 4.1]Taking the time-derivative
of (5), we obtain

Ċ=
M∑
k=1

[(ṙk−ṙc)(rk−rc)ᵀ + (rk−rc)(ṙk−ṙc)ᵀ]. (24)

However, ṙc = 1
M

∑M
k=1 ṙk = 1

M

∑M
k=1 uk. This implies

that

ṙk − ṙc =
1

M

M∑
l=1

(uk − ul). (25)
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Substituting (25) into (24), and using the fact that∑M
k=1 uc(rk − rc)

ᵀ = uc
∑M
k=1(rk − rc)

ᵀ = 0, we obtain

Ċ =
M∑
k=1

[
uk(rk − rc)

ᵀ + (rk − rc)u
ᵀ
k

]
. (26)

Moreover, by definition, for any eigenvectors va and vb of
the covariance C, we have Cva = λava and Cvb = λbvb.
Taking the derivative, we obtain Ċva+Cv̇a = λ̇ava+λav̇a.
Taking the inner product on both sides, we obtain

〈vb, Ċva〉+ 〈vb,Cv̇a〉 = λ̇a〈vb,va〉+ λa〈vb, v̇a〉. (27)

Since C is symmetric, then Ċ is also symmetric. This
implies that 〈vb,Cv̇a〉 = 〈Cvb, v̇a〉 = λb〈vb, v̇a〉. Using
this along with the fact that 〈vb,va〉 = 〈va,vb〉 = 0, we
obtain from (27)

〈vb, v̇a〉 =
1

λa − λb
〈vb, Ċva〉. (28)

Since C is symmetric, one can always find a complete set
of orthogonal eigenvectors {v1, . . . , vd}. Therefore, for all
a = 1, . . . , d, we may write v̇a =

∑
b6=a〈vb, v̇a〉vb. This

implies that the dynamics of the a−th eigenvector are

v̇a =
∑
b6=a

1

λa − λb
〈vb, Ċva〉vb. (29)

Substituting (26) into (29), and using (8) for κa,b, we obtain
the desired result (7).

Proof: [Proof of Theorem 4.2]Let wij = (‖rj − ri‖2−
d2
ij), where wij = wji. Let si =

∑
j∈Ni

wij(rj−ri). Then,
we can write (6) as:

ui = k1ziv1 + k2si. (30)

Substituting (30) into (8) yields the desired result (10).

Proof: [Proof of Theorem 4.3]For a = 1, using (9) and
(10), we obtain

v̇1 =
∑
b6=1

κ1,bvb, (31)

where

κ1,b =
k1

λ1 − λb

M∑
k=1

(zk − zc)〈rk − rc,vb〉

+
k2

λ1 − λb
vᵀ

1

M∑
k=1

[
(rk − rc)s

ᵀ
k + sk(rk − rc)

ᵀ
]
vb.

(32)
Let S be as defined in (13). Then, we may write (31) and
(32) as

v̇1 =

∑
b6=1

vbv
ᵀ
b

λ1 − λb

(k1

M∑
k=1

(zk − zc)(rk − rc) + k2Sv1

)
.

(33)
Using (11) along with Assumption 4.1, we obtain

M∑
k=1

(zk − zc)(rk − rc) = C∇zc, (34)

Finally, substituting (34) into (33) yields the desired result
(12).
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