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A Derivative-free Distributed Optimization Algorithm with Applications
in Multi-Agent Target Tracking
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Abstract— Multi-agent tracking of a moving target can be
modeled as a distributed optimization problem of a time-
varying objective function that has an optimum at the ideal
sensing states of the agents. The inputs to the objective
function are some observed parameters of the target which
are obtained from onboard sensory information. In particular,
due to recent progress in learning-based vision techniques, these
observed parameters may be of large dimensions which may
limit communication capabilities, especially for large groups of
coordinating agents. In cases where the analytical form of the
objective function is unknown or the gradient of the objective
function is difficult to estimate, which may occur due to a fast
moving target or the high dimensionality of the observation
parameters, gradient-based solutions may be inapplicable or
computationally prohibitive to apply. In this paper, we propose
a derivative-free distributed optimization algorithm based on
distributed active perception for multi-agent target tracking.
Our proposed method can optimize objective functions without
knowledge of the gradient and does not require communication.
We derive the information dynamics for general dimensions
which are used to analyze the tracking convergence. Simulations
and experimental results are provided.

I. INTRODUCTION

In surveillance and path planning, multi-agent target track-
ing is an important problem in designing how a swarm of
agents should move in order to maximize some information
of a target [1], [2], [3], [4], [5], [6]. In many cases, these
problems can be formulated as a distributed optimization
problem in which the optimum exists at the ideal sensing
states of each agent. For example, the authors of [7], [8]
both suggest information-based approaches to finding ideal
information improvements in an active sensing framework. In
particular, [7] proposes a decentralized approach to solving
multi-agent target-tracking problems, much like the objective
of this paper.

However, the approach proposed in [7] depends on the
gradient of the distributed objective function, leading to
possible difficulties if the gradient is ill-defined or difficult
to compute. In fact, many methods in the literature rely on
computing the gradient of the distributed objective function
in order to coordinate the multi-agent target tracking [9],
[10], [11]. While able to achieve good cooperative tracking
performance, these methods may no longer be applicable
when the sensing modality does not provide the necessary in-
formation to compute the gradient. For example, the gradient
of an objective function based on the distance of each agent
to the target requires the direction to the target, which may
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not be available in beacon-like ranging sensors (e.g. UWB
radios, acoustic beacons). In addition, even when a sensing
modality provides the necessary information to evaluate the
gradient, finding the gradient may be extremely difficult, for
example, in cases where the sensing information is extremely
high dimensional (e.g. vision methods). The recent success of
learning in vision-based perception, in particular, motivates
a need to develop novel control methodologies that can take
advantage of these new sensing capabilities.

As a result, we propose the use of our previous source-
seeking strategy, called Speeding-Up and Slowing-Down
(SUSD) [12], [13], to solve multi-agent target-tracking prob-
lems that can be formulated as distributed optimization
problems. The SUSD method does not require an expression
for the gradient and only relies on evaluations of the objective
function in order to minimize the objective function. The
application of our approach in this paper, therefore, yields
the following main contributions: i) designing of function
mappings that handle high-dimensional visual perceptual
information, ii) derivation of the optimization dynamics of
SUSD for general dimension and under complete graphs,
iii) convergence analysis of the formation control law while
perturbed by SUSD, iv) convergence analysis of the SUSD
method for distributed optimization problems, and v) vali-
dation for two case studies in simulation and experiments
using the Robotarium [14]. A video of the simulations
and experiments is provided at https://youtu.be/cL_
z8rHUsdM.

Our proposed framework would allow for the utilization
of recent learning-based high-dimensional vision techniques
that incur high communication costs. Learning-based vision
methods, such as those proposed in [15], [16], [17], [18],
[19], extract relevant features and information that can be
used to encode a scalar function mapping. The proposed
scalar function mappings, for example, then eliminate the
need to communicate high-dimensional vision data among
the agents. The distributed derivative-free SUSD optimiza-
tion algorithm, therefore, provides a promising solution to
challenging optimization problems of unknown, complex,
and time-varying functions.

The structure of the paper is as follows: Section II in-
troduces the distributed optimization problem with varying
perception methodologies, and in Section III we describe
the active perception framework of SUSD used to solve
the multi-target tracking problem. Section IV presents the
dynamics of the agents employing the SUSD control law
for multi-agent target tracking. Section V provides a con-
vergence analysis of our proposed method and Section VI
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validates our approach in simulation and experiments. We
conclude with comments on our approach and future work
in Section VIIL

II. PROBLEM FORMULATION

Consider a swarm of M agents. Each agent is located at
a position r; € R%, where i = 1,..., M. The interactions
among the agents are described by a graph G = {V, £} where
V ={1,..., M} is the set of all nodes, and € = {(4, j)|i,j €
V} is the set of all edges. Let N; = {j|(¢,5) € £} be the
set of neighboring agents, and let N; = {i} M. A graph
is complete if each agent knows information about all other
agents, and is incomplete if otherwise.

Assumption 2.1: The graph is undirected and complete for
all time.

Assumption 2.2: Each agent ¢ can locally measure the
relative positions (r; — r;) for all j € N;.
Suppose that the swarm is required to track a moving target.
The position of the target is denoted by 7o € R? and its
velocity is given by 7y = ug.

Assumption 2.3: The speed of the target is unknown but
is bounded such that ||7|| = |Juol] < 5.
Furthermore, suppose that each agent observes information
about the target denoted by Z,(t) = Z(r;(t),ro(t)). The
dimension M of the space of Z might be large such as that
of a stream of images. It is desired, due to communication
constraints, to not communicate the information Z among
the agents. Let the velocity of each agent be described by

i=1,...,M, (1

where u; is a control input to be designed based only on the
local available information.

The two main problems we consider in this paper are:
(1) design a perception mapping that transforms the local
information Z; into a scalar function, and (ii) design a
distributed active perception control law w; such that the
swarm collectively tracks the target. Integrating a distributed
high-dimensional perception mapping with a task-oriented
distributed control law is challenging especially when the
agents have constraints on the communication bandwidth.

Tri = Uy,

III. THE PROPOSED FRAMEWORK

We propose the following framework for target tracking
described by the following procedure.

1) Perception: design an objective mapping z : M —
R such that z;(t) = z(Z(r;(t), ro(t)) maps the local
information Z; to a scalar value. This function has to
satisfy the following requirement.

Assumption 3.1: The function z is required to be
smooth with a unique minimum.

2) Optimization and Control: design a distributed con-
trol law w, such that the agents collectively solve the
optimization problem

min
1, TM

| M
7 ZZ(I(Ti(t)vrfJ(t))' @)

The integration of the above two steps leads to a distributed
active perception algorithm where agents move in a way that
increases information about the target. It is challenging to
solve the optimization problem (2) as in general the gradient
of z(Z(r;(t),ro(t)) is hard to be known. We overcome
this challenge in this paper by leveraging the derivative-free
SUSD optimization algorithm in [12], [13].

A. Mapping of Target Information

In this section, we present one information mapping that
incorporates the distance to the target, and another one that
incorporates vision information.

1) The Distance-Based Function: If distance to the target
is used as an information, then this information is maximized
by getting closer to the target. Consider the mapping

ZI(I(rl(t)7rO(t)) = ||T’i—’l"0H2, 1= 1727"'5Ma (3)

where 7y is the target location. Each agent can compute
(3) by using the measured relative position of the target.
Alternatively, agents can measure the distance (3) directly
using for example infrared or ultrasonic sensors.

2) The Image-Based Function: Next, consider function
mapping to handle high-dimensional visual perception in-
formation. In the literature, many neural network object
detectors have been proposed in order to identify what set
of pixels, usually described by a rectangle known as a
“bounding box”, contain a target. In general, these object
detectors can be described as a mapping g : Z — B where 7
is high-dimensional image space and B C R2?** describes
the four pixel positions of the bounding box corners. In
this work, we consider a simulated 2D example, where
agents directly access the bounding line points in an image,
i.e. B C R? in order to describe the two-pixel positions
between which contains the target. We assume the target is
represented by a circle with radius R and the pixel positions
are equivalent to having access to two relative angles, called
b1 and b, that describe the angle of the agent to each edge
of the target. Fig. 1 demonstrates the 2D bounding line
perception function g.We can then produce a scalar function

R{ o o
\

b

—_

bounding line — 2

Fig. 1: Visual explanation of the bounding line perception
function g.

that satisfies Assumption 3.1 by providing a desired angle
width bges. We can then choose z as

Z(b) = [bdes — (b1 — b2)]2. (4)
The full evaluation of the scalar function, given a position
7, a heading direction ¢ (which in this work is the SUSD
direction as detailed in [12], [13]), and an image sampling
function h : R? x [—7, 7] — Z that represents an image
generated by a camera is z(g(h(r,6))) which is smooth,
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and has a unique minimum at (b; — by) = bges as required
by Assumption 3.1.
B. The Derivative-Free SUSD Optimization Algorithm

From the locally observed relative positions, each agent
computes the covariance matrix C' € R%*? defined by

M
C=> (re—re)(ri—rc)7, (5)

k=1
where r, = 2 nyzlrk is the center of the swarm. Let

{v1,...,v4} be the eigenvectors of the covariance matrix
(5) associated with the eigenvalues {\1,...,\;}, ordered
from the smallest eigenvalue \; to the largest eigenvalue \;.
Observe that the eigenvectors of C' produces the principal
components of the spatial distribution of the agents.

Let the velocity of each agent be described by (1). Then,
each agent modulates its motion by

wi = kizvr+ ke Y (lry —ril)? = di)(r; — i), (©6)
JEN;
where ki and ko are tuning constants. The first term in
(6) enables each agent to speed up or slow down, hence
the name (SUSD), along the motion direction vy ; based
on the function evaluation z; = z(Z(r;(t),ro(t)). We call
the motion direction v; the SUSD direction which is the
eigenvector of the covariance matrix (5) associated with the
smallest eigenvalue A;. The second term in (6) enforces the
ith agent to maintain a desired distance specified by d;;
with its ;" neighbor. Pseudo code of the SUSD algorithm
is shown in Algorithm 1.

Algorithm 1 The Distributed SUSD Optimization

1: Input: number of agents M, initial positions r;(0),
desired distance d;;, discretization step 7, gains k; and
ko, and total iterations K.

2: for Iterations k. =1,..., K, do

3: fori=1,..., M, do

4: compute v1(k) = PCA{r(k)};—1nm.

5: compute z;(r;(k)).

6: compute w;; (k) = (||r;(k) — ri(k)||? — dfj).

7: compute v; f(k) = > ion, wij(k)(ri(k) —
ri(k))

8: update 7;(k+1) = r;(k)+n(k1zi(r;(k))v1 (k) +
kavi f ().

9: end for

10: end for

Remark 1: The sign of the PCA eigenvector v, (k) in step
4 in Algorithm 1 is chosen such that (v (k),v1(k—1)) > 0.

IV. THE OPTIMIZATION DYNAMICS OF
HIGH-DIMENSION DISTRIBUTED ACTIVE PERCEPTION

In order to analyze the relationship between the SUSD
direction v; and the function gradient Vz(r), we need to
study the time-evolution of the SUSD direction v; under the
agents velocity (1) and the control law (6). We call the time
derivatives of the eigenvectors of the covariance matrix (5)
the optimization dynamics.

In this section, we first study the optimization dynamics
under any control law, and then we obtain the closed-loop
dynamics under the motion (1) and control law (6). We obtain
several results for general dimensions and for incomplete and
complete graphs. To increase the readability of the paper,
we move all proofs of this section to the Appendix in
Section VIII.

Theorem 4.1: Under the motion system (1) with a general
control w;, the open-loop optimization dynamics are

Yo =) kapvs, a=1....d, ™)
b#a
where
M
Fap =33 oIy {(Tk—Tc)UZ +up(ry—re)T v, (8)

k=1
See proof in Section VIII.
Theorem 4.2: Under the motion system (1) and the control
input (6), the closed-loop optimization dynamics are

Yo=Y Kapvp, a=1,....d, 9)
b#a
where
k M
Fab = 1 = e ;Zk [(rk —ro)v] + v (rp — TC)T}vb
k M
* Na _2/\b ; [(Tk —7e)s] + si(ry — Tc)T}’Ub'
(10)

See proof in Section VIII.

Using Taylor approximation, we write

(1D
where Vz. = Vz(r.) is the gradient at the center of the
swarm, and vy, is the remaining higher-order components of
the field approximation.

Assumption 4.1: At each instant of time, the function z
is approximately linear around the vicinity of the center r.
and thus v, ~ 0.

This assumption implies that z can be viewed as a piecewise
linear function. This is realistic only when the desired inter-
agent distances d;; in (6) are small enough.

Theorem 4.3: Consider a complete graph. Assume As-
sumption 4.1 holds. Then, under the motion system (1) and
the control input (6), the dynamics of the SUSD direction
are

Rk — Re = <’l”k - TC,VZC> + Vi,

T
v, = Z VpUy, (klcVzc + kzsvl) s (12)
Al — N
b#£1
where M
S = Z [("“k — TC)SZ + 8p(re —7re)T|. (13)

k=1
See proof in Section VIII.

V. CONVERGENCE ANALYSIS

Here, we first study the convergence of the formation
control law. Then, we study the convergence of the SUSD
direction to the negative direction of the optimized function
gradient. Finally, we study the target tracking convergence.
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A. Convergence Analysis of the Formation
Combining the motion system (1) along with the control
law (6), we get

T = ki1z;v1 + ko Z wij(rj —14), (14)
JEN;
where w;; = wji = (||r; —ril|? — dfj).

Letr. = 57 ZM 7; be the center of formation. Then, we
obtain 'f"c = kﬁl i= 1 Zz'U]_ + ]\J Z Z]GN wl] (T rl)
Since w;; = wj;, then 57 ZZ 1 2 jen; Wij(ry — i) = 0.
This implies that

e = k1241, (15)

where z, = M Zl 1 % 1is the average function value.
Hence, the center of the swarm is moving according to
(15). We then view the SUSD component, i.e. kjz;v1, in
(14) as a perturbation to the formation. We first obtain
Wi = (e )i+ (L )Ty =—2(r; — ;)T (7~ #;). Then,
using (14), we derive

’Ll.}ij = 72]{}1(21' — Zj)<’l”7; — 'I’j,’l)1> (16)
- 2k2<ri —rj, Z [Wirn (Pyn — Ti) — Wjgn (T, — rj)]>.
m=1
M(M—1)
Define w = [w12,w23,...,’lU(M,1)M}T eR 2 to be a

vector of all w;;. Let z = [21,..., 20T € RM.

Theorem 5.1: Consider the system (14). When k; = 0,
the origin w = 0 of the unforced system of (16) is
asymptotically stable. On the other hand, for k; # 0, if | z||
is bounded from above, then the origin w = 0 of the forced
system of (16) is input- to state stable.

Proof: Let Vi = 3 Z(”)eg wi = % Z Zj LW
be a Lyapunov candidate function where V; =0 1f and only
if w;; =0 for all 4 j Then, when k; = 0, we obtain

= —k2 Z I wa

i=1 j=1

Note that, since 7. = 0, then this implies that the center
of the swarm is stationary, and hence it is impossible to
have r; = r; for all (4, j) unless all the agents start initially
from the same position. Hence, Vi = 0 if and only if
w;; = 0 for all (4,7), and by using LaSalle Invariance
Principle we conclude that the origin of the unforced system
is asymptotically stable. On the other hand, when k; # O,
we obtain

~(1-e¢ k2ZHszJ ri)lI?, Vilwl| > (|21,

where p(||z|]) = \/Mmc |z|| is a class K function as || z]|
is assumed to be bounded from above. Let ar(|lw]) =

as(lw|) = 3fw|® be class Ko functions such that
a1 (|lw]) < Vi(w) < ao(]Jw|]). Then, according to The-
orem 4.19 in [20], system (16) is input-to-state stable. MW

)2 <0 an

B. Convergence Analysis of SUSD

Let N = |\v q be a unit-length vector along the gradient
direction at the center of the swarm. Define § = 1+ (N, vy).

Then, we obtain § = (N, ;) 4+ (IN,v;). Using (12), we

derive
=~k || Vz| > /\ N7Ub>2 +6&,  (18)
b#£1
where §; = <N v1) + ko Zb L M

Theorem 5.2: Consider (18) Assume  that ||Vzc|| > i
where p1 > 0 is a constant. Then when §; = 0, the
equilibrium 6 = 0 is asymptotically stable and thus whenever
6(0) € [0,1), then 0(t) — 0 as t — oo. Furthermore, when
|01] < €k1]|Vz|| for some ¢ € (0,1), then (18) is locally
input-to-state stable.

Proof: Let Dy = [0,1) be a domain of interest. Let
Vo : D — R defined by V2 = 175 be a Lyapunov candidate
function where V5 = 0 if and only if § = 0. Additionally,
V5 — oo whenever § — 1. Then, when §; = 0, we obtain
0(2—10)
G—ay <0 (19)
where, since || Vz.|| > p, then Vi = 0 if and only if § = 0.
Therefore, 6 = 0 is asymptotically stable. Additionally, since
Vo — —o00 as @ — 1, then the domain Dy = [0,1) is forward
invariant. When 61 # 0,

Vo < —ki[| V|

0(2-90)

Vo< —(1- G)klllv«zcllw,

VI0] = p2(]01]), (20)

where pa([01]) =1 — /1 — ‘l‘évllzvu is a class K function.
Since it is assumed that 01| < ek
[p1(81]). 1) is non-empty. Let as([6]) = au(|6]) = 1%

be class K functions such that as(|0]) < Va(0) < a4(\0|)
Then, using Definition 3.3 of local input-to-state stability in
[21], and according to Theorem 4.19 in [20], system (18) is
locally input-to-state stable. [ ]
C. Convergence of the Tracking

Let z. = z(7r¢,79). we derive 2. = (%)Wc + (é?j )T7yg.
Then, using (15) and the definition aBTZC = Vz. and 6Z =
Vzp, we obtain

Ze = k12:||Vze||(0 — 1) + 82, (21

where 0 = 14 (N, v1), and 2 = (Vzg, 7p). Note that, since
we ignore the higher-order terms in (11), then we substituted
for z, in (15) the value z, = 2. + 22/121 Vi = Ze.

Theorem 5.3: Consider (21). Assume that ||Vz | > p
where p > 0 is a constant. Additionally, assume that § < 1.
Then when d; = 0, the equilibrium z. = 0 is asymptotically
stable and thus z.(t) — 0 as ¢ — oo. Furthermore, when
|92] < 5||Vz0], then (21) is locally input-to-state stable.

Proof: Let D3 = [0,00) be a domain of interest. Let
Vs : D — R defined by V3 = zf be a Lyapunov candidate
function where V3 = 0 if and only if z. = 0. Then, when
02 = 0, we obtain

V3 < —ek:1||Vzc||zf,

where, since ||Vz|| > u, then V3 = 0 if and only if z. = 0.
Then the equilibrium z. = 0 is asymptotically stable. On the
other hand, when &5 # 0, then

V3 < —e(l — €)k1||VZcHZc2"

(22)

Vize| > ps([02]),  (23)
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where p3(|d2]) = ,/% is a class K function. Since

it is assumed that |d2| < 5[|Vzo|, then p3(|02]) < /=%
is finite. Let a5(|z:|) = a6(|ze]) = 3]zc|*> be class Koo
functions such that as(|z.]) < V3(z:) < ag(|2¢]). Then, by
Definition 3.3 of local input-to-state stability in [21], and
according to Theorem 4.19 in [20], system (21) is locally
input-to-state stable.

|
VI. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we validate our approach by studying
three case studies: i) a 3D simulation using the distance-
based objective function, ii) a 2D simulation using the
image-based cost function, and iii) a 2D experiment using
the Robotarium and the distance-based objective function.
Videos of the simulations and experiments are provided at
https://youtu.be/cl_z8rHUsdM.

A. 3D Simulations

In this simulation experiment, we direct the target to
follow a path given by ro(t) = [cost sint 2t—3]". We
use a swarm of 6 agents where each agent evaluates z; using
(3). In (6), we set ky = ko = 1, and d;; = 1.5 for all 4, j.
As shown in Fig. 2, the agents are able to follow the target
along its trajectory while keeping the desired formation.

Fig. 2: A swarm of 6 agents tracking a moving target.

B. Vision-based Tracking Simulations

In this experiment, we apply the image mapping scalar
function in (4). We use a simulated target with R = 0.5
that follows the trajectory 7o(t) = co [cos(cit) sin(cit)]T,
where ¢y = 6 and ¢; = 0.006. In addition, we consider a sec-
ond scenario where the scalar function is allowed to be neg-
ative, i.e. (4) is modified to z(b) = [bges — (b1 — b2)], and the
target follows a trajectory ro(t) = co [sin(cat) sin(est)] T
where c3 = 0.009 and ¢4 = 0.006. Note that in the second
trajectory, the agents can now back-up to turn and improve
their view of the target. Fig. 3 demonstrates the SUSD
approach using the two image mapping scalar functions.

C. Robotarium Simulations and Experiments

In this experiment, we implement our algorithm in mo-
bile robots at the Georgia Tech Robotarium. One of the
robots is used to represent the target which is designed
to be moving in a lemniscate shape according to ro(t) =
o [cost cos tsin t]T, where @ = 1 determines the ra-
dius of curvature. We then use three additional robots for
implementing the SUSD Algorithm. Each robot evaluates
the distance-based target information function according to
z(r;) = 2.5(||r;—7o]|?)+0.2, where we added 0.2 so that the

Fig. 3: The image-based tracking case where blue rays
indicate b for each agent.

robots have a minimum nonzero speed. We set the desired
inter-agent distances in (6) to be dj2 = ds; = 0.55, and
di3 = d31 = dog = d3z = 0.5. We set the tuning parameters
in (6) to be k&1 = 0.4 and ko = 0.01. As seen from Fig. 4,
the swarm is able to continuously track the target throughout
its path while keeping a consistent formation.

| 4 P 4 r"

2l (e
¥ 45 .
Fig. 4: A swarm of 3 robots tracking a target robot outlined

by a circle. The trails show the trajectory of the target and
the center of the swarm.

|
//

+
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VII. CONCLUSION
In this work, we have presented a new application of our

* previous decentralized source-seeking strategy called SUSD

for use in solving distributed optimization problems. Our
application is supported by our analysis in the derivation and
convergence of the optimization dynamics along with case
studies in using the approach to solve a multi-agent target
tracking problem. In future work, we will consider the use
of this method for handling extremely high dimensional op-
timization problems, such as those found in the optimization
of deep neural networks.
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VIII. PROOFS OF THE OPTIMIZATION DYNAMICS

Proof: [Proof of Theorem 4.1]Taking the time-derivative
of (5), we obtain
M
C=> [(Fr—7c)(re—7)T + (rh—1c) (Fr— 7).
k=1

(24)

However, 7. = 77 Ekle Tr = 7 22/[:1 uy. This implies
that

1
M

M=

’I'°k — ’I:'C = (uk — ul). (25)

l

Il
—
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Substituting (25) into (24), and using the fact that
Ziw:l uc(ry —re)T = u, Z]k\il(rk —r.)T =0, we obtain

M
C= Z {’u,k(rk —1)T 4 (re —ro)ul|. (26)
k=1

Moreover, by definition, for any eigenvectors v, and v, of
the covariance C, we have Cv, = A\, v, and Cv, = \yvy.
Taking the derivative, we obtain Cv,+C0y = A\gVa+NaVa.
Taking the inner product on both sides, we obtain

<vb7 C'Ua> + <vb7 C'ba> = j\a<vbvva> + /\a<vb7i)a>- (27)

Since C' is symmetric, then C is also symmetric. This
implies that (vy,, Cv,) = (Cvp,0s) = \p(Vp, D,). Using
this along with the fact that (vy,v,) = (vg,vp) = 0, we
obtain from (27)
1
Aa — A <
a b
Since C' is symmetric, one can always find a complete set
of orthogonal eigenvectors {v1,...,v4}. Therefore, for all
a=1,...,d, we may write v, = Zb¢a<”b»i’a>vb- This
implies that the dynamics of the a—th eigenvector are

. 1 .
Vg = ; m@b, Cuvg)vy.

Substituting (26) into (29), and using (8) for x,_j, we obtain
the desired result (7). |

(vp, Do) = vy, Cv,). (28)

(29)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]
Proof: [Proof of Theorem 4.2]Let w;; = (||rj — i||* —
dfj), where Wi = Wiy- Let s; = ZjGNi Wij (’I“j —’I‘i). Then, [11]
we can write (0) as:
u; = k1201 + kas;. (30 2
Substituting (30) into (8) yields the desired result (10). ®
Proof: [Proof of Theorem 4.3]For a = 1, using (9) and [13]
(10), we obtain
v = Z K1,6Ub, (3D [14]
b£1
where
M
k1 [15]
b= ;(Zk — 2e)(Tk = Te, Up)
L M [16]
2
+ va z; [(rk —71c)s) + sp(ry —re)T|vp.
(32) (7]
Let S be as defined in (13). Then, we may write (31) and
(32) as
[18]
U] M
v = Z fb)\ k1 Z(zk —2ze)(rg — 7)) + ko2 Svy | .
b1 LT k=1 [19]
(33)
Using (11) along with Assumption 4.1, we obtain 20
M [20]
[21]
> (2 — 2e)(r — re) = CVz, (34)
k=1
Finally, substituting (34) into (33) yields the desired result
(12). [ |
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