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High-harmonic generation (HHG) in solids has emerged in recent years as a rapidly expanding and interdis-
ciplinary field, attracting attention from both the condensed-matter and the atomic, molecular, and optics
communities. It has exciting prospects for the engineering of new light sources and the probing of ultrafast carrier
dynamics in solids, and the theoretical understanding of this process is of fundamental importance. This tutorial
provides a hands-on introduction to the theoretical description of the strong-field laser—matter interactions in
a condensed-phase system that give rise to HHG. We provide an overview ranging from a detailed description
of different approaches to calculating the microscopic dynamics and how these are intricately connected to the
description of the crystal structure, through the conceptual understanding of HHG in solids as supported by the
semiclassical recollision model. Finally, we offer a brief description of how to calculate the macroscopic response.
We also give a general introduction to the Berry phase, and we discuss important subtleties in the modeling of
HHG, such as the choice of structure and laser gauges, and the construction of a smooth and periodic structure
gauge for both nondegenerate and degenerate bands. The advantages and drawbacks of different structure and
laser-gauge choices are discussed, both in terms of their ability to address specific questions and in terms of their

numerical feasibility. © 2022 Optica Publishing Group

https://doi.org/10.1364/JOSAB.448602

1. INTRODUCTION

High-harmonic generation (HHG) is an extremely nonlinear
optical process where a macroscopic system irradiated by intense
laser light emits coherent radiation with frequencies many times
that of the driving laser field. HHG in gases has facilitated the
generation of attosecond light pulses, the probing and control
of electrons on their natural timescales, and more generally laid
the foundation for attosecond science [1,2]. The last decade
has seen HHG extended to systems in the condensed phase and
liquid phase [3-6]. Earlier measurements of HHG in reflection
[7-10] and transmission geometries [11] have not explicitly
established the non-perturbative nature of HHG. Since the ini-
tial observation of nonperturbative HHG by Ghimire ez /. [12]
inabulksolid in 2011, HHG has been observed in semiconduc-
tors [13—16], dielectrics [17,18], rare-gas solids [19], monolayer
materials [20-23], nanostructures [24—26], amorphous solids
[27], doped systems [28], and topological insulators [29,30].
Solid-state HHG has exciting prospects for new compact
attosecond light-source technologies [17,18,24-26], as well as
novel ultrafast spectroscopy methods capable of probing band
structures [31,32], Berry curvatures [21,33], and topological
effects [29,30,34].

An intuitive semiclassical understanding of HHG in con-
densed phase systems as a three-step process is illustrated in
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Fig. 1, in both reciprocal space (top panels) and real space (bot-
tom panels). In reciprocal space, the first step is the creation
of an electron-hole pair via excitation of an electron from the
valence band to the conduction band, usually by tunneling near
the minimum band gap. Per the acceleration theorem [35,36],
the time-dependent crystal momentum will follow the time-
dependent vector potential, and the resulting carrier motion in
the (nonparabolic) bands will lead to the emission of nonper-
turbative intraband harmonics [12,37]. At the same time, also
interband harmonic radiation is emitted via recombination,
with frequencies corresponding to the instantaneous band gap
[14,38]. The interband radiation results from the coherence
of the electron-hole pair, and is emitted when a stationary
phase condition is satisfied for the phase that is accumulated
during propagation in the bands. In real space, the three steps
again consist of tunneling, which creates the electron-hole
pair; propagation, which accelerates them apart in space and
leads to intraband emission; and recollision, when the electron
and hole reencounter each other in space and drive interband
emission via recombination. The recollision corresponds to
the stationary phase condition (from the reciprocal picture)
being exactly satisfied. The real-space semiclassical model rep-
resents the generalization of the recollision model for gas-phase
HHG [39,40] to the condensed phase. Although the picture
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Sketch of the recollision model for HHG. Upper panels: Tunneling, propagation, and recombination in reciprocal space. Lower panels:

illustrated in Fig. 1 is based on a semiclassical understanding
of the HHG process, its interpretation has been supported by
time-dependent strong-field light—matter simulations such
as the single-particle time-dependent Schrédinger equation
(TDSE) [41-44], time-dependent density-functional the-
ory (TD-DFT) [45-51], SBEs [52-54], and density matrix
approaches [38,55,56].

Any calculation of HHG from a condensed-phase material
interacting with a strong laser field involves at least three differ-
ent types of calculations: Finding the initial state of the material,
solving an equation of motion (EOM) to describe the time evo-
lution, and calculating the observable current(s) that will make
up the harmonic spectrum. For a periodic material, these cal-
culations are most conveniently performed in reciprocal space,
using Bloch states, so that both the structure and the dynamics
of the system are described in terms of its band structure. As we
will describe in more detail in the next couple of paragraphs,
these calculations involve: (i) Calculating the band structure,
including relevant matrix elements of the momentum or posi-
tion operators, by solving the time-independent Schrodinger
equation (TISE); (ii) Solving the EOM after choosing a struc-
ture as well as a laser gauge to calculate the dynamics, where the
gauge choice will determine the exact form of the EOM; and
(iii) Calculating the total current and perhaps different con-
tributions to the current that have different physical meaning,
such as the intraband and interband currents described above, or
the anomalous current driven by the Berry curvature [21,33].

Starting with the structure calculation, there is an impor-
tant, and sometimes subtle, complication that deserves special
attention in the theoretical description of carrier dynamics
in a solid. Since the different crystal momenta k are treated
independently in the structure calculation in reciprocal space,
there is a k-dependent phase arbitrariness in the Bloch states,
i.e., a gauge freedom, which we will henceforth refer to as the
structure gauge. It is often favorable to pick a gauge (gener-
ally referred to as gauge fixing) where the Bloch functions are
smooth, especially if one considers the dynamics in terms of
electrons and holes explicitly moving along the bands. In the
case of large carrier excursions in the Brillouin zone (BZ), as
is often the case for carrier motion beyond the perturbative
regime and the breakdown of the notion of effective masses, a
BZ periodic gauge is also required. The construction of such a

smooth and BZ periodic structure gauge is intricate, especially
in the case of bands containing degeneracies [57-59]. As we
will discuss in more detail in Section 2, the structure gauge is
closely related to the Berry phase [60] that is accumulated under
adiabatic motion, which in condensed matter theory has had
profound implications such as the development of the modern
theory of polarization [61] and the discovery of the quantization
of adiabatic transport [62].

In the description of the time-dependent interaction between
the crystal and the strong laser field there is another gauge free-
dom; namely, the choice of the laser gauge. While all physical
observables in principle are gauge-invariant in a complete basis,
for computational purposes the number of bands and number
of k points in the BZ should be truncated. This basis truncation
critically depends on the choice of the laser gauge [56,63—66].
In addition, the choice of the laser gauge is linked to the fixing
of the structure gauge [56], since the band-coupling terms are
different in different laser gauges [67].

Finally, while the microscopic theory of HHG can be solved
in the framework of the dipole approximation, the experi-
mentally measurable signal is actually the macroscopic HHG
response. Hence, a realistic treatment of HHG should involve
the effect of beam propagation in the medium, as well as the
propagation of the radiation from the near-field at the sample to
the far-field at the detector. These effects requires the solution
of the coupled microscopic response to Maxwell’s equations,
which is very computationally demanding [55,68-72].

This tutorial provides a hands-on introduction to doing
calculations of strong-field laser—matter interactions in the
condensed phase, with an emphasis on the generation of high-
order harmonics. Although the tutorial is primarily aimed at
scientists specifically interested in performing calculations of
ultrafast condensed-phase dynamics, we believe that many of
the concepts and descriptions will be useful to anyone wishing to
gain a deeper understanding of the current state and capabilities
of solid-state HHG theory. Indeed, the decomposition of the
current, the semiclassical recollision model, and the macro-
scopic effects can directly be used to interpret experiments. It
is also worth noting that HHG in solids is an inherently inter-
disciplinary scientific field, attracting researchers from both
the condensed-matter physics community and the strong-
field/attoscience community, which originated with atomic,
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molecular, and optical physicists. We thus also aim to provide
some unification of concepts across this diverse community of
scientists.

We start the tutorial in Section 2 with an introduction to
adiabatic states and related concepts such as the Berry phase,
connections, and curvatures, all of which will be useful for read-
ing the later sections. Section 3 deals with the time-independent
problem of a crystalline solid, and provides methods to con-
struct a smooth and BZ periodic structure gauge. The random
gauge, the parallel transport (PT) gauge, the twisted PT (TPT)
gauge and the Wannier gauge, as well as degenerate bands,
will be covered. Section 4 treats the time-dependent micro-
scopic problem of HHG, and presents the relevant EOMs in
the velocity gauge (VG) and the length gauge (LG), as well as
in the time-dependent adiabatic Houston basis. The advan-
tages and drawbacks of the different methods are compared,
and we present a concrete calculation example for HHG in a
monolayer material. Section 5 is about the saddle-point method
and the semiclassical solutions to the saddle point equations,
i.e., the recollision model. Section 6 gives a brief introduction to
the macroscopic propagation schemes for HHG and provides
an example of a near-field to far-field propagation scheme and
discusses the spatio-spectral properties of the far-field spectrum.

Atomic units, where the reduced Planck constant, the
elementary charge, the Bohr radius and the electron mass are
set to unity, are used throughout this work unless indicated
otherwise.

2. ADIABATIC STATES, BERRY CONNECTIONS,
AND CURVATURES

We start this tutorial by briefly introducing the adiabatic states
and some general concepts that could be helpful to under-
stand the rest of the tutorial. Concepts such as Berry phases,
Berry connections, Berry curvatures, and gauge fixing will be
discussed. For further reading, see [57,58,60,73-75].

A. Adiabatic States

When describing laser—matter interactions, the Hamiltonian
H() is generally time-dependent, and it is often useful
to describe the dynamics of the system using the adiabatic
states. These are defined as the eigenstates of the instantaneous
Hamiltonian at time ¢:

H(D)|n(0) = €,(8)|n(2)), 1)

with |7(#)) an adiabatic state and €, (¢) its energy. The TDSE
reads

IV (@) = HD)|W (@), 2

with [W(z)) the quantum state, and the diacritic dot is used
henceforth to denote full time derivatives. It is important to
note that an instantaneous eigenstate satisfying Eq. (2) ata given
¢ is not uniquely defined, but rather carries an arbitrary phase
factor; i.e., there is a gauge freedom. This gauge freedom and its
consequences will recur many times throughout this document.

We consider the case where the adiabatic states are nonde-
generate for all z. The degenerate case will be discussed for the
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Brillouin problem in Section 3.F. The wave function expanded
into the adiabatic states reads

W)=Y c(0)e’ ™ |n()), (3

n

with 0, (#) = — [ €,(¢')d?’ as the dynamical phase. We can get
the EOM for the time-dependent coefficients ¢, (¢) by inserting
Eq. (3) into the TDSE of Eq. (2) and projecting onto (n(z)|,

En(8) = —(n(DAD) e, (D) = Y € (8) (n(8)|1(2)) OO0,

m#n
4)
The first term on the right-hand side of Eq. (4) depends only
on the nth state, while the second term involves the nonadi-
abatic couplings (n(#)|#(z)) responsible for the transfer of
population between adiabatic states. Rewriting (n(z)|72(2)) =

—(n(t)|1:1(r)|m(t))/[6,,(t) — €,,(t)] for m # n, one can see
that the nonadiabatic couplings are generally large when the
adiabatic states are close to each other in energy.

In the adiabatic approximation, the terms in Eq. (4) involving
the nonadiabatic couplings are neglected. For a system that
starts in the nth adiabatic state, W(#) = |7(%)), such that
¢2(20) = 8, the time evolution proceeds as

|W(2)) = DD (1)), (5)
where
Yoty =i / & (n(t) () (6)

is the Berry phase or the geometric phase [57,60].

B. Berry Phase, Connection, and Curvature

The Berry phase y,,(¢) in Eq. (6) emerged in the adiabatic state
basis as the additional phase accumulated by a state beyond
its dynamical phase 0,. The Berry phase is often termed the
geometrical phase because of its geometric properties. These
can be realized by assuming without loss of generality that the
Hamiltonian depends on time through a set of parameters
R(#) = [R,(¢), Ry(2), ...], such that H(r) = H[R(z)]. The
Berry phase can now be rewritten as an integral over a path C
through this parameter space, from R(%) to R():

¥a(C) = fc A,(R) - dR, (7)

and the purely real Berry connection is defined as
A, (R) =i(n(R)|dr|n(R)), (8)

with 9g = [0g,, Og,, ...] the operator for the partial derivatives.
Note that the Berry phase in this formulation only depends on
the path and no longer on the time duration.

For a closed path, the Berry phase can be rewritten to a sur-
face integral by the application of Stoke’s theorem, with S(C)
denoting a surface enclosed by C. For convenience, we assume
that the parameter space R is 3D, such that dg = Vg, although
derivations for higher dimensions proceed similarly. We have

ya(C) = f A,(R) - dR = / / (Ve x A,(R)]-dS, (9)
C S(C)
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where the integrand in the surface integral is the Berry curvature
Q,(R)= Vg x A,(R). (10)

The Berry curvature is important because, like the Berry
phase, it is independent under a gauge transform. This is
in contrast to the Berry connection, which transforms as
A, — A, + Vrx under a gauge transform of the adiabatic
states |7) — |n)e X® with x an arbitrary real function. Note
that the Berry connection and the Berry curvature transform
similarly to the vector potential and magnetic field from classical
electromagnetism, respectively.

The Berry curvature can be expressed in a form that is use-
ful for numerical evaluations [76]. Using V x (Y V¢) =
Vi x V¢, the resolution of identity, and (m(R)|Vr#(R))
[6,(R) — €,,(R)] = (m(R)|[VRHR)[n(R)) ~ for  m#n
obtained by taking the gradient of Eq. (2), the Berry curvature
can be written

2,(R) =#(Vgn(R)| x |Vrn(R))

Y (Vrn(R)m(R) x (m(R)|Vrn(R)

m

=iy (n(R)| Ve HR)|m(R)) x (m(R)IVnﬁ(R)Iﬂ(R)).

g e, (R) — &,(R)?

(11)

From this expression, the Berry curvature for the nth adiabatic
state is intuitively seen to originate from the coupling to all the
other adiabatic states, and the closer in energy a neighboring
adiabatic state is, the larger the contribution. Equation (11) is
useful for numerical evaluations since no derivatives are taken
with respect to the adiabatic states.

As mentioned above, there is a gauge freedom in the adiabatic
states, i.e., a phase-arbitrariness in the definition of the adiabatic
states. One way to remove this arbitrariness of the phase is to
enforce the parallel transport (PT) gauge condition on the
eigenstates:

0= (n(1)|n(£)) =R - (n(R)|3g|n(R)). (12)

In the PT gauge, the “velocity” of the state is thus perpendicular
to the state itself. With this gauge choice, the eigenstate |7(z))
is always single-valued as a function of #, and the integrand in
Eq. (7) is zero along the path. However, if C is a closed path
in parameter space (e.g., under periodic motion) such that
R(7) = R(7), there is no guarantee that |z[R(%)]) is equal to
|2[R(T)]) under PT. The phase difference between |7[R(#)])
and |z[R(7)]) is exactly the Berry phase y, (7). If y,(T) #0,
the adiabatic state |z) in PT gauge is thus a multivalued func-
tion of R (but still a single-valued function of 7). Instead of the
PT gauge, a sometimes more convenient gauge is the periodic
gauge, in which one applies the additional requirement that the
adiabatic state is single-valued along the path C in parameter
space. Later, in Section 3 of this tutorial we will present methods
to construct such a gauge in crystalline systems.

Finally, by neglecting adiabatic coupling in the second term
on the right hand side of Eq. (4), the quantum evolution of
|W(2)) in Eq. (5) is correct only to the zeroth order in R;ie., ifit
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starts in the zth adiabatic state, it stays in that state, with no tran-
sition to other adiabatic states. The result can be extended to the
first order by making the ansatz [W (V) = ¢ ¢/Vn[| ) + R|87)]
in the TDSE and solving for |872), resulting in the state [58,74]

(1 — ,i0x(8) Liya(®)
[ (2)=e eV |:|n(t)) + m%gn ) —<.) |m(t))i| .
(13)

The second term on the right-hand side of Eq. (13) results in
the so-called anomalous current, which we will return to in
Section 4. This expression, together with the Berry phase, has
been crucial for the development of the theory of adiabatic
charge transport [62] and the modern theory of polarization

[57,61].

3. TIME-INDEPENDENT PROBLEM AND
STRUCTURE GAUGES

In this section, we discuss the time-independent problem of
a crystalline solid. While for a perfect crystal it can be argued
that everything boils down to the TISE and Bloch’s theorem,
the Bloch states can have an arbitrary crystal-momentum-
dependent phase, representing a gauge degree of freedom. This
section is devoted to the discussion of this gauge freedom and
presents methods for gauge fixing. We start with Bloch’s theo-
rem, the choice of crystal conventions, and how to calculate
relevant matrix elements. We then discuss four different gauge
choices in Sections 3.B-3.E and conclude with Section 3.F for
gauge fixing in the nondegenerate case.

A. Bloch States and Coupling Matrix Elements

The single-particle eigenstates satisfying Bloch’s theorem are
solutions to the crystalline TISE

Hopk(r) = E*¢¥(v), (14)

where the Hamiltonian Ay = 7+ V contains the kinetic
energy operator 7 = p’/2 and the periodic potential satisfying
V(r) = V(r+ R) with R as a lattice vector. The band energies
E* and Bloch states ¢X(r) in Eq. (14) depend on the band index
n and the crystal momentum k. According to Bloch’s theorem,
the Bloch states can be written (}5}2‘(1') = eik"ul;(r), with ul;(r)
as a lattice cell periodic function. Although in this tutorial we
focus on systems without electron—electron interactions, it
has been shown that most of the conclusions can be extended
to interacting systems, provided that the interacting system is
adiabatically connected to a noninteracting one. Two systems
are adiabatically connected if one can go to the other by follow-
ing a suitable path in parameter space, i.e., in this case that the
interacting system can be reduced to the noninteracting one
by an adiabatic path that takes the finite interaction strength to
zero [58,74]. For recent studies on electron-correlation effects
in strong-field laser-solid interactions using TD-DFT, refer to
[46,47,49-51].

Before proceeding, some details on the choice of lattice
are warranted. We consider a D dimensional crystal with the
Bravais lattice
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= Ny Ny
R—;mdad, md€|: R l], (15)
that has volume V. = NV, where N= ]_[5:1 Ny is the
total number of unit cells, V. is the unit cell volume, and D the
lattice dimension. To avoid surface effects, periodic boundary
conditions ¢X(r + Nyaz) = ¢¥(r) are enforced [53], which

results in discretized crystal momentaina BZ

D D
k=22bd=ZKdl;d, nde[—%,&—l] (16)
o i d=1 202

where we have defined the reduced reciprocal coordinates
264 €[— H b, H , H b, H] along the reciprocal vector directions
with grid spacings Ak, = ||bd || /Ny, and l;d =b,/ ||bd || isan

unit vector. Two useful orthogonality relations are

> MO = Nog, (17)

keBZ

Ze—i(q—k)'R: Naq,kv (18)
R

and we define the crystal and unit cell inner products as

(Fl€)es = / F g @dr, (19)
crys
Q) = / F g (20)

As we will see in Section 4, the matrix elements of interest
to solve the time-dependent problem are those of the momen-
tum and position operators, p and f, respectively. To provide
an example of the steps involved in the evaluation of matrix

elements, it can be seen that operators O(p) involving the
momentum operator p are diagonal in the crystal momentum:

(¢ OD) X,

= / ¢ (1) O(P) s (r)dr
crys

— Z/ u;ln*(l_)e—iq-(rJrR)é(lS) I:ul;(r)eik-(H—R):I dr
R cell

¥ (0)e =97 O (p) [u';(r)eik"] dr

_ Zeﬂ'(qfk).p./

cell

R
= Noqi f ) o (1) O(p) s (r)dr

= Nogi(@3 O(B) 0% . 21)
1

where we have used Eq. (18). For O=1in Eq. (21),

<¢;1n |¢5)crys = N(Sq,k(u:ln |ul;)cell = NSq,kSmnv (22)
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where the last equality represents the choice of orthonormality
for the cell-periodic functions. Thus, in our convention, the
resolution of identity is

1= ]\Ii1 Z |¢5> <¢:,(|crys = Z |uly:><”l;:|cell- (23)
nk nk

For O = pinEq. (21), we have

(B IPIB) crys = Noqip",- (24)

where we have defined the momentum matrix elements
Pl;m = <¢:¢11|f)|¢:>cell-

Similarly, to calculate the matrix elements of the position
operator r in the Bloch basis, one would go through similar steps
as in Eq. (21). However, the third equality would have an extra
term involving the factor Y g Re @ 0R which is difficult
to evaluate and depends on the choice of the Bravais lattice. To
circumvent this, we first consider the continuum limit where
the supercell volume goes to infinity, such that k sums turn into
integrals, and the Kronecker delta into delta functions,

_ Veell
NS dk, (25)
k;z @m)? Joz
2 D
Né g1 — Q1) g k). (26)

cell

Hence, we mostly use the discrete notation. However, when
k derivatives are involved, the continuous case in Eq. (25) is
implied. In contrast to the momentum operator in Eq. (21), the
position operator couples Bloch states in k space [67],

deg (£)rgX(r)

crys

(G| F1By) oy =
= / dr {i Vet (1) — iVausy (1)~} ¢k (r)
crys

=iVq | drgd (")

crys

—i [ drVaud (e gk (r)

crys

= iNG,, Vobqr—i y_ e TR
R

x / dre @0y 4T (0 ()
cell

= N(i8,,,,Vq + d5,)8q 1
(27)

where in the last step we have used Eq. (18), performed partial
integration of the second term, and defined the generalized
dipole coupling as

dk

ok k
yn = (1, | Vicl143,)

(28)

cell®

Note that our definition does not include the negative charge
of the electron. By taking the derivative of the TISE, it can be
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shown that dl;m = —z'plr‘”n/(E:‘” — E}f) for the nondiagonal
elements. The diagonal elements are the Berry connections [see

Eq.(8)],
Al=dk (29)

Clearly, to be able to calculate k gradients in Egs. (28) and (29),
the cell-periodic functions |ul;) should be smooth and BZ peri-
odic functions. Generally, k gradients are often encountered in
the description of dynamics in solids, and it is thus desirable to
ensure that |ul;) fulfills the mentioned properties. This will be
the topic of the subsequent subsections.

B. Random Structure Gauge
As discussed above, the Bloch states in the TISE of Eq. (14)

are defined up to an arbitrary k dependent phase factor i
i.e., there is a gauge degree of freedom. Since this gauge is related
to the time-independent problem and the structure of the
crystal, we will refer to it as the structure gauge. When Eq. (14)
is solved by some diagonalization procedure, the value of @&
is usually random; we call this the random gauge, and denote
the Bloch states in this gauge by quﬁf) and the corresponding
cell-periodic functions by |ftln‘) The random gauge, while being
the simplest structure gauge, is clearly inapplicable in situations
when k derivatives of the states are needed.

We consider first the nondegenerate case, and will discuss
the degenerate case in Section 3.F. The band energies have
the BZ periodicity £ :l‘ =F i""G, with G as a reciprocal lattice
vector, and the BZ can be regarded as a torus. With the gauge
freedom, an ideal fixed gauge for our purposes is one in which
the Bloch functions are BZ periodic because such a gauge would
lead to BZ-periodic momentum and dipole matrix elements
useful for numerical evaluations. The periodic gauge condition
reads |¢)}1‘+G) = |¢L‘), with G = 25:1 n4b4 an arbitrary recip-
rocal lattice vector, D the dimension, 7, integers, and b, the
primitive reciprocal lattice vectors. This condition is equivalent
to

|pltbd) = k). (30)

Here, we outline a procedure to construct such a gauge, by
first constructing a PT gauge, and afterward constructing the
TPT gauge with the Berry phases along the reciprocal vectors
distributed evenly across the BZ.

C. Parallel Transport Structure Gauge

In the PT gauge (|¢¥) and |#¥)), similar to what was discussed
for Eq. (12) in Section 2, the scalar Berry connections along the
reduced coordinates [see Eq. (16)] are forced to vanish,

lek

7n,K,]

(i1 |9y lity) cett = 0, (31)

where the integral is carried over a unit cell. Note that to fix the
gauge in Eq. (31), the cell-periodic functions |#X) are used over
the Bloch states |¢fl‘) to define the scalar Berry connections.
Using the latter would have resulted in ambiguous integrals
with fast oscillating integrands and dependence on the choice of
spatial coordinate origin. When fixing the gauge, any condition
can be used; it just turns out that it is more convenient to use the
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cell-periodic functions. The full Berry connection vector can be
constructed from the scalar Berry connections as

D
A =i (Vi = > AE, g by, (32)
d,d

. 4 . . . . .
with g% the inverse metric tensor. In the discrete picture perti-
nent to numerical evaluations, the Berry connections in the PT
gauge can be evaluated as [57]

Al = |5k Im In (@]t o, (33)

nKl

with §ka small displacement vector in the reciprocal space.

D. Periodic Structure Gauge

To construct the periodic gauge, note first that the periodic
gauge condition for the Bloch states in Eq. (30) translates into
the condition

| oy = o=ibar |k (34)

for the cell-periodic functions. The |#X) constructed in the PT
gauge are smooth inside the first BZ, but they generally do not
satisfy Eq. (34). Fora closed path along b, that wraps around the
BZ, aBerry phase is accumulated, the so-called Zak’s phase [77],

oL, = yg A, dicg. (35)
BZ

It has been shown by Zak that fora 1D solid with inversion sym-
metry, this phase can only take on the values 0 or 7.

Consider now the discrete case, and assume that we have
constructed the PT gauge along the b, direction in discrete steps
starting from one end of the BZ at ko, to the last point k.
From the PT gauge constraintin Eq. (31), the Berry connection
along this path is identically zero. To close the loop of the inte-
gral in Eq. (35), we need to wrap around the BZ, and the Berry
phase in the PT gauge is then calculated as

kn,_ .
o, =—Imln(iz, """ |e7*"|ik), (36)

where we have used Eq. (34), and Ak, is the grid spacing of the
reduced reciprocal coordinates defined in Eq. (16). Note that
even though we defined the Berry phase in terms of the PT Berry
connections, it is gauge-independent, in agreement with our
discussions in Section 2. A periodic structure gauge is obtained
by distributing this Berry phase evenly along the path onto the
cell-periodic states in the PT gauge,

"

n

|y = ¢~ 0ng<a! 1bd ] |7%). 37
For 2D or 3D systems (D = 2, 3), the above procedure is then
repeated along all the dimensions 4. This gauge is denoted as
the TPT gauge, and constitutes a periodic gauge with optimally
smooth phase variation of the Bloch states [58].

It is important to mention that a globally smooth periodic
gauge is only possible for topologically trivial systems. For
example, the Chern theorem states that the Berry phase [see
Eq. (9)] calculated over a closed surface S is quantized as a
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integer multiple of 277, which in the case of the Bloch problem
reads,

C,=Qm)"! J@ﬂ Qk. ds, (38)
N

with Sll; the Berry curvature [Eq. (10)], and C, is called the
Chern number or the topological invariant. For a 2D system
where the surface is the whole BZ, a nonzero Chern num-
ber (topologically nontrivial systems) presents a topological
obstruction to the construction of a globally smooth periodic
structure gauge [58]. For example, for topological systems, one
can always construct the procedure for the TPT gauge along
one dimension, but when one subsequently constructs the TPT
gauge along the other dimension, the periodicity along the
first dimension will break down somewhere in the BZ. As we
will discuss later in Section 4 on the time-dependent problem,
depending on the laser gauge, there are ways to circumvent
the construction of such a global periodic gauge for HHG
calculations.

E. Wannier Gauge

Up to this point, we have considered the Bloch states, which
are entirely delocalized spatially. Often, however, it is useful to
consider a spatially localized basis mimicking that of atomic or
molecular orbitals. The construction of a periodic gauge opens
up the possibility of constructing the Wannier basis [78,79],
which consists of states localized on the individual lattice sites.
The Wannier states are defined as the k space Fourier transforms
of the Bloch states,

a [
why =F{igb]. vt Fry= [ o
(39)

and R is a Bravais lattice vector. As mentioned, the Wannier
functions are localized, in the sense that wR(r) = w2(r — R),
and [wR(r)| — 0 for|r — R| — oo.

Clearly, to perform the integral over the BZ in Eq. (39), the
employed Bloch states in the integrand should be smooth and
periodic; i.e., they should be precalculated in a periodic gauge.
Since such a gauge choice is not unique, the resulting Wannier
states depend on the choice of the periodic gauge. As the TPT
structure gauge is the optimally smooth periodic gauge, the
Wannier states constructed using the TPT gauge Bloch states
are optimally localized (with a minimum spatial spread), and
are called the maximally localized Wannier functions (MLWF)
[59,80].

Independent of the gauge, the Wannier states are orthonor-
mal (wf|w5)cws =8, 0r r'> and the Hilbert spaces spanned
by the Bloch states and the Wannier states are identical. When
working with Wannier states as a basis, the terminology
“Wannier gauge” [59,81] is used, as the Wannier states are
generally not energy eigenstates. Instead, the Hamiltonian
matrix elements in the Wannier basis are the Fourier transforms
of the band energies,
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The inverse transform of Eq. (40), Ei‘: (¢L‘|F]0|¢:)c,y5=

>R eik'R(wg|[:&)|w§)crys, shows that the Wannier states con-
sidered as the localized basis in tight-binding models exactly
reproduces the band energies. The position matrix elements
in the Wannier gauge are well defined, and are just the Fourier
transforms of the Berry connections,

(WOFwR)erys = F {A‘;] . (41)

The Wannier centers, (w2|f'|w2)crys, are invariant with respect
to a gauge change of the Bloch states, and in 1D are given by
ap?/(2m), with ¢? Zak’s phase and 4 the lattice constant.
However, as mentioned, the spread of the Wannier states are
gauge-dependent.

F. Structure Gauges for Degenerate Bands

The gauge discussion in the previous subsections can be gen-
eralized to the degenerate case [58], which we sketch here for
completeness. Let { £ In‘} 7 be aset of / bands that are isolated
from all other bands, in the sense that they have no degeneracies
with the other bands anywhere in the BZ, but can have degen-
eracies within themselves. The Hilbert subspace spanned by
the corresponding / states |ul;) remains unchanged under an
unitary transformation

J
i) =) U, Ik, (42)

m=1

and the objective is to pick U¥ such that the transformed states
have the desired properties of our structure gauge.

We first discuss the construction of the PT gauge states {ftl;} 7
from a random gauge {Ztl;} 7> and consider the discrete k case,
which is illustrative and useful for numerical applications. The
procedure can be considered a generalization of Section 3.C.
Starting at ko with |z_¢l:”0) = |5¢l,‘”0), the overlap matrix with a
neighboring point k; =k + 8k can be decomposed by a
singular value decomposition

MR = gkogkn = (vEW),,, (43)

with X a diagonal matrix with nonnegative values, and V, W
unitary matrices. The difference between ¥ and the identity
matrix is a measure of the difference between the Hilbert space
spanned by {ulz‘) }7 and {ulzl }7. We now define a new set of states
by transforming the set of states from the random gauge,

J
k) = (WVT),li). (44)

m=1

The overlap matrix can be shown using Eqs. (43) and (44) to
be (#%|uk1) = (VE V7),,, and is now Hermitian and positive
definite, and is “as close as possible® to the identity matrix, such
that the constructed set of states {Ztl;‘) }; can be considered as
“optimally aligned” to {z_tln“ }7. The PT gauge of a local region
in the BZ can now be constructed by repeating the procedure
above to all other nearby points in the BZ.

We proceed to discuss a procedure to construct a periodic
gauge in the multiband case, which is a generalization of the
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nondegenerate TPT gauge discussed in Section 3.D. First con-
struct the PT gauge with the above procedure, starting from kg

at one end of the BZ along the reciprocal vector direction b, to
the other end at ky_;. Even though the Hamiltonian at k¢ and

kv are identical, the set of states {4_5}1‘0 }; and {q_SffN }; generally
are not. In analogy with the nondegenerate case, when wrapping
around the BZ, we can define the unitary overlap matrix

Upn = (Akcg) (i e~ b7|750) (45)

from which we can define a Berry phase

/
®f =—Imlndectd =) g7, . (46)

n=1

The (pf: «, are the argument of the eigenvalues of ¢/, and
interpreted as the Berry phases for the individual bands.

Similar to the single-band case discussed in Section 3.D, a
periodic gauge can then be constructed from the PT gauge by
dividing the Berry phases evenly along the path
k) = eIl 7k, (47)

n

which is the TPT gauge for the multiband case. It should be
noted that the states in the multiband PT and TPT gauges,
{J)k} 7 and {¢:} 7»are generally not energy eigenstates.

Once the multiband TPT gauge is constructed, the Wannier
gauge in the multiband case can then be constructed from the
TPT gauge as in the single-band case, i.e., using Eq. (39). The
Wannier functions retain most of the important properties from
the single-band case, such as localization in real space and lattice

periodicity [59].

4. TIME-DEPENDENT PROBLEM AND LASER
GAUGES

In this section, we discuss the different avenues to tackle the
time-dependent problem of a solid interacting with a strong
laser field, by treating the crystal quantum mechanically and the
external field classically. Depending on the chosen laser gauge
and basis, the resulting EOMs will have their own advantages
and drawbacks. The section starts with the introduction to laser
gauge freedom, and proceeds in Sections 4.A-4.C to obtain
the relevant EOMs and equations for the microscopic current.
Section 4.D compares the different time-dependent methods, in
terms of both the numerical complexity and the interpretation
of the physics, and Section 4.E describes the calculation of the
HHG spectral and temporal profiles and provides an example.
The minimal coupling Hamiltonian for a nonrelativistic elec-
tron in a periodic potential interacting with an electromagnetic

field reads [73,82]
]fl(t) = %[f) +A(r, )] = D(r, 1) + V(), (48)

with A(r, #) the vector potential, ®(r, #) the electric scalar
potential, and the physical fields given by

F(r, 1) = =V ®(r, 1) — 0,A(r, 1), (49)

B(r, 1) =V x A(r, t). (50)

Tutorial

There is a gauge freedom in choosing A and ®, as the physical

fields remain invariant under the transformations

A(r, 1) — A(r, 1) + VA(x, 1), (51a)

D(r, t) = P(r, £) — 9, A(r, 1), (51b)

with A(r, ) a differentiable real function. It is straightforward
to show that under the gauge transform (51), the TDSE remains
invariant if the wave function transforms as

W(r, 1) = W'(r, 1) = 2EOU(r, 1), (52)

H@) — H () = %[f» +A(r, 1) + VA(r, )]

— O(r, 1) + 0, A(r, ) + V(r), (53)

where the Hamiltonian transform is explicitly written down in
the second line, obtained by insertion of the gauge transform
in Eq. (51) into the TDSE. Expectation values of physical
observables such as the position (W (#)|r|¥(¢)) and kinetic
momenta (W (#)|[p —i—AA(t)]|\I/(t)) are gauge invariant under
the transform.

The microscopic current operator is proportional to the
kinetic momentum

)= —v() =i [f, ﬁ(t)] — [p+Aw L (54)

where [, -] denotes a commutator. The wavelengths of driving
fields used for HHG are in the order of micrometers, while the
unit cell dimension is sub-nanometer (nm), so in the following
we apply the dipole approximation F(z) = F(r, #) and ignore
the magnetic field. In Section 6 we will discuss situations beyond
the dipole approximation.

A. Velocity Gauge EOM in the Bloch Basis

We start by considering the dynamics in the VG, in
which one fixes the gauge by choosing ®vg(r, £) =0 and
Ayg(r, ) = — [F(#)d¢ =A(r). As we will show, the VG
can be advantangeous because it leads to EOMs that can be
propagated separately for each k, which means that the con-
struction of a periodic structure gauge prior to time propagation
isunnecessary. The VG Hamiltonian reads

A 1
Hyg(t) = E[f) +A® ] + V(). (55)

The A%/2 term can be transformed away by choosing
A(r, £) =—1 [ A(¥)?d? in Eqgs. (52) and (53). The resulting

VG Hamiltonian form,
Hyo()=T+ V() +p-AQ®), (56)

is often used instead of Ay in Eq. (56).

The VG TDSE i[¥ye(9) = By ()| Wya () can be
rewritten by first expanding the wave function Wyg(r, £) =
N1 Y mkeBZ 6% (£)¢X (r) and then projecting onto the Bloch
states, resulting in the EOM for the coefficients [41,83]
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ibY (1) = EX bk () +A(r)- Y pk bE().  (67)

where we have used the property that the momentum
matrix elements are diagonal in k [Eq. (21)], and defined
pl;m = (¢l,f,|f)|¢5)cell We can define the density matrix opera-
tor () = [Wyg (1)) (Wya(#)], such that the matrix elements
grlfm = bl,; bl;* satisfy the EOM [56]

i, () = (El — EX) gh, (0 +A0)

> [P‘;zgh(t) - p};gi‘nl(t)] . (58)

/

These equations also can be derived directly from the Liouville—
von Neumann equation ig(¢) = [H(2), 2(®)]. Finally, the
relevant observable for HHG, the microscopic current, is
evaluated in the VG as

i ="t [juo0g®] =T {[p+A0)] 20}

=N Y Y[ hA0)] 50, 69)

keBZ mn

where we have used Eq. (54). We will discuss the advantages and
drawbacks of time propagation in the VG in Section 4.D.

B. Length Gauge EOM in Bloch Basis

A different way to fix the laser gauge in the dipole approximation
is to set Pr(r, £) = —r - F(¢) and A;g = 0, which according
to Eq. (49) results in the desired physical field F(z). This gauge
choice is denoted as the LG. The LG Hamiltonian is then,
according to Eq. (48),

Hc@t)=T+ V() +r- F@). (60)

This Hamiltonian also can be obtained from the VG
Hamiltonian using the gauge transform Ay ¢ = —A(?) - r
inEgs. (52) and (53).

We first rewrite the LG TDSE i | W, ¢ () = f[LG(t)|\I-’LG(t))
by expanding Wi (r, £) = N1 Y | 4, a¥(£)$pX (r) and pro-
jecting onto the Bloch states, resultin;g in the EOM [38,84,85]

iak (e) = Eag () +F(t) - Y _ dy,ak(t) + iF(t) - Vieak (2).

(61)
In contrast to the VG in Eq. (57), the LG equations couple
different crystal momenta to each other due to the last term
involving the k gradient. Defining the LG density matrix
p(1) = Wi (1)) (W1g(2)| with matrix elements pX = 2X 2%,
the density matrix EOM reads

ipk (1) = (EX — E¥ ok (1) + F(2)

Y [dho) = dhpkio)] + iFG) - Vieok, 0.
/
(62)
As in the VG, these LG equations also can be derived from the
Liouville-von Neumann equation 7p(¢) = [Aic(t), p()]
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in the Bloch basis. In a many-body framework using a second
quantization, a similar equation for the one-body reduced
density matrix p,ljm(t) = (\Il(t)lazkzzmkllll(t)) can be derived
(with a:k creation and 4, annihilation operators), often
denoted as the semiconductor Bloch equations (SBEs)
[13,52-54,65,86,87]. Due to many-body couplings such as
electron—electron and electron—phonon scattering, the SBEs
will dephase, which at our level of theory is treated by adding
a phenomenological dephasing term (1 — §,,,) ,olfm /T3 on the
right-hand side of Eq. (62). The SBEs using a phenomenologi-
cal dephasing and neglecting excitons [53] are equivalent to the
time-dependent density matrix equations presented here. A
shorter dephasing time 75 will result in less noisy HHG spectra,
and 7; is often chosen such that there is reasonable agreement
between experiment and theory [38,88]. The phenomenog-
ical dephasing, while being computationally convenient, can
only give qualitative results, and more accurate treatments of
dephasing is an active area of research [55,89-91].

For degenerate subspaces given in the periodic gauge (see
Section 3.F), the rotated states of Eq. (42) are not energy eigen-
states, and the EOM given in Eq. (62) cannot be applied. In this
case, the Liouville~von Neumann expression should be used to
reduce the correct propagation equations [65,92]. The correct
propagation equations in the Wannier structure gauge (see
Section 3.E) can also be derived using the same strategy [87,93].

Inthe LG, the current operator is iLG (t) = —p[Eq. (54)],and
the microscopic current can be evaluated as

j() =Tilj ()OI =—N"Y" > "pk ok (). (63)

keBZ mn

While Eq. (63) is useful to obtain the total current, more physi-
cal insight can be gained by a decomposition of the current
into several terms with different physical meanings. While the
decomposition into intraband and interband currents has been
discussed extensively in the literature, we present a decompo-
sition here that contains four terms each with its own physical
interpretation [63,94]. We first split the position operator into

an intraband and an interband component, t =" + ', with
the matrix elements in the Bloch basis [see Eqs. (27)—(29)]:
(D 1F (D) crys = NS (Ay, + 7 Vic)Sicq, (64a)

(P 1F I d) crys = N(1 = 8,,)01qdY,.  (64b)
The current can now be written
j(1) = Trljy (DA} = iT{[}, Aic(]p())
= iTe({[F, Hol + [, () - £
+ [, F(@) - £+ (7, Fia()1}p)

= jtra(t) + janom (t) + jmiX(t) + jPOI(t), (65)

where we have inserted the LG Hamiltonian (60). After some
tedious, but straightforward derivations using Egs. (14) and
(64), the four current components in Eq. (65) can be written

as [63]
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jU 6 =—N"Y " ViEkpk (1), (66a)
mk

e ==N"0, Y dy, ok, (), (66b)
m#n,k

janom(t) —_N! Z [F(t) X SZ';] p,lfm(t), (66¢)
mk

N ==NTDYCF) Y
"

m#n,k

[t ) = s — Ay, ] 0
(66d)

where F,(#) and d}:!m are, respectively, the puth compo-

nent of the field and dipole matrix elements. In Eq. (66a),
the intraband current j**(#) is due to carrier transport within
individual bands as is reflected in its dependence on the car-
rier group velocities Vi E 1‘” The interband current jp"[(t) in
Eq. (66b) originates from the coupling between the bands and
is seen to be just the time-derivative of the polarization. The

anomalous current j*"*"(#) depends on the Berry curvature

Sll:” =V X Al;” [see Eq. (10)], and is perpendicular to the
electric field F(#). The mixture current jmix(t) in Eq. (66b), as
seen from the definition in Eq. (65), depends on the coupling
between the interband and intraband position operators. The
structure-gauge-invariant expression in the square parenthesis
is also referred to as the generalized derivative [63], defined as
(0 )=V 0% —i(AX — AX) Ok We note here that even
though the j"*™(¢) contribution to the current originated in
the intraband component of the position operator in Eq. (65),
it and the mixture term j™* () depend explicitly on coherences
between different bands and, as such, are interband in nature.

More generally, it is worth mentioning that in the literature,
the decomposition in terms of the intraband [Eq. (66a)] and
interband currents [Eq. (66b)] has been discussed extensively
for HHG in solids [13,14,17,23,38,95-97]. The effect from
the anomalous velocity and the Berry curvature has been inves-
tigated mostly separately [21,33,98]. The implication of the
mixture terms in Eq. (66d) has largely been unexplored [94].
Often, the non-intraband current (containing the interband,
anomalous, and mixture currents) is used interchangeably
with the interband current, either due to semantics, or because
the anomalous and mixture currents often are negligible.
Sometimes, the anomalous current is also considered as a part
of the intraband current [34,99], since it depends on the carrier
density in a given band [see Eq. (66¢)] and can be considered
a band-specific current. Remember, however, that the Berry
curvature is a geometric property stemming from the resid-
ual coupling between the bands [see Eq. (11)]. The interplay
between the four current contributions investigated under a
combined framework could be a potential avenue of future
research.

C. EOM in the Adiabatic Houston Basis

Next, we discuss a popular propagation method that employs
the Houston states, which, like the LG EOMs discussed in
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the previous subsection, can naturally incorporate a phenom-
enological description of dephasing. We first reformulate
the time-dependent problem into one that draws parallel
to the general adiabatic theory discussed in Section 2. First
realize that we can define a transformed time-independent
Hamiltonian, I:IOI‘ = ¢~k [kt with the cell-periodic func-
tions as eigenstates and the same band energies as the Bloch
states:

HEuk(6) = E¥d(r). (67)

For the time-dependent VG Hamiltonian in Eq. (55), the trans-
formed Hamiltonian can easily be shown to satisfy

If]K(t) = e—z‘K»r]A{VG(t)ein — A5<+A(t>' (68)

Using Egs. (67) and (68), we see that a set of adiabatic states
[Eq. (1)] of HX(2) simply consists of the cell-periodic functions
with shifted crystal momenta, #%T4®) (r), and with correspond-
ing adiabatic eigenenergies EX(z) = EXTA® The solution to
the adiabatic problem of the original VG Hamiltonian can now
be written as

FK o KA 0y rKHA®D) , K+A()
H*(t)u, r=EFE u, (r)

& By ()h¥(x, 1) = EXAO X (¢, 1) (69)
with
Py, 1) = RO (1) = AP @) (70)

This set of adiabatic states #¥(r, #) are often referred to as
Houston states in the literature [36,100], and we have used
the capital letter K for the crystal momenta to highlight that
the Houston states are the accelerated Bloch states. All the
properties of the adiabatic states discussed in Section 2 now
automatically follow. If the structure gauge for the Bloch states
is fixed, then the Houston states are completely well-determined
and given by Eq. (70). However, we emphasize that the Houston
states only represent one possible set of adiabatic states. At
each instant of time #, a Houston state multiplied by an arbi-
trary k dependent phase factor is another adiabatic state. To
rephrase, an adiabatic state of Bye (2), |n(2)), is always related to
aHouston state by an arbitrary phase factor

(xn(£)) = e B¥(x, 1). (71)

Since the adiabatic states are defined as the instantaneous
eigenstates of the Hamiltonian involving the laser—matter
interaction, they can also be considered as the laser-field-dressed
states.

Expanding the wave function in the Houston basis,
Wye(r, 1) = N7! Dok K@) hX(x, 1), the VG TDSE reads

i(0) = EXHAO K ) 4 By - Y dSHAO K, (72)

where we have calculated the nonadiabatic couplings [see

Eq. (4)]
FHUDIE 1))y = Nidq i (uETHAO [55KHAD)

= — N8qxF(z) - dSHAC) (73)
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The corresponding density matrix elements in the Houston

basis, ,5715” = 6‘56}1(*, evolve as

70 = (B0 ERA0) K ) K

D A58 — A Bk (74)
/

Similarly, as in the previous subsection, for a degenerate sub-
space expressed in a periodic gauge, the Liouville~von Neumann
equation must be used to reduce the relevant EOMs. Note that
in the literature, due to the appearance of the dipole operator in
the EOMs of Eq. (74), it has also been termed as the LG SBEs in
the moving frame [38,55,56,101]. Indeed, the EOMs in the VG
adiabatic basis [Egs. (61) and (62)] can be obtained from the LG
EOMs [Egs. (72) and (74)] by the frame change k =K + A(z).
Asin the LG case of Section 4.B, dephasing can be introduced by
a phenomenological term (1 —§,,,) ,5571 /T3 on the right-hand
side of Eq. (74). We note that one cannot add this dephasing
term directly to EOM in the Bloch-basis VG [Eq. (58)] due to
the severe mixing of the field-free states in the presence of the
laser field.

The microscopic current is evaluated as
j() = Tf[ivc(f)f(t)] =-Tr{[p+A()]g(»)}

=-N") pSHOK (o). (75)
mnK

where we have used the identity (blri ®)|lp+A®] /7?(1,‘))cryS =
SkQPX A" The current can be split into an intraband and a
non-intraband contribution, by splitting the diagonal and off-
diagonal terms of the momentum matrix elements in Eq. (75),
ie,j®) =" @) +j@):

jU) =—N"" Y VKEKTAO K (76a)
nK

jUO=—N" Y phaOpE, (76b)
m#n,K

where the non-intraband current contains the interband,
anomalous, and mixture contributions to the current [compare

to Eqgs. (65) and (606)].

D. Gauge Comparisons

The three different time-dependent propagation methods
presented in Sections 4.A—4.C each have their own advantages
and drawbacks. Here we provide a discussion on this topic. The
calculation procedures consist, in broad stokes, of five steps
that are summarized in the flowchart in Fig. 2. These steps are:
(1) Obtain the band structure and its associated momentum
coupling matrix elements. This could be done either by using
a structure code or diagonalizing an analytical Hamiltonian
by, e.g., the tight-binding approximation. As discussed in
Section 3.B, the output will in general be in a random structure
gauge. If required, we can then construct a periodic structure
gauge using the procedures outlined in Sections 3.C-3.E
(2) Next, we propagate the time-dependent EOMs, using one
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of the laser gauges discussed in Sections 4.A—4.C. During the
time propagation, every #;,th steps, we can apply the dephas-
ing and calculate the time-dependent currents. (4) After the
time-propagation, with full knowledge of the time-dependent
current, we can calculate the HHG spectrum and obtain the
time-frequency information of the harmonics (see Section 4.E).
(5) Finally, in bulk crystals, the microscopic dynamics can be
coupled with Maxwell’s equations to account for the macro-
scopic propagation of the laser and harmonics through the bulk,
atopic we will revisit in Section 6.

Going through the flowchart in more detail, we start by con-
sidering a VG description of the dynamics (see right-hand side
of the flowchart). As discussed in Section 4.A, the VG EOMs
represented in the Bloch basis [see Eq. (58)] are diagonal in the
crystal momenta k, meaning that each k can be propagated
independently. Since no fixed phase relationship between
neighboring [¢X) are required, there is no need to construct
the periodic structure gauge (Section 3.D) prior to the time
propagation, and using momentum matrix elements pl,‘m easily
obtained within a random structure gauge (see Section 3.B) is
sufficient to calculate the total current in Eq. (59) (see Fig. 2). If
desired, it is possible to include the phenomenological dephas-
ing effect also into the VG Bloch basis calculation. This can
be achieved during the time propagation by first transforming
into a VG adiabatic basis at desired times (separated by intervals
At = ny,8,), applying the dephasing as

P = P 2 m (77)
and then transforming back to the Bloch basis. Here, we present
two paths for such a basis transform. One method is to directly
transform to the Houston basis [36,100]

g5, (0= Qs (0), (78)

Ik

with Ql;m(t) = (ul,‘n|ul;+A(‘))ceu, and where we have used the
resolution of identity and (d);1,1|lal;(t))Crys =4k Ql;m(t). This
approach was used, for example, in [56,64,85]. Evaluation of
Eq. (78) presents several potential difficulties: It requires the
direct knowledge of the cell-periodic functions |ul;), the com-
putational complexity is high [56]; and the periodic structure
gauge is required since |ul;) must be splined at k + A(#), unless
an analytical form of |#¥) is known, which is unlikely for real
materials beyond simple model systems (dashed arrow in Fig. 2).
A different method to transform to an adiabatic basis is to use
the definition in Eq. (1), i.e., by diagonalizing the instantaneous
Hamiltonian in the Bloch basis. As discussed in Eq. (71), a
resulting adiabatic state will differ from a Houston state by an
arbitrary phase factor, which will not affect the inclusion of
the phenomenological dephasing. While instantaneous diago-
nalization has similar computational complexity as Eq. (78), a
random structure gauge is sufficient since each k can be treated
independently. Note that such a forward and backward trans-
form is not required at each propagation time step 8¢, but rather
at time step Ar = n;,6,, with ns, > 1, reducing the compu-
tational complexity. In the VG Bloch basis, compared to the
other two discussed methods, more bands are often required
to achieve convergence [56,63—65,102], but at the same time
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Flowchart sketching the computational steps for HHG in solids, consisting of a structure calculation, the propagation of the microscopic

dynamics, the inclusion of dephasing and current, the spectrum calculation, and the macroscopic propagation.

degenerate bands can naturally be treated. In a future publica-
tion, we will go into more detail about treating HHG in the VG
Bloch basis and decomposition of the current.

On the left-hand side of the flowchart, the LG approach
involves the coupling of different crystal momenta by the Vi
term, as discussed in Section 4.B, due to the non-diagonal
nature of the position operator t in the Bloch basis. Hence,
prior to the time propagation, the construction of a periodic
structure gauge is required. The phenomenological dephasing
term can be naturally included during propagation, and the
total current can be decomposed into the four terms given in
Eq. (65). For the VG EOMs in the Houston basis described in
Section 4.B, a periodic structure gauge is also required since the
dipole couplings must be splined at crystal momenta K + A(z).
The calculation of the numerical gradient or the splining gener-
ally requires a much finer k-space sampling than the VG Bloch
scheme to obtain the same level of convergence, which severely
increases the computational effort [56,65]. Similar to the LG
case, the current can actually be decomposed into intraband and
non-intraband terms, as presented in Eq. (76). Compared to
the VG Bloch basis case, the LG EOM in the Bloch basis and
VG EOM:s in the Houston basis often require a smaller number
of bands for convergence. Note that we have mostly discussed
the construction of a globally smooth structure gauge, with the
advantage that the gauge must only be constructed once, prior
to the time propagation. In the literature, a method exists [65]
that aims to construct a locally smooth structure gauge during
the time propagation of the LG SBEs, which has recently been
applied to HHG [92]. For electric fields with changing polari-
zation directions, the gauge construction in all three Cartesian
directions must be applied at each time step, potentially severely
increasing the computational complexity. The key advantages of

Table 1. Relative Advantages of the VG Bloch Basis
Propagation Scheme Compared to the LG Bloch Basis
or Houston Basis Propagation Schemes

LG Bloch or Houston Scheme VG Bloch Scheme

Small number of bands for No periodic structure gauge

convergence requirement
Easier inclusion of dephasing Less number of k points for
convergence

Easier current decomposition Easier treatment of degenerate

bands

our three discussed propagation schemes are briefly summarized
in Table 1.

E. HHG Calculation and Time Profiles

The HHG spectral yield is proportional to the spectral intensity
of the current, and is calculated as Larmor’s formula [103]

S(w) o [|j@) |, (79)

with j(w) the Fourier transform of the time-dependent current

j(w) = Q2m)~1/? / ” j(£)e' ™ ds. (80)

—00

Often, a window function (mask) w(#) is multiplied onto the
current j(#) to smoothly reduce it at large times (mimics current
decay from scattering or other decay mechanisms) such that the
integral can be done at finite times. For long pulses (~10 optical
cycles), the qualitative features of the HHG spectrum do not
depend on the mask chosen, as long as the emission near the
peak of the external field is retained. The emission intensity for
harmonics polarized along a direction n is given by
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Separate spectra for the decomposed currents can be obtained,

. 2
for example, as S™(w) x w? || i (w) || . Note, however, that

S(a)) 7& Stra(w) + Sanom(a)) + Smix(a)) + Spol(w)

. . .pol
due to the existence of cross terms such as j;*(w) ]50 (w). The

decomposition of the spectrum only makes sense at those @
where the cross terms are negligible. In practice, this is almost
always the case.

More information on the time-frequency characteristics of
the emitted harmonics can be obtained by a continuous wavelet
transform (CWT) of the current

[ [

with 7 a time-translation variable, 2 a frequency-scaling
variable, and W{(x) a mother wavelet. In our calcula-
tions, we use the Morlet—Grossman mother wavelet, with
Wi(x) = (027)~ V4e=i% =52/ here o is the standard
deviation, and €2 the center frequency of the mother wavelet.
Insertion of x = (#' — ¢)/a into W(x) shows that the frequency
of the daughter wavelet is scaled as w = €2/, while the time-
spread is scaled as 0y = 0. Similarly, the daughter wavelet
in the Fourier space has the spread o.q = (02 ). This scaling
means that higher time resolution, along with lower frequency
resolution, is employed for the higher frequencies in the HHG
spectrum. This can be an advantage over a windowed Fourier
transform where the time resolution and frequency resolution
is fixed. The CWT can be efficiently evaluated [104] using the
convolution theorem on the integral in Eq. (82), resulting in

generally

2
2

S(t,a)xa™ (82)

S(¢, 2) o |[FT ' (AW @N1I’, (83)

where W(f) denotes the Fourier transform of the mother
wavelet. Eq. (83) is efficient, since j( /) is independent of «,
and W( f) is known analytically. As discussed, the frequency is
related to @ by w = Q/a, and a is sampled dyadically.

We now provide a specific example of an HHG calculation.
We consider a monolayer of hexagonal boron nitride (hBN),
with the band structure calculated using the pseudopotential
method detailed in [56,102]. A two-band model is considered,
consisting of the highest valence band and the lowest conduc-
tion band, with the hexagonal BZ having minimum band gaps
at the K high-symmetry points with energy 7.8 eV. The periodic
TPT structure gauge is constructed following the procedure
outlined in Section 3.D, which provides us with smooth and
periodic Berry connections and dipole couplings. Prior to the
time propagation, the valence band is assumed fully occupied
and the conduction band empty. We irradiate the monolayer
with a laser linearly polarized along the armchair direction x
[indicated by the red arrow in the inset of Fig. 2(a)], with the
vector potential of the form

A(¢) = Ay cos’ B—t} sin(wer)x, rel-t, 1], (84)
T
where Ay=0.35 (I =3.5TW/cm?), w=0.0285

(A =1600 nm), and 7 =58.7fs. For the time propagation,
we employ Eq. (74), i.e., the SBEs in the moving frame. A
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Fig. 3. (a) HHG spectrum for hBN irradiated by a 1600 nm,
3.5 TW/cm?, 58.7 fs pulse. The inset shows a sketch of the crystal
structure, the driving laser polarization direction (red arrow along the
armchair direction) and the detected HHG polarization direction
(blue arrow). The horizontal dashed line shows the position of the
minimum band gap. (b) Time-frequency profiles for the harmonics.
The labels A and B mark two different features in the spectrum. The
results from the semiclassical recollision model (see Section 5) are
superimposed, with the gray points originating from recollisions of
electron-hole pairs created near an M; symmetry point (an M point
located on the line going through I' along the armchair direction),
while the purple points are from electron-hole pairs created near the
other M pointsand K points.

Monkhorst—Pack mesh is used with total number of K dis-
cretization points 300 x 300 =9 X 10* and the dephasing
time is chosen 75 = 5fs. Per the discussion in Section 4.D,
if the simulations are done in the VG Bloch scheme, a much
sparser k grid of 100 x 100 is sufficient to obtain a spectrum
with approximately the same level of accuracy, but using more
bands. The HHG spectrum for harmonics polarized along the
arm-chair direction X [blue arrow, inset of Fig. 3(a)] is calculated
using Eq. (81) with n =%, and shown in Fig. 3(a). Harmonics
up to the 28th order are observed, consisting of both even- and
odd-order harmonics. The spectrum in Fig. 3(a) is further sepa-
rated into the intraband and non-intraband contributions from
the microscopic current, following Eq. (76). Below the band
gap energy (dashed line), the odd harmonics are dominated by
the intraband contribution, originating from the carrier trans-
port in the individual bands. Above the band gap, however, the
non-intraband contribution dominates, originating from the
coupling between the bands. The even-order harmonics below
the band gap are due to the anomalous current, which is part of
the non-intraband contribution.

The density plot in Fig. 3(b) shows the time-frequency pro-
files of the harmonic emissions, obtained using Eq. (83). The
intraband harmonics below the band gap have a broad time
profile, with the highest-order intraband harmonics [around
harmonic 5 (H5)] emitted near ¢ =7/2 optical cycles (# an
integer), corresponding to the zeros of the vector potential A(z)
in Eq. (84). This can be understood from the dependence of
the intraband current on the time-dependent band structure
E,IerA(t) [Eq. (76a)], where the harmonic emissions occur at
times corresponding to the largest band curvature (largest rate
of change in the group velocity) [41]. In the case of hBN, this is
near the K and M high-symmetry points.
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The non-intraband harmonics above the band gap energy
in Fig. 3(b) have a distinct emission profile compared to the
intraband case. The strongest non-intraband harmonic at H13
[see also Fig. 3(a)] are emitted at around # = /2 optical cycles,
and we have labeled the structure in the time profiles as “A.” The
time profiles for the harmonics emitted above 17th order have
a bow-like structure, with the highest-order harmonics emitted
at around # = (0.25 4 n/2) optical cycles, which we have
labeled “B.” For ¢ < #, the slope of the time-profile is positive,
corresponding to a positive chirp, while for # > 7 the emissions
are negatively chirped. This bow-like structure is similar to the
time-frequency profile for HHG in gases, where every energy
below the cut-off harmonic is emitted twice, corresponding to
the short and long trajectories [105]. Using shorter dephasing
times 75 will suppress the long trajectories and result in a more
well-resolved HHG spectra. In Section 5, we will introduce the
semiclassical recollision model for non-intraband harmonics,
and discuss that the structure A and B originate from recollisions
of electron-hole pairs created near the different symmetry point
in the BZ.

5. SADDLE-POINT EQUATIONS AND THE
RECOLLISION MODEL FOR HHG

In the previous section, we have presented methods to obtain
relevant observables such as the microscopic current and the
HHG spectrum, by time-propagating the relevant EOM. These
black-box calculations can be considered numerical experi-
ments that contain all the relevant information, but they are
often too complex to gain physical insights, with everything
intermingled. In this section, we discuss methods that can help
us gain physical intuition and understanding, especially on the
emission dynamics of HHG.

A. Saddle-Point Method for HHG

We consider a two-band model with nondegenerate bands that
include an initially filled valence band denoted by the band
index v and an empty conduction band denoted by ¢. For con-
creteness, we work in the VG and in the Houston basis from
Section 4.C. The EOM in Eq. (74) (also referred as the SBEs in
the moving frame) reduce to

oo () = iF(r) - <O 5Ky 4 e, (85a)
po(r) = —iF - &K () +cc., (85b)

=K . K+A
PGES [—za)g+ ®

— i [pa(r) —

with 0¥ = EX — EX the band gap and AAK = AK — AK
the Berry connection difference. For HHG in semiconductors
and insulators, the population transfer to the conduction band
is small, and we make the approximation pX — ¥~ 1. The
formal solutions to Eq. (85) now read

— iF() - AAAO] 5B ()

PO F(e) - A0, (85c)

,ow(t) =i / dsF(s) - dK+A(‘),0W(s) +c.c., (86a)

Tutorial
o5 =— / dsE(s) - &0 5K (5) 4 cc., (86b)

Pry(t) = —i / dsF(s) - d5HAC) =T =)

/
—if! [w? o )+F(t/)-A.AK+A([/)]d/
X e

: (86c)

which can easily be checked by insertion. We are interested
in the above-band gap harmonics, which are dominated by
the non-intraband contribution, as illustrated by the exam-
ple shown in Fig. 3. Insertion of Eq. (86) into Eq. (76b), and
transforming into the fixed frame k = K + A(#) resultsin

t
jem=N"Y Rt/ 7<) =i et s 4 e, (87)
k

with  p={x,y,2} the Cartesian indices, 7%"*) =
[F(s) - d““| the transition matrix element, RX = wk|dX|
the recombination dipole, k(#,#)=k—A(z) +A(¢) the
time-dependent crystal momentum, and c.c. stands for complex
conjugate. The times s and 7 can be interpreted as the excitation
and emission times, respectively. The accumulated phase in
Eq.(87)is

Sk, £,5) = / [ + F(Z) - AA O Nde + oot — e,
‘ (88)

with ok = arg(a’l,j) the transition-dipole phases [101,106],

and B***) = arg[F(s) - d“““1. Note that inclusion of &/ and
B<@) in S#(k, ¢, 5) resultsin it being structure-gauge invariant
[101,107].

We are interested in the frequency-resolved non-intraband
current, ji(w) = f fooo dre’®* 7 (@), which contributes to the
non- 1ntraband HHG spectrum. The saddle-point approxima-
tion in the absence of simple poles consists of only including
the stationary (saddle) points of the phase factor involving
S*(k, z, s) — wt, since other contributions lead to highly
oscillatory terms in the integrand of j;"(w). Taking the partial
derivatives with respect to the three integration variables k, s,
and ¢, the saddle point conditions are [101,107]

w0+ F(s) - Q0 =0, (89a)
AR* = Ar — DRF 4 Q<) =, (89b)
wé‘ +F() - [Q"(”‘) + Ar] =w, (89¢c)
with the electron-hole separation vector and group velocities
Ar= / t [vgw’) vetes >] dr', (90a)
Ve = G B L R() x @), (90b)

and the structure-gauge invariant quantities

D = AA* — Vi, (91a)
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Qk = AAk — v g~ (91b)

We denote a saddle point, i.e., a solution to Eqgs. (892)—(89¢),
as {k, 7, 5}. The essense of the interband HHG process is con-
tained in the interpretation of Egs. (892)—(89¢c) in terms of
the following three steps: an electron-hole pair is created by
tunnel excitation at time § and with the crystal momentum

ko =k — A(?) — A(5); the hole and electron are accelerated by

k—A®D)+A()

the laser with the instantaneous group velocities v}

and viﬁA(mA(/)’

respectively; and the electron-hole pair
recombine at time # with final crystal momentum k and relative
distance Ar, with the simultaneous emission of high-harmonics
with energy w.

The saddle-point conditions cannot generally be satisfied by
purely real values of k, # and s, and must generally be solved by
analytic continuation of the parameter space into the complex
plane. For example, in band-gap materials where D¥* and Q¥
are negligible, Eq. (892) requires the band gap to be zero, which
clearly cannot be satisfied for real values of k; similarly, Eq. (89b)
requires Ar=0, which is often too restrictive for real-valued
saddle points. Thus, a fully rigorous quantum solution would
involve complex-valued saddle points and constitute a monu-
mental numerical task, and we mark this as another interesting
direction of research for HHG in solids. Recent progress has
been made toward approximately solving the saddle-point equa-
tions for reduced-dimensionality model systems in [108,109]. It
remains to be seen whether such formalisms can treat electron-
hole pairs starting from different regions in the BZ. In the
next subsection, we will describe a semiclassical solution to the
saddle-point conditions that can provide temporal and spectral
insights into the mechanism of interband HHG.

The saddle-point approximation to the frequency-resolved
non-intraband current in Eq. (87) involves deforming the
integration contours from the real axes into the complex
planes, going through the complex saddle points along
the path of steepest descent [110] defined by constant
Re[S*(k, ¢z, s) — wr]. The approximation reads in the present
case [32,109]

Rk Th=AD+AG) ,—i[$" (.7.5)—wi]

]':Ler(w) x Z M -
KiF det[02S*(k, ¢z, 5)]
(92)

where we have used the notation 92S* for the Hessian and
the second term denotes complex conjugate of first term and
with @ = —w. In systems where D% and QF can be chosen

+ cc.(w —> —w),

to be zero, the Hessian is often proportional to || ka(g‘ Il [32].
This makes it clear that for small values of || Vka)}g‘ II, i.e., when
the valence and conduction bands have similar slopes at the
saddle point k, the harmonic yield at the corresponding har-

monic energy @ = a)}g‘ is expected to be greatly enhanced, a

phenomenon termed as “spectral singularities” in [32].

B. Semiclassical Recollision Model

As mentioned, the full quantum solution to the saddle-point
equations in Eq. (89) presents a monumental task, and a solu-
tion has only been attempted for very simple model systems.
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A lot of physical insight and intuition, however, can be gained
from a semiclassical solution [14,38,101,107,111,112] to the
saddle-point equations, which we present below and sketched in
Fig. 1.

In the semiclassical procedure, an initial tunneling time s and
an initial crystal momentum ky is picked, where equation (89a)
determinesky = « (¢, s) at tunneling time s. Since this equation
generally cannot be satisfied for real-valued ko [the second term
of Eq. (89a) is generally small], we choose kg to be at or close to a
high-symmetry point with a small band gap, which corresponds
to a high tunneling probability. The tunneling time is picked in
an optical cycle of the pulses € [T, 0].

The next step in the semiclassical solution involves the
propagation of the integral in Eq. (90a), i.e., calculating the
electron and hole classical real-space motions for ¢ € [s, 7]
with the time-dependent crystal momentum « (7, #') = ko +
A(Y) —A(s) and the group velocities given in Eq. (90b).
Equation (89b) denotes the electron-hole recollision condi-
tion, i.e., when the electron-hole distance ||Ar| is equal to
| DR — Q*0||, where the latter quantity is generally small in
the systems considered by us. For real-valued saddle points, this
condition is often too restrictive due to the complicated band
dispersions in a crystal. This is in contrast to the free-electron
dispersion relevant for HHG in gases. We thus relax the rec-
ollision condition. At each #' during the time-propagation,
we calculate AR*, and record a semiclassical recollision event
if: (i) | AR*|| as a function of # is a local minimum and (ii)
IAR*|| < Ry is fulfilled, with Ry a preset recollision threshold
value. The threshold Ry is chosen as the minimum R, such
that the recollision-model results agree with the time profiles
obtained from the quantum simulation results. Often, Ry can
be multiple times greater than the lattice constants of the crystal.
The last saddle point in Eq. (89¢) determines the electron-
hole recollision energy w, and thus the energy of the emitted
harmonics.

As discussed above, the relaxation of the electron-hole recol-
lision condition means that we allow for imperfect recollisions
where [|[AR*|| # 0 [107,112-114]. One consequence of such
an recollision event is that the harmonic energy o attains an
extra electron-hole-pair polarization energy F(z) - Ar [112].
Physically, this energy constitutes the potential energy of the
electric dipole comprised of the electron-hole pair at the time of
recollision. Clearly, imperfect recollisions will occur whenever
the different Cartesian components of AR are nonzero or zero
at different times, i.e., whenever the direction of motion of the
time-dependent crystal momentum 9, (¢, £') = —F(¢) is not

along the instantaneous group velocities v, This condition
can, e.g., be satisfied for systems driven by elliptically polarized
pulses or in systems with large Berry curvatures. The nonzero
recollision distance is a consequence of the spatially extended
electron and hole wavepackets, which in periodic systems can
span over several unit cells [112,113,115]. At the time of recol-
lision, even if the electron-hole centers are displaced, the wave
packets can still overlap and ensure a recollision event. Indeed,
the minimum value of the chosen recollision threshold R at
which the semiclassical recollision model and quantum emis-
sion profiles agree is a qualitative measure of the width of the
wave packets. Finally, even though the presented semiclassical
model assumes the birth of the electron-hole pair with zero
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spatial displacement, recent work [108,116] has indicated that
the electron and hole can emerge displaced in real-space after
tunneling.

In the monolayer-hBN-HHG example presented in
Section 4.E, the semiclassical result for the recollision energy
versus recollision time is plotted in Fig. 3(b) as points super-
imposed on the time-frequency profiles. The recollision events
represented by the dark gray points originate from electron-hole
pairs initially created in a disk of radius Ak =0.1 around a
M, symmetry points, while the purple points originate from
electron-hole pairs initially created near the other M points
and K points. Note that an M point is defined as an M point
located on the line going through the I' point along the arm-
chair direction. The agreement of the semiclassical result with
the time-frequency profile is evident, and more physical under-
standing is gained as the semiclassical model is able to attribute
the different structures in the density plot (denoted as structures
A and B in Section 4.E) to different tunneling sites in reciprocal
space. Since many regions in the BZ are relevant for HHG
in solids, the time-frequency profiles and subcycle emission
dynamics can be quite complicated for different materials and
laser polarizations [32,107,111,114,116]. At the same time,
however, the fact that electron-hole pairs created in different
BZ regions leads to distinct harmonic time-frequency charac-
teristics can potentially facilitate the all-optical reconstruction
of the band structure in the whole BZ, and not only near the
minimum band gap as demonstrated in [31]. We note that
although the expanded recollision model discussed here is able
to qualitatively explain the HHG emission mechanism, there
are differences between the semiclassical and the quantum
results, as evidenced in Fig. 3(b) by the deviations in the cutoff
energies and emission times for structure B. Recent research has
discussed such shortcomings in the semiclassical models and
potential improvements [108,112,117,118].

Note that a natural procedure to obtain a full solution to the
saddle-point equations (89) would be to first pick a harmonic
frequency w, and then find the desirable saddle points by some
numerical procedure. In contrast, in the approximate semiclas-
sical solution, we pick an initial tunneling time s and crystal
momentum kg, and check the above-described recollision
conditions on-the-fly during the classical time propagation
of a trajectory. If the recollision conditions are satisfied, we
record it as a recollision event and say that we have found a
saddle-point solution {k, #, §}. Due to the deterministic nature
of the classical trajectories, it is numerically manageable to
pick all combinations of the tunneling time in an optical cycle
s € [—T, 0] and the crystal momentum kg in a sphere around
the high-symmetry points, as well as propagate the trajectories
up to two optical cycles after tunneling z € [s, s +277.

6. MACROSCOPIC PROPAGATION

Up until this point, we have mostly discussed ways to treat the
microscopic dynamics responsible for HHG in solids. However,
when electromagnetic radiation propagates through a medium,
the medium responds by not only generating new radiation, as
discussed above, but sometimes also by modifying the propa-
gating radiation. In the field-intensity regime of pulsed lasers,
the propagation of the electromagnetic fields can be described
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classically, i.e., governed by Maxwell’s equations,

V.-F=¢, 'p, (93a)
V-B=0, (93b)

V x F=—,B, (93c)

V xB=puy(J+¢€0,F), (93d)

with €y the vacuum permittivity, (o the vacuum permeabil-
ity, p the (induced) charge density, and J the current density
proportional to the microscopic current j from Section 4. We
thus consider here the case where there are no free charges or
currents in the medium. Generally, all sources and fields in
Eq. (93) are dependent on space r and time #, which we have
omitted for notational clarity. For small intensities, the medium
response is linear with respect to the fields, and governed by the
linear constitutive equations involving linear susceptibilities.
At higher intensities, the nonlinear response can be modeled
by a series expansion in terms of the nonlinear susceptibilities.
When such a series expansion fails, as is often the case for the
intensity regimes responsible for the highly nonlinear recollision
mechanisms and the non-intraband currents, one must resort to
numerical solutions of the microscopic response, which was the
topicin the previous sections.

In terms of the vector potential A and scalar potential ®
defined in Eq. (49), the inhomogeneous wave equations can
easily be obtained from Egs. (932) and (93¢) by taking the curl
of B,

V2O +9,(V-A)=—¢,"p

¢cT2IA— VIA+ V(e ?9,D + V- A) = o] (94)

In principle, the source terms can be obtained from the micro-
scopic calculations at each time and position, and the final
coupled Maxwell-Schrédinger equations should then be
solved. However, due to the insurmountable computational
complexities involved, appropriate approximations are usually
required. One often-used approximation is to define two spatial
scales with two numerical grids: one macroscopic scale with
coordinate R on the order of the electromagnetic wavelength
A to treat the pulse propagation, and a smaller scale r on the
order of unit cells (« A), where a local dipole approximation
for the microscopic physics can be made. One advantage of
using the scalar and vector potentials instead of the physical
fields is the flexibility to choose different laser gauges in the two
different scales. One of the gauges in Section 4, for example, can
be used for the microscopic physics, while a gauge with & =0
can be used for the macroscopic scale [72]. To further reduce
the problem, an approximate 1D propagation scheme can be
used, where the laser pulse propagates along Z (perpendicular
to a crystal surface), such that the vector potential in the local
dipole approximation reads Agr(#) = Az(¢)e, with € the laser
polarization direction. The symmetry of the setup is assumed to
be such that the generated current has the same polarization as
the laser, and Jg (#) = J z(¢)e. The wave equation reduces in this
case to
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TP} Az — 3347 = 0] 7, (95)

with J the current obtained from the microscopic calculation.
Such an approach has, for example, been used in [55] to show
that the HHG spectrum after propagation through a bulk
crystal exhibits a much “cleaner” spectrum (more well-resolved
harmonic peaks) compared to the purely microscopic result,
which is attributed to the destructive interference between
electron-hole recollision events at different recombination times
along the propagation path. Very recently, the optimal thick-
ness for HHG in silicon thin films has been investigated [119].
Note, however, that this scheme does not include the radial
variation of the laser and thus does not include many nonlinear
optical effects such as self-focusing. In addition, the second-
order derivative of the propagation coordinate Z in Eq. (95)
requires a dense discretization along Z, with the maximum
realizable propagation distance being a couple of micrometers
[55,72,119].

A different approach is to consider the wave equation for the

physical fields
¢ 2F — VPF = —¢;'Vp — 0d,], (96a)

¢T2?B — V2B = po(V xJ). (96b)

For electric fields slowly varying in the transverse dimensions,
the scalar approximation for the wave in Eq. (96) can be made
[68]. For nonrelativistic carriers, the magnetic field B can be
neglected, and the wave equation reduces to

¢PPF —VAF = —pd, ], (97)

where the right-hand side of Eq. (97) again represents the source
terms generated by the medium in response to the propagating
field. This equation has a second-order derivative along the
propagation direction z, which requires significant numerical
effort. The computational effort can be significantly reduced
by first transforming to a frame that moves at the speed of light,
and then ignoring the second derivative with respect to the new
z compared to %8, 9, and the transverse derivative

2
[vi - ;a,az} F = wode]o. (98)

This approximation is usually termed the slowly evolving
wave approximation [68-71,120] and also implies ignoring
backward-propagating waves. Eq. (98) can be conveniently
solved in the spectral domain.

Many similar variations of the envelope propagation in
Eq. (98) exist in the literature, where the current or polari-
zation often is separated into linear and nonlinear parts
J =7 D + /N and the linear part is expressed in terms of
the linear susceptibilities and permittivities. One example is
the unidirectional pulse propagation equation (UPPE), which
assumes that the nonlinear response is purely due to the forward-
propagating wave [69,121]. Recently, the UPPE was applied
to HHG in solids to show that for propagation lengths longer
than the laser wavelength, the propagation significantly reduces
the HHG yield and can potentially be responsible for the short
dephasing times 7; used in microscopic simulations to match
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with experiments [90]. The UPPE has also in its full vectorial
form been used to show that the term in Eq. (96) involving
€, 'p =V - Fin some cases can have a pronounced effect on the
self-focusing of ultrashort pulses [69].

A. Spatio-Spectral Properties of Solid-State HHG

In this section, we give an example of a spatio-spectral analysis of
solid-state HHG. The conceptual sketch of our numerical setup
is shown in Fig. 4: An incoming laser beam propagates normal
to a very thin crystal sample along the z axis, hits the sample, and
generates high-order harmonics; the beam and the generated
harmonics propagate from the sample (near field) toward an
opaque screen located a great distance away from the sample
(far field). The opaque screen has a circular aparture that filters
away the parts of the beam that has a large spatial divergence.
Optionally, beyond the circular aperture, a focusing lens can
be installed to focus the filtered spectrum back to conditions
that mimic the near field. The spatially resolved HHG spec-
trum and time profiles often provide a separation of different
contributions to the HHG process as we will discuss below.

For the incident beam, we assume a Gaussian beam
F(r) = Fy(r, z)e'*e:
Wy 7% i[%—tan’l(%)]

e w@"e

Fo(r,2)=C , (99)
w(z)

where z is the propagation direction, 7 is the radial coordinate
measured from the beam axis, # =27 /A is the wave number,
w(z) = woy/ 1 + 22/2} is the beam waist, zg = Twin/A is the
Rayleigh range, R(z) = z + 2} /z is the radius of curvature, and
C isa constant that determines the pulse amplitude.

We take the crystal sample to be a monolayer of hBN (see
Section 4.E), placed at the Gaussian beam focus z=10. The
pulse parameters are chosen to be the same as in Section 4.E,
i.e.,, 1600 nm, 3.5 TW/cm? peak intensity, and 58.7 fs pulse
duration. At the sample, the radial intensity profile of the
beam is Iy(r,0) = |C|2(372’2/w§, with wy =20 pm, and
we use it to calculate the microscopic response at each 7,
resulting in the frequency- and radial-dependent near field
Foear (0, 7) X @] (w, 7). The microscopic dynamics is solved

Crystal at Filter at
Near Field Far Field

Fig. 4.  Sketch showing a numerical or (potentially) experimental
setup to probe the spatio-spectral properties of solid-state HHG in
which an incoming laser beam hits a thin sample and produces HHG
in the near field. The fields are then propagated from the near field
to the far field, where a spatial filter, for example, can select the on-
axis radiation, essentially filtering out contributions from undesired
electron-hole recollisions in the near-field generation process (see text).
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Fig. 5. Near- and far-field HHG spectra, for a monolayer of hBN

irradiated by a Gaussian beam with waist wo =20 pm and pulse
parameters 1600 nm, 3.5 TW/ cm?, 58.7 fs. (a) Near-field, far-field,
and filtered far-field radially integrated HHG spectra. (b) Radially
resolved near-field HHG spectrum. (c) Radially resolved far-field
HHG spectrum. The vertical dashed line marks the minimum band
gap. The gray dotted curve plots the divergence radius in the far field
expected for Gaussian beams with different carrier frequencies.

using the VG EOM covered in Section 4.A (no dephasing),
including one valence and nine conduction bands, and the pulse
parameters are chosen to be the same as in Fig. 3. The HHG
spectrum, | Fpeyr(@, 7)|%, is plotted in Fig. 5(b). For harmonics
in the interval H10-H20, the spectrum shows complicated
behavior compared to the interval H20-H30, reflecting the fact
that the former interval has contributions from electron-hole
recombinations originating from different BZ symmetry points,
as well as the interference of the short and long trajectories, as
shown in Fig. 3 and the accompanying main text. The total near-
field spectrum is given by Speur (@) fooo | Frear (@, 7)|?rdr,
which is shown in Fig. 5(a) by the black curve. Again, all har-
monics in the interval H20-H30 are well-resolved, while only
some of the odd harmonics in the interval H10-20 are visible.
Note that since we are dealing with a monolayer material, the
macroscopic propagation in the sample is not required.

In an actual experiment, the photodetector is placed far from
the sample, and thus the spectra are only detected in the far field.
As we will see, the far-field spectrum carries information on the
underlying HHG process at the near field. For a Gaussian beam
profile known at z =0, using the paraxial wave equation, the
beam profileat z > 0 is given as a Hankel transform [122—-124]:

_ ihel 2z Ezkz [}
F((,(), 7, Z)Z——/ Fnear(wa 7’)
0

z

72 /
x 5 J, (”-’) Py, (100)

z

with /o the zeroth order Bessel function and the integra-
tion is performed over the near-field radial coordinate 7’.
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Equation (100) is the same formula as for the diffraction from
a circular aparture in the Fresnel approximation. We calcu-
late the far-field spectrum as F(w, r) = F(a), r,z=1),
with L =1 m. The total integrated spectrum is accordingly
Star(@) fOOO | Frar (0, 7)|27d7-

Figure 5(c) shows the r dependent far-field spectrum
| Fre(w, 7)|?. As observed by comparing the r axis between
Figs. 5(a) and 5(b), the beam has diverged appreciably. For the
low-order harmonics H1-H9, the divergence decreases with
increasing harmonic order, following the divergence angle for
a Gaussian beam 6 = 2¢/(nwwy) [122], which is plotted as
the gray dotted line. Starting at around the band gap energy
(~H10), the divergence angle of the harmonic radiation has
a local maximum, and then decreases again for larger frequen-
cies. This behavior indicates that the harmonics below and
above the band gap are dominated by two distinct microscopic
HHG mechanisms. This is in agreement with our discus-
sion in Section 4.E, which showed that the harmonics below
the band gap are dominated by the intraband current, while
the harmonics above the band gap originate primarily from the
non-intraband current. The spatiotemporal profile of the HHG
clearly encodes this information. Due to energy conservation,
the total far-field harmonic spectrum S, (w) is identical to the
near-field spectrum Sy, (@), as shown by comparing the green
dashed line and the black line in Fig. 5(a).

For the interband harmonics, the radial divergence is related
to the radial dependence of the accumulated phase of an
electron-hole pair between tunneling time § and recombi-
nation time £ in the near field, i.e., S*(k, #, ) from Egs. (87)
and (88). The steeper the radial phase function (defined as the
accumulated phase as a function of 7) for a harmonic, the larger
its radial profile becomes in the far field [124]. Consequently,
the harmonics detected near the beam axis » = 0 in the far field
mostly originate from recollided electron-hole pairs in the near
field with small travel times between tunneling and recollision.
We can isolate this near-axis spectrum and related trajectories by
placing a filter of radius 1 cm in the far field, as shown in Fig. 4,
and the resulting spectrum Sgjeer () forﬁl‘“ | Fer (7, @) |>rdr
is shown in Fig. 5(a) as the red dotted line. In the filtered spec-
trum, more harmonics are discernible; e.g., H14 and H16 have
become visible.

Clearly, the addition of the radial degree of freedom provides
additional understanding of the underlying recollision dynam-
ics of solid-state HHG, and can also potentially provide realistic
experimental pathways to probe the HHG process. For exam-
ple, a far-field spectrum was experimentally measured in [17] to
confirm the spatial coherence of the generated extreme ultravi-
olet high-harmonic radiation in SiO,. In [88], interferometry
of the dipole phase in HHG was performed by experimentally
measuring the far-field spectrum of two overlapping beams in

the near field.

7. SUMMARY AND OUTLOOK

In this tutorial, we have given a hands-on introduction to the
theory of HHG in solids. In Section 2, we discussed the adia-
batic states, the Berry phase, and related concepts. In Section 3,
we described the time-independent problem of a crystalline
solid and methods for structure gauge constructions for both
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nondegerate and degenerate cases. In Section 4, we covered
approaches to describe the microscopic HHG mechanism in
different laser gauges and structure gauges, and pointed out
the advantages and drawbacks for the different methods, as
well as provided an example HHG analysis for a monolayer
material. In Section 5, we discussed the saddle-point approxi-
mation to HHG. The semiclassical solutions to the saddle-point
equations, also termed the recollision model, could reveal
spectro-temporal information about the HHG process. In
Section 6, we formulated ways to describe the macroscopic
HHG process, which involved the coupling of the microscopic
dynamics to Maxwell’s equations. We provided an example of
a monolayer irradiated by a Gaussian beam and discussed the
spatio-spectral properties of the HHG detected in the far field.

Solid-state HHG is a rapidly expanding field, and many
emerging theory trends are emerging that are beyond the scope
of this tutorial. These include HHG in topological insulators
[34,48,125], doped and amorphous systems [126,127], and
strongly correlated systems [47,128-130]. We hope that this
work gives newcomers to get an overview of the topic, as well
as provides the necessary tools to perform simulations and
stimulate the development of new theories.
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