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Abstract— In this paper, novel dissensus algorithms based on
the Oja principal component analysis (PCA) flow are proposed
to model opinion dynamics on the unit sphere. The information
of the covariance formed by the opinion state of each agent is
used to achieve a dissensus equilibrium on unsigned graphs.
This differs from most of the existing work where antagonistic
interactions represented by negative weights in signed graphs
are used to achieve a dissensus equilibrium. The nonlinear
algorithm is analyzed under both constant covariance and time-
varying covariance leading to different behaviors. Stability anal-
ysis for the unstable consensus and stable dissensus equilibria
is provided under various conditions. The performance of the
algorithm is illustrated through a simulation experiment of a
multi-agent system.

I. INTRODUCTION

In social networks, opinion dynamics have been studied
to understand not only how individuals exchange opinions
with their neighbors and form their own opinions during the
process of information exchange, but also group behaviors
[1]. As opinions evolve within the group, it is natural that
individuals tend to reach consensus or dissensus gradually.
In this way, a group decision can be made, whether they
agree or disagree on a certain topic [2]. Consensus/dissensus
algorithms have been applied in distributed source seeking
[3], cooperative control of multi-agent systems [4], [5], and
opinion-forming in social networks [6], [7].

When a group of individuals are collaborating with each
other, it is likely that they will reach consensus. This
case is usually modeled by unsigned graphs, using a class
of averaged consensus protocols that yield almost global
consensus on the unit sphere [8]. Dissensus may occur
when a group can be divided into several subgroups such
that individuals collaborate within the same subgroup but
compete with individuals from different subgroups. Signed
graphs are employed to model this case with negative weights
representing antagonistic relationships and positive weights
representing collaborative relationships Using the averaged
consensus algorithm, stable dissensus on the unit sphere can
also be achieved if the interaction matrix is sign-symmetric
[9]. In [10], dissensus is described as bipartite consensus,
and linear/nonlinear consensus protocols can be applied
to achieve stable dissensus on a signed graph. In [11], a
distributed algorithm is developed to reach dissensus for a
multi-agent system on a signed digraph. There is one more
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scenario of dissensus with unsigned graph when individuals
are simply sharing opinions with each other without collab-
orating/antagonistic relationships, they can also disagree and
reach dissensus. The averaged consensus algorithm, however,
cannot explain the dissensus behavior in unsigned graphs.

In this paper, we propose an Oja principal component
analysis (PCA) based dissensus algorithm for the nonlinear
opinion dynamics evolved on the surface of the unit sphere.
Given a group of agents, each agent forms its own opinion
according to the nonlinear dynamics on the unit sphere.
The interaction among agents is modeled by the covariance
matrix of the relative opinions of its neighbors. By com-
bining the nonlinear dynamics on the unit sphere with the
covariance-based interaction, we set up the Oja PCA opinion
dynamics and show that the opinion states of the agents in the
group will reach stable dissensus equilibrium under certain
conditions. The novelty of this paper is the application of
Oja PCA flow to model opinion dynamics in multi-agent
systems. Instead of using the averaged consensus algorithm,
we are using a PCA-based method which is based on the real-
time difference between individuals. Under this PCA-based
opinion dynamics, the opinion system is able to achieve a
stable dissensus equilibrium starting from nonequilibrium
initial conditions. Unlike the dissensus algorithms based
on signed graphs, our approach achieves stable dissensus
for unsigned graphs. Hence, no extra information about
collaborative or antagonistic interactions between individuals
is needed.

The main challenge the paper has overcome is the con-
vergence analysis of Oja PCA flow with time-varying co-
variance. For Oja PCA flow with fixed matrix, [12], it has
been shown that the solutions of Oja’s equation will converge
to the principal eigenspace of the fixed matrix [13], [14].
However, for the time-varying matrix case, the convergence
of Oja PCA flow has not been considered before. In this
paper, Oja PCA flow has been used to model opinion
dynamics and the fixed matrix has been replaced by the time-
varying covariance of the opinion states. A special case of
Oja PCA flow with the time-varying matrix is constructed
in this way, and the corresponding convergence analysis is
given by a stability proof of dissensus equilibrium under the
PCA-based opinion dynamics. This is difficult in that both
the opinion dynamics and the dynamics of the covariance
matrix need to be analyzed, and the two types of dynamics
make the stability analysis nontrivial.

The main contributions of this paper are as follows. The
first contribution is proposing a novel modeling of opinion
dynamics on the unit sphere using an Oja PCA flow. The
second contribution is using a time-varying covariance of
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the opinion states to achieve stable dissensus. The third
contribution is providing various stability results. In partic-
ular, (i) we prove via Lyapunov analysis that the consensus
equilibrium in an N−agent network is unstable, (ii) we
prove via linearization that the dissensus equilibrium in an
N−agent network is stable, and (iii) we derive the region of
attraction of the nonlinear system for 2−agent and 3−agent
networks. The final contribution is illustrating the behavior of
the algorithm through a simulation experiment of a 20-agent
system in R2.

II. PROBLEM FORMULATION

Consider a group of N agents exchanging opinions about
given options where N ∈ N and N ≥ 2. The interactions
between agents in the group are described by a graph G =
(V ,E ) where V is the set of all agents and E is the set of
all edges.

Assumption II.1 The graph G = (V ,E ) formed by the
group of agents is undirected and fully connected, i.e. (i, j)∈
E and ( j, i) ∈ E for any i, j ∈ V , i 6= j.

Assumption II.2 The graph G = (V ,E ) formed by the
group of agents is unweighted and unsigned, i.e., agents treat
each other opinion states with equal weights, and there are
no antagonistic interactions among the agents.

The opinion of any agent i ∈ V is represented by a unit-
length vector vi ∈ Rd , ‖vi‖2 = 1. Let v = [v1, · · · ,vN ]

ᵀ be
a vector containing the opinion states of all agents. Each
opinion state evolves on the surface of the unit sphere Sd−1

according to the nonlinear dynamics

v̇i = (I−viv
ᵀ
i )ui (1)

where I ∈ Rd×d is the identity matrix and ui = ui(v) ∈ Rd

is a control input for agent i. The matrix (I−viv
ᵀ
i ) projects

ui onto the tangent space of vi such that v̇i is always normal
to vi. Since vi(0)s are all unit vectors, vi will stay on the
unit sphere Sd−1.

Definition II.3 (Consensus Behavior) The opinion states
of the agents are in consensus if vi = v j, ∀(i, j) ∈ E , where
E is the set of all edges of the graph.

Definition II.4 (Dissensus Behavior) The opinion states of
the agents are in dissensus if there exist two non-empty sets
V1,V2 satisfying V1 ∪V2 = V , V1 ∩V2 = /0, such that vi =
−v j, ∀(i, j)∈ Ē , where Ē =∆ {(i, j)|i∈ V1 and j ∈ V2} is the
set of all edges connecting agents in sets V1, V2.

Let C(v(t))∈Rd×d be a positive semi-definite covariance
matrix defined by C(v(t)) = ∑k∈V (vk(t)− v̄(t))(vk(t)−
v̄(t))ᵀ, where v̄(t) = 1

|V | ∑i∈V vi(t) is the average of all
opinions.

The opinion dynamics modeled by the Oja PCA flow
under a constant matrix H is given by

v̇i = (I−viv
ᵀ
i )Hvi, ∀i ∈ V , (2)

where H can be either a pre-determined positive semi-
definite matrix or the initial covariance C(v(0)) =

∑k∈V (vk(0)− v̄(0))(vk(0)− v̄(0))ᵀ defined based on the
initial opinions. In other words, in (2) all agents exchange
their opinion states vi(t) only at time t = 0.

Alternatively, let the control input ui to be

ui = ∑
k∈V
〈vk− v̄,vi〉(vk− v̄) =C(v)vi, (3)

where 〈·, ·〉 represents the inner product. Substituting (3) into
(1) leads to the opinion dynamics

v̇i = (I−viv
ᵀ
i )C(v)vi, ∀i ∈ V . (4)

Note that, in contrast to (2), the agents under the opinion
dynamics (4) need to exchange their opinion state vi(t) at
each instant of time t.

In this paper, we aim to study the the behavior of the
Oja PCA opinion dynamics under both a constant covariance
matrix H in (2), and a time-varying covariance matrix C(v)
in (4), respectively. In particular, our purpose is to derive the
equilibrium points of (2) and (4), and determine the condi-
tions under which the system will pursue either a consensus
or a dissensus behavior. Moreover, we aim to compare our
PCA-based opinion dynamics to the conventional average-
based opinion dynamics where ui = ∑k∈V vk [9].

Remark II.5 To the best of our knowledge, the Oja PCA
flow has never been utilized before in modeling opinion
dynamics. Additionally, the existing convergence analysis
and results of the Oja PCA flow, e.g., [12]–[14], do not
hold for the opinion dynamics (4). This is due to the fact
that the matrix C(v) in our modeling is time-varying, while
it is constant in the existing works [13], [14].

III. PCA-BASED OPINION DYNAMICS UNDER A
CONSTANT COVARIANCE

In this section, we model the opinion dynamics of an
N-agent system using an Oja PCA flow with a general
constant matrix H . We analyze the convergence of the
system according to the initial opinion states. Based on this
analysis, we propose a mechanism to design an arbitrary
constant matrix H that will yield a steady-state consensus or
dissensus behavior for a given initial conditions {vk(0)}k∈V .

Assumption III.1 The constant matrix H is positive semi-
definite. And the largest eigenvalue λ1 of H is strictly
positive and has multiplicity 1.

Let q be the unit eigenvector of H corresponding to the
largest eigenvalue λ1, i.e. Hq = λ1q. We first analyze the
dynamics of each vi separately.

Lemma III.2 Suppose each agent updates its opinion state
according to the Oja PCA dynamics (2) with a constant
H . Then, for each i ∈ V , vi either converges to q if 0 <
qᵀvi(0)≤ 1, or converges to −q if −1≤ qᵀvi(0)< 0 for any
i∈V . Otherwise, if qᵀvi(0) = 0, then vi remains unchanged.

Proof: To prove that vi(t) converges to q if 0 <
qᵀvi(0) ≤ 1, we define βi = 1− qᵀvi where βi = 0 if and
only if vi = q. Then, using (2), we obtain

β̇i =−qᵀ(I−viv
ᵀ
i )Hvi = (1−βi)(v

ᵀ
i Hvi−λ1). (5)
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Define a Lyapunov candidate function V = βi which implies
that V̇ = β̇i. If 0 < qᵀvi(0) ≤ 1, then βi(0) ∈ [0,1). Addi-
tionally, since λ1 is the largest eigenvalue of H , then at any
time vᵀ

i Hvi ≤ λ1 and vᵀ
i Hvi = λ1 if and only if βi = 0.

Hence, V̇ (0) ≤ 0 and V̇ (0) = 0 if and only if βi = 0. Since
V = βi is a monotonic function and bounded below by zero,
then the trajectory of (5) will stay in a compact sublevel set
of the Lyapunov function, implying that 0 < qᵀvi(t)≤ 1, or
βi(t) ∈ [0,1), for all t > 0. Therefore, the origin βi = 0 is
asymptotically stable and hence vi→ q as t→ ∞.

On the other hand, to prove that vi(t) converges to −q if
−1≤ qᵀvi(0)< 0, we define αi = 1+qᵀvi where αi = 0 if
and only if vi =−q. Then, similar to (5) we obtain

α̇i = qᵀv̇i = (1−αi)(v
ᵀ
i Hvi−λ1). (6)

Since (5) and (6) are equivalent, we can also conclude that
the origin αi = 0 of (6) is asymptotically stable and hence
vi→−q as t→∞ if −1≤ qᵀvi(0)< 0. Finally, if qᵀvi(0) =
0, then v̇i = 0, which is another equilibrium. Since the system
(2) is assumed to be noiseless, qᵀvi(t) = 0 for all t > 0.

Since H in (2) is constant, v̇i is only determined by
vi(0) and H . Additionally, since there is no information
exchange between agents, then this implies that whether
{vi}i∈V reaches consensus or dissensus mainly depends on
the initial opinions {vi(0)}i∈V and H .

For given initial conditions, we can design constant
matrix H to achieve consensus or dissensus as follows

• If there exists q ∈ Rd and ‖q‖2 = 1 such that 0 <
qᵀvi(0)≤ 1 holds for any i∈V , then we can find a con-
stant matrix H = qqᵀ to achieve consensus equilibrium
of q. Such H satisfies Assumption III.1 and Hq= λ1q
with λ1 = qᵀq = 1 being the largest eigenvalue.

• If there exists q ∈ Rd , ‖q‖2 = 1 and the initial opinion
states can be divided into two groups V1 and V2, such
that 0 < qᵀvi(0)≤ 1 for any i∈ V1 and −1≤ qᵀvi(0)<
0 for any j ∈ V2, then the opinion states are converging
to dissensus equilibrium of {q,−q} for constant H =
qqᵀ satisfying Assumption III.1 and Hq = λ1q with
λ1 = qᵀq = 1 being the largest eigenvalue.

Remark III.3 Given a set of initial conditions, whether
or not we can design a matrix H to achieve consensus,
dissensus, or both depends on the graph structure. For
example, a 2-agent system with v1 = −v2 cannot achieve
consensus for any H , and a 2-agent system with v1 = v2
cannot achieve dissensus for any H .

Therefore, in the case of constant H , the opinion dynamics
given by (2) can provide stable consensus or stable dissensus
equilibria depending on the initial conditions of opinion
states and matrix H . We cannot guarantee such algorithm
always leads to dissensus for any constant H satisfying
Assumption III.1 and such algorithm cannot be served as
a reliable dissensus algorithm for the general case.

In the next section, we will introduce a new approach that
does not use a constant matrix H . Instead, the covariance

matrix C(v(t)) is used to replace H to achieve stable
dissensus.

IV. PCA-BASED OPINION DYNAMICS UNDER A
TIME-VARYING COVARIANCE

In this section, Oja PCA flow with a varying covariance
matrix C(v) is applied to model opinion dynamics in N-
agent system (N ≥ 2). This PCA-based opinion dynamics
with a varying covariance will lead to unstable consensus
and stable dissensus equilibria. This is different from the
opinion dynamics with constant H introduced in (2).

A. Unstable Consensus Equilibrium for N−agent Network

Theorem IV.1 Under the PCA dynamics (4), the consensus
equilibrium v1 = v2 = · · ·= vN is unstable.

Proof: Define βi = 1−〈vi,vN〉, i = 1, · · · ,N−1, where
βi ∈ [0,2], and βi = 0 if and only if 〈vi,vN〉 = 1. Let β =
[β1, · · · ,βN−1]

ᵀ. Consider the Lyapunov candidate function

V (β ) =
N−1

∑
i=1

βi =
1
2

N−1

∑
i=1
‖vi−vN‖2

2, (7)

where V ≥ 0 and V = 0 if and only if βi = 1, for i =
1, · · · ,N−1, i.e. v1 = v2 = · · ·= vN . Let β̃ = [ε,0,0, · · · ,0]ᵀ
where ε > 0, i.e. v2 = · · · = vN−1 = vN while v1 6= vN .
Hence, at β = β̃ , (7) reduces to

V (β̃ ) = β1 =
1
2
‖v1−vN‖2

2 > 0. (8)

Next, we obtain

V̇ (β̃ ) = (v1−vN)
ᵀ ((I−v1v

ᵀ
1 )Cv1− (I−vNv

ᵀ
N)CvN

)
.

However, when β = β̃ , C = ∑
N
i=1(vi − v̄)(vi − v̄)ᵀ

= N−1
N (v1 − vN)(v1 − vN)

ᵀ. Hence, V̇ (β̃ ) = 2N−2
N (1 −

vᵀ
1vN)

2(1 + vᵀ
1vN) =

2N−2
N β 2

1 (2− β1). Clearly, V̇ (β̃ ) > 0
everywhere except at β1 = 0,2, which is equivalent to the
equilibrium v1 =±vN . Define the set U = {β ∈B|V (β )>
0} where B = {β ∈ R|β < 2(N− 1)}. Note that the set U
is nonempty set contained in B. This implies that V̇ (β )> 0
for all points in U . Therefore, all the conditions in Theorem
4.3 in [15] are met, and hence the equilibrium β = 0, or
equivalently v1 = v2 = · · ·= vN is unstable.

Remark IV.2 For multi-agent systems on unsigned graphs,
classical consensus algorithms can achieve stable consensus
on the unit sphere [9]. The proposed PCA-based algorithm
always leads to unstable consensus. Next, we will show that
this algorithm can give stable dissensus.

B. Linearization-based Stability Analysis of the Dissensus
Equilibrium for N−agent Network

In this section, we show via linearization that the dissensus
equilibrium of the N−agent PCA opinion dynamics (4) is
locally asymptotically stable.

Lemma IV.3 Consider an N−agent network where the
opinion state of each agent evolves according to (4). Let
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v̇i = f(v) = (I −viv
ᵀ
i )C(v)vi. For any i ∈ V , linearizing

f(v) w.r.t. vi leads to v̇i =Aivi where

Ai ,
∂ v̇i

∂vi
=C+(vi− v̄)ᵀviI− (vi− v̄)vᵀ

i

−vᵀ
i CviI−2viv

ᵀ
i C+2viv

ᵀ
i (vi− v̄)vᵀ

i . (9)

See proof in Section VII.

Theorem IV.4 The matrix Ai is negative definite at the
dissensus equilibrium vi = −v j, ∀(i, j) ∈ Ē where Ē =∆

{(i, j)|i ∈ V1 and j ∈ V2}.

Proof: According to Definition II.4, if the system is at
dissensus, then there exist two non-empty sets V1,V2 such
that V1∪V2 = {1, · · · ,N} and V1∩V2 = /0. Consider s ∈ Rd

where ‖s‖2 = 1 such that vi = s for any i ∈ V1 and v j =
−s for any j ∈ V2. This implies that viv

ᵀ
i = ssᵀ for any

i ∈ V1 and v jv
ᵀ
j = (−s)(−s)ᵀ = ssᵀ for any j ∈ V2. Then

the averaged opinion state v̄ can be written as

v̄ =
1
N

N

∑
k=1

vk =
1
N
( ∑

i∈V1

vi + ∑
j∈V2

v j) =
|V1|− |V2|

N
s, (10)

where |Vl | represents the cardinality of set Vl , l = 1,2, and
|V1|+ |V2|= N, |V1| ≥ 1, |V2| ≥ 1. The covariance matrix at
the dissensus equilibrium becomes

C(v) =
N

∑
k=1

vkv
ᵀ
k −Nv̄v̄ =

N2− (|V1|− |V2|)2

N
ssᵀ. (11)

Then, in (9), substituting (10) for v̄, substituting (11) for C,
and substituting vi = s for any i∈V1, yields the linearization
matrix Ai evaluated at the dissensus equilibrium

Ai ,−mi(ss
ᵀ+I), (12)

where mi =
N2−(|V1|−|V2|)2

N − (1− |V1|−|V2|
N ) for any i ∈ V1.

Similarly, using v j =−s for any j ∈ V1, the linearization
matrix A j evaluated at the dissensus equilibrium is

A j ,−m j(ss
ᵀ+I), (13)

where m j =
N2−(|V1|−|V2|)2

N − (1+ |V1|−|V2|
N ) for any j ∈ V2.

Since V1 ∪V2 = {1, · · · ,N} V1,V2 6= /0 and V1 ∩V2 = /0,
we have −(N − 2) ≤ |V1| − |V2| ≤ N − 2, leading to mi =
1
N (N− (|V1|− |V2|))[(N +(|V1|− |V2|))−1]> 0 for any i ∈
V1. Since (ssᵀ+I) is strictly positive definite and mi > 0,
Ai =−mi(ss

ᵀ+I) is strictly negative definite for any i∈V1.
Following the same procedure, we can also show m j =

N2−(|V1|−|V2|)2

N − (1+ |V1|−|V2|
N )> 0 and A j =−m j(ss

ᵀ+I)
is strictly negative definite for any j ∈ V2. Therefore, Ak is
strictly negative definite for any k ∈ V , which implies that
the dissensus equilibrium is asymptotically stable.
As an example, if N = 2, then A1 =A2 =−(ssᵀ+I) which
is negative definite.

C. Lyapunov-based Stable Analysis of the Dissensus Equi-
librium for 2−agent and 3−agent Networks.

In the previous section, we show that the linearized PCA
opinion dynamics (4) is stable at dissensus equilibrium. In
this section, we instead use Lyapunov stability analysis to
study the convergence of nonlinear PCA opinion dynamics
(4) for 2−agent and 3−agent networks. This analysis reveals
the region of attraction of the trajectories of the nonlinear
system to the dissensus equilibrium. The analysis is nontriv-
ial even for 2−agent and 3−agent cases. Thus we leave the
generalization to the N−agent case to a future work.

Theorem IV.5 For a 2-agent system under the PCA dynam-
ics (4), the equilibrium v1 =−v2 is asymptotically stable.

Proof: Define β12 = 1+ 〈v1,v2〉, where β12 ∈ [0,2] and
β12 = 0 if and only if v1 = −v2. Consider the Lyapunov
candidate function V : [0,2)→ R defined by

V = β12 = 1+ 〈v1,v2〉, (14)

where V ≥ 0 and V = 0 if and only if β = 0, i.e., v1 =−v2.
Then, we obtain

V̇ = 2vᵀ
1C(v)v2−vᵀ

1v2
(
vᵀ

1C(v)v1 +vᵀ
2C(v)v2

)
, (15)

where C(v) = 1
2 (v1−v2)(v1−v2)

ᵀ. However

2vᵀ
1C(v)v2 = ‖v1 +v2‖2

C − (‖v1‖2
C +‖v2‖2

C), (16)

where ‖x‖2
C =xᵀC(v)x. Similarly, we have vᵀ

1v2 =
1
2‖v1+

v2‖2
2−1. Then we obtain

V̇ = ‖v1 +v2‖2
C −

1
2
‖v1 +v2‖2

2(‖v1‖2
C +‖v2‖2

C). (17)

Since C(v) = 1
2 (v1 − v2)(v1 − v2)

ᵀ, we can have ‖v1 +
v2‖2

C = 1
2 (v1 +v2)

ᵀ(v1−v2)(v1−v2)
ᵀ(v1 +v2) = 0. Then

V̇ =−1
2
‖v1 +v2‖2

2(‖v1‖2
C +‖v2‖2

C)≤ 0,

where, in the considered domain D= [0,2), V̇ = 0 if and only
if v1 =−v2. Since V =V (β12) is a monotonic function, and
bounded below by zero, then the trajectory of the system will
stay in a compact sublevel set of the Lyapunov function,
implying that domain D = [0,2) is forward invariant. That
is, if 0 ≤ β12(0) < 2, then 0 ≤ β12(t) < 2 for all t ≥ 0.
Or equivalently, if −1 ≤ 〈v1(0),v2(0)〉 < 1, then −1 ≤
〈v1(t),v2(t)〉 < 1 for all t > 0. Therefore, the equilibrium
β12 = 0, and hence v1 =−v2 is asymptotically stable.

Remark IV.6 In Theorem IV.1 and Theorem IV.5, we have
shown that the PCA-based opinion dynamics (4) yields
unstable consensus and stable dissensus, respectively, for a
2−agent system with an unsigned graph. This result cannot
be achieved by the averaged dissensus algorithms since they
require the graph to be signed and result in stable dissensus
for such a graph [10], [11].

Theorem IV.7 Consider a network of 3 agents in R2 where
the opinions evolve according to the PCA dynamics (4).
Suppose that initially −1 ≤ 〈v1(0),v3(0)〉 ≤ −a < 0 and
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Fig. 1. Illustration of initial opinion states of a 3-agent system.

−1 ≤ 〈v2(0),v3(0)〉 ≤ −b < 0 where a,b ∈ (0,1). Then the
equilibrium v1 = v2 =−v3 is asymptotically stable.

Proof: Define the set Ē =∆ {(i, j)|i∈V1 and j ∈V2}. For
any (i, j) ∈ Ē , define βi j = 1+ 〈vi,v j〉 where βi j = 0 if and
only if vi = −v j. Consider a Lyapunov candidate function
for a general network of M agents defined by

V = ∑
(i, j)∈Ē

βi j = ∑
(i, j)∈Ē

[1+ 〈vi,v j〉], (18)

where V ≥ 0 and V = 0 if and only if βi j = 0 for all (i, j)∈ Ē ,
i.e. vi =−v j,∀(i, j) ∈ Ē . Then, we obtain

V̇ = ∑
i∈V1, j∈V2

[2vᵀ
i C(v)v j− (λi +λ j)v

ᵀ
i v j], (19)

where λk = vᵀ
kC(v)vk ∈ (λmin(C(v)),λmax(C(v))), where

λmin(C(v)) and λmax(C(v)) are the minimum and maxi-
mum eigenvalues of C(v), respectively.

For a network of three agents, the covariance matrix can
be written as C(v) = 1

3 [(v1−v2)(v1−v2)
ᵀ+(v1−v3)(v1−

v3)
ᵀ+(v2−v3)(v2−v3)

ᵀ]. Hence, we obtain

λ1 =
1
3
[(1−vᵀ

1v2)
2 +(1−vᵀ

1v3)
2 +(vᵀ

1v2−vᵀ
1v3)

2], (20)

λ2 =
1
3
[(1−vᵀ

1v2)
2 +(vᵀ

1v2−vᵀ
2v3)

2 +(1−vᵀ
2v3)

2], (21)

λ3 =
1
3
[(vᵀ

1v3−vᵀ
2v3)

2 +(1−vᵀ
1v3)

2 +(1−vᵀ
2v3)

2]. (22)

Suppose without loss of generality that V1 = {1,2}
and V2 = {3}, i.e. Ē = {(1,3),(2,3)}. Then, we derive
∑(i, j)∈Ē vᵀ

i C(v)v j =− 1
3 (1−vᵀ

1v3)
2− 1

3 (1−vᵀ
2v3)

2− 1
3 (1−

vᵀ
2v3)(v

ᵀ
1v2 − vᵀ

1v3)− 1
3 (1− vᵀ

1v3)(v
ᵀ
1v2 − vᵀ

2v3). On the
other hand, we derive −∑(i, j)∈Ē (λi + λ j)v

ᵀ
i v j = −(λ1 +

λ3)v
ᵀ
1v3− (λ2 +λ3)v

ᵀ
2v3. Therefore

V̇ =−W +Q, (23)

where W = 2
3 [(2−β13)

2 +(2−β23)(1−β13 +vᵀ
1v2)+ (2−

β23)
2 +(2−β13)(1−β23 +vᵀ

1v2)], Q = (λ1 +λ3)(1−β13)+
(λ2 +λ3)(1−β23), λ1 ≥ 0, λ2 ≥ 0, and λ3 ≥ 0 are as given
by (20)-(22). Note that V̇ = 0 if and only if v1 = v2 =−v3,
i.e. (β13,β23) = (0,0). If −1≤ 〈v1(0),v3(0)〉 ≤ −a < 0 and
−1≤〈v2(0),v3(0)〉≤−b< 0, then this implies that β13(0)∈
(0,1− a) and β23(0) ∈ (0,1− b). For opinion states in R2,
assume without loss of generality that the three agents are
initially distributed as shown in Fig. 1. Then this implies that

〈v1(0),v2(0)〉 = cos(θ13(0)−θ23(0)) = cos(cos−1(β13(0)−
1)−cos−1(β23(0)−1))≥ 0. Hence, W (0)≥ 0 and Q(0)≥ 0.

Since V (0) = β13(0)+β23(0) ≤ 2− (a+ b), then for any
a,b ∈ (0,1), we can show that V̇ (0) < 0. For example, if
a = b = 0.0001, then 〈v1(0),v2(0)〉 ≈ 1 and V̇ (0) =−2.664,
and if a = 0.8, b = 0.0001, then 〈v1(0),v2(0)〉 ≈ 0.6 and
V̇ (0) = −1.1519. Since V (β13,β23) = β13 +β23 is a mono-
tonic function and bounded below by zero, then the trajectory
of the system will stay in a compact sublevel set of the
Lyapunov function, implying −1 ≤ 〈v1(t),v3(t)〉 ≤ −a < 0
and −1 ≤ 〈v2(t),v3(t)〉 ≤ −b < 0 for all t > 0. Therefore,
the origin (β13,β23) = (0,0) is asymptotically stable.
Note that, if 0 < 〈v1(0),v3(0)〉 ≤ a < 1 and −1 ≤
〈v2(0),v3(0)〉 ≤ b < 0, then using the same proof we can
show that the PCA system (4) will converge to the equilib-
rium v2 = −v1 = −v3. Similarly, if −1 ≤ 〈v1(0),v3(0)〉 ≤
−a< 0 and 0< 〈v2(0),v3(0)〉 ≤ b< 1, then the PCA system
(4) will converge to the equilibrium v1 =−v2 =−v3.

V. SIMULATION RESULT

In this section, we present a simulation result in R2 that
demonstrates a stable dissensus equilibrium of the PCA-
based opinion dynamics (4) in a multi-agent system.

In R2, any unit vector vi can be represented by vi =
[cosθi,sinθi]

ᵀ. Suppose the opinion states initially located
at a non-equilibrium position on the unit circle in R2. Fig.2
shows the evolution of θi in a 20-agent system which demon-
strates the transition of opinion states from non-equilibrium
to dissensus equilibrium while evolving on the unit circle. In
this example, based on the initial opinions, the 20 agents split
into 2 sub-groups V1,V2. The opinion states in each subgroup
converge to a consensus state. Additionally, the consensus
state of one subgroup is the opposite of the consensus state
of the other subgroup. The emergence of the two subgroup
is clearly indicated in Fig.2 when |θi − θ j| = π for any
i ∈ V1, j ∈ V2, which occurred at time t=0.8s.

Fig. 2. Stable antipodal equilibrium for a 20-agent system in R2

VI. CONCLUSION

In this paper, we propose a novel nonlinear modeling of
opinion dynamics based on the Oja PCA flow. We discovered
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that a stable dissensus equilibrium can be achieved by
the PCA-based dynamics with a varying covariance matrix
regardless of the initial opinion states. However, if the co-
variance matrix is fixed, then neither consensus nor dissensus
can be guaranteed for all initial opinion states. In the future,
we will extend the Lyapunov-based stability analysis to the
general N−agent complete and incomplete networks.

VII. PROOFS

Proof: [Proof of Lemma IV.3]In this proof, we write C
for C(v), ∑ j for ∑

N
j=1, ∑k for ∑

N
k=1, ∑k 6=i for ∑

N
k=1,k 6=i. First

we write f(v) = (I−viv
ᵀ
i )Cvi =Cvi−viv

ᵀ
i Cvi. Then,

∂f

∂vi
=

∂ (Cvi)

∂vi
−

∂ (viv
ᵀ
i Cvi)

∂vi
(24)

Derivation of ∂ (Cvi)
∂vi

:

Note that C = ∑ j(v j − v̄)(v j − v̄)ᵀ = ∑ j v jv
ᵀ
j −Nv̄v̄ᵀ.

Hence,

∂ (Cvi)

∂vi
=−N

∂

∂vi
(v̄v̄ᵀvi)+

∂

∂vi
(

N

∑
j=1

v jv
ᵀ
j vi). (25)

However,

∂

∂vi
∑

j
v jv

ᵀ
j vi = ∑

j
v jv

ᵀ
j +I−viv

ᵀ
i . (26)

On the other hand, since Nv̄v̄ᵀ = 1
N (∑k vk)(∑k vk)

ᵀ,

∂

∂vi
(Nv̄v̄ᵀvi) =

1
N

(
(∑

k
vk)((∑

k
vk)−vi)

ᵀ+(∑
k
vk)

ᵀviI

)
.

(27)

Substituting (26) and (27) into (25), leads to

∂ (Cvi)

∂vi
=C+(vi− v̄)ᵀviI− (vi− v̄)vᵀ

i , (28)

where we used the fact that v̄ = 1
N ∑k vk and thus

(∑k vk)(∑k vk)
ᵀ = N2v̄v̄ᵀ.

Derivation of ∂ (viv
ᵀ
i Cvi)

∂vi
:

Using C = ∑ j v jv
ᵀ
j −Nv̄v̄ᵀ, we derive

viv
ᵀ
i Cvi = viv

ᵀ
i (∑

j
v jv

ᵀ
j )vi−Nviv

ᵀ
i v̄v̄

ᵀvi. (29)

Then, we obtain

∂viv
ᵀ
i

(
∑ j v jv

ᵀ
j

)
vi

∂vi
(30)

= vᵀ
i CviI+2viv

ᵀ
i C+N(vᵀ

i v̄)
2I+2Nviv

ᵀ
i v̄v̄

ᵀ−2viv
ᵀ
i ,

where we used the fact that ∑ j v jv
ᵀ
j = C +Nv̄v̄ᵀ. Addi-

tionally, using the fact that v̄ = 1
N ∑k vkv

ᵀ
k = 1

N ∑k 6=ivkv
ᵀ
k +

1
Nviv

ᵀ
i , we can show that

Nviv
ᵀ
i v̄v̄

ᵀvi =
1
N
vi(∑

k 6=i
vk)

ᵀvi +
1
N
vi (31)

+
1
N
viv

ᵀ
i (∑

k 6=i
vk)(∑

k 6=i
vk)

ᵀvi +
1
N
viv

ᵀ
i (∑

k 6=i
vk).

Therefore,

∂

∂vi
Nviv

ᵀ
i v̄v̄

ᵀvi =
1
N
vᵀ

i (∑
k 6=i

vk)(∑
k 6=i

vk)
ᵀviI+

1
N
I (32)

+
2
N
viv

ᵀ
i (∑

k 6=i
vk)(∑

k 6=i
vk)

ᵀ+
2
N
vᵀ

i (∑
k 6=i

vk)I+
2
N
vi(∑

k 6=i
vk)

ᵀ.

However, using the fact that ∑
N
k=1vkv

ᵀ
k = ∑k 6=ivkv

ᵀ
k +viv

ᵀ
i ,

we can show that vᵀ
i (∑k 6=ivk)(∑k 6=ivk)

ᵀvi =
Nvᵀ

i v̄v̄
ᵀvi − 2Nv̄ᵀvi + 1, and viv

ᵀ
i (∑k 6=ivk)(∑k 6=ivk)

ᵀ =
N2viv

ᵀ
i v̄v̄

ᵀ − Nviv̄
ᵀ − Nviv

ᵀ
i v̄v

ᵀ
i + viv

ᵀ
i . Additionally,

since vᵀ
i (∑k 6=ivk) = vᵀ

i (∑k vk) − 1, vi(∑k 6=ivk)
ᵀ =

vi(∑k vk)
ᵀ−viv

ᵀ
i , we can simplify (32) to be

∂

∂vi
Nviv

ᵀ
i v̄v̄

ᵀvi = N(vᵀ
i v̄)

2I+2viv
ᵀ
i v̄(Nv̄ᵀ−vᵀ

i ). (33)

Then, using (29), (30) and (33), we obtain

∂ (viv
ᵀ
i Cvi)

∂vi
= vᵀ

i CviI+2viv
ᵀ
i (C− (vi− v̄)vᵀ

i ). (34)

Finally, substituting (28) and (34) into (24) yields the claimed
result (9).
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