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ABSTRACT | This is a survey article on the information

transmission capability of haptic devices and ways of maxi-

mizing it. It is intended for readers who are engineering profes-

sionals interested in developing novel haptic interfaces for a

variety of applications but are not necessarily trained in haptic

science or human user research. We posit that the ultimate

goal of any interface is the exchange of information between a

machine and a user, and as such, the evaluation should involve

estimating the information-transmission capability with human

users. We conducted a literature survey on studies of haptic

devices evaluated with human users using an information

theoretic framework. Our goal was to discover and summarize

best practices that can lead to high information transmission.

The results confirmed findings from our own previous studies,

uncovered new ways to effectively increase information trans-

mission, and pointed to the need for broader dissemination

of proper experimental methodology. We, therefore, present a

concise yet comprehensive tutorial on psychophysical method-

ology for estimating information transfer (IT) and IT rate with

humans, survey results on the typical IT achievable with hap-

tic devices, and guidelines for maximizing information trans-

mission with any human–machine interfaces. Although we
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focus on haptic systems, the information-theoretic framework,

the psychophysical methods, and the guidelines presented

in this article are applicable to other sensory modalities and

multimodal interface systems also.

KEYWORDS | Haptics; human–machine interface; information

theory; information transfer (IT); information transmission;

interface; psychophysics.

I. I N T R O D U C T I O N
The word haptics refers to sensing and manipulation
through the sense of touch. It consists of tactile and kines-
thetic sensing. The term cutaneous or tactile sense refers
to the awareness of stimulation on the outer surface of the
body mediated by different types of mechanoreceptors in
the skin [1]. For example, vibration on the skin is a form of
tactile stimulation. The term kinesthesis or proprioception
denotes the awareness of joint-angle positions and mus-
cle tensions mediated by sensory receptors embedded in
the muscles and joints [2]. A force-feedback device that
exerts forces on the user provides kinesthetic stimulation.
Haptic systems can include cutaneous and/or kinesthetic
devices as well as thermal displays. Modern haptics is
concerned with the science, technology, and applications
associated with information acquisition and object manip-
ulation through touch, including all aspects of manual
exploration and manipulation by humans, machines, and
the interactions between the two, performed in real,
virtual, teleoperated, or networked environments [3].

With the ongoing and increasing interest in haptic
(touch-based) interfaces for virtual and augmented real-
ity, human–robot interaction, gaming, and just about any
human–machine system, the question arises as to how
much information can be transmitted effectively through
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Fig. 1. Tadoma method of haptic communication of speech used

by individuals who are both deaf and blind. Shown are Nat Durlach

(center, with normal sight and hearing) and two deaf-and-blind

individuals who are having a three-way communication (photograph

courtesy of Hansi Durlach).

the sense of touch. Estimates vary widely, with the highest
reported upperbound being 56 b/s using simple binary sig-
nals at the fingertip [4]. A more conservative and perhaps
more realistic estimate of haptic communication capacity
is 12 b/s for a natural speech communication method
used by individuals who are both deaf and blind [5].
In this method called “Tadoma,” the “listener” places
his/her hand on the talker’s face and, in the absence
of any visual or auditory cues, monitors the articulatory
process associated with speech production (see Fig. 1).
Research has shown that the most important haptic cues
employed by the Tadoma users include lip movement, jaw
movement, oral airflow, and laryngeal vibration [6]. The
12-b/s information-transmission rate can be viewed as an
existence proof and benchmark that human performance
with any haptic devices can be compared to.

A similar upper bound was reported for the OPtical
to TActile CONverter (Optacon) [7], a reading aid for
the blind that converted images of printed materials to
vibrational patterns on the index finger. The portable
system consisted of a small hand-held camera and a
24 × 6 pin array that measured 2.7 × 1.1 cm, roughly
the size of the index fingertip [see Fig. 2(a)]. Whenever
a photocell detected a black pixel, the corresponding pin
vibrated. Studies with the Optacon showed a reading rate
of 40 words per minute (wpm) by the best participant in
one study [8] and 70–100 wpm by two sighted “extra-
ordinary observers” in another study [9]. These reading
rates correspond to 5.3 and 9.3–13.3 b/s, respectively,
assuming an information content of 8 bits per word (see
note 13 in [10, p. 1008] for assumptions). The ability
for a haptic device to transmit 12 b/s through the sense
of touch was also demonstrated in the laboratory with
the Tactuator, a multifinger display interfaced with the
thumb, index finger, and middle finger, using abstract
haptic symbols [10] (see Fig. 6 and further details in
Section III-A). In comparison, typical performance with

other systems designed to communicate speech or text
has shown much lower information rates. For example,
the Vibratese coding consisted of 45 symbols that varied
in five vibrator locations, and three intensities and three
durations per vibrator. It supported all letters, all numerals,
and several frequently encountered short words such as
“of,” “the,” and “in” [11]. The information rate for the
Vibratese language was 5.1 b/s (38 wpm) [12]. Results for
Morse code transmitted via electrocutaneous stimulation
and up-down finger motions were much lower, 1.3 b/s
(10 wpm) [13] and 2.7 b/s [14], respectively, presumably
due to the inefficiency of the code itself. Among the tactile
aids for the hearing impaired, Tactaid II or Tactaid VII was
the most widely distributed devices. They consisted of a
small processing unit with an embedded microphone that
could be clipped to a belt or fit into a shirt pocket, and
a harness with two or seven resonant-type vibrators [see
Fig. 2(b)]. The acoustic signal of speech was processed
through an array of bandpass filters with increasing cen-
ter frequencies. The output of these filters was rectified
and used to modulate the amplitude of the correspond-
ing vibrators [15]. When used alone, the Tactaid devices
could convey useful information regarding environmental
sounds [16] but could not be used for understanding
speech without lip reading [17].

We revisit the question of whether it is possible to
achieve 12 b/s or higher with engineering systems that
interface with the human skin. This prompted us to con-
duct a survey of recent studies on the information trans-
mission capabilities of haptic devices and look for evidence
that sheds light on how one should go about achieving high
information transmission rates.

The findings from this survey are important to the Pro-
ceedings readers for several reasons. First, there is a grow-
ing interest in the use of haptics technology in consumer
products. Objective performance evaluation with human
users is important. Information theory provides a frame-
work for a direct comparison of different technologies in
terms of bits of information transmitted or information
transmission rate in bits per second. It is our goal to pro-
mote information theory among designers, engineers, and
psychologists who are involved in innovating new haptic
systems for human–machine interaction and communica-
tion. Second, an information theoretic framework is even
more attractive for consideration of multimodal interfaces.

Fig. 2. (a) Optacon (photograph courtesy of Telesensory

Corporation). (b) Tactaid VII (photograph courtesy of Pascal

Getreuer).
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The information-transmission capabilities through differ-
ent sensory channels (vision, audition, touch, etc.) can be
quantified, compared, and combined (when different sen-
sory channels encode information independently). Third,
information theory also provides a tool for the quantita-
tive study of redundant versus nonredundant coding of
information through different sensory channels. Fourth,
such a framework is generally applicable to any other
communication system, whether machine-mediated or not.
For example, information transfer (IT) rates have been
estimated for speech communication through audition,
vision, and touch modalities [18]. Therefore, we aim to
introduce information theory to any Proceedings readers
who are developing haptic or multimodal human–machine
interfaces and who wish to evaluate the system perfor-
mance quantitatively with human users. However, it is
not the intention of this article to provide an overview of
haptics technologies and applications per second.

This work began as part of an initiative at Facebook’s
Building 8, now known as Facebook Reality Labs, to
develop haptic communication systems [19]. It is the result
of a close collaboration between researchers in academia
and industry who have informed, inspired and challenged
each other. It is an ambitious undertaking to enable com-
munication through the skin for people with all levels of
sensory capabilities. By using an information theoretical
framework to compare existing haptics systems, we can
visualize and understand the trends of what is achievable,
where the fundamental limitations are, and where oppor-
tunities lie to push the limits.

This article is organized as follows. We present in
Section II, a tutorial on information theory as applied to
human performance studies and the corresponding psy-
chophysical methodology. The tutorial is self-contained to
provide the background information needed to understand
the rest of this article. It is the most detailed treatment of IT
and information rate in terms of experimental design, data
analysis, and interpretation of results in one place. The
methods and findings of the survey study are presented
in Section III. This is the first time where results from
35 published haptic studies are analyzed and compared.
Section IV concludes with general guidelines for building
high information throughput systems, backed up by exist-
ing research data.

II. P S Y C H O P H Y S I C A L S T U D I E S O F
H A P T I C S U S I N G A N I N F O R M AT I O N
T H E O R E T I C A L A P P R O A C H :
A T U T O R I A L
Psychophysics focuses on the quantitative relationship
between physical stimuli and the perception of the stimuli.
The development of techniques that enable the measure-
ment of sensory processes and of statistical models charac-
terizing the performance of the human operator has been
an essential part of psychophysical research. Over the past
two decades, psychophysical techniques have become an
integral part of hardware and software development and

evaluation in haptics research. A recent review provides
an overview of the Fechnerian psychophysical methods
(the method of constant stimuli, the method of limits, and
the method of adjustment) and post-Fechnerian techniques
(signal detection theory, adaptive techniques, information
transfer, scaling techniques, and multidimensional scaling)
that are applicable to haptics research [20]. Approaches
based on Bayesian and maximum-likelihood integrators
are also gaining popularity [21], [22]. Although most psy-
chophysical techniques quantify our sensory capabilities
and limitations due primarily to peripheral mechanisms
and are subject to various effects that arise in the cere-
bral cortex, the information theoretical framework focuses
more on our ability to process information due to more
central effects such as memory. As psychological concepts,
uncertainty, information in stimulus and response, and IT
characterize a human as a noisy communication chan-
nel [23]. As such, human performance can be specified
in terms of IT (in bits) or IT rate (in bits per second).
Information theory provides a unified approach to assess-
ing the information-transmission capability of any devices
through human users and allows a direct comparison of
visual, auditory, and haptic systems in the same units of
bits and bits per second.

We use the example of auditory pitch perception of
piano keys to illustrate the difference between the two
tasks of discrimination (limited primarily by one’s periph-
eral sensory resolution) and identification (limited by one’s
ability to memorize the sight/sound/feel of an object or
event; i.e., the central nervous system). In a discrimina-
tion task, two piano keys are played one after the other,
and an observer is asked to pick out the key with the
higher or lower pitch. Anyone with normal hearing can
discriminate the pitch of two adjacent keys on a keyboard,
whether or not the person is musically trained. In an
identification task, one of the keys is struck in isolation
and the observer is asked to identify which key it is.
This is a much harder task as it requires the observer to
have a perfect memory of all the 88 keys on a keyboard,
the so-called perfect pitch or absolute pitch. Except for a
minority of individuals who are born with absolute pitch,
even musically trained individuals cannot identify the pitch
of any piano key without a reference (e.g., middle C). This
article is concerned with the latter; that is, identification
tasks where an observer needs to identify the location
of a tap on the skin or the language symbol a haptic
pattern encodes.

What makes information theory especially attractive
for studying and comparing any human–machine inter-
face system is the concept of channel capacity. Simply
put, it states that as the complexity of stimuli increases,
the maximum amount of IT will increase initially and then
reach a plateau (see Fig. 3). This maximum IT is called
the channel capacity. This is an important metric as any
communication system should strive to reach the human
channel capacity for maximum effectiveness. Designing a
system that delivers less or more than the channel capacity

Vol. 108, No. 6, June 2020 | PROCEEDINGS OF THE IEEE 947

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2020 at 13:15:53 UTC from IEEE Xplore.  Restrictions apply. 



Tan et al.: Methodology for Maximizing Information Transmission of Haptic Devices: A Survey

Fig. 3. Illustration of the concept of channel capacity. See (4) for

the mathematical definitions of IS and IT.

would be wasting either the human or the machine’s
capabilities, respectively. Consider, for example, the ques-
tion of how many tactors should be worn around a belt to
provide orientation information to its wearer. Imagine that
eight tactors are placed in equal distance from each other,
or 45◦ apart, on the belt. The wearer is asked to identify the
location of any tactor when it is turned on. If the stimulus
set contains only the four tactors at the front, back, left,
and right sides of the belt, then most wearers can perform
the task perfectly. If all eight tactors are included in the
stimulus set, however, then the wearer will start to make
errors [24]. A majority of localization studies report per-
formance in terms of the percent-correct scores which are
highly dependent on the number of stimulus alternatives
(e.g., number of tactors placed around the belt). However,
in “mission critical” applications where a tactile belt is
used to display waypoint information [25] or a 2-D tactile
array is used for navigation guidance [26], [27], we argue
that identification or recognition accuracy needs to be near
perfect for such systems to be of practical value. The beauty
of information theory as it applies to human perception
study is that from the stimulus-response confusion pattern
of the eight tactors, the experimenter can estimate channel
capacity, and hence the maximum number of tactors that
can be correctly localized on the belt. There is no need to
keep repeating the experiment with 1, 2, . . . , and 8 tactors
until one reaches the maximum number of tactors that can
be correctly localized.

In what follows, we present a tutorial of informa-
tion theory as it applies to psychological research based
on the seminal work by Garner [23], [29], Garner and
Morton [28], and Miller [30], [31] that have strongly
influenced the research in this field including our own
previous work (see [18] and [32]–[35]). For example,
Garner [23] laid out the concepts and formula presented
in Section II-A. Miller [31] coined the term “magic num-
ber 7 ± 2” for channel capacity, and his work is sum-
marized in Section II-B. Our own previous experimen-
tal data supported the concept of channel capacity as
illustrated in Fig. 3 [34]. In these studies, the human
observer is the communication channel itself. The input

of the communication system consists of a discrete set of
stimulus alternatives, and the outputs are responses to a
random sequence of the stimuli. This is different from the
signal compression research where speech, audio, image,
and/or video are coded, distorted, and transmitted, and
the human observer judges the signal quality after the
signal has been transmitted (see [36] for a review, and [37]
and [38] for an example on haptic data compression).
It should also be noted that we consider the case where
the goal is to design a haptic display (device and the
associated stimulus set) that minimizes response errors in
an absolute identification task (defined in Section II-A)
given the capacity-limited human communication channel.
This is not necessarily “optimal” as rate-distortion theory
would suggest “that the goal for perception should not
be perfect identification, but rather the minimization of
error according to some cost function” (see [39, p. 185]).
Furthermore, as eloquently explained in [39], when a par-
ticipant makes an identification error, the response tends to
be close to the correct one rather than being random. This
behavior can be modeled within the rate-distortion theory
framework with a cost function that minimizes absolute
error (Model L2 [39]). However, a different model (L3) is
needed in order to explain the “bow effect” that describes
the phenomenon that identification performance is better
at the boundaries of a stimulus range. It should also
be noted that channel capacity and the bow effect (also
termed “perceptual anchors”) have been successfully mod-
eled by extending signal detection theory to more than
two stimulus alternatives (see, for example, a series of
publications by Durlach and Braida on auditory intensity
perception, starting with [40] and [41]). Therefore, what
is presented in this section is only a starting point—much
work remains in both theoretical modeling and experimen-
tal methodology. It is our intention to attract attention
to this important research direction. Interested readers
should also consult Shanon’s original work on information
theory for nonhuman communication systems (see [42]
and [43]).

A. Absolute Identification Experiment and
Estimation of Information Transfer

A typical way to measure IT is to run an absolute
identification experiment. First, a set of K stimuli
(Si , i = 1, . . . , K ) is constructed. A corresponding set of
K responses (R j , j = 1, . . . , K ) is then assigned so that
R j is the correct response to Si when j = i . On each trial,
the participant is presented with a stimulus randomly
selected from the stimulus set. The participant chooses
a response from the response set after each stimulus
presentation. The experimental results are tabulated in
the form of a stimulus-response confusion matrix with
rows corresponding to stimuli and columns responses.
The entries in the main diagonal of the stimulus-response
confusion matrix represent the number of “correct” trials.
Error trials distribute among the nondiagonal cells in the
confusion matrix.
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IT is then calculated from the confusion matrix. The
quantity IT measures the increase in information (or reduc-
tion in uncertainty) about the signal transmitted from
knowledge of the signal received. Theoretically, we can
express IT in terms of probabilities. For a particular
stimulus–response pair (Si , R j ), the quantity IT is given by

IT(Si , R j ) = log2
P(Si | R j )

P(Si )
(1)

where P(Si |R j ) is the conditional probability of Si given
R j , and P(Si ) is the a priori probability of Si . The average
IT is given by the weighted sum of individual IT values

IT =
K∑

j=1

K∑

i=1

P(Si , R j )log2
P(Si | R j )

P(Si )

=
K∑

j=1

K∑

i=1

P(Si , R j )log2
P(Si , R j )

P(Si ) · P(R j )
(2)

where P(Si , R j ) is the joint probability of stimulus Si and
response R j , and P(R j ) is the probability of R j .

Given a stimulus–response confusion matrix, the prob-
abilities in the IT equations can be approximated by the
frequency of occurrence to obtain the maximum likelihood
estimate ITest

ITest =
K∑

j=1

K∑

i=1

ni j

n
log2

(
ni j · n
ni · n j

)
(3)

where ni j is the number of times the joint event
(Si , R j ) occurs, ni = ∑K

j=1 ni j and n j = ∑K
i=1 ni j

are the row and column sums, respectively, and n =∑K
j=1

∑K
i=1 ni j = ∑K

j=1 n j = ∑K
i=1 ni is the total number

of trials collected.
Assuming that performance is not perfect (i.e., the stim-

ulus response confusion matrix contains errors in the off-
diagonal cells), ITest represents an estimate of the channel
capacity for the specific stimuli set tested. A related mea-
sure 2ITest is interpreted as the number of stimuli that can
be correctly identified without error, assuming that P(Si )

is the same for all stimuli.
Two related measures, information in stimulus (IS, also

known as the input entropy or stimulus uncertainty) and
information in response (IR, or output entropy), can be
expressed theoretically in terms of probabilities

IS = −
K∑

i=1

P(Si ) log2 P(Si )

IR = −
K∑

j=1

P(R j ) log2 P(R j ) (4)

or in terms of the frequencies of occurrences, ni/n for
P(Si ) and n j/n for P(R j ), that can be obtained from the

stimulus–response confusion matrix. The stimulus uncer-
tainty IS is simply log2 K when all K stimulus alternatives
are equally likely (which is typically the case). There-
fore, IS is directly related to the size of the stimulus set.
The quantity IR provides a measure of the participant’s
response bias. The value of IR is maximum if the partici-
pant uses all response labels equally likely. It cannot exceed
log2 K .

The value of IT may never exceed IS in any absolute
identification experiment. As shown in Fig. 3, for small
values of K or IS where the participant is able to identify all
stimuli perfectly, IT = IS = IR. As IS increases, IT plateaus
at a maximum value which is the channel capacity.

B. Miller’s Magic Number 7 ± 2 and
Dimensionality

Before we proceed into the practical issues concerning
absolute identification experiments, it is worth a discussion
on the typical values of channel capacity and the definition
of perceptual dimension. Miller summarized the channel
capacity of most perceptual dimensions to be 7 ± 2 levels
(the so-called “magic number 7 ± 2”), or equivalently,
2.3–3.3 bits [31]. The examples used in Miller’s article
were concerned mostly with visual and auditory stim-
uli. The channel capacity for haptic stimuli appears to
be 2.0 bits or less; for example, 1.0–2.0 bits for finger
span, joint angle, force magnitude, and stiffness identifi-
cation [44]–[46]. One reason for the discrepancy may be
the lack of a clear definition for perceptual dimensionality.
The number “7 ± 2” is the channel capacity for a stimulus
set varying along one perceptual dimension, yet a precise
definition of dimensionality does not exist anywhere in the
literature. The closest Miller came to giving a definition
was “the number of independently variable attributes of
the stimuli” [31, p. 87].

Intuitively, it may seem obvious that the number of
perceptual dimensions should be equal to the number
of physical parameters needed to generate the stimulus
alternatives. For example, the amplitude and frequency
of an auditory tone (two physical parameters) determine
its perceived intensity and pitch (two perceptual dimen-
sions), respectively. In the haptic modality, weight refers
to the physical dimension related to perceived heaviness.
Upon closer examination, however, physical and percep-
tual dimensions need not be the same and either can be
larger than the other. For example, one of the examples
cited by Miller [31] was a channel capacity of 3.3 bits
for the visual identification of line direction, or angle
of inclination from Pollack. Although the only physical
parameter being manipulated was the angle of the lines,
one may argue that the perception of lines at different
inclinations operated in a 2-D perceptual space, which
could account for the relatively high channel capacity.
Another example of one physical parameter leading to
multiple perceptual dimensions can be found in the haptic
perception of single- or multi-frequency sinusoidal stimuli.
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At least three distinct sensations are associated with single-
frequency sinusoidal stimuli as the stimulation frequency
increases from 0 to 400 Hz: slow motion, flutter [47], [48],
and smooth vibration. Furthermore, when two or three
sinusoidal signals are combined in a stimulus (e.g., a 4-Hz
motional signal combined with a 300-Hz vibration, or the
combination of a 2-Hz motional signal, a 10-Hz flutter,
and a 150-Hz vibration), the sensations associated with
the sinusoidal components remain intact in the sense
that one clearly perceives the presence of a movement,
a flutter, and a vibration in the multifrequency stimulus
signal [10], [49], [50]. In other words, one physical vari-
able of frequency is mapped to a 3-D perceptual space.
There is also evidence that two physical variables can
map to one perceptual dimension. In a study of simu-
lated virtual key-clicks using piezoelectric actuators, it was
found that changing the amplitude and the number of
cycles (up to 3, so as to avoid the undesirable “ring-
ing” sensation) of a sinusoidal driving signal led to a
change in the overall perceived intensity of the simulated
key click. When participants were asked to identify the
amplitude, frequency, and number of cycles in a simu-
lated key-click signal, a significant number of errors were
associated with the participants’ judging a multiple-cycle
signal as having a higher amplitude than that presented
(see [51, Exp. III and Table 6]). This indicates that the two
independent physical variables of signal amplitude and
number of cycles merged into one perceptual dimension
of perceived intensity. Therefore, whereas in many cases
the physical and perceptual dimensionalities may be the
same, there also exist ample examples where the two are
not equal.

Why is it important to know the number of perceptual
dimensions associated with a stimulus set, and how should
one go about discovering the perceptual dimensionality if
one suspects that the physical and perceptual dimensions
are different?

The theme of this article is to maximize the information
transmission of human–machine interfaces. We know that
the IT for any unidimensional stimulus is limited by the
“magic number 7 ± 2.” By employing multidimensional
stimuli with an interface system, it is possible to increase
the perceptual dimensions involved and achieve an IT
that is more than the “magic number.” That is why it
is very important to know the number of perceptual
dimensions associated with a stimulus set. However, how
much IT can be increased by employing multidimensional
stimuli depends on the perceptual independence of the
dimensions. Many definitions of perceptual independence
exist. For the purpose of our discussion, we define per-
ceptual independence similarly as separability: “With sep-
arable stimulus components, performance on a task that
demands a response based on a single component is
unaffected by the level of other irrelevant components.
With integral components, varying the level of irrele-
vant components degrades performance” (see Operational
Definition A in [52, p. 163]). In other words, if two

perceptual dimensions are separable/independent, then
the IT for both dimensions equals the sum of the IT
for each dimension. The more integral/dependent the
two dimensions are, the less gain in IT can be had by
employing both dimensions in a stimulus set. Interest-
ingly, redundant coding with two or more dimensions
that vary in correlation can result in increased IT even
though the information in stimulus remains the same. The
estimation of multidimensional IT is discussed in detail in
Section II-D.

One way to judge whether one physical variable can
lead to more than one perceptual dimensions is to apply
the test given in the definition of separability and inte-
grability. In the example given earlier where varying the
frequency of sinusoidal stimuli leads to three distinct sen-
sations of motion, flutter, and vibration, the existence of
the additional perceptual dimensions was demonstrated
by combining single-frequency sinusoidal signals from
the low-, mid-, and high-frequency regions and show-
ing that each component remained perceptually distinct
upon stimulus reception. Another way to discover the
perceptual dimensions associated with a stimulus set is
to conduct a multidimensional scaling study, especially
when the physical dimensionality associated with the
stimuli may be ill-defined (such as surface texture and
haptic simulation of key clicks) [53]–[56]. A detailed
discussion of the multidimensional scaling technique is
beyond the scope of this article. The readers are advised to
determine the perceptual dimensionality of a stimulus set
judiciously.

Note that the concept of channel capacity for unidimen-
sional stimuli does not apply to “overlearned” stimuli. For
example, individuals with absolute or perfect pitch can
identify all 88 notes on a keyboard perfectly when any
single key is struck without a reference note.

In addition to increasing the number of dimensions as
a means to increase total IT, channel capacity can also
be expanded by increasing the amount of information
contained in each item through chunking or recoding,
the process of learning to recognize a sequence of stim-
uli as a single item [31]. A good example is how ham
radio operators can code dit-dah patterns into letters, then
into words and then into short phrases as they become
more experienced. Even though the number of sequentially
presented items one can correctly recall is also limited
to about seven [31], the total information transmission
can be expanded by increasing the information per item
through chunking.

C. Practical Issues in the Estimation of Channel
Capacity

It should now be clear that in applications where the cor-
rect identification of signals is important for the successful
execution of a task, and we are interested in the estimation
of channel capacity that can quantitatively guide us in
designing a distinctive set of signals. In order for the IT
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from an absolute identification experiment to be a good
estimate of channel capacity, six important issues need to
be taken care of. First, one should use the entire range of
each physical parameter that is varied to generate the stim-
uli. Second, the number of stimulus alternatives (K ) needs
to be sufficiently large. Third, the total number of trials
needs to be at least 5K 2 in order to overcome the statistical
bias in ITest, the maximum-likelihood estimate of IT [30].
Fourth, it is preferred that the method of randomization
with replacement be used in selecting stimulus alternatives
on each trial. Fifth, the K stimuli should preferably be
spaced such that each adjacent pair of stimuli is equally
discriminable. Last but not least, the response labels should
be intuitive or easy to learn, and sufficient training should
be provided to ensure that the participant is familiar with
the stimuli and the associated response labels. The rest of
this section discusses each issue in detail.

IT increases initially and then plateaus as the range of
stimuli increases. Replacing the abscissa in Fig. 3 with
stimulus range produces a similar graph, according to
models and experimental data on auditory intensity per-
ception [40], [41], [57]. The effect of range has been
demonstrated for haptic perception in a length identifica-
tion experiment using the finger-span method [44]. It thus
appears prudent that the whole range of stimulus parame-
ters be employed in an absolute identification experiment,
so as not to underestimate channel capacity due to the
effect of stimulus range.

Similarly, as shown in Fig. 3, IT increases initially
and then plateaus as the number of stimulus alternatives
increases. This trend has been explicitly tested in the
length identification experiment [44] and clearly demon-
strated in a sphere size identification task using hemi-
spheres rendered with a force-feedback device [34]. The
trick, however, is how to select a reasonable value of K for
the number of stimulus alternatives. In many psychophysi-
cal paradigms, the proper selection of stimulus parameters
may depend on some prior knowledge of what the exper-
imental outcome might be. In this case, the experimenter
needs to take an initial guess of the channel capacity and
then pick a K or IS value that is slightly larger. During
the absolute identification experiment, the experimenter
needs to ascertain that the participants are not performing
perfectly (i.e., the point being tested is on the plateau, not
the linear portion of the curve in Fig. 3). For reasons that
will become clear in the next paragraph, it is not advisable
to pick a K or IS value that is too large. We also hasten
to point out that the percent-correct score in an absolute
identification experiment is not a good way to characterize
performance as it continues to drop as the task difficulty
(i.e., K ) increases. In contrast, IT plateaus and provides
a more parsimonious measure of human performance in
terms of channel capacity.

An issue that is often overlooked in the literature is the
number of trials needed in order to obtain an unbiased
estimate of channel capacity. ITest in (3) is statistically
biased in the sense that its expected value E[ITest] is

greater than the IT value as shown in (2)

E[ITest] − I T = log2e
2n

(K − 1)2 + O
(

1
n2

)

= ! + O
(

1
n2

)
(5)

where n is the total number of trials and O(1/n2) repre-
sents the higher order terms [30]. When n = 5K 2, the bias
! = 0.14 bit is relatively small and can be neglected.
When n is significantly smaller, it was suggested that !

be subtracted from ITest to correct for the bias [30]. The
possibility of overestimating IT is usually not a problem
with unidimensional stimuli, because even for K = 8,
the required 5K 2 = 320 trials is still quite manageable. For
multidimensional stimuli, however, the numbers can add
up quickly. For example, a 3-D stimulus set employing five
levels of vibratory intensity, five levels of frequency, and
five levels of contactor area leads to a K of 5 × 5 × 5 = 125
and a 5K 2 of 78 125 [58]. A total of 5000 trials was
collected from the 3-D absolute identification experiment,
and computer simulations were run to extend the number
of trials from 5000 to 25 000. By fitting the experimental
data with simulated data, a channel capacity of around
4 bits was extrapolated for the 3-D stimulus set [59].
Interestingly, the same plot also demonstrated clearly how
the application of Miller’s [30] bias correction ! resulted
in an overcorrection of estimated IT. Two of us have
tried using Houtsma’s [59] simulation for prediction of
unbiased IT. One of us was successful [60] (see also the
end of Section II-B). The other could not match the shape
of the experimental data in terms of estimated IT as a
function of number of trials to any of the simulated curves
(unpublished results, using data in [10]). Therefore, even
though one might be able to make use of the correction
term ! suggested by Miller [30] or the computer simula-
tion by Houtsma [59] to counteract the overestimation in
ITest in some cases, neither method works robustly for all
experimental data. To the best of our knowledge, it is still
best to collect a sufficient number of 5K 2 trials whenever
possible. In cases of multidimensional stimuli with a large
K and a potentially high IT, we discuss an experimental
approach for estimating potentially high channel capacity
based on a general additivity law explained in Section II-D.

Another issue that is often overlooked and not explicitly
reported in the literature is the way stimulus sequences
are generated in an absolute identification experiment.
It is very common for each stimulus alternative to be
presented an equal number of times. On each trial, one of
the stimuli is randomly selected. If the chosen stimulus has
already been presented for the maximum number of times,
another stimulus is randomly chosen. This method, termed
randomization without replacement, has the advantage
that the participant is exposed to each stimulus an equal
number of times. It, however, has the disadvantage of a
decreasing IS as the trial number increases, as can be
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seen from (4). In order to ensure that IS remains constant
throughout an experiment, the method of randomization
with replacement should be used, where each stimulus
alternative has an equal probability of being presented on
each trial. The consequence is that each stimulus alterna-
tive may have a different number of presentations. This,
however, should not be a problem with a sufficient number
of trials.

The spacing between adjacent pairs of stimuli in an
absolute identification experiment should ideally be equal
in the perceptual space. In cases where Weber’s law
applies, the just noticeable difference (JND) is proportional
to the reference signal. For example, assuming a JND
of 10% for force–magnitude perception [61], [62], the two
force–magnitude pairs of 5.0 and 5.5 N and 10.0 and
11.0 N are equally discriminable. Therefore, a force–
magnitude identification experiment should select force
levels that are equally spaced on a logarithmic scale (e.g.,
0.1, 0.2659, 0.7071, 1.8803, and 5 N as was the case
in [46]). When it is unknown whether the perception of a
variable follows Weber’s law, it is more difficult to deter-
mine the optimal placement of multiple stimuli within
a parameter range. Luckily, channel capacity does not
appear to be affected by the stimulus spacing, at least for
length identification [44] or sphere size identification [34].
Therefore, we recommend that stimuli be equally spaced
on a logarithmic scale if Weber’s law holds and otherwise
on a linear scale.

Training and stimulus–response compatibility are
integral parts of a well-designed absolute identification
experiment. Typically, the participants need to be familiar
with the multiple stimuli presented and the response labels
used to identify them. Prior to data collection, the exper-
imenter should provide an easy-to-use interface for the
participant to try any one of the stimulus alternatives for
5–15 min, or until the participant is ready. The design of
response labels should support stimulus–response compat-
ibility and be as intuitive as possible. There is a vast liter-
ature on stimulus–response compatibility, which is beyond
the scope of this article. In cases where a large number
of multidimensional stimuli is employed, a graphics-based
response method can be used.

For example, the participants in the Tactuator study [10]
used a stylus to select graphic icons on a digitizing table
to respond to a 120-alternative stimulus set (see Fig. 4).
The participants, who were mostly engineering students,
were told that the stimuli were specified by frequency
in hertz and intensity in decibels. For example, (2, 35) indi-
cated a 2-Hz movement at an intensity of 35-dB sensation
level (SL; i.e., decibel above human detection threshold
at this frequency). They learned that the icons for the
eight single-frequency signals occupied the first column
and continued on the bottom row. It was easy to see
that these icons contained waveforms that represented the
relative frequencies and amplitudes of the stimuli, with
the exception that the 150- and 300-Hz signals were rep-
resented in blue and red colors, respectively. The second

Fig. 4. Graphics-based response tablet using spatial layout to

group signals with one-, two-, and three-frequency components

applied to a single or multiple digits of the hand. Modified from

Fig. 3 by Tan et al. [10].

icon on the top row represented the combination of (2, 35)
and (10, 35). The third icon represented (2, 35) and
(30, 40), etc. It was apparent that all icons on the top row
contained a (2, 35) slow-movement component. That way,
the 30 waveforms were laid out in an organized manner
and easy to locate for the participants. In the upper-right
corner of Fig. 4, the “M/I/T” icons were laid out in a spa-
tially congruent manner with the locations of the middle
finger, index finger, and the thumb of the left hand. The
“ALL” icon was for when all three digits were stimulated
and was slightly larger in size. The participants selected
one location icon and one waveform icon to respond to
each stimulus presentation. The large “ENTER” icon was
used to confirm a response and to advance to the next
trial, while the small “DEL” icon was available for deleting
a previously entered icon. The design of the response
codes shown in Fig. 4 provides a good example of how to
maximize stimulus–response compatibility and minimize
response errors in an absolute identification experiment
involving a large number of stimulus alternatives.

D. Estimation of Multidimensional Channel
Capacity and a General Additivity Law for IT

As mentioned earlier in Section III-B, channel capacity
for any unidimensional stimuli is limited. However, higher
IT can be achieved by employing multidimensional stim-
uli. It follows that for any interface with high informa-
tion transmission capacity, its channel capacity has to be
assessed with an absolute identification experiment with
multidimensional stimuli. The problem, as mentioned in
Section III-C, is that the total number of stimulus alterna-
tives (K ) grows exponentially as the number of dimensions
increases. This in turn makes it very time-consuming, if not
impossible, to collect a sufficient number of trials (5K 2) in
order to obtain an unbiased estimate of IT.

Durlach et al. [63] addressed the question of whether
a multi-D IT can be predicted from the sum of 1-D ITs
estimated with each of the dimensions making up the
stimulus set. In general, IT(multi-D) <

∑
IT(1-D) due
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to perceptual interferences among the stimulus dimen-
sions [28], [52]. Let us examine the way that a 1-D
absolute identification experiment is typically conducted,
say, for vibratory stimuli. To assess the channel capac-
ity for perceived intensity, the stimuli would consist of
sinusoidal vibrations at multiple amplitude levels and one
fixed frequency. This is called an absolute identification
experiment with fixed background. The IT so obtained
does not take into account the effect of frequency on
intensity perception. For example, it is well known that
the vibrotactile skin-displacement detection threshold is
lowest around 200–300 Hz [64]. Therefore, a 250-Hz
vibration feels stronger than a 25-Hz vibration with the
same (physical) displacement amplitude. The dependence
of haptic intensity perception on frequency would lead to
a lower channel capacity if the frequency of the stimuli
were randomized from trial to trial, the so-called roving
background paradigm. More generally, for a multidimen-
sional stimulus set with M dimensions, the participant is
asked to identify the target dimension while the levels of
the M − 1 background dimensions vary from trial to trial.
The 1-D ITs obtained with a roving background are likely to
reflect the decreases in channel capacity due to perceptual
interference and integrality. Their sum can therefore be a
reasonable estimate of the multi-D IT. This was the main
idea behind the general additivity law for IT proposed by
Durlach et al. [63].

Since its publication, the general additivity law has
been demonstrated with the experimental data where
1-D ITs with fixed background, 1-D ITs with roving
background, and multi-D IT are estimated and com-
pared [33], [51], [65], [66]. For example, Chen et al. [51]
measured 1-D ITs with fixed and roving background, and
compared their respective sums to the 3-D IT obtained
from a 3-D identification experiment. To make it tractable
to collect a sufficient number of trials in the 3-D identifica-
tion experiment, they used the results of the 1-D identifica-
tion experiments to pare down the number of alternatives
in the full stimulus set. In this way, Chen et al.’s [51]
experiments were designed to guide the development of
a final set of perceptually distinct stimuli (in this case
simulated key-click signals), and at the same time verified
the general additivity law proposed by Durlach et al. [63].

Since it takes many more trials to collect a sufficient
number of trials for one M-dimensional absolute identi-
fication experiment than those required for M 1-D identifi-
cation experiments, it generally takes less trials to estimate
the multi-D IT by the sum of 1-D ITs. Therefore, the general
additivity law proposed by Durlach et al. [63] can lead
to significant savings in the experimental time required
to obtain unbiased estimates of multi-D ITs. The key is to
conduct the 1-D absolute identification experiments with a
roving background.

E. Estimation of IT Rates
Until now, this tutorial has focused on the estimation of

static IT, for unidimensional and multidimensional stimuli.

Fig. 5. Illustration of the AXB masking paradigm for estimating IT

rate. Modified from [10, Fig. 6].

The tutorial would not be complete without a discussion on
how to conduct experiments to estimate the IT rates that
can be achieved with a 1-D or multi-D stimulus set. The
concept of IT rate is important because it addresses the
issue of how quickly, in addition to how accurately, infor-
mation is transmitted through communication devices.
Tan et al. [35] reviewed the literature on IT rate from
the 1950s to early 2000s, from the perspective of what
determines the optimum IT rate. They discussed the many
factors that affect one’s performance in an IT rate experi-
ment as compared to those in a static IT experiment. First,
the participants need to be sufficiently trained so that the
time required to respond to each stimulus in a sequence
is minimized, assuming that the stimulus alternatives are
distinct and stimulus–response compatibility is high. Sec-
ond, there are both forward and backward masking effects
when stimuli are presented in a sequence as opposed to
in isolation. The term masking refers to a reduced ability
to perceive a stimulus in the presence of another stimulus
that occurs in close temporal or spatial proximity. Third,
there is the demand on sustained attention and memory
that is associated with responding to a sequence of stimuli,
especially when the act of responding lags behind stim-
ulus presentation. For these reasons, a full-blown IT rate
experiment where the participants are asked to respond to
a stimulus stream continuously is often impractical within
the typical time frame of a research study, except for
overlearned stimuli such as speech.

Tan et al. [10], [35] recommended an AXB paradigm
where the participant is required to identify only the
middle stimulus (X) in a sequence of three consecutive
stimuli (AXB), as depicted in Fig. 5. This experimental
paradigm allows IT rates to be estimated within a rea-
sonable time while simulating to some degree the effects
of forward (from stimulus A) and backward (from stimu-
lus B) masking on stimulus X. All three stimuli have the
same signal duration (TON) and equal interval of silence
(TOFF) between them. The signal onset asynchrony (SOA)
is simply TON + TOFF. On each trial, the target stimulus X,
the forward masker A, and the backward masker B are
selected randomly from the alternatives within the same
stimulus set. Performance can be observed as a function
of decreasing TOFF (typically over a range of 1000–0 ms).
Estimates of IT rate in bits per second for each SOA is
calculated from the product of the IT per presentation in
bits/item and the presentation rate in items/s (i.e., the
reciprocal of SOA).
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III. M E T H O D S A N D M A J O R F I N D I N G S
O F L I T E R AT U R E S U R V E Y
As summarized in Section II, the information-theoretical
framework offers a well-established theory for objective
and context-free comparisons of the information process-
ing capacity of sensory displays. It has been used by haptics
researchers to evaluate the communication performance of
various devices and rendering algorithms. Our search for
research articles that report IT values of haptic systems
resulted in 35 relevant studies. They generally include
development of haptic interfaces or design of haptic stimuli
for effective man–machine communication. We tabulated
the spatial, temporal, and intensive characteristics of the
haptic stimuli designed and used for the estimation of
IT for each of the studies. This allowed us to make
observations of the effectiveness of individual physical and
perceptual dimensions used in the stimulus design for
improving communication bandwidth.

For haptic perception, there is a unique neurological
mapping between a body site and the corresponding
cortical area in the brain that processes the transmitted
signal [67]. While stimulating a single site on the skin is
technically simpler, multichannel tactile stimulation using
a number of tactors applied to different body locations can
generally improve human haptic information processing to
a great extent. Furthermore, multiple stimuli can be deliv-
ered either simultaneously or sequentially, and this vastly
enlarges the design space of haptic stimuli. In particular,
certain temporal stimulus sequences can elicit the illusion
of movement; for example, a few discrete tactile stimuli
applied at different locations are perceived to be one
continuous stimulus moving along the skin surface [68].
Tactile motion illusions have been frequently used in haptic
system design and applications. In addition, each indi-
vidual tactile stimulus can vary along many dimensions
such as amplitude, frequency, duration, rhythm, rough-
ness (e.g., through signal modulation), contact area, and
contact location. In the rest of this section, we review
the 35 articles collected in the literature survey with an
eye toward the roles played by various haptic stimulus
dimensions in information transmission. We organize the
subsections by vibrotactile, force-feedback, and other types
of haptic displays. Within vibrotactile displays, we dis-
cuss separately stimuli that use or do not use tactile
movement illusions.

We note that few of the 35 studies reported IT
rates and the results tended to be quite unimpressive
(e.g., 2.7–2.9 b/s in [69]; although see [35, Fig. 2(b)]
and [60] that show much higher IT rates). Thus, our
review focuses on specifying and comparing IT values
instead of IT rates.

A. Information Transmission With Stimuli That
Do Not Use Movement Illusions

Studies of haptic information processing capacity using
an information-theoretical framework date back to the

1980s. The dimensions studied include vibrotactile fre-
quency, amplitude, duration, and body location, which
have clear physical definitions, as well as roughness
and rhythm, which are perceptual dimensions affected
by multiple physical variables. In general, the use of
multiple dimensions with only a few parameter val-
ues per dimension has been effective at achieving high
information transmission capacity. However, care should
be taken when combining multiple dimensions to min-
imize perceptual interferences among the dimensions.
The two most successful cases of following the above
guidelines are a tactile belt with an IT of 4.18 bits
by Barralon et al. [70] and a multifinger display (the
Tactuator by Tan and Rabinowitz [71]) with an IT of
6.50 bits [10], the highest IT ever reported in the
literature for haptic stimuli that do not use tactile
movement illusions.

Using a piezoceramic bender bimorph on a fingertip,
Sherrick [72] estimated an IT value of 2.23 bits for the
identification of frequency alone, and 2.67 bits for the
identification of co-varying frequency and intensity values,
demonstrating the effectiveness of redundant coding in
increasing IT. Rabinowitz et al. [58] applied vibrations
to the distal pad of the middle finger using an array
of electrodynamic actuators mounted on a rotating disk.
They estimated 1-D IT values for the identification of
vibration intensity, frequency, and contact area, and found
an average 3-D IT to be 4.0 bits when the three stimulus
parameters varied independently. The 3-D IT value cor-
responds to 16 (24.0) perfectly identifiable vibration pat-
terns, demonstrating a higher IT with a larger number of
perceptual dimensions in the stimulus set. Under a similar
setup, Summers et al. [73] varied the frequency, amplitude,
and waveform of vibrotactile stimuli and obtained a 3-D IT
value of 1.0 bit. This lower 3-D IT is presumably due to the
lack of separability among the three dimensions.

The Tactuator by Tan et al. [10] and Tan and
Rabinowitz [71] was perhaps the first multifinger
tactual display designed to maximize information
transmission. Inspired by the Tadoma method of speech
communication where the hand of the “listener” has
access to a talking face with rich, multidimensional
information associated with the articulatory processes,
the Tactuator delivered kinesthetic movements (large
amplitude, low frequency) and vibrations (low amplitude,
high frequency), as well as fluttering/rough stimulation
(mid-amplitude, mid-frequency) to the distal pads of
the thumb, index, and middle fingers (see Fig. 6). The
signal waveforms contained only two frequency levels
per frequency region (low, mid, and high) and no more
than two intensity levels per frequency. Single-frequency
signals from different frequency regions were combined
to form two- and three-frequency signals that were
readily identifiable due to the distinctiveness of each
frequency component. For example, a 2-Hz motion
combined with a 300-Hz vibration was perceived to be
a slow motion with superimposed smooth vibration.
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Fig. 6. Tactuator. (a) Illustration of finger placement and motion

trajectories (from [71, Fig. 1]). (b) Motor assembly for the middle

finger (from [71, Fig. 4]). (c) Exterior view of the Tactuator system.

A total of 30 stimulation patterns containing eight
single-frequency, 16 double-frequency, and six
triple-frequency signals were delivered to either one
of the three digits or all of them (i.e., four possible
stimulation locations), resulting in a stimulus set
containing 120 alternatives. Estimated IT was 6.50 bits,
corresponding to an impressive 90 distinctly identifiable
stimulation patterns.

Since the Tactuator, various tactile displays have been
developed to stimulate the body using multiple actuators.
The review that follows is organized with respect to the
form factors that largely determined the body locations
that were stimulated.

It was most common to find vibrotactile stimuli pre-
sented to the finger(s), wrist, or arm, often with tactors
in an array. For example, Chen et al. [74] used a 3 × 3
array of linear resonance actuators to investigate tactor
localization performance at the wrist (see Fig. 7). The
estimated IT was 1.00 bit when the array was attached
to the dorsal side of the wrist and 1.24 bits for the volar

Fig. 7. Typical configuration of tactor arrays worn around the

wrist or arm (from [74, Figs. 1 and 2]). (Left) 3 × 3 tactor array

(tactor diameter 8.5 mm) with an interelement spacing of 25 mm.

(Right) Tactor array wrapped around the wrist using a Velcro band.

Fig. 8. Common arrangement of tactors around the waist (from

[80, Fig. 3]). (a) Five tactors attached to a Velcro belt. (B) Tactile

belt worn around the waist.

side, confirming a better resolution of the volar skin. When
two 3 × 3 arrays were placed on both the dorsal and
volar sides of the wrist, IT increased to 1.99 bits with
the additional dimension. Similarly, Sofia and Jones [75]
used a 3×3 array of vibration motors and estimated tactor
localization IT to be up to 2.46 bits on the palm, 1.42 bits
on the forearm, and 1.32 bits on the thigh, following an
expected decreasing trend. Cholewiak and Collins [76]
applied an array of custom-designed piezoceramic benders
to the forearm and upper-arm. The IT value for tactor
localization was 1.28 bits on the forearm (excluding wrist
and elbow), up to 1.45 bits on the forearm (including
wrist and elbow), and 1.67 bits on both the forearm
and upper-arm (including wrist and elbow). These results
stressed the importance of having natural anchor points
close to joints for improved localization. Wong et al. [77]
designed a sleeve with six vibration motors along the
longitudinal direction of the forearm, and achieved up to
1.84 bits for localization. The aforementioned studies all
employed tactor location as the only stimulus dimension.
The IT for tactor localization on the upper extremity
appears to be limited, with the highest value on the palm
(2.46 bits) that corresponds to about five distinct locations.
A similar IT value of 2.41 bits was reported by Azadi and
Jones [78], with vibrotactile stimuli that varied in multiple
dimensions, such as frequency, amplitude, duration, and
temporal profile (pulses), but not location, on either the
index fingertip or forearm. A higher IT was achieved
when location as well as stimulus properties were used to
convey information. Brown et al. [79] attached three voice
coil actuators on the forearm and designed and tested
multidimensional tactile icons called “tactons” by varying
rhythm, roughness, and locations. The reported IT value
was 2.98 bits. It thus appears that the channel capacity for
vibrotactile array placed on the upper extremity does not
exceed 3 bits (or eight distinct tactons).

Other body sites such as the waist and torso are also
good candidates for receiving stimulation from a tactor
array. As shown in Fig. 8, Cholewiak et al. [80] designed
a belt with an embedded array of voice coil actuators
and reported an IT of 2.66 bits for tactor localization
performance. This article was extended by Cholewiak and
McGrath [24] by building a 4 × 6 tactor array that was
wrapped around the torso and increased IT for localization
to 2.98 bits. Barralon et al. [70] increased the IT to
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Fig. 9. Four linear resonance actuators (LRAs) attached to the

corners of a smart phone (left, PHONE configuration) and four rings

worn on the index and ring fingers of both hands (right, RING

configuration). Modified from [60, Fig. 6] that used the same

apparatus as mentioned by Park and Choi [82].

4.18 bits by varying the vibrotactile stimuli sent to a tactor
array on a tactile belt along the dimensions of rhythm,
roughness, and location. These results again advocate
for combining tactor localization with the parameters of
vibrotactile stimulation signals to increase the number of
dimensions for increased IT and demonstrate a maximum
IT of 4.18 bits (18 distinct vibrotactile patterns) on the
torso.

Another way to stimulate the hand is through vibrotac-
tile feedback on mobile devices. Ryu et al. [81] proposed a
method to apply tactor driving voltage levels that resulted
in linear changes in perceived vibration intensity. They
demonstrated an IT increase in intensity identification
from 1.23 to 1.68 bits with the improved spacing of stim-
ulus intensities. Chen et al. [51] studied identification of
key-click sensations simulated with a piezoelectric actuator
in a mobile phone. They reported a 3-D IT of 2.4 bits
by varying vibrotactile frequency, amplitude, and duration
(number of cycles) independently, a result that is consis-
tent with the expectation of increased IT with increased
dimensionality.

In a unique study that utilized the funneling illusion,
Park and Choi [82] estimated the IT for localization of
phantom sensations. Their study used the funneling illu-
sion, an illusory tactile sensation that occurs when multiple
tactile stimuli are brief in duration, delivered simultane-
ously, and in close spatial proximity. A single “phantom”
point of stimulation is perceived at the geometric center
if the stimuli are of equal intensity or in the direction of
the more intense stimulus [83]. Four modules (each con-
taining a tactor and a silicon layer for vibration isolation)
are placed either at the four corners of a mobile device
(PHONE configuration) or worn on the index and ring
fingers of two hands (RING configuration) (see Fig. 9). The
IT value was up to 1.89 bits with the PHONE configuration
and 2.53 bits with the RING configuration. Interestingly,
the phantom sensations with the RING configuration were
perceived outside of the body in the empty space between
the two fingers under stimulation. Localization of the
illusory sensations was the best with a 3 × 3 grid that
included the four tactors in the RING configuration (Fig. 9,
right-hand side) as the outer corners and five phantom
loci between pairs of the tactors (e.g., midway between A
and B, or between A and D). The use of higher-resolution

virtual grids (4 × 4 or 5 × 5) bounded by the same
four tactors led to lower IT values. It was intriguing that
the out-of-the-body phantom sensations arising from the
RING configuration resulted in a higher IT value than
that from the within-the-body phantom sensations with the
PHONE configuration.

Finally, Horvath et al. [84] developed a wearable system
called FingerSight (see Fig. 10) that converted an image
from a camera mounted on the tip of an index finger
to a vibrotactile signal rendered on the corresponding
fingertip. Their edge rendering algorithm showed an angle
identification performance of up to 1.62 bits. This system
is unique due to its interactive nature, and the relatively
low IT value may be attributable to factors other than the
channel capacity of haptic perception.

B. Information Transmission With Stimuli That
Use Movement Illusions

The results that have been discussed up to this point
with stimuli that do not use movement illusions sup-
port the use of multiple dimensions for increased IT,
although it is evident that not all dimensions contribute
equally. The best result of 6.50 bits obtained with the
Tactuator supports the use of a broad frequency range
in constructing the stimulus set [10]. The Tactuator is
unique in that it presents both kinesthetic (low-frequency
motions) and tactile (vibrations) stimuli to users whereas
most of the other studies reviewed in this article present
only vibrotactile stimuli. The next best result of 4.18 bits
obtained with a tactile belt supports the use of multiple
tactor locations as an effective additional dimension [70].
In this section, we examine the efficacy of another effective
perceptual dimension associated with the use of tactile
movement illusions.

A temporal sequence of tactile stimuli applied to dif-
ferent body sites can induce a movement illusion on the
body. Three types of tactile illusions have been frequently
used: apparent motion, sensory saltation, and funneling
illusion [68]. Apparent motion is characterized by an illu-
sion of a single point moving smoothly on the skin surface.
It can be induced by activating a number of tactors in a

Fig. 10. FingerSight device (modified from [84, Fig. 4]). Visual

information is captured using a camera in front of the fingertip when

the user scans a surface. The visual information is processed to

provide appropriate tactile feedback, e.g., for visual edges, to the

finger using a vibrotactile actuator.
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temporal sequence. The optimal SOA (time between the
onset of two subsequent vibrations) was experimentally
determined to be 0.32∗d + 47.3 ms where d denotes the
vibration duration in ms [85]. Typically, the first tactor is
still on when the next tactor starts, creating an overlap in
activation that is important for the perceived smoothness
of the movement illusion. It has been shown that the
apparent motion illusion can create straight and curved
movement trajectories on various body sites such as the
back and the palm [86], [87]. Sensory saltation, also
known as the “cutaneous rabbit,” is qualitatively different
from the apparent motion in that an illusory saltatory
locus “hops” across the skin. It is induced by several
short, nonoverlapping pulses delivered through one tactor,
followed by the same through a second tactor, and so forth.
For sensory saltation to occur, the intertactor distance on
the back should be less than 10 cm, the optimal number of
taps are between 3 and 6, the optimal gap between pulses
is 20–250 ms, and the intensity and duration of pulses
are of secondary importance [26], [88]–[91]. It has also
been shown that a series of taps along a linear trajectory
generated by veridical and saltatory presentations lead
to equivalent sensations [90], thus a perceptually higher
spatial resolution can be achieved with a sparse array of
tactors. As mentioned earlier, the funneling illusion refers
to the mislocalization of brief tactile stimuli delivered
simultaneously to two closeby points on the skin as a single
stimulation point between the two stimulated points [83].
A gradual change of the relative vibrotactile intensities at
the two points can create an illusion of a moving point
on the skin. As far as we are aware, Park and Choi’s [82]
was the only study that investigated IT using phantom
loci. We have not come across any other study that char-
acterized IT using illusory movement generated by the
funneling illusion.

In the rest of this section, we review tactile displays fea-
turing illusory movement sensations and their information
transmission capacities. Similar to Section III-A, the related
work is organized with respect to the target body sites of
the tactile displays.

Hsieh et al. [92] designed NailTactors with four vibro-
tactile motors mounted around a fingernail to render
moving spatiotemporal patterns as shown in Fig. 11.
An IT of 2.71 bits was obtained for the identification
of the ten numerical digits “drawn” with NailTactors.
Culbertson et al. [93] made use of asymmetric vibrations
using a voicecoil actuator that delivered a pulling sensation
in one direction. When attached to the fingers, a single
voicecoil actuator presented a translational guidance cue,
and a pair of voicecoil actuators generated a rotational
guidance cue. Using three actuators worn on the thumb,
index finger, and middle finger, the estimated IT was
2.04 bits for the identification of translational cues and
1.70 bits with rotational cues. These results show an IT
of up to 2.71 bits on the fingers.

Matscheko et al. [94] placed four voice coil actuators on
the wrist in a configuration of “face” (tactors arranged like

Fig. 11. NailTactors. Nail-mounted tactile display with four

vibrotactile motors (from [92, Fig. 1]). The vibrotactile movement

patterns shown at top-right represent digits.

a wrist-watch face) and “wrist” (tactors around the wrist),
and obtained an IT of 1.90 and 2.49 bits, respectively, for
the recognition of rotational patterns designed for the two
configurations. Lee et al. [95] used a 3 × 3 tactor array
placed on the wrist to present spatial patterns including
points, lines, and saltatory movements, and obtained an IT
of up to 1.64 bits. Lee and Starner [96] designed Buzz-
Wear, in which three vibrotactile motors were wrapped
around the wrist to deliver 24 rotational vibration patterns
that varied in intensity, temporal pattern, duration, starting
point, and movement direction (see Fig. 12). The IT for
pattern identification was 4.28 bits despite the small num-
ber of tactors used [96]. Liao et al. [97] used four vibro-
tactile motors on the back of a wrist watch to represent
English letters and numerical digits using spatiotemporal
vibration patterns, and achieved an IT of 4.31 bits for
letter and digit recognition. The relatively high IT values
achieved on the wrist, 4.3 bits (19 patterns), support the
use of spatial and spatiotemporal patterns for effective
information transmission.

Jones et al. [98] conducted a series of experiments to
evaluate the effectiveness of a 3 × 3 tactile array mounted
on the forearm and a 4 × 4 array on the back for com-
municating simple messages using spatiotemporal patterns
that represented navigation and orientation commands
(see Fig. 13). The IT values were up to 2.15 bits on
the forearm and 2.68 bits on the back. Israr et al. [86]
designed a chair back with a 2 × 3 voice coil array to
improve the viewing experiences of 360◦ videos. The IT for

Fig. 12. BuzzWear [96, Fig. 1]. (Left) Wristband with three motors

worn on the volar side of the wrist. (Right) Examples of vibration

patterns. (Top) Pattern that starts at tactor 1 and moves in the

clockwise direction with one continuous vibration per tactor.

(Bottom) Similar pattern with three pulses per tactor.
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Fig. 13. Vibrotactile patterns representing military hand signals

(modified from [98, Fig. 4]). Arrows indicate the moving directions

of spatiotemporal vibrotactile stimuli.

identification of moving stroke patterns was 2.55 bits [86].
The IT results on the forearm and back were less remark-
able as those obtained on the wrist.

Similar IT results were obtained with mobile devices.
Yatani and Truong [99] embedded five tactors in a thick
sponge (for vibration isolation) that covered the back-
side of a mobile phone. The IT for the identification of
one-actuator signals and linear and circular spatiotemporal
patterns was 2.80 bits [99]. Seo and Choi [100] affixed
four actuators at the four corners of a rectangular mobile
device and developed a rendering algorithm for “edge
flows,” which refers to the sensations of continuously
moving tactile stimuli following the edges of a rectangular
mobile device. Identification of edge-flow patterns resulted
in an IT of 3.70 bits.

The highest IT values for stimuli that use movement
illusions were reported by Park et al. [60] who devel-
oped small vibrotactile modules that could be attached
to and detached from devices such as mobile phones
and game consoles (see Fig. 9 for the PHONE and
RING configurations). A large number of distinctive tac-
tile stimuli were designed by varying signal durations
(100 and 250 ms), the number of vibrations (1–4), and
the locus sequence of spatiotemporal patterns (e.g., B→A,
A→D→C). An absolute identification experiment showed
an IT value of 6.88 bits with the PHONE configuration
and 7.02 bits with the RING configuration. As mentioned
in Section II-C, the maximum likelihood estimate of IT is
biased toward an overestimation when the total number

of trials is insufficient. This is likely to happen when the
number of stimulus alternatives is large. To address this
concern, Park et al. [60] carried out an additional analysis
on the biases in IT estimation with the PHONE and RING
configurations. They obtained the following lower-bound
IT values using the simulation-based method presented
by Houtsma [59]: 6.67 bits (compared to 6.88 bits) for
the PHONE configuration and 6.89 bits (compared to
7.02 bits) for the RING configuration. The relatively small
corrections in IT were likely due to the distinctiveness of
the stimuli used and the high performance levels (i.e.,
few errors were observed and hence no need for a large
number of trials for the proper estimation of the error
patterns in the stimulus-response confusion matrix). To the
best of our knowledge, these are the highest IT values that
have been reported in the tactile communication literature.

In summary, when movement illusions were employed
in addition to vibrotactile frequency and duration with tac-
tor arrays, ITs for vibrotactile pattern recognition increased
significantly to impressive values: around 4.3 bits (19 pat-
terns) on the wrist with three or four tactors [96], [97],
and 7.0 bits (130 patterns) for RING with four tactors worn
on the index and ring fingers of two hands [60], [101].
This pleasant surprise in our literature survey demon-
strates the efficacy of employing movement illusions to
achieve vivid and distinctive tactile stimulation patterns
using only a few tactors. It offers promising evidence for
the haptic sense to be an effective information transmis-
sion channel.

C. Information Transmission With Force Displays

Tan [34] was the first to apply an information-
theoretical approach to evaluating haptic object identifi-
cation with a 3-degrees of freedom (DOF) force-feedback
device capable of displaying force vectors in the x-, y-, and
z-directions, and reported an IT of 2.0 bits for judging the
sizes of hemispheres rendered virtually. Samur [102] com-
pared three commercial force-feedback interfaces regard-
ing their performance in rendering the size and shape
of a virtual object. Performance with omega.3 (a 3-
DOF force display by ForceDimension) was the highest
at 1.74 bits, demonstrating the importance of device
quality in transmitting force information. Using a 3-DOF
force-feedback device augmented with a pneumatic tactile
pulse display (see Fig. 14), Santos-Carreras et al. [103]
showed that participants could identify the orientation
of a virtual artery with an IT value of around 1.7 bits.
Hatzfeld et al. [104] designed a passive force-feedback
joystick using a magnetorheological elastomer actuator,
and reported an IT of 0.83 bits for recognition of torque
profiles. Cholewiak et al. [46] used a custom-designed
3-DOF force display (the “ministick”) to study human
haptic perception, and reported an IT of 1.54 bits for
force–magnitude identification and 1.46 bits for stiffness
identification. Overall, very few studies have explored the
information capacity of force displays and the IT results
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Fig. 14. 3-D force-feedback interface (omega.3, ForceDimension)

augmented with a pneumatic tactile pulse display (from [103,

Fig. 1]). The tactile display has five air chambers under a 0.3-mm

silicone membrane in contact with the finger.

with force displays are unremarkable. Additional research
is needed to explore ways that information can be trans-
mitted effectively through force-feedback devices.

D. Information Transmission Using Other Stimuli
A few studies evaluated the IT for other types of haptic

stimuli. Lee and Lee [105] developed a prototype that
stimulated the skin with compressed air delivered through
four nozzles placed on the wrist or neck. Two successive
air pulses indicated directional information (top, left, etc.).
The IT was 1.35 bits on the wrist and 1.52 bits on the
neck [105]. Wilson et al. [106] developed a thermal dis-
play using two Peltier modules on the palm. By control-
ling the heat intensity and temperature-change direction
(increasing or decreasing), they showed an IT of 1.26 bits
for thermal identification. Singhal and Jones [107] varied
the direction, amplitude, and rate of change in tempera-
ture using a thermal display worn on the volar side of the
wrist. They reported an IT of 2.13 bits for the identification
of thermal patterns [107]. Like force displays, the infor-
mation capacity of pneumatic and thermal devices awaits
further investigation.

IV. C O N C L U D I N G R E M A R K S A N D
G U I D E L I N E S
The literature on the Tadoma tactual speech reception
method used by individuals who are both deaf and blind
provides an existence proof that the sense of touch is
capable of receiving information as complex as speech
at a near-normal rate [6], [108]–[111]. The information
rate achievable by the Tadoma users has been shown
to be 12 b/s [5], setting a high bar to be achieved by
any haptic devices. The present survey article set out
to review the literature on haptic interfaces that reports
performance in terms of information transmission, a metric
that transcends the differences in the physical parameters
delivered by human–machine interfaces. We argue that this
information-theoretical approach to interface design and
human performance assessment provides a unified means
for comparing human information-processing performance
through not only the haptic but any other sensory chan-
nel. Due to the fact that most engineering professionals

Table 1 Guidelines for Maximizing Information Transmission

are not familiar with psychophysical methods, in gen-
eral, and assessment of information transmission with
humans, in particular, we have also provided a tutorial on
absolute identification experiments that are typically used
for estimating channel capacity. As far as we are aware,
our tutorial contains the most comprehensive treatment
of this topic, including the many practical issues to be
considered in conducting a successful absolute identifica-
tion experiment.

When we started this literature survey, we sought to
find empirical evidence of strategies for high information
transmission and high IT rate. We did not find many
examples of IT rates, presumably due to the difficulties
associated with training participants to become efficient at
receiving a long sequence of stimuli. We suggest the use of
an AXB paradigm for assessing the IT rate without long-
term training and hope that new methods and results will
emerge from this fertile and challenging research area.

As for strategies for achieving high IT, we sought evi-
dence and indeed found ample data that supported strate-
gies #1 and #2 in Table 1: Use lots of dimensions to
create a rich information display, and use few levels per
dimension to create distinct stimuli. Six decades ago,
Geldard [112] wrote about “some neglected possibilities
of communication” through the skin. He discussed the
possibility of having “building blocks” along the continua
of tactual perception so that appropriate stimulus arrays
can be selected for coding given the nature of the mes-
sages to be communicated. The recommended dimensions
for mechanical vibrations included locus, intensity, dura-
tion, and frequency. Additional possible dimensions were
intensity as a function of time, waveform variations, and
spatially discrete loci. The studies covered in this literature
review provide further evidence that Geldard’s recommen-
dations have withstood the test of time.

In addition, we found strong evidence that haptic stim-
uli involving movement illusions can lead to higher IT
than those that do not. Traditionally, tactors are turned
on or off and the locations of the tactors and their
ON/OFF states are used to convey information to a human
user. Recently, more researchers are using perceptual illu-
sions such as sensory saltation [26], [113] and apparent
motion [68], [85] on multiple tactors to deliver stimuli
that are perceived to be moving across the skin surface.
Such stimuli can be used to encode additional properties
such as movement direction and distance that are quite
salient. For example, a recent study used only four tac-
tors stimulating the index and ring fingers of two hands
(see Fig. 9) [60]. It demonstrated a high IT of 7.02 bits
with distinct spatiotemporal vibration patterns that con-
tained illusory movement sequences among the four tactor
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Fig. 15. IT values reported in previous studies with haptic stimuli. See Table 2 for the sources of the data points plotted here.

locations, and with vibrations at two durations and two
frequencies. Therefore, we add to Table 1 strategy #3: Use
illusory movement patterns to create vivid and memorable
stimuli that are easy to learn and remember.

From the literature reviewed in Section III, a majority of
research on haptic communication relied on tactile stimuli
owing to the simplicity of implementation, ease of use,
extendibility to multiple channels and flexible form factor.
Fig. 15 visualizes the ITs from the literature on tactile
stimuli as a function of: 1) the number of temporal and
intensive dimensions (e.g., signal amplitude, frequency,
duration, amplitude modulation, rhythm, etc.); 2) the
number of tactors at different locations; and 3) the use
of movement illusions (blue circles) or not (red squares).
The sources for the data points plotted in Fig. 15 are listed
in Table 2, in the order of their appearance from left to
right in the data plot. One can observe a general trend
of increasing IT as the number of temporal and intensive
dimensions increases. IT does not increase significantly as
the number of tactors at different locations increases. This
may be partly attributed to the poor numerosity judgment
on the skin [114]–[116]. For example, Gallace et al. [114]
placed seven tactors on the torso, forearms, and lower
legs in nonsymmetric positions, and asked participants to
report the perceived number of tactors on each trial. The
overall numerosity judgment performance was quite poor:
errors were recorded when only one tactor was activated,
above 20% when two tactors were activated and above
50% when the number of tactors simultaneously activated
was above 2.

In comparison, stimuli that use movement illusions
(blue circles in Fig. 15) tend to result in higher ITs

compared with red squares given similar numbers of tem-
poral and intensive dimensions and of tactors at different
locations. Two studies with exceptionally high information
transfers are highlighted in Fig. 15. The highest IT with
stimuli that do not use movement illusions is 6.50 bits,
reported by Tan et al. [10] using the Tactutor that delivered
motional, fluttering, and vibrotactile sensations to multiple
digits. The highest IT with stimuli that use movement
illusions is 7.02 bits, reported by Park et al. [60] that stim-
ulated the thumbs and index fingers of both hands using
spatiotemporal stimulation patterns. The data presented
in Fig. 15 provide ample empirical evidence that supports
the guidelines presented in Table 1.

Our guidelines are generalizable to other types of haptic
stimuli and other sensory modalities. The research on hap-
tic communication using stimuli that involve skin stretch,
force, air pressure, and temperature, etc. does not provide
sufficient data for us to draw useful general guidelines
at the present time. We encourage and hope for future
research endeavors that will fill this gap in knowledge.

We end this tutorial and survey article with a recent
success of devising a skin-based speech communication
system that encodes the 39 English phonemes into distinct
and meaningful vibrotactile stimulation patterns deliv-
ered through a TActile Phonemic Sleeve (TAPS) system,
a 24-tactor array placed on the forearm [117]–[121].
The survey results presented in this article provided
the guidelines for the most efficient and fastest route
to designing vibrotactile phonemic codes and training
people to receive English words on the skin. In devel-
oping TAPS, we used multiple dimensions (frequency,
waveform, duration, location, amplitude modulation), few
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Table 2 Sources for Data Points in Fig. 15, in the Order of Their Appearance From Left to Right

levels per dimension (mostly 2), and movement illu-
sions for encoding (the longer) vowels. Our results by
Reed et al. [119] demonstrated that people can indeed
learn the 39 haptic symbols for phonemes with a mean
recognition rate of 86% correct within one to four hours
of training. Impressively, owing to the strategy of encoding
consonants at specific locations and encoding vowels with
spatiotemporal illusory movement patterns, our partici-
pants rarely confused a consonant with a vowel or vice
versa [119]. Our recent results on word recognition per-
formance by Tan et al. [121] showed that among a total

of 51 participants, the best participants were able to
learn 500 English words with an average rate of one
English word per minute. In addition to revising the
haptic symbols for increased transmission rates [120],
two trained participants have started sending short text
messages to each other using a text-to-speech (TTS)
front-end to TAPS. The findings from this ongoing research
project will shed light on the continuous use of TAPS
in terms of learning time, possible after-effects, and
the ultimate information transmission rate that can
be achieved.
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We hope that the methodology and guidelines pre-
sented in this article will stimulate further research
in the use of an information-theoretic framework to
assess human performance, and lead to new insights on
increasing information transmission with tactile, haptic,
or other multisensory and multimodal human–machine
interfaces.
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