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Abstract: Electrochemical biosensors promise a simple method to measure analytes for both point-of-
care diagnostics and continuous, wearable biomarker monitors. In a liquid environment, detecting
the analyte of interest must compete with other solutes that impact the background current, such as
redox-active molecules, conductivity changes in the biofluid, water electrolysis, and electrode fouling.
Multiple methods exist to overcome a few of these challenges, but not a comprehensive solution.
Presented here is a combined boron-doped diamond electrode and oil–membrane protection approach
that broadly mitigates the impact of biofluid interferents without a biorecognition element. The
oil–membrane blocks the majority of interferents in biofluids that are hydrophilic while permitting
passage of important hydrophobic analytes such as hormones and drugs. The boron-doped diamond
then suppresses water electrolysis current and maintains peak electrochemical performance due
to the foulant-mitigation benefits of the oil–membrane protection. Results show up to a 365-fold
reduction in detection limits using the boron-doped diamond electrode material alone compared with
traditional gold in the buffer. Combining the boron-doped diamond material with the oil–membrane
protection scheme maintained these detection limits while exposed to human serum for 18 h.

Keywords: biosensors; membranes; diamond; redox; interferents; foulants

1. Introduction

Significant progress has been made towards establishing electrochemical biosensors
in health-monitoring systems, yet only a few biosensors other than glucose monitors have
found significant commercial application [1]. Most analytes outside of glucose and alike
metabolites, such as proteins and hormones, maintain much lower biological concentrations
than is detectable by electrochemical biosensors in their current state [2–4]. A key issue
for the detection of low concentration analytes is the background signal present from
both water electrolysis as well as other redox-active solutes, such as NADH and FADH2,
inherently present in biofluids [5–7]. Furthermore, fouling in real biofluids also changes the
voltage drop at the electrode surface, thus reducing the observed current and its apparent
biosensor signal. Even perfectly selective probes, such as enzymes, do not solve this issue,
where background interference current limits operation to analyte concentrations in the
µM to mM range (or higher). This, in part, explains the limitation of enzymatic sensors to a
subset of high concentration metabolites [6,7].

Due to all these challenges, there exists a fundamental gap between biosensors and
their application for real-world use. However, if background interference current from
solutes and water can be minimized, even nanomolar detection could be possible with
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the existing enzymatic detection approaches. More commonly, however, research is fo-
cused on tedious probe development, which frequently limits its benefits to a few select
target analytes. Ideally, any such solution that resolves background interference would
be highly generalizable (generically working against the solvent and most of its solutes).
Herein we provide methods to solve both—solute and solvent interactions—and lower the
detection limits for established biosensors by shifting the research focus to versatile surface
chemistries. We present a combined boron-doped diamond electrode and oil–membrane
protection approach (Figure 1) that encapsulates the biosensor in its ideal environment,
forming a semipermeable barrier to mitigate the matrix effects of the surrounding biofluid.
Simply stated, the boron-doped diamond electrode surface suppresses the background
interference current due to water electrolysis. At the same time, the oil–membrane inter-
face blocks the majority of interferents in the blood that are hydrophilic and unable to
permeate easily through the hydrophobic oil–membrane [8,9]. Simultaneously, hydropho-
bic analytes may pass through the oil–membrane to the inner biosensor region. Analyte
permeability depends primarily on oil–water partitioning properties, as defined by the
partition coefficient K. Under ideal conditions, the diffusing species will possess a posi-
tive (hydrophobic) K-value so as to energetically favor diffusing into the oil–membrane
and possess a low—but not negative—K-value so that it diffuses back into the aqueous
biosensor region. As a result, analyte detection is limited to semihydrophobic analytes
that can traverse the oil–membrane, such as steroid hormones and orally administered
small-molecule drugs, which themselves represent large sets of clinically relevant analytes
in blood [10]. Our results demonstrate > 300-fold reduction in the limit of electrochemical
detection in human serum without a biorecognition element but also reveal a challenge in
boron-doped diamond electrode reproducibility. With further optimization, boron-doped
diamond and oil–membrane protection should enable enzymatic and other electrochemical
sensors with significantly lower detection limits in raw biofluids.
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Figure 1. Combined oil–membrane protection and boron-doped diamond (BDD) approach for
mitigating biofluid effects. (a) The oil–membrane protection scheme encapsulates the sensor within its
ideal buffer environment separate from the biofluid, simultaneously blocking unwanted hydrophilic
interferents (i.e., foulants, redox-active species) and partitioning hydrophobic analytes. (b) Boron-
doped diamond reduces solvent interactions by suppressing kinetically slow inner-sphere, solvent-
based electron transfer while facilitating comparatively faster analyte electron transfer, thereby
increasing sensor functionality in fluid environments. As a result, boron-doped diamond displays a
signal gain increase, background current reduction, and solvent window broadening (solid red line)
compared to traditional electrode materials (dotted red line).
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2. Background and Limitations of Boron-Doped Diamond Electrodes

Solvent and solute effects are inherent challenges to biosensing in raw biofluids [5–7].
These effects cause an increase in the background current, thereby increasing the limit of
detection (LOD) of the analyte of interest. Gold-based electrodes have been the benchmark
for biosensor development as their surface chemistry allows for facile binding of a variety
of sensing moieties while simultaneously possessing both conductivity and chemical stabil-
ity [11,12]. However, these same properties that make gold a versatile biosensor electrode
material also allow for random absorption of unwanted species present in all biofluids.
In addition, gold exhibits a strong electrolysis current of water. Water electrolysis current
benefits from the proximity of multiple water molecules covalently bound at electrically
active sites for water oxidation–reduction reaction to occur; this is inherent in most com-
monly used electrodes. In addition to water, there are numerous redox-active background
interferents in the blood that also negatively impact the limit of detection [13,14].

Carbon-based electrodes have become increasingly popular due to their resistance
to surface binding, their wide potential windows for measurement, and broad versatility.
Standing out amongst these electrodes is the conductive boron-doped diamond, boasting
the broadest potential window of any known material. Boron-doped diamond exhibits
high chemical stability and resistance to surface binding, making it an ideal candidate for
biosensor applications [15,16]. These resistant properties arise from its inert crystalline
diamond structure, which is then doped with boron impurities to induce metal-like con-
ductivity [17]. As boron-doped diamond substrates are grown from the bottom up, their
properties—dopant concentration, sp2 content, and surface termination—can be tuned
for specific applications. For example, increasing nondiamond-carbon sp2 content at the
surface greatly enhances electrocatalytic activity compared with the far more inert diamond
sp3 hybridization. This enables electrochemical detection of redox-active species previously
insensitive to detection, such as dissolved oxygen and carbon dioxide in arterial blood
samples of hospitalized patients [18–20]. However, an increase in electrocatalytic activity
also enhances electron transference, including solvent and solute interactions, thereby
narrowing the potential window of measurement and increasing background current [17].
Therefore, boron-doped diamond properties can be tuned so that solvent-specific inner-
sphere interactions are minimized while maintaining the electrocatalytic activity of the
target analyte.

The current state-of-the-art work for boron-doped diamond functionality in biofluids
remains contradictory. Literature has shown boron-doped diamond displays significant
improvement in detection limits of a variety of analytes and appears to be unaffected by
the presence of biofluid, maintaining sensor performance for up to several hours [21,22].
However, others have shown that boron-doped diamond is not immune to the performance-
reducing effects of biological fluids [23–25]. Conventional methods of mitigating these
effects involve the covalent binding of a protective polymer layer. Poly(ethylene glycol)
(PEG) has often been referred to as the standard antifouling polymer, but its application to
boron-doped diamond surfaces is much more intensive compared to self-assembling mono-
layer (SAM) on gold surfaces [26,27]. The immobilization of molecules to boron-doped dia-
mond generally requires an amine-terminated surface and reaction with a crosslinker. [28].
Others have taken advantage of “click” chemistry by modifying the boron-doped diamond
surface with either an alkyne or azide termination to rapidly adjoin biomolecules to the sur-
face [29]. A significant disadvantage of these methodologies is the dependence on surface
functionalization, thereby altering the potentially advantageous properties of boron-doped
diamond, and therefore the detection limits.

In this work, instead of relying on the boron-doped diamond electrode for all the
desired functionality in a biosensor placed in blood, we allow the boron-doped diamond
to remain as a bare surface for suppression of water electrolysis current while relying on a
protective oil–membrane to block both foulants and most redox-active solutes found in the
blood. For these reasons, the results will successfully show a decrease in detection limit by
>300 times even in human serum.
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3. Materials and Methods
3.1. Reagents and Materials

All reagents, oils, and human serum (from male AB clotted whole blood) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). The polycarbonate track-etch (PCTE)
membranes (1 µm diameter pore size, PVP-free) were purchased from Sterlitech Corpo-
ration (Kent, WA, USA). Samples of Kapton® polyimide single-sided tape and Brampton
marine epoxy were purchased from Amazon (Seattle, CA, USA). The 1.25 mm thick acrylic
electrode backing was purchased from McMaster-Carr (Princeton, NJ, USA). FluoroPel
Plastics copolymer solution was purchased from CYTONIX (Beltsville, MA, USA). Gold
rod working (2 mm gold diameter), silver/silver chloride reference, and platinum counter
electrodes were purchased from CH Instruments (Austin, TX, USA). Fisher Scientific 4M
potassium chloride saturated with silver chloride was used as the reference electrode filling
solution (Waltham, MA, USA). Conductive O-terminated boron-doped polycrystalline
diamond films on conductive silicon were obtained from Diamond Foundry (San Francisco,
CA, USA). An electrode polishing kit was purchased from eDAQ (Colorado Springs, CO,
USA). All experiments were conducted in ultrapure water (resistivity = 18.2 MΩ·cm), and
titration solutions were prepared fresh daily.

3.2. Apparatus

Electrochemical experiments, including cyclic voltammetry (CV) and two-step chrono-
coulometry (CC), were performed on a CH Instruments Models 600E Series Potentio-
stat/Galvanostat (Austin, TX, USA). A Four Dimensions Six-Point-Probe Meter 101C was
used to measure sheet resistivity of the boron-doped diamond surface. Laser-cut mate-
rials were crafted using a Universal Laser System VLS3.50 (Scottsdale, AZ, USA), and
3D-printed materials were assembled on a FormLabs Form 2 (Somerville, MA, USA) using
FLGPCL02 clear resin.

3.3. Electrode Storage and Preparation

Gold rod electrodes were stored in ambient air at room temperature. These electrodes
were first physically cleaned using both 0.30 µm and 0.05 µm alumina slurries on polishing
pads, according to manufacturer instructions, for one minute each. Next, the electrodes
were electrochemically cleaned via cycling in 0.5 M NaOH (−1.0 to −1.6 V, 120 scans) and
0.5 M H2SO4 (0 to 1.6 V, 120 scans) successively.

Boron-doped diamond electrodes were fabricated by first applying a layer of gold
on one edge of a piece of the boron-doped diamond-coated conductive silicon wafer.
To create a well-defined electrode area, the boron-doped diamond material surface was
then insulated by carefully pressing a section of single-sided Kapton® polyimide tape
containing a 2-mm diameter opening for measurement, leaving the gold-sputtered portion
uncovered on the opposite end of the opening. The insulated boron-doped diamond
material was adhered to a 1.25-mm acrylic backing, and its exposed sides were covered
using marine epoxy. A labeled photograph of the final electrode is provided with the
online supplementary material (Figure S1). The boron-doped diamond material and
electrodes were stored at room temperature and under nitrogen. Due to the delicate boron-
doped diamond thin-film, these electrodes were exclusively electrochemically cleaned in
0.5 M H2SO4 under an extended potential range (0 to 2.2 V, 120 scans) as recommended for
oxygen-terminated boron-doped diamond materials [30]. Longer cleaning cycles were not
performed as the marine epoxy used to secure the electrode components softened in the
acidic environment. Boron-doped diamond material was stored under nitrogen at room
temperature.

3.4. Electrochemical Measurements

Initial CV curves were performed (100 mV/s scan rate) to determine the potential
window of the electrode material, background current, and suitable redox potentials of
the redox-active probes (potassium hexacyanoferrate (II/III) and hexaammineruthenium
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(II/III) chloride). Signal change as a function of redox-active probe concentration was
monitored using two-step chronocoulometry (30-s step). The applied redox potentials in
potassium hexacyanoferrate (II/III) tests were −0.1 and 0.4 V for gold electrodes and −0.5
and 0.8 V for boron-doped diamond electrodes. The applied redox potentials in hexaam-
mineruthenium (II/III) chloride tests were −0.1 and 0.4 V for both gold and boron-doped
diamond electrodes. A three-electrode system—gold/boron-doped diamond working, plat-
inum counter, and silver/silver chloride reference electrodes—was employed and placed
in a laser-cut electrode mount to maintain electrode-spacing consistency between tests. All
tests were performed individually using new or cleaned working electrodes in triplicate.
Gold and boron-doped diamond electrodes underwent five baseline conditioning steps
at their designated chronocoulometric potentials prior to the start of titration. The total
number of scans applied to each new electrode did not exceed 15 as signal outcomes were
increasingly affected by batch-to-batch variability with the boron-doped diamond material
(Figures S2 and S3).

3.5. Oil–Membrane Composite Protection

A 3D-printed U-boat setup was utilized to investigate the protective performance of
separating the boron-doped diamond electrode from the biofluid by an oil-impregnated
track-etch membrane. A labeled photograph of the U-boat setup is provided with the
online supplementary material (Figure S4). The U-boat was coated with FluoroPel 1601 V
fluoropolymer to minimize nonspecific surface adsorption to or into the plastic. The
membrane was soaked in the desired oil (no-oil or castor oil) and placed between the two
fluid compartments of the U-boat. Each fluid compartment possessed an O-ring that held
the membrane in place. The U-boat setup was secured by a bar clamp and examined for
leaks. 1× PBS was placed in one chamber (buffer side), and human serum was placed in the
opposite chamber (biofluid side). The setup was incubated for 18 h to allow adequate time
for contents to diffuse and reach a general state of equilibrium. Following the incubation
period, contents on the buffer side were titrated with the redox-active probe.

3.6. Analysis of Titration Data

The raw chronocoulometry data was exported from a saved text file from the CH
Instrument (Austin, TX, USA) Software. The signal was calculated as a change in charge
between 0 and 30 s of the oxidation step (∆Charge). ∆Charge values for each of the titration
point concentrations were plotted in terms of the ‘∆Charge vs. Concentration’ of the redox-
active probe. A linear trendline was applied to the linear region of the plotted data points
(R2 > 0.99). The limit of detection was defined as 3 ∗ σ/m, where σ is the standard deviation
of the blank (n = 4) and m is the slope of the linear trendline. Electrode sensitivity was
defined as the trendline slope. Each experiment included four independent trials (n = 4).
As this is a comparative study, a more rigorous analytical analysis was not performed due
to the high test-by-test variability. The limit of detection and sensitivity was expressed in
terms of ranges to encompass all measurement fluctuations.

4. Results and Discussion
4.1. Boron-Doped Diamond Displays Wide Potential Window

Our first objective was to broadly assess the electrocatalytic properties of our spe-
cific boron-doped diamond sample and get a sense of how its reactivity compares to
expected boron-doped diamond values. Unmodified standard gold electrodes were used
as a means of comparison, considering their well-characterized susceptibility to solvent
and solute effects [31–33]. With regard to properties, we specifically focused on the span
of the potential window and the background current density as it directly relates to these
solvent and solute interactions. A cyclic voltammetry curve for boron-doped diamond
and gold electrodes was generated in both buffer (1× PBS, pH 7.4) and human serum
(Figure 2). A larger magnitude of the boron-doped diamond potential window is imme-
diately apparent compared to the gold electrode in both buffer (1× PBS) and biofluid



Sensors 2021, 21, 8063 6 of 13

(human serum) environments (Figure 2). This observation remains in agreement with
literature where the potential window of the boron-doped diamond often spans a range of
2 V or greater, depending on its composition [16]. Closer inspection of the current density
shows boron-doped diamond at a consistently reduced background across the length of the
window, suggesting low environmental interferences as well as depressed electrocatalytic
activity compared to gold. Sources of these environmental interferences may arise from
redox-active biomolecules known to exist in serum, such as NADH, FADH2, monoamine
neurotransmitters, uric acid, and other redox-active analytes, which contribute to the mea-
sured current. In addition, the anodic and cathodic peaks inherently associated with gold
in both cyclic voltammetry curves generate further interfering background current. We
confirmed the semiconductive property of boron-doped diamond from sheet resistivity
measurements (3 to 8 Ω-cm). Again, this information coincides with literature results as
boron-doped diamond is innately more inert but maintains conductive properties [15,16].
Interestingly, both gold and boron-doped diamond materials show background current
suppression when placed in human serum (Figure 2b). This current suppression suggests
non-specific surface adsorption that impedes electron transfer kinetics, causing a decrease
in current density and potential window broadening [34]. How these biofluid properties
affect sensor performance are examined in the following sections.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 14 
 

 

4. Results and Discussion 
4.1. Boron-Doped Diamond Displays Wide Potential Window 

Our first objective was to broadly assess the electrocatalytic properties of our specific 
boron-doped diamond sample and get a sense of how its reactivity compares to expected 
boron-doped diamond values. Unmodified standard gold electrodes were used as a 
means of comparison, considering their well-characterized susceptibility to solvent and 
solute effects [31–33]. With regard to properties, we specifically focused on the span of the 
potential window and the background current density as it directly relates to these solvent 
and solute interactions. A cyclic voltammetry curve for boron-doped diamond and gold 
electrodes was generated in both buffer (1× PBS, pH 7.4) and human serum (Figure 2). A 
larger magnitude of the boron-doped diamond potential window is immediately appar-
ent compared to the gold electrode in both buffer (1× PBS) and biofluid (human serum) 
environments (Figure 2). This observation remains in agreement with literature where the 
potential window of the boron-doped diamond often spans a range of 2 V or greater, de-
pending on its composition [16]. Closer inspection of the current density shows boron-
doped diamond at a consistently reduced background across the length of the window, 
suggesting low environmental interferences as well as depressed electrocatalytic activity 
compared to gold. Sources of these environmental interferences may arise from redox-
active biomolecules known to exist in serum, such as NADH, FADH2, monoamine neuro-
transmitters, uric acid, and other redox-active analytes, which contribute to the measured 
current. In addition, the anodic and cathodic peaks inherently associated with gold in both 
cyclic voltammetry curves generate further interfering background current. We con-
firmed the semiconductive property of boron-doped diamond from sheet resistivity meas-
urements (3 to 8 Ω-cm). Again, this information coincides with literature results as boron-
doped diamond is innately more inert but maintains conductive properties [15,16]. Inter-
estingly, both gold and boron-doped diamond materials show background current sup-
pression when placed in human serum (Figure 2b). This current suppression suggests 
non-specific surface adsorption that impedes electron transfer kinetics, causing a decrease 
in current density and potential window broadening [34]. How these biofluid properties 
affect sensor performance are examined in the following sections. 

 
Figure 2. Cyclic voltammetry of boron-doped diamond (BDD) and gold electrodes in (a) 1× PBS and 
(b) human serum. Boron-doped diamond displayed extended solvent windows and reduced back-
ground in both fluids compared to gold. 

4.2. Boron-Doped Diamond Outperforms Gold in Buffer 
Our next objective was to evaluate boron-doped diamond electrode performance 

within an ideal environment. This provided us with benchmark values for comparison 
when the electrode is placed in a raw biofluid. In this case, our selected “ideal” environ-
ment was 1× PBS (pH 7.4) as it is a commonly used buffer in biological applications and 
an established matrix for biosensor characterization. Performance was assessed in terms 
of analytical characteristics, specifically the detection limit and sensitivity of the redox-

Figure 2. Cyclic voltammetry of boron-doped diamond (BDD) and gold electrodes in (a) 1× PBS
and (b) human serum. Boron-doped diamond displayed extended solvent windows and reduced
background in both fluids compared to gold.

4.2. Boron-Doped Diamond Outperforms Gold in Buffer

Our next objective was to evaluate boron-doped diamond electrode performance
within an ideal environment. This provided us with benchmark values for comparison
when the electrode is placed in a raw biofluid. In this case, our selected “ideal” envi-
ronment was 1× PBS (pH 7.4) as it is a commonly used buffer in biological applications
and an established matrix for biosensor characterization. Performance was assessed in
terms of analytical characteristics, specifically the detection limit and sensitivity of the
redox-active species hexacyanoferrate (II/III). We chose hexacyanoferrate (II/III) as it is
an inner-sphere redox probe and is, therefore, more susceptible to surface composition
and interferences. We intended to monitor surface electrode behavior in differing fluid
environments; therefore, we elected a chronocoulometry method to measure the change in
surface charge generated by the probe and monitor the effects of possible interferents and
absorbed species.

Results obtained for titration of hexacyanoferrate (II/III) in 1× PBS are shown in
Figure 3. Initially, we observed more significant variability in the measurements for boron-
doped diamond than in gold. This makes sense since the boron-doped diamond substrate
is not a pure crystalline structure, thus causing batch-to-batch variations in the dopant
concentration and polycrystallinity between fabricated electrodes, and therefore variations
in the electrocatalytic properties. This was confirmed by the observed fluctuations in
resistivity measurements across the surface of the boron-doped diamond material. In
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connection with sensitivity, as defined by the slope of the linear regression curve, the gold
electrode surpassed boron-doped diamond with a sensitivity of 50.8 ± 0.6 ∆C/mM and
22.7 ± 2.6 ∆C/mM, respectively. However, when titration results were plotted in terms
of ‘Percent Signal Gain (%SG) vs. Concentration’, the defined sensitivity for boron-doped
diamond was 3400 ± 1500 %SG/mM, over 40 times greater than that of the gold electrode
(161 ± 30 %SG/mM) (Figure S5). The heightened sensitivity in terms of percent signal gain
arises from the lower baseline signal of a boron-doped diamond. Higher concentrations of
hexacyanoferrate (II/III) generated a signal plateau in a boron-doped diamond that we
speculate is due to the saturation of conductive boron sites within the diamond structure.
For this reason, higher redox probe titration concentrations for a boron-doped diamond
in 1x PBS were not plotted. The limit of detection calculated from the plotted data shows
boron-doped diamond at a LOD of 1.03 ± 0.43 µM, whereas gold displayed a much broader
and elevated range of 116 ± 63 µM. This equates to an average 140-fold reduction in the
detection limit and a 365-fold reduction between the highest gold and lowest boron-doped
diamond electrode LOD values. Regarding biosensors applications, this level of detection
limit reduction could mean that previously ineffective sensors systems restricted by analyte
concentration barriers could now function at biologically relevant ranges. Additionally, the
apparent boron-doped diamond saturation would not limit practical applications as most
clinically relevant analyte biological reference ranges fall below the mM regime.
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4.3. Boron-Doped Diamond Performance Significantly Reduced in Biofluid

With an “ideal” benchmark established for boron-doped diamond, performance was
next evaluated within a realistic biofluid environment. We chose human serum as it
contains redox reactive interferents (e.g., NADH, acetic acid, uric acid, and creatine) as
well as an abundance of biofouling proteins such as albumin. An identical titration and
calculation procedure was used, as previously stated in the buffer studies. Obtained results
for titration of hexacyanoferrate (II/III) redox probe in human serum are shown in Figure 4.
A comparison of electrode analytical performance characteristics in both buffer and biofluid
environments can be found in Table 1 at the end of this section.
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Table 1. Summary of analytical performance characteristics between boron-doped diamond and gold
electrodes for hexacyanoferrate (II/III) titration.

Environment Electrode Sensitivity
(∆C/mM) LOD (µM) LOD Fold

Reduction (High)

1× PBS
BDD 22.7 ± 2.6 1.03 ± 0.43 142 (365)
Gold 50.8 ± 0.6 116 ± 63

Serum
BDD 0.97 ± 0.53 83 ± 47 —
Gold 36.0 ± 1.5 15.4 ± 3.8

Focusing first on the similarities, boron-doped diamond test-by-test variability car-
ries over from the buffer titration data, while gold shows more consistent measurements.
However, this is the only association that can be made between buffer and serum electrode
performance. In fact, in human serum, the gold electrode material surpasses boron-doped
diamond in both detection limit and sensitivity. Boron-doped diamond displayed a detec-
tion limit of 83 ± 47 µM versus 15.4 ± 3.8 µM for gold—a 6-fold reduction in detection
limit on average. In addition, the sensitivity of boron-doped diamond and gold decreased
to 0.97 ± 0.53 ∆C/mM and 36.0 ± 1.5 ∆C/mM, respectively, compared with buffer mea-
surements. However, sensitivity in terms of signal gain increased for the gold electrode in
human serum (1300 ± 280 %SG/mM) (Figure S6). This decrease in sensitivity of boron-
doped diamond compared to gold suggests that this electrode material is more susceptible
to surface fouling and favors fouling by larger solutes such as albumin. These results were
further supported by cyclic voltammetry measurements of the redox probe in buffer and
serum (Figure S7). The cyclic voltammogram for the gold electrode displayed significant
peak current intensity reduction and peak potential broadening but maintained a visi-
ble current response and reversibility. In contrast, the boron-doped diamond electrode
exhibited a sharp reduction in peak current density to near baseline levels. Since hexa-
cyanoferrate (II/III) detection by boron-doped diamond requires surface interaction for
electron transfer to occur, the presence of interfering species at its surface would be highly
detrimental to sensor performance. For this reason, it is imperative that boron-doped
diamond remains in an ideal fluid, protected from a raw biofluid environment. This need
for protection directly motivated our use of the oil–membrane sensor encapsulation scheme
of the boron-doped diamond electrode.

4.4. Oil–Membrane Protection Maintains Boron-Doped Diamond Performance in Biofluids

As previously shown in Figure 3, the electrode performance of boron-doped diamond
outperforms gold in relation to detection limit by a 140-fold reduction under ideal condi-
tions. However, as shown in Figure 4, these beneficial sensor properties are completely
diminished in the presence of biofluid. In biofluids, the majority of the most problematic
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interfering solutes exhibit hydrophilic properties, including salts, acids, bases, and larger
molecules such as proteins that must be hydrophilic to maintain their solubility in biolog-
ical matrices. Generalizing the problematic solutes as hydrophilic theoretically presents
a significant opportunity for filtering out these species by implementing a hydrophobic
protective barrier for sensors systems. Here we implement an oil-impregnated polycar-
bonate track-etch (PCTE) membrane as a semipermeable hydrophobic filter to mitigate
the diffusion of hydrophilic interfering species [35]. The oil–membrane conditions used
during this study include no-oil as a control and castor oil as a robust hydrophobic barrier.
Castor oil has been shown to maintain buffer conditions over a 12-h timespan, likely due
to its high viscosity and high water-octanol partition coefficient that considerably slow the
passage of hydrophilic species [35]. Other oil–membrane composites were not investigated
as our goal was to simply demonstrate the ability of the oil–membrane in maintaining
sensor performance in biological fluids.

The analytical performance results for the boron-doped diamond electrode success-
fully validate the protection ability of the oil membrane from the negative effects of
biofluid environments. The oil–membrane protection scheme maintains boron-doped
diamond performance within a detection limit of 1.8 ± 1.3 µM (Figure 5a), which equates
to an 84-fold average improvement and up to a 247-fold reduction under ideal circum-
stances, in detection limit compared with boron-doped diamond directly in human serum
(Figure 5b). These analytical performance results, while not a complete restoration to
“ideal” fluid values, nonetheless outperform the gold electrode based on detection limit.
Electrode sensitivity also increased to 7.8 ± 2.8 ∆C/mM from 1.19 ± 0.45 ∆C/mM in
human serum (Figure 5). Looking at sensitivity in terms of percent signal gain from base-
line, we see a sensitivity range (1100 ± 340 %SG/mM), which approaches ideal buffer
conditions (Figure S8a). Hexacyanoferrate (II/III) titration results for the membrane con-
taining no oil confirm that membrane protection is dependent on the presence of the oil
phase (Figure S9b). By removing the oil, electrode performance is reduced to raw biofluid
levels (Figure S9a). It should be noted that the increase in the variability of the results
upon implementation of the oil–membrane is understandable since the composition of
the oil-impregnated membrane itself possesses inherent inconsistencies between replicate
tests (i.e., oil layer thickness and consistency). These conditions could be improved by
incorporating a membrane substrate that interacts more strongly with the oil phase so that
the oil remains more reliably within its pores. Additionally, optimization of the membrane
substrate and oil composition for its specific application would enhance its protective
abilities up to the extent of ideal environment conditions. Such improvements would, in
essence, shrink the gap between new biosensor discovery and application. These analytical
performance results for the boron-doped diamond in conjunction with the oil–membrane
protection scheme using hexacyanoferrate (II/III) are summarized in Table 2.
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Table 2. Summary of the analytical performance of boron-doped diamond with and without inte-
grated oil–membrane protection in human serum for hexacyanoferrate (II/III) titration.

Membrane Sensitivity (∆C/mM) LOD (µM) LOD Fold Reduction (High)

Castor Oil 7.8 ± 2.8 1.8 ± 1.3 84 (247)

No Oil 1.19 ± 0.45 82 ± 43

We have shown that the oil–membrane protection scheme combined with the boron-
doped diamond electrode mitigates biofluid interferences and maintains its superior analyt-
ical performance using hexacyanoferrate (II/III). To further confirm these results, we also
chose hexaammineruthenium (II/III) as a redox-active probe in our remaining performance
assessments. Immediately noticeable in the titration results in Figure 6a is the positive shift
of the gold electrode titration curve for hexaammineruthenium (II/III). This is likely due
to the position of the hexaammineruthenium (II/III) redox potentials centered on −0.4 V
to −0.1 V (vs. Ag/AgCl), directly within the region in which gold displays heightened
background current (Figure 2a). The boron-doped diamond material suppresses these
fluid interactions and therefore does not suffer from high background current interferences.
As a result, the limit of detection of hexaammineruthenium (II/III) titration in buffer was
1.6 ± 1.2 µM for boron-doped diamond, compared to 155 ± 120 µM in gold. This difference
equates to an average of 185-fold reduction in detection limit and up to over a 300-fold
reduction under ideal conditions. Electrode sensitivity of boron-doped diamond and gold
exhibit comparable values at 62.9 ± 3.2 ∆C/mM and 52.6 ± 3.9 ∆C/mM, respectively. The
analytical performance results for hexaammineruthenium (II/III) in 1× PBS buffer are
summarized in Table 3.
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Table 3. Summary of analytical performance characteristics between boron-doped diamond and gold
electrodes for hexaammineruthenium (II/III) in 1× PBS.

Electrode Sensitivity (∆C/mM) LOD (µM) LOD Fold Reduction (High)

BDD 62.9 ± 3.2 1.6 ± 1.2 185 (303)

Gold 52.6 ± 3.9 155 ± 20

Upon placing the boron-doped diamond electrode in human serum, both analytical
performance parameters were reduced, yielding a limit of detection of 6.7 ± 3.1 µM and a
sensitivity of 48.9 ± 4.6 ∆C/mM—a far lesser magnitude compared to the inner-sphere
redox probe. These results were confirmed in cyclic voltammetry curves of the redox
probe, where peak potential and current intensity only differed slightly between buffer and
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serum measurements (Figure S10). This is likely due to the enhanced surface interactions of
hexaammineruthenium (II/III) to boron-doped diamond, which limit the impact of biofluid
interferences and fouling. Hexaammineruthenium (II/III) is not only a positively charged
redox-active probe, but its amine groups bind sp2 carbon sites, both enhancing attractive
interactions to the negatively charged O-terminated boron-doped diamond surface. In
contrast, hexacyanoferrate (II/III) is a negatively charged redox-active probe and therefore
experiences greater repulsive forces to the boron-doped diamond. Figure 6b shows a
complete reversal of biofluid effects upon oil–membrane implementation, with a limit of
detection of 7.3 ± 4.2 µM and a sensitivity of 61.5 ± 6.0 ∆C/mM. This equates to sensitivity
in percent signal gain equal to 24,000 ± 3300 %SG/mM (Figure S9b). While the advantage
of the oil–membrane protection scheme compared to biofluid under these circumstances
is less striking than the hexacyanoferrate (II/III) titration results, it shows that this dual
approach is applicable for multiple sensor systems. These analytical performance results
for the boron-doped diamond in conjunction with the oil–membrane protection scheme
using hexaammineruthenium (II/III) are summarized in Table 4.

Table 4. Summary of the analytical performance of boron-doped diamond with and without inte-
grated oil–membrane protection in human serum for hexaammineruthenium (II/III) titration.

Membrane Sensitivity (∆C/mM) LOD (µM) LOD Fold Reduction (High)

Castor Oil 61.5 ± 6.0 7.3 ± 4.2 13 (34)

None 48.9 ± 4.6 6.7 ± 3.1

5. Conclusions

In this work, we present a dual approach to mitigate both solute and solvent effects
while simultaneously improving detection limits by over 100-fold compared to traditional
electrodes by (1) employing boron-doped diamond material and (2) incorporating an oil–
membrane protection scheme. From an application perspective, our approach is highly
generalizable and presents an opportunity for current sensor systems to function in bioflu-
ids with fewer performance-diminishing interferent effects. Integrating such an approach
into a fully realized device would not require changing the sensor system itself; there-
fore, highly specific recognition elements (i.e., enzyme- and aptamer-based) could readily
leverage our demonstrated approach if they can be fabricated with a diamond-based
electrode.

We believe the most important application of the present work is to enable nM level
detection limits with enzymatic sensors. Enzymatic sensors can take advantage of the
oil–membrane hydrophobicity to enhance the detection range of target analytes and enable
sensors that can monitor lower concentration analytes using more exotic enzymes. For
example, in enzymatic sensors, the oil–membrane can be used to trap hydrophilic redox
reporters within the sensor environment while enabling the hydrophobic target analyte
to diffuse into or out of the device as needed. As the enzyme interacts with its target,
converted redox reporters from the enzyme reactions can build up within the sensor
compartment. In this way, we can trade time-resolution for sensitivity to improve the limit
of detection. To move this and other works forward, the inherent variability of the boron-
doped diamond material, as well as the oil–membrane technology, should be addressed
but already shows promising results without optimization.
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