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FAST MULTISCALE GAUSSIAN BEAM METHOD FOR
THREE-DIMENSIONAL ELASTIC WAVE EQUATIONS IN
BOUNDED DOMAINS*
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Abstract. We propose a new fast multiscale Gaussian beam method to solve the three-
dimensional elastic wave equation in a bounded domain in the high-frequency regime. We develop a
novel multiscale transform to decompose an arbitrary vector-valued function into multiple Gaussian
wavepackets with various resolutions. We consider both periodic and Dirichlet boundary condi-
tions, and we further derive various reflection rules to compute crucial multiscale Gaussian beam
ingredients so as to enforce these boundary conditions. To improve efficiency and accuracy of mul-
tiscale beam propagation, we develop a new reinitialization strategy based on the stationary phase
approximation so that we can sharpen each single beam. Such a reinitialization strategy is es-
pecially useful and necessary to treat the shear-wave reflection. Numerical examples in different
setups demonstrate correctness and robustness of the new method. We also show numerically that
the convergence rate of the proposed multiscale Gaussian beam method follows that of the classi-

cal Gaussian beam solution, i.e., O(%), where w is the largest frequency in the underlying wave

motion.
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1. Introduction. The elastic wave equation is essential for modeling wave prop-
agation and solving wave-related inverse problems in seismology [1]. Different from
the scalar acoustic wave motion, multiple wave modes simultaneously propagate in
the vectorial elastic wave motion. We propose a novel multiscale Gaussian beam
method to solve the elastic wave equation with different boundary conditions at high
frequencies in inhomogeneous media.

To mitigate dispersion errors due to high frequencies in numerical wave propa-
gation, popular direct methods, such as finite-difference or finite-element methods,
require extremely refined meshes. Therefore, some alternative methods have been
developed, such as geometrical optics (GO). Applying the usual GO ansatz to wave
equations yields an asymptotic solution in terms of a real-valued phase function and a
real-valued amplitude function; however, the amplitude function blows up at caustics,
where the phase function becomes multivalued, so that the usual GO ansatz fails at
caustics.

To resolve caustics, the Gaussian beam method as an extension of the GO ansatz
for wave equations relaxes the restriction that the phase function is real-valued. A
single Gaussian beam solution is defined in terms of quantities on a central ray so that
an elementary beam solution consists of a phase function and an amplitude function,
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both of which are globally defined, complex-valued, and approximate. Away from
the central ray path, the single beam solution decays rapidly like a Gaussian profile.
A superposition of many such single beams yields an asymptotically correct solution of
the underlying wave equation so that both the wave equation and the initial-boundary
conditions are satisfied in the high-frequency regime.

To apply the Gaussian beam method to solve wave equations, the first problem is
how to initialize beams in terms of generic initial conditions. Since Gaussian beams
essentially serve as a solution operator (wave propagator) to wave equations, we ask
the following question: can we link Gaussian beams to the recent works on the optimal
representation of the wave propagator? In fact, several frames, such as the curvelet [26,
10, 9] and the wave atom [12, 13], both of which follow the so-called parabolic scaling
principle, have been developed to optimally represent a wave propagator. We say that
a wavepacket satisfies the parabolic scaling principle if the wavelength of the typical
oscillation of this wavepacket is equal to the square of the width of this wavepacket.

Motivated by these optimal representations, the multiscale Gaussian wavepacket
transform was developed in [24] for scalar wave equations. Since the Hamiltonian of
the underlying scalar wave equation is homogeneous of degree one, which essentially
constrains the resulting Hamiltonian flow to the cosphere bundle, a Gaussian beam
satisfies the parabolic scaling principle throughout its evolution. In this paper, we
extend this idea further to treat vector-valued initial conditions for elastic wave equa-
tions so as to preserve advantages of the multiscale Gaussian wavepacket transform;
based on this vectorized multiscale transform, we further develop a fast multiscale
Gaussian beam method for elastic wave equations.

To apply the Gaussian beam method to solve initial-boundary value problems of
wave equations, the second problem is to derive reflection dynamics for wave propa-
gation in a bounded domain. Most recently in the paper [4], a novel method has been
proposed for the acoustic wave equation. Other discussions about Gaussian beam
reflections for scalar wave equations can be found in [7, 25]. However, it is more
complicated to treat beam reflections for elastic wave equations since two different
wave modes propagate simultaneously in the system. Consequently, beam reflections
in the elastic wave case need to deal with conversion of wave modes, where the mode
conversion is unique for the elastic wave equation.

To carry out long-term beam propagation for the elastic wave equation, the third
problem is how to reinitialize beam propagation efficiently. Although the beam ansatz
is capable of treating caustics, Gaussian beams will lose accuracy in long-term wave
propagation in some situations. As analyzed in [23, 24], the width of a beam may
grow exponentially during the evolution process; this implies that the beam loses
its localized significance, leading to deteriorating accuracy in the Taylor expansion
for the phase function and high cost in the beam summation. Therefore, various
methods have been developed to control the width of a single beam. One possible
approach, the so-called beam-reinitialization method, is to apply the multiscale Gauss-
ian wavepacket transform to decompose a superposed Gaussian beam solution into
Gaussian wavepackets, and the resulting Gaussian wavepackets enable us to restart
the beam propagation [24, 4]. In this paper, we propose a new beam-reinitialization
method, which is more flexible and yields an asymptotic solution to the elastic wave
equation. Instead of dealing with the superposed wavefield, the new strategy treats
each single beam individually so that we are able to develop a more efficient reini-
tialization method by using special structures of beam components and the parabolic
scaling principle.

To summarize, our new multiscale Gaussian beam method for elastic wave equa-
tions enjoys several advantages. First of all, the beam ansatz resolves caustics

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/11/21 to 35.8.11.2 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

2538 JIANLIANG QIAN AND CHAO SONG

automatically. Second, a novel multiscale Gaussian wavepacket transform is developed
to decompose generic vector-valued initial conditions. Similar to its scalar version, the
multiscale Gaussian wavepacket transform defines an optimal set of frames to char-
acterize the elastic wave propagator. Third, a stationary phase approximation based
reinitialization procedure is developed to improve the beam accuracy in long-term
wave propagation.

1.1. Related work. The existence of Gaussian beam solutions for wave equa-
tions has been known to the pure mathematics community since sometime in the
1960s [2], and these solutions have been used to obtain results on propagation of sin-
gularities in hyperbolic PDEs [25, 15]. A crucial point of beam dynamics is to have a
global solution to the Ricatti equation defining the Hessian of the phase function so
that a beam solution has a well-localized Gaussian profile globally [25, 22, 28]; conse-
quently, an essential point for Gaussian beams to prevail is that possible caustics can
be treated automatically, since there is a high probability for so-called transmission
caustics to occur in inhomogeneous media [29].

Gaussian beam methods are applicable to many problems, for example, seismic
wave modeling, quantum mechanics, and underwater acoustics [11, 14, 23]. An Eule-
rian Gaussian beam method for the Helmholtz wave equation was proposed in [20],
and the Eulerian method was further developed for semiclassical quantum mechanics
in [18, 19].

The fact that the Hamiltonian of the underlying wave equation is homogeneous
of degree one guarantees the parabolic scaling principle to hold at any given time,
which provides the theoretical basis for our new reinitialization method as the size of
a multiscale Gaussian wavepacket can be analyzed. It has been stated in [8, 26] that a
wavepacket will remain a wavepacket at a later time if it satisfies the parabolic scaling
principle and the Hamiltonian is smooth. There are various types of such wavepackets,
such as curvelets [10, 9] and wave atoms [12]. Our new multiscale Gaussian wavepacket
transform is appropriately modified to adapt to Gaussian beam dynamics in elastic
wave motion.

1.2. Contents. The rest of the paper is organized as follows. In section 2,
we develop Gaussian beam methods for elastic wave equations. In section 3, we
extend the multiscale Gaussian wavepacket transform [24] to the vector-valued initial
conditions of elastic wave equations and develop new propagation dynamics for each
single Gaussian beam. After proposing the decomposition scheme, we discuss how
to implement multiscale beams for periodic boundary value problems in section 4
and we further derive reflection dynamics for the homogeneous Dirichlet boundary
condition in section 5. We carry out stationary phase analysis of beams in section 6.
The differences among various types of reflections are analyzed in section 7 and a new
efficient reinitialization method is proposed to resolve those differences in section 7.3.
In section 8, numerical experiments are conducted to demonstrate the performance
of our new algorithm.

2. Asymptotic methods for elastic wave equations. We consider the fol-
lowing initial-boundary value problem of the elastic wave equation:

(2.1) 0=pii — VAV -u) — Vi (Vu+Vul) = A+ p)V(V - u) — pAu,

where u is the displacement vector, p is the density parameter, the parameters A and
w are known as the Lame parameters, and
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The Lame parameters are assumed to be smooth, positive, and bounded away from
zero. The initial conditions are specified as follows:

(2:3) u(z,0) = f(z); uy(e,0) = g(=),

where the functions f and g are compactly supported vector-valued functions in
the space [Lo(R?)]4. In the following presentation, we take p = 1 without loss of
generality.

We are looking for asymptotic solutions for the elastic wave equation (2.1) with
two different types of boundary conditions: the periodic boundary condition and the
homogeneous Dirichlet boundary condition,

(2.2) 0=

2.4 t =0.
(2:4) u(@, )aﬂx[o,T]

2.1. Some notation. To simplify derivations, we introduce some notation.
o 7= %

| - | denotes the Euclidean norm in R9.

vT denotes the transpose of vector v.

VvV = (i L)T
= (garr o 9ag) -

- represents the inner product between two column vectors.

T = OT/0xy.

In addition, the Einstein summation convention will be assumed.

2.2. Eikonal equations for P- and S-waves. Applying the GO ansatz to the
elastic wave equation and considering the leading-order singularity [17, 1], we end up
with the following equation for elastic waves:

(2.5) A+ VTVTTA = (72 — puriti) A,

where 7 and A are unknown phase and amplitude functions, respectively. The equa-
tion having nontrivial solutions leads to an eigenvalue problem, resulting in two dif-
ferent wave modes, the P- and the S-wave, with appropriately chosen phases and
amplitudes.

When the amplitude vector A = A” is parallel to V7, we have the P-wave eikonal
equation,

(2.6) (77)? = (A +2u)(riTy) = 0,

where we denote 77 and A” the P-wave eikonal and the amplitude vector, respec-
tively.

When the amplitude vector A = A® is orthogonal to V7, we have the S-wave
eikonal equation,

(2.7) (+%)% = u(ri73) = 0,

where we denote 7% and A® the S-wave eikonal and the amplitude vector, respectively.

To compute 77 and 7°, we can apply the method of characteristics to the nonlin-
ear eikonal equations (2.6) and (2.7). Since these two eikonal equations are essentially
the same, we consider them generically as a Hamilton—Jacobi equation in the following
form:
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(2.8) P9 4 aPS(x, V1) =0,

where the Hamiltonian of the P-wave is G¥' (x, p) = /X + 2u|p| and the Hamiltonian
of the S-wave is G¥(x,p) = +,/z1|p|. We consider the P-wave case as an illustration
so that the method of characteristics yields

{ de = QP (a(t),p(t). x(0) = zo:

2.9
(2.9) & — _GP(a(t),p(t)), p(0) = po,

where t is the running parameter of a bicharacteristic.
Solving this Hamiltonian system yields a bicharacteristic in phase space

{(z(t),p(t)) : t > 0},

where the associated ray is v = {z(¢
istic. Moreover, we have p(t) = V7 (
characteristics.

One of the most significant differences between the Gaussian beam method and
other ray-theory methods is that the phase function of a Gaussian beam is complex-
valued. To be more specific, the second-order derivative (the Hessian) of the phase
function is designed to be complex-valued. To derive the dynamics of the Hessian
matrix, we first differentiate the eikonal equation (2.8) with respect to ¢ and @ near
the ray ~,

) : t > 0}, the z-component of a bicharacter-
t,x(t)) along the ray v due to the method of

(2.10) Ph + GE + TiGE =0,
(2.11) i+ (Gy) =0

Differentiating (2.10) with respect to x again yields

(2.12) o + G + TGy + (Go ) T h A Th Gl The + TG = 0.

xTx ™ pp X p

Since (2.11), (2.10), and (2.12) are valid along the ray, the Hessian M? () = 7.1, of
the phase function along the ray satisfies the following Ricatti equation:

dM*¥

(2.13) i

P PP P \NT psP PP P _
+ Gy + MGy + (Ggp)” M7+ MTGL,M™ = 0.

The same derivation can be applied to the S-wave with G*(z, p) = +,/p|p|. One
essential property of the Gaussian beam solution is that it will remain well-localized
throughout propagation if it is so initially, and this localization property is made
possible by enforcing the imaginary part of the Hessian M to be symmetric positive
definite (SPD). The following lemma [25] guarantees this property throughout the
propagation for all smooth ray trajectories.

LEMMA 2.1. If the Hamiltonian G is smooth enough, then the Hessian M (t) along
the ray path v has an SPD imaginary part, provided that it initially does.

Accordingly, the Hessian of the phase function of a beam solution is well-defined
even at caustics.

2.3. Transport equation for P-wave amplitude vector. Since the ampli-
tude vector A” for the P-wave is parallel to the ray direction V7%, the P-wave
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amplitude can be written as A = aV7", where a is a scalar function. To avoid clut-
tered notation, we write 77" as 7 in this subsection. After some calculations [17, 1],
we have the transport equation for the scalar function a,

A+ 2p)a ity + 4 (A + 2u)trace(M) — 7) = 0.

(2.14) a+ e e

Although the second-order derivatives of the phase function 7 appear in the trans-
port equation (2.14), the P-wave transport equation has a well-defined solution since
Lemma 2.1 guarantees a well-defined Hessian of the phase function along a ray.

Following [24], the transport equation for a can be added to the P-wave dynamics
by using (2.14) and % = G,

dalt, (1)) + i(()\ + 2p)trace(M) — Gg - Gp — G MGp) = 0.

(2.15) 7 5

2.4. Transport equation for S-wave amplitude vector. We abbreviate 7°
as 7 in this subsection. We first write the amplitude vector as AS = @D, where @ is a
scalar function, and D is a unit vector which is orthogonal to the ray direction V7°.
We find that the scalar function a satisfies

(2.16) 2t + 4t = (2T KAk + AT k),

which takes the same form as the P-wave transport equation. Therefore, we can
obtain the same ODE as the P-wave case (2.15).

Unlike the P-wave, we need one more equation to describe the direction D of
the amplitude vector A°. Since the direction D is orthogonal to p(t) = (pi(t)) =
V7(t,z(t)), we have

0— d(Dypr)
dt
dDy, dpk(t)
=k D
0 7 P + TR
de dpj (t) pk(t)
2.1 —_— = — D;
@17) = (%00 e

where we have used the property that D is a unit vector so that % is parallel to
p(t).

2.5. Single beam solutions for P- and S-waves. To summarize the ODE
dynamics generated by the method of characteristics, we have

dx

E = Gp(m(t)ap(t))v a:(O) = Zo,

d

2 = —Go(a(t),p(t). P(0) =po,
dM . .
Tt —(Gap)” M = MGpy — MGppM — Gag, M(0) = icl,
da a

(2.18) da - 26 (Cztrace(M) — Gz - Gp — GZ;MGP) , A(0) = Ao,

where the velocity term ¢? = X + 2u for the P-wave and ¢? = p for the S-wave, and
G is the corresponding Hamiltonian, respectively.
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There is one extra equation for the direction D in the S-wave dynamics from
(2.17),

dD d t
(2.19) i (d’t’ : D) |15((t))|2’ D(0) = Dy.

The initial condition of the above system will be specified according to the multi-
scale Gaussian wavepacket transform, which will be presented in section 3. Once the
phase functions 77 and the amplitude vectors AP are available, we can construct
a single-beam asymptotic solution in the following way:

(2.20) P (t,x) = aP ()VrP (¢, (1)) (),
(2.21) 5(t,2) = aS(t) DS e ()

where the phase function is approximated by the Taylor expansion near the central
ray,

TP’S(t, xT) = vrbs. (x — :cP’S(t)) + %(a: — a:P’S(t))TMP’S(t)(:c — :EP’S(t))

1
(2.22) =p"5(t) (x = 2" (@) + S (@ — 2" (1) MO () (2 — 2"(1).
The desired Gaussian profile is induced by the imaginary part of the Hessian
matrix M3,
(2.23) exp (f%(w — &PS (1) Im(MPS (1)) (z — mRS(t))) :
As suggested by Lemma 2.1, a beam solution will always be well-localized throughout
propagation.

3. Multiscale wavepacket transform for elastic waves. Since the initial
conditions of the elastic wave equation (2.3) can be any general Lo vector-valued
functions, they may not take the form of Gaussian wavepackets,

(3.1) Aexp <iw (p(O)T(ac —x0) + %(:c —x0)TM(0)(x — wg))> .

The problem here is how to decompose any general Lo function into multiple Gaussian
wavepackets in the above form (3.1) efficiently and make the total number of computed
beams as small as possible.

In this section we will first provide a brief introduction to the multiscale Gauss-
ian wavepacket transform [24] for scalar functions. Afterward, we will extend the
construction of the scalar case to that of the vectorial case.

3.1. Multiscale Gaussian wavepacket transforms: Scalar case. We first
partition the Fourier or frequency space R? into several Cartesian coronae C; for [ > 1
as

C, = {£ = (&1,&,...,&4) : max |§] € [411,4l}}.

1<i<d
Now it is obvious to see that the size of & in C; is of O(4!). For each Cj, we further
partition it into multiple windows with width 2,

d
By = [][2"s,2'(is + 1)),

s=1
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where the integer multi-index (41,42, ...,44) is any possible choice such that the box
is in the (th layer, i.e., B;; C Cj. After defining these cell boxes B; ;, we define the
Gaussian profile g; ; associated with the box B;; by the following formula:

1€—¢;,;l )2

(3.2) i@ ~ e )

where §; ; is the center of the box B;; and 0; = 2!=1 ig the width of the box By ;.
To have a partition of unity, we also define conjugate filters h;; such that

_ gl,i(E)
>oilgei(€)?

The proof that the functions h;; are well-defined and well-localized can be found in

[24]. It is easy to see that ), , gi;hi,; = 1. Moreover, we define Gaussian wavepackets
in the frequency domain by using

(3.3) hii(§)

n 1 —2mi =
¢l,i,k(€) = Ld/2€ ? L gl,i(é)a

bia(€) = e T i(€).

Taking the inverse Fourier transforms yields their definitions in the spatial domain,

1 mi(x—£-)-

(3.0 duane) = =gz [ ST gyae,
1 JR?
1 mi(e— ).

(3.5) Yrik(T) = ITE /Rd T T p 4 (€)de.
!

We cite a useful lemma from [24] without proof.

LEMMA 3.1. For any f € La(R%), we have

(3.6) F@) = Wik, fonix(@).

1,k

Since the idea of decomposing discrete signals into multiple wavepackets is very
similar to the continuous case, we skip this part and provide the pseudocode below.

Algorithm 3.1. Discrete multiscale Gaussian wavepacket decomposition

1. Apply the fast Fourier transform to the discrete signal f.

2. Compute hy (&) f(£).
3. Wrap the result to the domain [—20y, 207].

4. Apply the inverse Fourier transform to obtain coeflicients ¢; ; .

The computational complexity of this algorithm is O (N%log N), where N is the
number of sampling points in each direction.

3.2. Multiscale Gaussian wavepacket transform: Vectorial case. Having
at our disposal the multiscale Gaussian wavepacket transform for scalar functions, we
are ready to extend this transform to the vector-valued function f, where we assume
that each component f; of the vector f is an L, function.
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3.2.1. Decomposition of a single Gaussian wavepacket. Suppose we have
already applied the multiscale Gaussian wavepacket transform to each component of
the initial condition f, i.e.,

F=fo ) =D BLikdLik,

Lik

where the superscript T' denotes transpose. The purpose here is to decompose each
single Gaussian wavepacket into a sum of P- and S-wave components.

Let the unit vector vy ; 1 be éi”:l . Then we can decompose K ; 1, into two compo-
nents, ’

(3.7) Kiik = (’Qljji,k'vl,i,k) vk + (lg— ’Ul,z',k(’vl,i,k)T) Kiik-

The first term on the right-hand side of (3.7) is taken to be the P-wave component,
and the initial condition for its amplitude vector can be written as

(3~8) ("‘"ljji,kvl,i,k) Viik = ( r gl”;) &ii-

Kiik €
1

To initialize the S-wave component, we have to specify initial directions which
are orthogonal to each other and at the same time are orthogonal to v; ; . Therefore,
we choose the first direction D) as the unit vector of the first column vector of
the matrix (I — vl7¢,k(vl7i7k)T) and apply the Gram—Schmidt process to generate the
other columns D™ for m = 2,...,d — 1. Since every column vector of the matrix
(Ig — vk (viix)T) is orthogonal to vy ; i, their linear combinations are orthogonal to
vy, as well. The corresponding amplitude coefficients a,, are

(39) A, = K’lj:i,k (Id — vl7i7k(vl,i7k)T) D(m)7 m = 1, 2, sy d —1.

3.2.2. Preprocessing initial conditions for wavepacket transform. Be-
fore applying the method described above, we preprocess the initial conditions first.
Following the same strategy employed in [24], we consider two different branches,
"ztk and K, ,, for each wavepacket corresponding to different signs of the Hamil-
tonian *c(x)|p|, where c(x) is the corresponding velocity of the P- and the S-wave,
respectively.

To satisfy both the initial displacement f and the initial velocity g, we define

(3.10) (K + KL ) PLik = KLikdLin = f.
Taking the derivative of the wavefield with respect to time ¢ yields
(3.11) (Ko — Kla) (1€ |G (20, p0)) bk = Brindrik = 9,

where E;; ;. are the coefficients generated from decomposing the initial velocity g.
Here the left-hand side of (3.11) is not the complete form of the beam’s time derivative;
instead, we keep only the leading-order term to approximate this derivative in the
asymptotic sense.

After solving for coefficients Kl-;’k and K, ;. from (3.10) and (3.11), we can apply
the decomposition described in (3.7) and (3.9) to m?‘zk and Kk, , respectively.

We summarize the vector-valued multiscale Gaussian wavepacket transform into
the following algorithm.
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Algorithm 3.2. Discrete wavepacket transform of vector-valued initial conditions f
and g

1. Apply the discrete Gaussian wavepacket transform to each component in the
discrete signals f and g.

2. Use (3.10) and (3.11) to compute &, , and K, .

3. Generate the P-wave amplitude vector (l-@ﬁ ke ‘él—P) &

4. Generate the S-wave amplitude vector a,, D™ by (3.9) for m =1,2,...,d — 1.

While the above process defines the initial amplitude vectors for the P- and S-
waves, the initial values of the P- and S-wave phase functions and their related de-
rivatives are specified according to the multiscale Gaussian wavepacket transform of
the scalar form. Therefore, we have the following beam dynamics for the P- and the
S-wave, respectively:

dx k
E = Gp(a:(t),p(t)), :L'(O) = fl’
i £
— = —Gg(x(t),pt)), 0) =2r—0——,
i (z(t),p(t), p(0) €.
dM T (27707
dt = —(G:cp) M — MGpe — MGppM — Gga, M(O) = Z<27T 9] /lgl’i )I’
da a t '
= (trace(M) — Gy - Gp — G;MGP) , a(0)= (\/JW) )
dD(™) dp p
dt (dt ) Ip|?’ ©

Once asymptotic ingredients are available, the P-wave solution takes the form

(3.12) PP (t,x) = a(t’w(t))p(t)ei‘sl,ihp(tvm)7

where 77 is given in the formula (2.22). In the following computation, however, we

absorb the large wavenumber |&; ;| into the phase function by modifying the corre-
sponding initial conditions of beam dynamics, and the resulting solution is equivalent
to the explicit one as shown in the following.

Denote the beam using the usual initial condition as (x¢, p, My, as, Dy) and that
using the initial condition (xo, |&;.:|Po, |€1,:| Mo, ag, Do) as (it,ﬁt,Mt,&t,ﬁt). Using
ray theory, we have

day = C(mt)m wo = k
dt &3l lpe|’ L’
(& -
% = Ve(z)|&illpel, |€ilpo = 27€.

It is obvious that (z¢, |£; ;|p:) is the solution of the Hamiltonian system with the same
initial condition as (&, p;). Therefore, by the uniqueness of solution for the initial
value problem, p; = &, ;|p: and &; = x;.
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We multiply | ;| on both sides of the Ricatti equation,

d(|&,:|M) €1, P €ilpe \ "
SBLIE) —  OVe(a)|€rs]pe] — €| MVeSEPL e, we (ISP gy
dt (o) lGrallpel = alMVerg T ~ 180V Vg
c(@t) () T
= (&M ( I- PP, &l M
16D e dipd '~ Tl PPt ) 160120
= —VVe(&)|pt| — MGap(dr, 1) — Gop(@e, Pe) M — MGpp (@, pr) M.
By the uniqueness of solution for the initial value problem, M, = |&,;|M;. Similar

computations can be carried out for the magnitude and direction of amplitude vectors.

4. Multiscale beams for periodic boundary value problems. To solve the
periodic boundary value problem, all ingredients are assumed to be periodic functions.
Meanwhile, the central ray in the periodic boundary value problem is smooth during
propagation in the periodic sense.

The principle shown in Figure 1 will be employed to solve the periodic boundary
value problem, where the cubic region [0,0.5]3 is chosen to test the correctness of our
algorithm. The red dashed line represents the wavepacket leaving the domain [0, 0.5],
as the left half goes beyond the domain and the right half is still inside the domain.
The missing left half of the beam solution will enter from the other side with the
same shape, which is the blue line in the graph suggested by the periodic boundary
condition. We show numerical results in section 8.

5. Multiscale Gaussian beams for homogeneous Dirichlet boundary
conditions. In this section, we design multiscale Gaussian beams to satisfy homoge-
neous Dirichlet boundary conditions. Since the three-dimensional (3-D) elastic wave
motion shows much more interesting features than the 2-D case, we will work out the
details for elastic waves in the 3-D space {x = (x,y,2) : x,y,z € R}.

The time-dependent wavefield on the boundary vanishes since the homogeneous
Dirichlet boundary condition is imposed. When a ray hits the boundary at time ¢"
and location x(t") and subsequently reflects into the domain, the sum of all wave
modes at time ¢" and the central point «(¢") vanishes, i.e., w(t", z(t")) = 0. The time
when the central point x(¢") of the ray is on the boundary is defined as the reflection
time, and the central point as the reflection point.

Tacitly, all equations in this section are defined on the point (¢",z(t")), if not
specified. The Hamiltonian used in this section is assumed to be positive, G = c¢(x)|p|,
and the negative Hamiltonian will be treated similarly.

o.o|
o.sf
0.7p
0.6}

0.4
0.3
0.2
0.1

Fic. 1. Periodic boundary condition with a wavepacket leaving the boundary.
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5.1. P-wave reflecting beams: Ray directions. When a P-wave reflection
happens, the total wavefield consists of three different sources, the original P-wave
Gaussian beam, a new P-wave beam after reflection, namely, the P-to-P or PP beam,
and a new S-wave beam after reflection, namely, the P-to-S or PS beam. At the
reflection point x(¢"), we have

P ._PP ._PS
(51) _aPeZT V’TP _ aPPGzT V’TPP + aPSez‘r DPS,

since both P- and S-waves will be generated after reflection.

All phase functions should have the same value at the reflection point, 78 =
PP = 7PS; otherwise, if we change the value of the large wavenumber |&;;|, the
homogeneous boundary condition will be violated.

We derive new phase functions 77 and 77% using the continuity condition,
namely, the continuity of the tangential components of the first-order derivatives of
7, so that we have

(5.2) P PP PS

T, =T, =T, and 1F =7FPF Ps

z =T,

where we assume that the reflection happens along the surface {x = (z,y, 2) : = 0}.
Moreover, the partial derivative of the phase function with respect to time t also
satisfies the continuity condition,

(5.3) 7P =+PP =3P = P|vrP| =5\ vrPS and P|VrP| = LP|vrPP,

where ¢ = /X 2p is the velocity of the P-wave and ¢® = /1 is the velocity of the
S-wave.

The partial derivatives along the tangential directions of the boundary can be
obtained directly from (5.2). To obtain the momentum component in the reflection
direction or the normal direction of the boundary, one needs to use (5.3) and (5.2)
together. For example, for the reflection from the P-wave to the S-wave, we have

PS _ _g; P §2 P|2 _ (~PS\2 _ (-PS)2
(5.4) To sign(7, ) s V7P| (Ty ) (PS5~

Meanwhile, the reflection principle for the momentum component in the normal di-
rection between the same mode, such as P to P or S to S, follows the same way, so
we omit it here.

The only ambiguity left here is the case when a beam hits the boundary at a
corner. Since a beam hitting a corner causes diffraction, the above beam dynamics
does not apply any more. Hence, following [4], we simply ignore the situation when a
beam hits a corner of the domain. Since the Gaussian beam method is an asymptotic
method and those diffractions have exponentially small effects, the numerical accuracy
of beam solutions will not be degraded without those ignored beams.

5.2. P-wave reflecting beams: The Hessian of the phase. To illustrate
the derivation of reflected second-order derivatives, we choose three entries among six
distinct ones in the Hessian, 7y, T4y, and 7., since all other entries can be classified
into one of these three types. Again, the reflection is assumed to happen along the
surface {x = (z,y,2) : © = 0} and all terms without arguments are defined at the
reflection point.
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We start with the first type of reflected derivatives, 7,. Since it is a tangential
component, we have

S
(5.5) Ty = Tow = Tyy 5

moreover, 7., and 7, will also stay the same.
To derive the second type of reflected derivatives, 7%

4y » We use the partial deriv-
atives with respect to time t so that we have

P\Tw,..P
P_ P P p (VT )P VT
(5.6) T, =c¢, VT | +c 7|yVTP| ,
PS\T'w..PS
.PS _ S|w.PS s (V7 °) VT
(57) Ty —Cy|v7' ‘+C TYW'—PS|’

where we have used the notation 7, = 88%87;4' On the other hand, by the continuity of

the tangential and time component of derivatives, we have

.P _ .PS
(5.8) Ty, =Ty
Now substituting (5.6) and (5.7) into (5.8) yields
P\T'o..P PS\T'o.PS
PP p (VT ) VT s ps s (Vr 2) VT
e, V75 +¢ T =c, V77| +e¢ N ,
vrPs VTP
(VrPHTvrls = V7] ZS | <c5|V7'P| +CP7( yV)TP| —c|vrs| |,
PS P P
ps _ IVTI [ piop pVTy VT S|w.-PS
Tey = cStPS <Cy |VT | +c |VTP| — Gy |VT |
1 PS_PS PS_PS
(5.9) ~ —ps (Ty Tyy 75 Ty )
xr
PS

To obtain the third type of reflected derivatives, T, we need to derive the

T
formula of 759 first. We have

- P\T7.-P

(5.10) P = P urf| = P = P(VV)PT

viPHTyrbs

11 .ps _ SpgPS| _ 2Ps _ s (VT ) VTP
o-40 " CIVTEl= 7 ¢ |V7‘PS‘

We then have the following equation from (5.11) and (5.10):

p(VIO)I'VTE (Vi) TvrPs

ZZ I 2 I
(V7T rPS = |VTPS\CP (vif)rvr?
cd |VrP| 7
(5.12) +PS — (V] e (VED)TVAT _ +PS_PS _ .PS_PS)
k4 TFS S V7P y y z lz
With the formula of 7% given above, 715 can be obtained by solving the following
equation:
PS\T7.-PS
- PS S PS - PS S PS s(VrZ®) ' Vr
(5.13) 0= IV = 170 = IV 4 S e e
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We remark that 7% will not be zero as we have assumed that our initial conditions
are compactly supported.

5.3. P-wave reflecting beams: Amplitude vector. We have so far derived
the initial conditions of all terms related to the phase function for our new beam
dynamics after the P-wave reflection.

Since the phase function itself does not change after reflection at the center of
the beam, we have the following equation for the amplitude in order to satisfy the
homogeneous boundary condition at the reflection point x(t"):

(5.14) —a?VrP = a"Pv Pt 1 oPSDPS.

Since the PS-wave amplitude direction D® is orthogonal to its ray direction
V7P by definition and its norm is one by our construction, the following equation
can be obtained if we project both sides of (5.14) to the vector V7:

—aP (VYT PS = PPy PPy PS,|

p (VDY 7PS

5.15 a’t = —af —— L — .

( ) (VrPP)T\rFS

Meanwhile, a¥’® DP¥ is the summation of two S-waves,

(5.16) a”* D" =3 "ol DO,

i
Similar to the initial condition for the S-wave, we pick the first direction D™ to
S

be the first column vector of the matrix I3 — vv”, where v = %. Then, the
second vector Dy will be D®) = DWW x v, where x represents the cross product

between two vectors. After normalizing each direction, we can project the residual
—aP VP — aPPV PP to each direction to obtain the amplitude coefficients, af’

S0

5.4. S-wave reflecting beams: The phase term. Similar to the P-wave
reflection, when an S-wave reflection happens, the total wavefield consists of three
different sources, the original S-wave Gaussian beam, a new S-wave beam after reflec-
tion, namely, the S-to-S or SS beam, and a new P-wave beam after reflection, namely,
the S-to-P or SP beam. Therefore, to satisfy the homogeneous boundary condition,
we have the following equation for the S-wave wavepacket at the reflection point x(¢"):

(5.17) _d%em™ DS = ¢SPeim g 5P + 058 DSS.

After an initial glance at the above equation, the S-wave reflection dynamics
seems to be the same as that of the P-wave reflection developed in the last subsec-
tion. However, we will find that some significant differences exist between the two
reflections.

To begin with, let us still use an S-ray hitting the surface {x = (z,y,2) : ¢ = 0}
as an example. We then have

(5.18) 7'5 = 7'55 = TySP,
(5.19) 75 =755 = 5P,
(5.20) 8 =155 = 15P,
(5.21) S|vrs| = L |vroT).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/11/21 to 35.8.11.2 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

2550 JIANLIANG QIAN AND CHAO SONG

To satisfy all these equations simultaneously, we get

SV 2
(522 TfPsignmf)\/ () - - o

C

Since the S-wave velocity ¢ = /1 is smaller than the P-wave velocity =V +2u,
this leads to the possibility that the part inside the square root in (5.22) will be
negative, or equivalently, 757 can be pure imaginary, inducing exponentially growing
waves on one side of the boundary. Therefore, we need to treat the S-wave reflection
carefully.

Let us consider the regular situation first, in which case 777 in (5.22) is real.

Then the situation is the same as the P-wave reflection as illustrated above, so we
omit the derivation here.

The irregular case is when the term 75 is pure imaginary. Consequently, we
have
2
. s s
R G
(5.23) Vot = s
Ty

This phenomenon is called the evanescent wave and the energy will fade away quickly
around the boundary in this case. Therefore, there is no need to derive its Hessian
due to its negligible energy.

5.5. S-wave reflecting beams: The amplitude vector. Although the evanes-
cent wave fades away quickly, we still include the SP-wave amplitude vector in our
derivation so as to make the derivation easier. Moreover, we need the nonzero ampli-
tude vector A" to satisfy the homogeneous boundary assumption at the reflection
point x(¢"). Therefore, we have

(5.24) —a®D® = a®F (Re(V75T) +ilm(V7TT)) + a5 D55,

To obtain the amplitude vector ASF = ¢¥PV 5P we use the fact that the SS-
wave amplitude direction D is orthogonal to its ray direction v so that we have
from (5.24)

(5.25) (Re(aSP)Re(VTSP) - Im(aSP)Im(VTSP)) ‘v
(5.26) (Re(a®F)Im(V75F) + Im(a®")Re(VT57)) - v

—Re(a®)D® - v;

—Im(a®)D* - w.

The SP-wave amplitude A°” can be obtained by solving the above system. Conse-
quently, the residual —a®D* — a*PV 75" is now well defined.

Following the same process used in the PS-wave, we can set up the amplitudes
and directions easily for the SS-wave.

Notice that after reflection a ray is no longer smooth, which means that Lemma
2.1 is not applicable when a reflection happens. Naturally, one needs to show that
after reflection the imaginary part of the Hessian defined above is still positive definite,
especially for the PS-wave and the SP-wave. In [4], the authors proved that this is
true for the PP-wave and the SS-wave, i.e., the conversion between the same wave
mode. The proof for the conversion between different wave modes is provided in
Appendix A.
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1 1 7
A
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-1 | /’
-1 o 1 4 -0.5 o 0.5 1
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F1G. 2. (a) Partially reflected beams. (b) Partially reflected beams with odd extension.

5.6. Method of images for boundary conditions. In [4], the authors have
proposed a method to tackle the problem caused by partially reflected beams. The
partial reflection problem means that the frontier part of a beam is needed to be
reflected back even when its central ray has not hit the boundary yet and consequently
the reflection dynamics has not been initiated. This is due to the fact that a Gaussian
beam has nonzero width, which is illustrated in Figure 2(a).

Therefore, some modifications are needed to treat these partial reflection cases
so that the homogeneous boundary condition is satisfied and the wavefield remains
continuous. Our strategy is that the outer part will be reflected back into the domain,
and this can be realized by an artificial beam. So we essentially apply the odd exten-
sion to such a beam as illustrated in Figure 2(b). The trajectory of the blue dashed
beam in the figure is completely determined by its counterpart, the red solid beam
in the figure, which implies that we do not need any extra assumption of the velocity
outside the domain. Therefore, the blue dashed beam only serves as a supplementary
beam to satisfy the vanishing boundary condition.

6. Stationary phase analysis of beams. To reinitialize or sharpen a single
Gaussian beam, we carry out stationary phase analysis to the single beam. We start
with some lemmas and computations which are needed to implement the reinitializa-
tion process proposed in section 7.

For any function u € L?(R?), applying the Fourier-Bros-Iagolnitzer transform
[21, 19] allows us to have the following phase-space decomposition of u such that

(6.1)
3d/2 . ’ o we—a' |2 _wla—a'|? /
u(z) = (w) / 9if2giw(p(a—e ) pl@—a’)) ~ et b e B i inda
R3d

2

where x, &, and x are points in the spatial space R?, p is the dual momentum variable
in the frequency space, and w is a fixed parameter determining the size of Gaussian
window functions.

We will apply the representation (6.1) to Gaussian beams without considering the
corresponding amplitude directions so that we can analyze oscillatory properties of
Gaussian beams. Using the P-wave as an example, we consider ®7 (¢, z) = a(t)e!™*®)
instead of a(t)e’™t®)p(t).

Moreover, to simplify the stationary phase analysis, we assume that all beam
functions considered here depend only on a single variable with other variables being
fixed, where the single variable is considered as the principal variable. Therefore, in
the following derivations, we take the principal variable to be the variable y, while
the other variables, such as x and z, are considered to be fixed.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/11/21 to 35.8.11.2 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

2552 JIANLIANG QIAN AND CHAO SONG

6.1. Stationary phase analysis with respect to spatial variables. Defined
through Gaussian beam evolution, a generic Gaussian wavepacket u can be rewritten
with y as the principal variable so that it takes the form

(6.2) w(ys @, 2,1) = Ale, 2, )00 =) 0-3i)”,

where the center of the Gaussian wavepacket is (zg, yo, 20), and all the related beam
ingredients are defined at this center if not otherwise specified. Furthermore, y; is a
to-be-defined scalar, 7 is the phase function, and

(y —yo) = 7y(y — o) + Re(@y)éy —¥0)*

(6'3> + Re(sz)(y - y0)<2: - ZO)'

+ Re(Tay) (y — o) (x — xo)

To define the scalar yg, we use the relation

Tex Tzy Txz T — Xo
($—3307y—y072—20) Tey Tyy Tyz Y—%Yo
Tez Tzy Tzz Z— 20

= Tyy(y — y0)2 + 2(Tay (x — @0) + T22(2 — 20)) (¥ — yo) + B(w, 2)

>2+B(a;,z),

Toy(T — o) + To2(2 — 20)

(6.4) = Tyy <y —yo+
Tyy

where all second-order derivatives are from the imaginary part of the Hessian of the

phase function; consequently, in formula (6.4), B(x, z) is a constant with respect to
y, and the complete-square term is defined as (y — yg)?, where

Toy(Z — 20) + oz (2 — 20)

(6.5) Yo = Yo —
0 Tyy

To simplify the notation, we denote R = Re(r,,) and I = Im(7,,) throughout
this section. Applying decomposition (6.1) to u(y;z, z,t), we have

3/2 . 4 w /2 ’ ’
(06) i) = Azt () [ Ve e S Fop )y’

where
67)  w(py) =B / e iwr @) o= § 1731 i€ @—u0) o~ § 1533 g

We will apply the following stationary phase approximation lemma to calculate
Y(p,y).
LEMMA 6.1 (Theorem 7.7.5 in [16]). Consider the integral

b
Iw)= [ fweat

where f and g are functions smooth enough to admit Taylor expansions in the interval
[a,b], and g is real-valued. Suppose there is a point co € [a,b] such that %(co) =
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g (co) =0 and g'(t) # 0 for t # ¢y in the closed interval [a,b]. Moreover, %(00) =
g”(co) # 0. When w >> 1, the following approximation holds:

b
. ) , 27 1
6.8 I(w :/ F©)e“IOdt = f(c)ew9lco)eimd/4 [ —— 10 () ,
68 1)= [ 50 () o 0 (2
where § is the sign of g”(co).

To use Lemma 6.1, we first substitute y = yo +ma into u(y; x, z,t) in (6.6), where
the values of a and w are to be determined in the following derivation. By (6.7), we
have

(6.9)
efij’;’(a:,z)w(p7 i + ma) _ /6iw(wfp(g*90*ma)> 67%|Q7y07ma|267é|yfy8|2dg.

To compute the critical point gy of the phase function w —p(J — yo — ma), we
have
@' (-
0=20-%)
w
(610) 0= R(g — yo) + Re(TLE’U)(‘r — mo) + Re(Tyz)(z — ZO) + 7;y -,
w w
yielding
N wp — 7y — Re(7zy ) (x — x9) — Re(7,2) (2 — 2
(6.11) 7o = yo + P~ Ty (Tay)( - 0) (7y2)( 0)-
We denote
(6.12) E(z,z) = —Re(7ey) (@ — 370)R— Re(7y2)(z — 20)7
- wp — T,
Yo — Yo = pR Y +E.

Since FE(z,z) is independent of the variable y, applying Lemma 6.1 to function
Y(p,yo + ma) leads to

wp—Ty
et

(P Ty _
™ P( 7= tE ma)) —%‘%—i—E—ma 2
e

) [
e B@Dy(p, yo +ma) = e

2
| wp—7 _
% 75|7 N+Efy3+yo| i TR 27‘.
|R|

Substituting the expression of the term ® into the above equation, we have

L | p— 2 wp— 2
B iT B 2m _L|wP—Ty xy +E‘ ,£)7H+E,ma’
U)(IL Yo + ma) =e'"Te A Th @E 2 R YoTvo e 2 R

" eiw(r—y (224 B) —(BE) (25 4 B) —p( 2L + B—ma)+ 4% ($+E)2)
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Inserting the expression (6.13) into (6.6), we obtain

/ 3 . w 2
’U,(y, T, 2, t) — GA(J?, z, t) i /\/iezwp(y—yo—wm)e—j\y—yo—ma\ ,(/)(, )dpdm
~2A \/
“ 277 \/ |R

e w(%(LRw)—Lf<L:y+E>—p<wsy+E—ma>>

R X
TRl ¢ B ciwp(y—yo—ma) ,— % |y—yo—mal?

M:!

X e

(6.14) X <27é|M y°+y0+E| 2 ( E +E)zdpdm.
Therefore, by applying the stationary phase approximation to the variable g, we have
reduced the triple integral (6.1) to the double integral (6.14).

Applying Lemma 6.1 requires that R # 0. However, if R = 0, then the integral
about the function ¢ (p, y') is nothing but the Fourier transform of a Gaussian function
about y, and the situation is trivial.

6.2. Stationary phase analysis with respect to momenta. Starting from
the double integral (6.14), we apply the stationary phase approximation again, and
this time we will apply the analysis to the momentum variable p.

We have
u(y;x, z,t) = A(z, 2, t)e \/?1 [ |R %% / 2ly—yo—mal® dm
></ iwp(y—yo—ma) ,~ ’u—yo+yo+E’ ﬁ|“”’%+E—ma’2
(615) e w(ﬂ'y (wp 7'y_|_E) R E(WP Ty+E) (L}?’+E_ma)+%(wp;ry _‘_E)2>dp.

For the inner integral of (6.15), the phase function g(p) is

T w T
Mm=pw—ymﬂmw+j( %?y+E>

R-E wp — T wp — T, R (wp—T 2
- T (B4 XY E — ey == _ Y4B
o ( + R ) p( ma + R >+2w< R + ) )

and the smooth function f(p) is

— 2
,£|%+E—ma) efé‘wzj Ty 7y0+yo+E‘

(6.16) flp)=e 2

To compute the critical point, we set ¢ (p) = 0, where
(6.17)

/ Ty wp — Ty pw wp — Ty

=y —yo — v g (E- Ty PO (PP Ty o)),
g (@) =y—yo ma—|—R ( ma + 7 > R—|—< I + )
It follows that the critical point pg satisfies
wp

-
L -y —E+ Y
R_YTWoETR

R
:>p0:—(y—yo—E)+%
WpO—Ty

6.18 —_ = - F.
( ) = R =Y =Y
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The second-order derivative of the phase function g at the critical point pg is

(6.19) 9" (b0) = -

Therefore, the approximation of the inner integral of formula (6.15) is

— 2 — 2
/ei‘*’p(y*yofma)e_ﬂwpl%m _y5+y°+E| e_%‘WRTy +E_ma|

(2 (2 ) B (U250 p) p (2 e B oma) + s (225704 8)7)

X
en
_ /R 1T giwpo(y=yo—ma) o= 5 ly=y5|* o~ % ly—yo—mal®
w2
iw
X

e '
((y—yo) ( Tyin.E>) eiw(fpo(y*yofma)Jr%(y*yo)2) .

dp

e

We summarize the results of the stationary-phase analysis into the following
lemma.

LEMMA 6.2. Suppose the principal variable selected for the function u(y;x, z,t) is
Y,

(6.20) u(y; z, z,t) = Az, 2, t)eiq)(y_y“)e_%lm(TW)(y_ya)2,

R = Re(ryy) is nonzero, and I = Im(7,,). Then there exists w in the order of O(I)
such that the following decomposition holds:
w

. t) = A t iB(x,z) -
u(y;x, z,t) = aA(z, z,t)e 5

(6.21) « /e—wly—yo—WGIQe—%ly—ygIzei?y(y—yo)eig(y—yo)zdm+ 19) <1> ’
w

where Ty = 7y, — R X E with R x E = —Re(Tzy)(z — 20) — Re(7y.)(2 — 20), and the

fixed parameter a is defined as a = \%

7. Sharpening beams by reinitialization. In this section, we propose a new
reinitialization strategy based on Lemma 6.2. Again, we base our analysis on the
assumption that the variable y is the principal variable. We first illustrate the reason
why it is necessary to propose a new reinitialization strategy.

7.1. The first motivation for new reinitialization strategy. It is necessary
to add a reinitialization process into the Gaussian beam propagation since the width of
a beam will increase exponentially in a generic medium [24]. We use the one-way 1-D
acoustic wave equation with a linear velocity as an example. Suppose ¢(z) = a + Sz,
where o and 8 are constants. Then the Ricatti equation for the Hessian M becomes

dM
Solving this simple linear ODE, we have
(7.2) M(t) = iee 2Pt

If the slope 5 > 0, then the width of the beam solution will be exponentially increasing;
consequently, the beam solution will lose its localization and hence its accuracy in this
simple linear velocity model. Since each smooth velocity can be approximated by a
linear function locally, the same phenomenon can be expected in other situations.
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7.2. The second motivation for new reinitialization strategy. The sec-
ond motivation is to resolve some issues caused by reflecting beams. Although the
reflection formulas that we have derived in section 5 are theoretically correct, it is
not trouble free to implement those numerically. In particular, the S-wave reflection
induces the SP-wave which may exhibit grazing behaviors in terms of ray theory and
Gaussian beams.

To simplify the explanation, we use the 2-D elastic-wave case to illustrate this.
Suppose a ray hits the line {& = (z,y) : © = 0}. Then, according to the analysis
in section 5, the y-component of the ray direction 7, does not change. For the PS
reflection, we have

(CSTfS>2 ((CP 2 )2) 7_2
( ps)z _ ()‘ + 2M (75)2 ( )7-3

(7.3) 5 ,

while for the SP reflection, we have

( Sp)g _ H(T£)2 - (/\ + /U)TyQ
(cP)?

We then compute the angles 87 and 65F between the ray direction and the
reflecting boundary {x = (z,y) : = 0}, so that we have

(7.4)

PS Tfs
tan(9 ) = TW
Yy
_ 20+ A+ )Ty
(c5)272
2 P2
5 _ e, Grwee
7 pr2
and
spy_ [ BTS2 At
(7.6) tan(9°") = \/()\ o Ao

We claim that for the PS reflection, the angle between the ray direction and
the boundary will increase after reflection, while for the SP reflection, this value will
decrease. To see this, for the PS reflection we have

nry

<t:;n((9;?)2 B (= )2

A+ 20 )\+u<7y>2
7.7 =2 ",z
(7.1) o NS

My Q20|
I

and for the SP reflection we have
(78) tan(657) ? o At p Ty 2
’ tan(0S) )~ A+2u  A+2u '
As we can see from (7.7) and (7.8), as 7, increases or the incidence angle decreases,
the ratio for the PS reflection increases, which means that the angle after reflection is
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larger than the incidence angle. On the other hand, as 7, increases, the ratio for the
SP reflection decreases as a quadratic function of 7, which means that the angle 6sr
for the SP-wave will be close to zero even when the incoming S-wave’s incidence angle
6 is away from zero; consequently, if 857 is close to zero, then the resulting grazing
beam with larger width will interact significantly with the boundary, and such a beam
needs sharpening so as to have a well-behaved beam.

We make the following comments. Since no wave-mode conversion occurs in the
acoustic wave propagation, it is relatively easy to handle beam reflection of acoustic
waves as illustrated in [4]. However, as illustrated in the above and the following
numerical experiments, it is much harder to deal with beam reflection of elastic waves
as wave-mode conversions do occur in the elastic wave propagation.

7.3. Sharpening wavepackets and convergence analysis. By Lemma 6.2,
we have

(7.9)

u(y) = ade'® /;e—ély—yé|2eﬁy(y—yo)ei§(y—yo)2 /e—w\y—yo—ma|2dm +0 (1> 7
m w

where the term 7, is the modified y-direction of the central ray and is equal to
(7.10) Ty =Ty —RxE.
To sharpen Gaussian wavepackets, we have the following lemma.

LEMMA 7.1. Assume that Lemma 6.2 holds. Then there exist parameters wy, and
q such that the following approximation holds:

. a
(7.11) u(y) ~ aAe'P, /21 Z Lyt W=v0) g=wrly=v5 * o= 2 ly—v5 1 i (y=v0)°
m
k=0

1
where a = —=.
Vi

As we can see, the extra term e~ “+lv=%o I* reduces the size of beams, where positive
parameters wy are obtained by choosing the parameter w in Lemma 6.2 appropriately.

Proof. To obtain (7.11), we first rewrite
/e—w\y—yo—ma\Qdm _ /e—wly—y3+y3—yo—ma|2dm
_ /e*wly*yS\2G*WIyS*yO*ma\z€*2W(y*y3)(y3*y07ma)dm
(7.12) _ owly-uil? / o~ lvs —vo—mal? .~ 2w(y—y3) (us —vo—ma) g

The integral in (7.12) can be further reduced so that we have

/e—w\yé—yo—malze—Qw(y—yS)(yS_yo_ma)dm
k+3
= Z/ e—wlus —yo—mal® ;=20 (y—y5) (ys —yo—ma) 7,
L
(7.13) => / ? emwl(ro)al® 2wy—u3) (k+8)a) g5

1
keZ 2

where we require k to be integers so that k satisfies k = k + %
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. — — — 2 . . .
Since e~«lv—vo—mal” ig an [; function, we can truncate the above summation to
a finite number of terms, |k| < ¢, where ¢ is a fixed positive integer. By the monotone
convergence theorem, we have

o0

(7.14) lim ely=vo—mal® gy — 0,
N—oo |
We further consider two cases: Case 1, k = 0, and Case 2, k # 0.
Case 1: k = 0. In this case, we have
1

/

1
2

1
ol (k8)al? 2w (y—95) (h+0)a) g5 — / P mwlsal? 2e(y—y3)(a) g5

J—oldal? (Z 2" (y - ?'46‘)"(5@") 5

N/
~
- n

(715) ~ / e_w|5a|2 (Z (2w)2"(y _ y8)2n(5a)2n> i,

(2n)!
where the odd power terms in § vanish in the last step above since the integral of an

odd function in [~1, 1] is zero. Here e=I%a” is an even function about § and all odd

212
power functions are odd functions.

Therefore, we have

[N

N|=

[N

Nl

S

n

1 1
[ et i ngs . [7 enuionl (14 22y - g5 (60)?) 48

[N

1
2

Nl

(7.16) ~ / e-wldal? 2o (=03 Ga)? g5

(NI

where the leading order error from (7.16) is O(W).

Case 2: k # 0. When k < 0, by setting § = —6, we have

/;

1
2

1
ol (k8)al? 2w(y—95) (h+0)a) g5 — / P el —Iklatdal? 2w(y—yg)(~|klatda) gg

[N

Nl

:/ ol —Ikla=3al? 20(y—v5)(~|kla—ba) 4

(NI

Nl

(7.17) . / o—llkla+8al? —2u(y—y5) (Klatda) g5

N

When k£ > 0, we have

1 1
(7.18) / o=l (k+8)al? 20 (435 (k+0)a) g5 / o=l (kl+0)al? 2w (y—y3) (1Kl +6)a) g5,
_1

1
2 2
Given k > 0, we add (7.18) for k > 0 and (7.17) for —k < 0, so that we have

/;

1
2

€7w|ka+6a|2 (62aw(y7yg)(k+6) +672aw(y7y8)(k:+5)) ds
1

(7.19) = /2 2¢~wIkatdal® (1+ 2w (y — y5)*(k + 6)*a®) do,

1
2
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where we have used Taylor expansions of the exponential functions. Furthermore, we
have

/2 9¢~wIkatdal® (14 2w?(y — y5)? (k + 6)%a®) d6

1
2

|

(7.20) ~ / P gemwlh8)ta? 202 (y=u5)* (k+6)a)? g5

1
2

where the error term is O( (2“))4(y7y3?4(6a+ka)4 ).

The errors of approximations in (7.20) and (7.16) can be summarized in a unified
((QW)4(y—y5)4(6a+ka)4)
; :

form, i.e., O .
Now the integral (7.13) becomes

1
« - 2 *
/e—w|y0—yo—ma|2e—2w(y—yo)(yo—m—ma)dm:/ - wloal? g~ 2(y—y3)(6a) g5

_1
2

(r21)  +Y / 7 mwlk0)2a? 2w (y—yi) 2 (k+0)a)? g5
1
k>0" "2

To compute [ and wy, we start with the sum of £ > 0 so that we have

o—wly—v3 I” / 7 g pmw(kta)?a? 2w (y-v5)* (k+8)a)® g5

1

2
_ %2 20 %\2 2 _ 2
~ 20— wly=u5 ? 420 (y—y8)? (ka)? ,—w|kal

(7.22) — lkefwlyfyé|262w2(y7y8)2(7w)2’
where the first step above is obtained by choosing = 0. Accordingly, we define [}, by
(7.23) Iy = 2¢wlkal”,
Similarly, for the term with k£ = 0, we have
(7.24) I = 1.

Next we choose the parameter w and define wy, accordingly. We start with making
the exponent in (7.22) negative,

(7.25) —w+2W%k%? <0 = for k=1,2,...,q,

ws 2a2k?

where ¢ is the truncation parameter for the exponential integral as used in (7.14), and

a is previously defined as % in Lemma 6.2.

If we choose w = 3—([12, then wy, in (7.11) is defined by

3q¢% — 2k?
(7.26) W = w — 2w?(ka)? = <9q4> I

Having defined I and wy, we now characterize the size of the error term so that
we have
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(2w)*(y — y5)* (da + ka)* _ (2w)*(y — y5)* (da + qa)*
max =
k<q 4! 4!

3(8) () e

Although the above is only the leading-order term in the series we truncated, the
rest of the series is easily controlled from the following two considerations: the first
consideration is that the rest of the series have higher power about ¢, i.e., #, forn =

3,4,...; the second consideration is that the coefficients % decay exponentially. 0O

7.4. Complexity analysis. Following the complexity analysis in [24, 4], we
now analyze the computational complexity of the overall algorithm, which consists of
three parts. The first part is due to the initialization step by the multiscale vectorial
Gaussian wavepacket transform, which has complexity O(N?log N), where N is the
total number of points in each spatial dimension. The second part is due to the
propagation step of all the Gaussian beams. Since the Gaussian beam equations
themselves do not contain the large frequency parameter, integrating each beam over
a finite time period takes O(1) steps, and the total cost for this part is proportional
to the total number of beams. The final part is due to the summation step; as the
support of each Gaussian beam is of size O(N'/?) in each dimension, each beam at
time T covers about O(N%/?) points. Overall, the computational complexity of the
entire algorithm is O(N?log N+C-N%/2), where C denotes the number of beams being
traced. However, for all usual initial conditions, such as point sources, plane waves,
and curvilinear wavefronts, the multiscale Gaussian wavepackets provide theoretically
sparse approximations to these initial conditions, following an argument similar to the
ones in [26, 8, 12]. Most importantly, such sparsity is preserved throughout the time
evolution. Therefore, for such initial conditions, the number of beams would always
be small. Under such situations, our complexity of O(N%log N 4+ C - N%?) is much
more efficient compared to the O(N9!) cost of standard finite difference or finite
element methods.

8. Numerical examples. We present numerical examples to justify our new
method for 3-D elastic wave equations. We will use numerical solutions computed by
the finite-difference time-domain (FDTD) method on staggered grids [27] as reference
solutions to validate our computational results. The 3-D FDTD method is imple-
mented in the C language, and the resulting codes are further accelerated by using
GPUs.

All the 3-D examples are posed on the same spatial computational domain which
is [0,0.5]%. The terminal time 7" will be specified in individual cases. To have reliable,
accurate FDTD solutions to compare with, we have to mitigate dispersion errors of
the finite-difference method [6, 3]. Therefore, we use a very fine mesh for the FDTD
method, where a mesh size of ﬁ in each spatial direction is prescribed to compute
numerical solutions; this mesh size seems to suffice for the purpose of our numerical
comparisons shown here.

8.1. Beam reinitialization.

8.1.1. S-to-P reflection versus P-to-S reflection. We provide numerical re-
sults to justify our analysis carried out in sections 7.2 and 7.3.

To start with, we conduct the following experiments to illustrate the difference
between the S-to-P reflection and the P-to-S reflection. The elastic parameters are
taken to be A = p = 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/11/21 to 35.8.11.2 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FAST MULTISCALE GAUSSIAN BEAM METHOD 2561

The pure S-wave initial conditions for the experiment are g° = 0 and

(8.1)
— sin(a) sin(367x + 367 sin(«)(y — 0.25))6_367r2 (2%+(y—0.25)*+(2—0.25))

fo = sin(36ma + 367 sin(«)(y — 0.25))6_367r2 (#* +(y=0.25)* +(:-0.25)°) ’
0

so that the initial width of beams is set to be 3672.
The pure P-wave initial conditions for the experiment are g©’ = 0 and

sin(36mx + 367 sin(a)(y — 0.25))3*36”2(m2+(y*0.25)2+(z70.25)2)
P_ | . : —36m2 (22 +(y—0.25)? +(2—0.25)?)
7 = | sin(e) sin(36m2 + 36w sin(a)(y — 0.25))e y= : )
0

so that the initial width of beams is set to be 3672 as well.
Figure 3 shows the results, in which the red-star line is the ratio

sin(0°7)

the blue line is the ratio S(a) - As analyzed in section 7.2, the angle for the SP
reflection decreases to zero when the incident hitting angle increases. Therefore, the
SP reflection beams will be sharpened so that they become more localized.

sin(9F%)

sin(a) and

8.1.2. Sharpened beams versus original beams. We use an example to
demonstrate that beam accuracy will not be negatively impacted after adding the
new reinitialization process (7.11). Therefore, we compare the computed wavefield
obtained with reinitialization with that without reinitialization. By Lemma 7.1, we
will choose the truncation parameter ¢ = 2 according to (7.27) in our reinitialization
process.

Suppose an S-wave beam hits the boundary « = 0 at the central point (0,0.1,0.1),
where its Hessian equals

367 + 36724 1272 0
12725 7n2 + 36724 0 ,
0 0 472 4 36724

and the norm of its amplitude vector is set to be 100.

In Figure 4, we show wavefields along two different lines, (0 < = < 0.5,0.1,0.1)
and (0 < z < 0.5,0.08,0.13), to validate our reinitialization strategy. As we can
see, the reinitialization strategy will not affect accuracy of the overall results, but the
width of each new beam has been decreased.

The ratio of Sin(6)

[V}

0 0.1 0.2 0.5 0.6

03 04
sin(o)

FiG. 3. P-to-S reflection versus S-to-P reflection with different behavior of angle ratios, where
P-to-S: “*”; S-to-P: “7.
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100 100
80 ] 80
60 ] 60
=] =1
40 1 40
20 ] 20
0 0
0 01 02 03 04 0 01 02 03 04

(a) . (b) :

F1G. 4. Sharpened beams versus original beams. (a) (0 < z < 0.5,y = 0.1,z =0.1). (b) (0 <
z < 0.5,y = 0.08,z = 0.13). Solution with reinitialization: “o”; solution without reinitialization:

“ »

0.1 0.2 0.1 0.2

02 2 ’
) | ' ” ’ ) | I 'i 1']' '
03 03

o

(a) “x : (b) ) x o (C) % 01 oz _ o3 oa 0.5

F1G. 5. Ezample 1. Generic initial values with periodic boundary conditions. (a) FDTD on
z2=0.25 at T = 0.14. (b) Gaussian beam on z = 0.25 at T = 0.14. (¢) The line comparison along

the x-direction, where z = 0.25 and y = %; FDTD: “o”; Gaussian beam: “7”.

8.2. Periodic boundary conditions. We show some numerical results for
treating periodic boundary conditions.

8.2.1. Example 1. General initial conditions in a uniform medium. We
further test our algorithm on a homogeneous model with constant elastic moduli
A = p =1, and the initial conditions are taken to be g = 0 and

Sin(72ﬂ.x2)e*36w2 ((2-0.25)%+(2-0.25)*+(2—0.25)?)
(8.2) f= sin(727m2)e—36w2((m—o.25)2+(z—0.25)2+(z—0.25)2)
0

Figure 5 shows comparison results. As we can see, the Gaussian beam result is
comparable to the FDTD result in the asymptotic or high-frequency regime, and some
asymptotic errors only appear in the place where the wavefield is very weak.

8.3. Dirichlet boundary conditions: Pure P-wave initial conditions. We
now deal with the Dirichlet boundary conditions. We first check our reflection mech-
anism for pure P-wave initial conditions. We choose the initial conditions as the
following:

sin(32mz + 87Ty)67367r2((zfo.15)2+(y*0.25)2+(270.25)2)
(8.3) f= isin(Sme + 87ry)ei36“2((“’70‘15)2+<y*0‘25)2+(270‘25)2)
0
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and

2sin(32r2 + 8my)e 307 ((#=0.18)*+(y=0.25)* +(:-0.25)%)
(8.4) g= %sin(327rx n 87Ty)€—367r2((a;—o.15)2+(y—0.25)2+(z—025)2)
0

The reason that we choose to start with pure P-wave initial conditions is that we
can easily validate our P-wave reflection mechanism as both P-to-P and P-to-S wave
modes will occur in the process.

8.3.1. Example 2. P-wave reflection in a sinusoidal model. We choose
elastic parameters A = 1 + sin(47z) and p = 2, which may induce caustics in wave
propagation. Figure 6 shows the computational results at T' = 0.14. As we can see,
the Gaussian beam solution matches with the FDTD solution in a large scale, and
some asymptotic errors only appear in the place where the wavefield is very weak.

We remark that the reinitialization scheme is not involved in the P-wave reflection
shown above. Small asymptotic errors imply that the P-wave reflection does not
require reinitialization.

8.4. Dirichlet boundary conditions: Pure S-wave initial conditions. We
have designed a new reinitialization process to deal with the S-wave reflection. In
this subsection, we will test this reinitialization process, but first we will justify the
necessity of adding this reinitialization process.

Since both S-to-S and S-to-P wave modes will occur in the process of propagating
pure S-wave initial conditions, we choose to deal with pure S-wave initial conditions
so that we can easily validate our S-wave reflection mechanism.

By Lemma 7.1, we will choose the truncation parameter ¢ = 2 according to (7.27)
in the reinitialization process when needed.

8.4.1. Example 3. S-wave reflection with vertical hitting angle. We
check the S-wave reflection with a vertical hitting angle, that is, the case sin(a) = 0
in Figure 3. We choose elastic parameters to be A =1 and p = 2. We take the initial
conditions to be g = 0 and

sin(36my)e 367 (2=0.25)*+(y=0.15)"+(x-0.25)°)
(8.5) f= 0
0

Figure 7 compares the wavefields generated by our beam method to those from the
FDTD method at T' = 0.2 along two different lines. As we can see, the Gaussian beam

S ¢

0.3 0.3)
-0.05 -0.05
-0.1

0.4

0 01 02 03 04 05 0 01 02 03 04 05

(a) X (b) X (C) 0% 0.1 02 o3 0.4 0.5

Fi1G. 6. Example 2. P-wave reflection in a sinusoidal model with Dirichlet boundary conditions.
(a) FDTD on z = 0.25. (b) Gaussian beam on z = 0.25. (c) Comparison on the line y = 0.25 and
z=0.25; FDTD: “0”; beam: “”.
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-0.02
0.1 0.2 0.3 0.4 0.5 ] 0.1 0.2 0.3 0.4 0.5
(a) v (b) -

F1G. 7. Ezample 3. S-wave reflection with a vertical hitting angle. (a) On the line z = 0.25
and z=0.25 at T = 0.2. (b) On the line y = % and z=0.25 at T =0.2. FDTD: “0”; beam: “7.

0.4 0.4
0.2 0.2
> of >  of
-0.2 -0.2
-04 0.1 0.2 03 04 05 -04y 0.1 02 03 04 05

(a) . (b) .

Fi1G. 8. Ezample 4. S-wave reflection with an oblique hitting angle. (a) Beam solution without
reinitialization. (b) Beam solution with reinitialization. FDTD: “0”; beam: “-”.

solution matches with the FDTD solution in the large scale, and some asymptotic
errors only appear in the place where the wavefield is very weak. In particular, Figure
7 shows that the original method without reinitialization is accurate enough, which
is consistent with the illustration in Figure 3: when sin(a) = 0, the regular reflection
method is expected to be accurate enough and the above experimental result justifies
our conclusion.

8.4.2. Example 4. S-wave reflection with oblique hitting angle. We
choose elastic parameters to be A = 1 and p = 2. We take the initial conditions to be
g =0 and

2 sin(36my + 187m)e—367r2((x—0.25)2+(y—0.15)2+(z—0.25)2)
(8.6) f= — sin(36my + 187m)6—367r2((x—0.25)2+(y—0.15)2+(z—0.25)2)
0

We remark that we have chosen the direction of the initial wavepacket so that it
will hit the boundary at an oblique angle at a certain time, leading to loss of accuracy
for beam reflection dynamics at the boundary.

Figure 8 shows the comparison results, where the comparison is carried out along
the z-axis with z = 0.25 and y = 0.125. Figure 8(a) shows the result without reinitial-
ization. As we can see, although the major part of the waves is captured with good
accuracy, the tail region of the Gaussian beam solution is not accurate enough due to
the fact that oblique reflection beams induced by the S-to-P wave-mode conversion
occur. Figure 8(b) shows the result with reinitialization, where the beam solution
with reinitialization shows improved results in the tail region.
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The results shown in Figure 8 illustrate that our analysis in section 7 is justified,
and the S-to-P beam reflection will lose accuracy to some degree so that it is necessary
to incorporate the reinitialization process into the algorithm.

8.4.3. Example 5. S-wave reflection in a linear model. The elastic pa-
rameters are chosen to be p = 24 0.2y and A = 1. The initial conditions are taken to
be g =0 and f as in (8.6).

Figure 9 compares the wavefields without /with reinitialization to the FDTD result
on z =0.25 at "= 0.14. As we can see, in the upper left corner of Figure 9(a), there
are some significant oscillations in the FDTD result. Without reinitialization, Figure
9(b) shows that the Gaussian beam method is not able to capture those oscillations.
With reinitialization, Figure 9(c) shows that the Gaussian beam method is able to
capture those oscillations in a much clearer way.

8.4.4. Example 6. S-wave reflection in a sinusoidal model. The elastic
parameters are chosen to be y = 2 + 0.2sin(z) and A = 1. Since the solution of
the S-wave eikonal equation in this sinusoidal model is multivalued in some region,
caustics occur in wave propagation. Therefore, it is necessary to use Gaussian beams
to treat automatically the resulting high-frequency waves.

Figure 10 compares the Gaussian beam wavefield with reinitialization to the
FDTD result on z = 0.25 at 7' = 0.14. As we can see, the beam solution matches well
with the FDTD solution.

8.5. Dirichlet boundary conditions: Generic initial conditions.

8.5.1. Example 7. General initial conditions and sinusoidal model. We
apply our multiscale Gaussian beam method to treat more general initial conditions

w0 0 0

' S 0.4 0.4 0.4
011 s 0.1 01f" i
o s § 0.2 ":'-"'._ 0.2 ":-‘"'..,_ 0.2
0.2 02 0.2
> 0 > 0 - 0
03 02 03 03|
-0.! -0.2 -0.2
o o o
04 % o4 04 ﬁ 0.4 #
= B - -0.4 o -0.4
o5 — | 5 05
0 0.2 0.4 o 0 0.2 0.4 [ 0.2 0.4
(a) x (b) x (c) :

Fi1G. 9. Ezample 5. S-wave reflection in a linear model. (a) FDTD. (b) Beam solution without
reinitialization. (c) Beam solution with reinitialization.

o
I=

03 \ || faos 03 \
L]
04 \ 0.1 04 11;

. -0.15

(a) 0 0.2 . 0.4 (b) 0 0.2 . 04

Fic. 10. Ezample 6. S-wave reflection in a sinusoidal model with reinitialization. (a) FDTD.
(b) Beam solution with reinitialization. (c) Comparison on the liney = 3% and z = 0.25 at T = 0.14;
FDTD: “0”; beam: “7.
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Fic. 11. Ezample 7. The second component of elastic waves. (a) FDTD. (b) Beam solution
with reinitialization. (c) Comparison along a line, where y = z = 0.25; FDTD: “0”; beam: “7.

by choosing elastic parameters to be A = 1+sin(4nz) and p = 2. The initial conditions
are taken to be g = 0 and

sin(32mx + 327ry2)e_36772((w—0~15)2+(y—0~25)2+(z—0.25)2)
(8.7) f=| sin(32rz + 10my)e 367 (2-0.15)"+(4-025)"+(=-0.25)")
sin(167rz)e_36”2((1—0-15)2+(y—0.25)2+(z—o.25)2)

Figure 11 shows comparison results for the second component of the elastic wave-
fields between FDTD and Gaussian beams on z = 0.25 at T" = 0.2. In this case, P
and S waves are captured simultaneously, and wave-mode conversions after reflection
are also captured. Figure 11(c) shows that the proposed multiscale Gaussian beam
method is able to compute the overall wave motion very well, and slight discrepancies
with the FDTD solution occur only at locations where the wavefield is so weak that
the asymptotic error dominates.

8.5.2. Convergence rate analysis. Finally, we carry out analysis of the con-
vergence rate. The elastic parameters are taken to be A = 1 and u = 2, and the initial
conditions are set to be g = 0 and

Sln(??(].Gﬂ'ZL' + 87’(:{/))67427‘—2((170‘25)2+(y70‘15)2+(Z70'25)2)
(8.8) f= sin(n(16ma + 87Ty))67427r2((z70.25)2+(y70.15)2+(z70.25)2)
0

where the amplifying factor 7 is taken to be a geometric series, 1,1.5,2.25,...,1.5°.
Since the convergence rate of an asymptotic method is measured in terms of
the inherent small/large parameter, such as the smallest wavelength or the largest
frequency parameter, rather than the grid size as used in standard finite element
or finite difference methods, we will measure the convergence rate of our multiscale
Gaussian beam method in terms of the inherent oscillation frequency, such as 1677
specified by the initial condition (8.8) in the above particular example, where 7 varies.
Figure 12 shows the results of convergence rate, where the blue star line is the
logarithm of the Lo norm of the error at different 7’s, and the red line is the linear
function with the slope as —% log(1.5). Since the convergence rate of the multiscale
Gaussian beam method for acoustic wave equations is ﬁ as proved in [5], our multi-
scale Gaussian beam method for elastic wave equations is expected to have a similar
convergence rate, such as O(ﬁ)7 which is evident in the figure. Since a very large 7
in the above example will induce extremely oscillatory wave phenomena, the FDTD
method will demand an extremely fine mesh to resolve these oscillations. Although we
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FiG. 12. Log-log plot for convergence rate of the new Gaussian beam method, where the error
curve is ““*” and the line with the slope of f% log(1.5) is “”.

are already using GPUs in our FDTD implementation, the computational resources
available to us are still limited. Consequently, we are only able to calibrate the con-
vergence rate of beam solutions in terms of very modest frequencies in terms of 7 so
that the convergence rate as shown in Figure 12 is not so clean.

9. Conclusion. We proposed a new fast multiscale Gaussian beam method to
solve the 3-D elastic wave equation in a bounded domain in the high-frequency regime.
We have developed a novel multiscale transform to decompose an arbitrary vector-
valued function into multiple Gaussian wavepackets with various resolutions. To im-
prove efficiency and accuracy of multiscale beam propagation, we have developed a
reinitialization strategy based on the stationary phase approximation method so that
we can sharpen each single beam. Numerical examples in different setups demon-
strated correctness and robustness of the new method.

Appendix A. Hessian: Positive definite imaginary part. In this appen-
dix, we prove the following theorem.

THEOREM A.1. Every Gaussian beam preserves the SPD property of the imagi-
nary part of its Hessian after reflection if it is neither grazing nor evanescent after
reflection.

Without loss of generality, we assume that the reflection happens on the surface
{x = (z,y,2) : « =0}. We use 7 to denote both P- and S-wave phase functions,
and the same applies to the velocity notation c¢. To simplify the presentation, all
Hessian matrices mentioned below refer to the imaginary part only if not specified
otherwise. We assume that the reflection point is g = (20, Yo, 20), and all functions
are defined at this point if not specified otherwise. We also assume that we treat
the positive Hamiltonian throughout this proof, and the negative Hamiltonian will be
treated similarly.

A~.1. Transformation between Hessian matrices. We first define a new ma-
trix M at the reflection point which takes the following form:

(A1) M=\ Ty Ty Ty
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Accordingly, we define a transform X between the standard Hessian matrix M (as
used before) and M by using the eikonal equation 7 + G(x, V7 (x)) = 0,

Tex Tzy Txz
(AQ) N(M) = | Tey Tyy Tyz| = Mv

Tez Tyz Tzz

where all the terms with variables  and t are defined through the eikonal equation as
shown in section 5. Moreover, we use Np and Ng to mean that the transform follows
the P-wave eikonal equation and the S-wave eikonal equation, respectively.

If we can prove that the transform X and its inverse transform X~! preserve the
SPD property, then Theorem A.1 is proved since M™* = Rp(M) = Rp(Rg*(M)) or
Mrew = Rg(M) = Rg (R (M)).

To prove this theorem, instead of considering two types of matrices in (A.2)
directly, we will base our proof on the complete (¢, x)-Hessian matrix M.,

Tt VTtT:|
9

MC - |:V7't M

where V7 is the gradient of the phase function’s time derivative 7 and M is the
standard Hessian. Both M and M are submatrices of M..

A.2. Two useful lemmas. To prove the theorem, we need two lemmas. We
start with the simpler one, i.e., Ve = 0 at the point x.

LEmMMA A.1. If Ve vanishes at xg, then M, is a positive semidefinite matriz of
rank three.

Proof. We write out the complete matrix M, first,

Vil oar Vr v M
(A.3) L A I e s ,
VTt M C]‘WVY_T M

To show that the matrix M, is positive semidefinite, we let v = (o, p)7 and check

vl Vr VT Mp
A4 Mo = a?c? M —— +2ac—=— +p' M
(4-4) e I 2 I 2 B

Vvt T s
A5 = — M —_ .
49 (g +#) 1 (cergry +)

Equation (A.5) shows that the null space of M. is a 1-D space and its basis can be
taken to be v, where

1
(AG) v = ( clJrCQVT ) . D
T Vit VTl

When Ve # 0 at the point g, we will follow a similar path as the constant
velocity case to show that the imaginary part of the complete matrix M, is a positive
semidefinite matrix.

LEMMA A.2. The imaginary part of the complete matriz M. is a positive semi-
definite matriz of rank three. Moreover, a single basis element © in its null space can
be taken to be

A7 "= (es)
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Proof. We first prove that v is in the null space of

2 vVl Im(M)Vr CVTTIm(M)

V2 V7]
(A.8) Im(M,) =
c% Im(M)

Here, although the gradient of the velocity Ve # 0, this will only affect the real part
of M,.. Therefore, we can apply the same argument as in Lemma A.1 to conclude. O

Now we are ready to prove the main theorem. The assumption that there are no
grazing rays guarantees that 7, # 0 for both beams before and after reflection.

Proof. We start to prove that the transform N and its inverse transform preserve
the SPD property when Ve = 0. In other words, if M is SPD, then M = N=L(M) is
SPD. On the other hand, if M is SPD, then R(M) is also SPD for both P-wave and
S-wave eikonals.

Case 1: M = R~ (M). To prove that M is SPD, we will use two steps: we first
consider M to be a submatrix of the corresponding complete matrix M., and we then
use Lemma A.1 to show that this submatrix is SPD.

For any vector @ = (g, lio, i3) € R3, we have

(A.9) @' Ma=(ay 0 dy ds)M, 0

if the reflection happens on the surface {& = (x,y,z) : © = 0}. Since there is only
one single basis element v in the null space of matrix M, as shown in Lemma A.1, all
vectors in the form (uy,0,us,u3)” are not parallel to ©. Moreover, since the complete
matrix M, is a positive semidefinite matrix, for any vector u € {u = (1,0, Ug, U3) :
@ = (U1, Uo, Ug)} the right-hand side of (A.9) is positive. Consequently, aTMa > 0
for any @ so that M is SPD.

Case 2: M = R(M). We will follow the same route as in Case 1. We first treat
the Hessian M as a submatrix of the complete matrix M. and we then use the fact
that M., is a positive semidefinite matrix.

In terms of the transform M = R(M), for any vector u € R® we have

(A.10) u'Mu= (0 u”)M, (O> :
U

Since all the vectors (0,u)" in the above are not in the null space of the complete

matrix M., where, for any vector (0,u), we have

(A.11) (0,u)” # Bo VB € Ry,

we conclude that u” Mwu > 0 for any u and M is positive definite.

When Ve # 0, we can use the same idea as when Ve = 0 to prove that the
transform N and its inverse transform will preserve the SPD property. The reason is
that we only care about the imaginary part of the matrix and the imaginary parts of
related matrices are exactly the same as the ones in the constant velocity case. 0
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