


method to the viscoelastic isotropic wave equation with frequency-

dependent complex-valued elastic parameters defined in complex

space, leading to the complex-valued P- and S-wave eikonal equa-

tions defined in complex space (in the sense that its variables are in

complex space). Because the imaginary part of the complex-valued

eikonal captures phase dispersion and amplitude attenuation, the

complex-valued eikonal is a unique quantity, which can be useful

for efficient seismic data processing. This raises the question of

how to compute such complex-valued eikonals efficiently. In this pa-

per, we develop novel paraxial Liouville partial-differential-equation

(PDE) methods in real phase space so that we can compute a com-

plex-valued eikonal in real space (in the sense that its variables are in

real space) in the multivalued sense on regular meshes. We develop

the newmethodology by reformulating some popular real-space ordi-

nary-differential-equation (ODE)-based Lagrangian ray-tracing

methods for complex-valued eikonals into PDE-based methods, in

which the real and imaginary parts of the complex-valued eikonal

have real-space variables and are computed separately by solving

some linear Liouville equations.

To facilitate the development of our methodology, we first clarify

some notions and concepts. Although traveltime and eikonal are

treated the same in many situations of nonattenuating wave propa-

gation, we will distinguish them carefully in our discussion for the

following reasons: The real and imaginary parts of the eikonal are

well defined in attenuating wave propagation, and the traveltime

function itself in attenuating wave motion depends on complex-val-

ued eikonal and frequency (for an example, see Keers et al., 2001).

By real space in our discussion, we mean 2D or 3D physical space.

By complex space, we mean that each real coordinate becomes

complex-valued, including real and imaginary parts, so that 2D real

space becomes 2D complex space; the latter, in fact, is four dimen-

sions in the sense of having two real coordinates associated with

two real parts and two real coordinates associated with two imagi-

nary parts. Moreover, a complex-valued eikonal can be defined in

either complex or real space in the sense that its real and imaginary

parts have variables in either complex or real space. In the sequel, a

complex-valued eikonal is mainly meant to indicate that its real and

imaginary parts have variables in real (phase) space.

According to classical mechanics (Goldstein, 1950), we use real

phase space to denote the space spanned by real position and real

momentum variables, which are used to describe the motions of

particles according to Newton’s laws. Thus, in 2D real space,

the corresponding real phase space is four dimensions, consisting

of two real position variables and two real momentum variables.

However, in our application here related to the eikonal equation

in 2D real space, the eikonal equation itself serves as a constraint

to constrain real momentum variables so that one real phase angle is

sufficient to characterize the two real momentum variables; conse-

quently, we have a reduced real phase space of three dimensions

composed of two real position variables and one real phase angle.

Accordingly, for the 3D real-space eikonal equations, the corre-

sponding real phase space is six dimensions but the reduced real

phase space is five dimensions. We may generalize real phase space

to complex phase space naturally by replacing real space with com-

plex space in the context of real phase space.

As a first-order nonlinear PDE, the complex-valued eikonal equa-

tion defined in complex space can be solved by the method of char-

acteristics to yield complex-valued eikonal functions, leading to the

so-called complex-space ray-tracing method, which theoretically

enables us to solve the complex-valued eikonal equation without

any approximation. However, because sources and receivers in

the seismic acquisition geometry are located in real (physical)

space, the complex-space ray-tracing method brings about unusual

complications in that rays are now situated in complex space so that

the dimension of the ambient space becomes doubled, where a usual

2D real-space ray tracing becomes a 2D complex-space (equivalent

to a 4D real space) ray tracing; consequently, the resulting ray-trac-

ing system is high dimensional and relatively costly to solve. More-

over, it is hard to build a complex-valued elastic-parameter model

from the real-valued one, which is usually available from measure-

ments in real space (Vavryčuk, 2008a; Hao and Alkhalifah, 2017).

Therefore, some further approximations are required to develop

real-space ray-tracing methods for computing complex-valued

eikonal functions.

In viscoacoustic media, the widely used weakly attenuating

approximation (i.e., the reciprocal of frequency-independent quality

factor ≪ 1; Červený et al., 1977; Gajewski and Pšenčik, 1992;

Keers et al., 2001; Xie et al., 2009; Xin et al., 2014; Hu et al.,

2018) can be used to reduce the complex-space ray-tracing system

to a real-space ray-tracing system approximately in terms of quality

factors, where the real and imaginary parts of the complex-valued

eikonal are defined in real space. Numerical experiments in Gajew-

ski and Pšenčik (1992) demonstrated that the weakly attenuating

assumption is applicable to a substantial range of quality factors

encountered in exploration geophysics. Keers et al. (2001) show

that the raypath under the weakly attenuating approximation is iden-

tical to that in a corresponding nonattenuating medium defined by a

real-valued reference velocity; therefore, the real part of the com-

plex-valued eikonal can be obtained by applying the ray-tracing

method to the eikonal equation defined by the real-valued reference

velocity, and the imaginary part can be obtained via an integration

along the known raypath defined by the reference velocity. In this

approximate real-space ray-tracing model, the real and imaginary

parts of the complex-valued eikonal at each location must be found

indirectly via solving nonlinear systems or numerical quadratures.

Viewing a viscoelastic medium as the perturbation of a perfectly

elastic medium, one may account for attenuation effects by using

first-order perturbations and tracing rays in the elastic reference

medium which is specified in real space (Vavryčuk, 2008b; Klimeš

and Klimeš, 2011; Hao and Alkhalifah, 2017; Li et al., 2020), lead-

ing to the real-elastic ray-tracing method (Vavryčuk, 2012). Another

real-space ray-tracing method for viscoelastic media, the real vis-

coelastic ray-tracing method (Vavryčuk, 2008a), is obtained by

modifying the Hamiltonians for viscoelastic media so that the rays

are constrained as trajectories in real space (Vavryčuk, 2012). The

resulting ray-tracing system is based on a certain real-valued refer-

ence velocity calculated from the complex-valued phase velocity

for the P- or S-wave, respectively. Although this approach is still

approximate, this method is highly accurate and applicable to

strongly attenuating media (Vavryčuk, 2012; Hao and Alkhalifah,

2017), where the real and imaginary parts of the complex-valued

eikonal are obtained in the same way as in the real elastic ray-trac-

ing method.

So far, because all the rays are traced from an arbitrary source

point to subsurface locations by solving an initial value problem

for ODEs, all these real-space ray-tracing methods yield the real

and imaginary parts of the complex-valued eikonal at irregularly

distributed points. Such methods, which track individual particles
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(pulses of seismic energy) through space along raypaths, are called

Lagrangian. Because irregular distributions of complex-valued ei-

konals hinder their applications to seismic migration and tomogra-

phy as these applications are usually posed on regular mesh points,

we are motivated to develop efficient methods to produce complex-

valued eikonals on regular grids; we do this by formulating the three

real-space ray-tracing systems into partial differential equations. It

turns out that there are two possibilities for this.

Assuming that there is a unique ray connecting any source to any

grid point, one possibility is to solve an eikonal equation with an ap-

propriate reference velocity for the real part of the complex-valued

eikonal and solve an “advection equation” with an appropriate qual-

ity-factor function as its forcing term for the imaginary part of the

complex-valued eikonal, where the advection equation is weakly

coupled to the eikonal equation in the sense that the advection coef-

ficients are defined by the gradient of the real part of the complex-

valued eikonal; the resulting method yields a single-valued approxi-

mate solution for the complex-valued eikonal equation. Such meth-

ods, which track the movement of “particles” through a fixed point in

real space, produce a field of one or more quantities at each fixed

point, are called Eulerian. Because the unique-ray assumption is very

restrictive, we would in fact solve the preceding eikonal equation for

the real part in the sense of viscosity solution (Lions, 1982; van Trier

and Symes, 1991), ending up by computing the first-arrival-based real

part of the complex-valued eikonal. This route has been taken in the

recent work of Hu et al. (2021).

However, assuming that there may be multiple rays connecting

any source to any grid point, the other possibility is to embed the

real-space ray-tracing system into real phase space Liouville equa-

tions (tracking the movement of particles through a fixed point in

real phase space) and solve the resulting linear PDEs in real phase

space so as to obtain the real and imaginary parts of the complex

multivalued eikonal on regular mesh points in physical space. The

resulting Eulerian method yields multivalued real and imaginary

parts of the complex-valued eikonal, and we call this Eulerian

method the Liouville PDE method. This is the route that we are

taking in the current work to develop Eulerian methods for comput-

ing complex-valued eikonals in real space.

If the medium is heterogeneous, there is a high probability that

more than one ray will occupy any given spatial point, resulting in a

multivalued eikonal field over physical space (White, 1984). Never-

theless, the multivalued eikonal field is essential, for example, in

obtaining high-resolution seismic images by multiarrival Kirchhoff

and Gaussian beam migrations (Liu and Bleistein, 1995; Operto

et al., 2000; Hill, 2001; Gray, 2005) and by ray-based Q-migrations

(Xie et al., 2009, 2015). The Lagrangian approach to this problem is

to use the method of characteristics to trace rays in phase space, thus

taking care of multivaluedness (Červený et al., 1977; Pereyra,

1992). However, because in reality only a finite number of rays

can be traced, Lagrangian methods in general produce nonuniform

distributions of the eikonal field. The solution to this nonuniformity

is interpolation, which can be cumbersome (Pereyra, 1992; Vinje

et al., 1993). Therefore, Eulerian approaches are highly desirable

for solving eikonal equations and, consequently, much research

has been devoted to this. Benamou (1999) enacts direct resolution

of multivalued phase space solutions of Hamilton-Jacobi equa-

tions. Symes (1998) and Symes and Qian (2003) derive a slowness

matching finite-difference method for computing multivalued

eikonals by patching together local single-valued solutions of the

eikonal equation via Fermat’s principle into a global multivalued

traveltime field. Engquist et al. (2002) use the segment projection

method to reparameterize multivalued wavefronts into single-val-

ued segments existing in a different space. Fomel and Sethian

(2002) introduce a phase space stationary Liouville equation

method that yields multivalued eikonals for multiple sources when

they occur. Osher et al. (2002) introduce a phase space-based level

set and Eulerian framework for constructing wavefronts, which

automatically handles multivalued solutions when they appear.

Qian et al. (2003) extend the level-set method (Osher et al., 2002)

to anisotropic wave propagation. Qian and Leung (2004, 2006)

extend the level-set method (Osher et al., 2002) to the paraxial

Liouville setting so that multivalued eikonals and amplitudes can

be computed efficiently, and this paraxial Liouville formulation is

adopted in the current work.

Our contribution consists of the following. We first formulate the

paraxial Liouville equations for computing the real part of the com-

plex-valued eikonal in real reduced phase space, and we then derive

a new paraxial Liouville equation for computing the imaginary part

of the complex-valued eikonal in real reduced phase space. The

imaginary part of the complex-valued eikonal determines phase

dispersion and amplitude attenuation. We also formulate the para-

xial Liouville equations to compute multivalued ray amplitudes in

real reduced phase space. To have an efficient algorithm, we also

develop a fast local level-set method to compute these multivalued

functions rapidly in real reduced phase space.

The rest of the paper is organized as follows. In the Methodology

section, we develop the paraxial Liouville formulation to compute

the real and imaginary parts of the complex-valued eikonal, and we

also derive necessary equations for computing amplitudes. Then,

numerical experiments on typical attenuating models demonstrate

the feasibility of the proposed method.

METHODOLOGY

Eulerian PDE framework for complex-valued eikonals:
Single arrivals

In this subsection, we briefly summarize the approach in Hu et al.

(2021) for computing complex-valued eikonals defined in real

space in attenuating media, where the real part of the complex-val-

ued eikonal is the first arrival of the isotropic eikonal equation in the

sense of viscosity solution. The correspondence principle (Keers

et al., 2001) indicates that we can treat wave propagation in a vis-

coelastic (or viscoacoustic) medium as wave propagation through

an elastic (or acoustic) medium with complex-valued elastic param-

eters in complex space (or a complex-valued velocity in complex

space). To model wave motion in such a medium efficiently, high-

frequency asymptotic approximations provide an effective alterna-

tive to direct numerical methods. One of the essential ingredients for

high-frequency asymptotics of viscous wave motion is the complex-

valued eikonal function. Hu et al. (2021) propose a unified Eulerian

framework to compute complex-valued eikonal functions in real

space for several popular high-frequency asymptotic models of vis-

cous wave motions, where the real and imaginary parts of the com-

plex-valued eikonal function satisfy the real-space isotropic eikonal

equation and a real-space advection equation, respectively. These

popular asymptotic methods include the real-space ray-tracing

method (Gajewski and Pšenčik, 1992; Keers et al., 2001) for

viscoacoustic media, the real-elastic ray-tracing method (Vavryčuk,

Liouville for multivalued eikonals T73
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2008b, 2012; Klimeš and Klimeš, 2011; Hao and Alkhalifah, 2017),

and the real viscoelastic ray-tracing method (Vavryčuk, 2008a,

2012; Hao and Alkhalifah, 2017) for viscoelastic media. Provided

that we choose an appropriate reference velocity and an appropriate

quality-factor related function, the framework in Hu et al. (2021) is

applicable to compute complex-valued eikonals in weakly and

strongly attenuating media.

Hu et al. (2021) focus on developing PDE-based methods in the

sense of first arrivals, and in the current work we are going to de-

velop PDE-based methods in the sense of multivalued solutions

(multiple arrivals). We start from Hu et al. (2021) to develop such

an approach for computing multivalued real and imaginary parts of

the complex-valued eikonal.

We assume that the complex-valued eikonal function τ consists

of the real part T and the imaginary part T�, which satisfy the fol-

lowing real-space eikonal and advection equation (Hu et al., 2021),

respectively,

j∇Tj ¼
1

cðxÞ
; TðxsÞ ¼ 0; (1)

∇T · ∇T� ¼
1

c2ðxÞQðxÞ
; T�ðxsÞ ¼ 0; (2)

where x is the real-valued position vector, cðxÞ is the real-valued

reference velocity, and QðxÞ is a quality-factor-related real-valued

function (and is not necessarily the frequency-independent quality

factor itself).

Because ∇T is parallel to the ray direction, the imaginary part T�

actually satisfies

T�ðxÞ ¼

Z

RðxÞ

1

cðyðsÞÞQðyðsÞÞ
ds; (3)

where the integration is over the raypath RðxÞ connecting the source
xs to the point x, and the coordinate function yðsÞ varies along the

raypath RðxÞ parameterized by the arc length s.

Hu et al. (2021) develop high-order fast sweeping methods to solve

equations 1 and 2, and the resulting real part of the complex-valued

eikonal is understood as the minimum phase or the first-arrival

traveltime in the viscosity-solution sense for Hamilton-Jacobi equa-

tions (Lions, 1982; van Trier and Symes, 1991). However, because

the single-valued Eulerian solution may not suffice for many appli-

cations, it motivates us to develop efficient Eulerian methods for

computing the complex-valued eikonal in the multivalued sense.

A paraxial Liouville formulation for complex-valued
eikonals: Multivalued

To simplify the derivation, we consider the 2D case so that we

have x ¼ ðx; zÞ; a similar derivation can be carried out in the 3D

case (Leung et al., 2004). We follow the work in Qian and Leung

(2004, 2006) to develop a simple numerical approach so that we can

compute the multivalued real part of the complex-valued eikonal by

using the level-set method and the paraxial formulation for the ei-

konal equation 1. We assume that the eikonals of interest are carried

by the so-called subhorizontal rays (Gray and May, 1994; Symes,

1998; Qian and Symes, 2002), where subhorizontal means oriented

in the positive z-direction.

Applying the method of characteristics to the eikonal equation 1

with the point source condition under the subhorizontal condition,

we can use depth z as the running parameter so that we have the

following reduced system (Qian and Leung, 2004, 2006):

dx

dz
¼ tan θ; (4)

dθ

dz
¼

1

c

�

∂c
∂z

tan θ −
∂c
∂x

�

; (5)

which is appended with the initial conditions xjz¼0 ¼ xs and

θjz¼0 ¼ θs. Here, θs varies from −θmax ≤ θ ≤ θmax < ðπ∕2Þ. In

addition, the eikonal itself is computed by integrating

dt

dz
¼

1

c cos θ
; (6)

with tjz¼0 ¼ 0.

To develop Eulerian methods, we will use the level-set-based

Liouville equations. If we define ϕ ¼ ϕðz; x; θÞ such that the zero

level set, fðxðzÞ; θðzÞÞ∶ϕðz; xðzÞ; θðzÞÞ ¼ 0g, gives the location of

the reduced bicharacteristic strip ðxðzÞ; θðzÞÞ at the “artificial time”

z, then we may differentiate the zero level set equation with respect

to z to obtain (Qian and Leung, 2004, 2006)

ϕz þ uϕx þ vϕθ ¼ 0; (7)

where u ¼ dx∕dz and v ¼ dθ∕dz are given by the ray equations 4

and 5. The initial condition for the level set equation 7 is taken to be

ϕjz¼0 ¼ ϕð0; x; θÞ ¼ x − xs, which implies that the zero level is set

at z ¼ 0 and
n

ðxð0Þ; θð0ÞÞ∶ϕð0; xð0Þ; θð0ÞÞ ¼ 0
o

¼
n

ðxð0Þ; θð0ÞÞ∶xð0Þ − xs ¼ 0
o

¼
n

ðxð0Þ; θð0ÞÞ∶xð0Þ ¼ xs

o

; (8)

parameterizes all the rays emanating from the source ðxs; z ¼ 0Þ
with the takeoff angle ranging from −θmax ≤ θ ≤ θmax < ðπ∕2Þ:
To determine the multivalued real part of the complex-valued ei-

konal from the previous level-set equation, we give the correspond-

ing equation governing the evolution of the real part. By the

subhorizontal condition in the paraxial formulation and the ray

equation 6, let Fuðx; θ; zÞ be the flow generated by the vector field

u ¼ ðu; vÞ in the reduced phase space ðx; z; θÞ along the z-direction.
Thus, we can write

dT

dz
ðz; Fuðx; θ; zÞÞ ¼

1

c cos θ
: (9)

Therefore, having t ¼ Tðz; x; θÞ we get the following advection

equation (Qian and Leung, 2004, 2006):

dT

dz
¼ Tz þ uTx þ vTθ ¼

1

c cos θ
: (10)

The initial condition for T is given by Tjz¼0 ¼ Tð0; x; θÞ ¼ 0.

The imaginary part of the complex-valued eikonal can be com-

puted by converting the Lagrangian (ray-tracing) formulation to

T74 Leung et al.
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the corresponding Eulerian (PDE) formulation. According to the

ray-theory solution in equation 3, we can write

dT�

dz
ðz; Fuðx; θ; zÞÞ ¼

1

cQ cos θ
; (11)

where Fuðx; θ; zÞ is the same flow generated by the vector field u in

the reduced phase space. This implies that the imaginary part of the

eikonal, T�, satisfies the following equation:

dT�

dz
¼ T�

z þ uT�
x þ vT�

θ ¼
1

cQ cos θ
; (12)

which is a new equation that will enable us to compute the multival-

ued imaginary part of the complex-valued eikonal in a PDE fashion.

A paraxial Liouville formulation for multivalued
amplitudes

According to Keers et al. (2001), when the quality factor satisfies

ð1∕QÞ ≪ 1 in a viscoacoustic medium, then, to the first order, the

raypaths remain unchanged and the amplitude also is unchanged,

and furthermore they can be determined from the reference acoustic

velocity. In practice, the assumption ð1∕QÞ ≪ 1 may be overly re-

strictive, and we found in our experiments that the method still

works when ð1∕QÞ < 1. However, in a generic viscoelastic medium,

it is unknown whether the P- or S-wave amplitude is unchanged to

the first order in terms of the quality factor. Therefore, we will de-

velop our paraxial Liouville formulation for multivalued amplitudes

only in a weakly viscoacoustic medium.

Consequently, in the sense of Keers et al. (2001), based on the

same paraxial Liouville framework, we can compute the multival-

ued amplitude corresponding to the multivalued real part of the

eikonal, so that the multivalued amplitude is real valued rather than

complex valued. We start from the level-set approach as developed

by Qian and Leung (2004, 2006) and the formula given in Zhang

(1993) and Qian and Symes (2002),

~Aðx; z; xs; zsÞ ¼
1

2π

ffiffiffi

c

2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∇ ~T × ∇ ~ψ j

q

; (13)

where ~T and ~ψ are the real part of the eikonal and the take-off angle

of a unique real-space ray reaching ðx; zÞ from ðxs; zsÞ, respectively.
When the real-space ray connecting the source ðxs; zsÞ to the sub-

surface point ðx; zÞ is not unique, the amplitude function becomes

multivalued, where the real part of the complex-valued eikonal and

the takeoff angle are well defined on each solution branch in physi-

cal space ðx; zÞ.
To compute the multivalued amplitude function in the reduced

phase space, we consider T as the extension of real-space ~T to

the reduced phase space; furthermore, we also may extend ~ψ

and ~A to ψ and A in the ðz; x; θÞ space, respectively. Because

the takeoff angle is constant along a given ray in phase space,

we have (Qian and Leung, 2004, 2006)

ψ z þ uψx þ vψθ ¼ 0: (14)

Although the takeoff angle and the level-set function satisfy the

same advection equation, the initial conditions for the two advection

equations are different, so that the two equations propagate different

information. The level-set function is initialized to beϕðz ¼ 0; x; θÞ ¼
x − xs so that the zero level set fðx�; θ�Þ∶ϕðz; x�; θ�Þ ¼ 0g at a cer-

tain quasi-time z indicates that a ray emanating from the source xs at

z ¼ 0 passes through the point ðx�; zÞ with the arrival angle θ�. The

takeoff-angle function ψ is initialized to be ψðz ¼ 0; x; θÞ ¼ θ so that

the value of ψðz; x; θÞ at ðz; x; θÞ indicates that a ray with the takeoff

angle equal to ψðz; x; θÞ has arrived at the location ðz; xÞ with the

arrival angle θ. Combining the two pieces of information from the

level-set function and the takeoff angle function, we can read off

the source and takeoff angle of the ray arriving at the location

ðz; x�; θ�Þ, where the takeoff angle and the source of the ray are equal
to ψðz; x�; θ�Þ and xs, respectively.

The work in Qian and Leung (2006) has shown that the amplitude

formula can be reduced to

Aðz; x; θÞ ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

2 cos θ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

�

�

�

ψxϕθ − ψθϕx

ϕθ

�

�

�

�

s

: (15)

To compute the derivatives of the level-set function on the zero

level set, we need to advect those derivatives as well. We first let

ξ ¼ ϕx and η ¼ ϕθ. Differentiating the advection equation for ϕ

with respect to x and θ, respectively, we have (Qian and Leung,

2004, 2006)

ξz þ uξx þ vξθ þ uxξþ vxη ¼ 0; (16)

ηz þ uηx þ vηθ þ uθξþ vθη ¼ 0: (17)

Now, defining Δ ¼ ψxϕθ − ψθϕx and differentiating it with respect

to z, we have the advection equation (Qian and Leung, 2004, 2006):

Δz þ ∇x;θ · ðuΔÞ ¼ 0; (18)

and the amplitude can then be computed by

Aðz; x; θÞ ¼
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

�

�

�

c

2 cos θ

Δ

ϕθ

�

�

�

�

s

: (19)

We remark that the quantity Δ is inversely proportional to the cross-

sectional area of an infinitesimal tube of rays surrounding a certain

given ray and is conserved along the flow defined by the vector field

u. The scaling factor 1∕ð2 cos θÞ is related to the paraxial perspec-

tive of the reduced phase space in the z-direction.

Now, we consider the initial conditions for these intermediate

quantities in the multivalued amplitude formula. At z ¼ 0, we

can set ϕx and ϕθ equal to 1 and 0, respectively. However, because

ψx is a singular function at the source, it is better to start computing

ψx and ψθ at some z ¼ dz > 0 close to zero. Assuming that the

velocity c can be approximated by a constant near the source,

we have (Qian and Leung, 2004, 2006)

ψxðz; x; θÞjz¼dz ¼
cos2 θ

dz
; ψθðz; x; θÞjz¼dz ¼ 1: (20)

Thus at small z ¼ dz >0, we assign ϕðz; x; θÞjz¼dz ¼ x − dz tan θ

and Δðdz; x; θÞ ≡ −2, which is independent of dz as long as the

velocity can be well approximated by a constant near the source.
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Numerical implementations

There are well-developed numerical algorithms and packages for

solving these PDEs numerically. In this work, we apply the fifth-

order weighted essentially nonoscillatory-Godunov scheme (Jiang

and Peng, 2000) for approximating spatial derivatives and use a

third-order total-variation diminishing-Runge-Kutta method (Osher

and Shu, 1991) for time stepping. One also might consider the flow-

map-based methods developed in You et al. (2017) and You and

Leung (2018, 2020).

To speed up the overall computation of the algorithm, we propose

incorporating the local level-set framework (Peng et al., 1999; Qian

and Leung, 2006) into the algorithm. Because we are only interested

in the zero level set, all the updates can actually be done in a tube

centered at ϕ ¼ 0. Therefore, by considering only the grid points

within this tube, the complexity of the entire algorithm can be re-

duced by a factor of N fromOðN3LogNÞ toOðN2 LogNÞ, whereN
is the number of grid points in each physical dimension.

NUMERICAL EXPERIMENTS

In the examples, we consider the following two Q models

given by

Q1ðx; zÞ ¼ 100 − 50 exp

"

−
ðx − x0Þ

2 þ ðz − z0Þ
2

2σ2

#

; (21)

Q2ðx; zÞ ¼ 10000 − 995011B0.2ð0;0.5Þðx; zÞ

¼

(

50 if ðx; zÞ ∈ B0.2ð0; 0.5Þ;

10000 otherwise
(22)

where ðx0; z0Þ ¼ ð0.5; 0Þ km, σ ¼ 0.25, B0.2ð0; 0.5Þ represents the

disk centered at ð0; 0.5Þ km with radius 0.2 km, and 1Ω is the char-

acteristic function of the set Ω.

Constant velocity model

We take the reference velocity to be cðx; zÞ ≡ 1 km∕s and the

domain to be ½−1; 1� × ½0; 1� km. We first consider the smooth

model Q ¼ Q1. Figure 1 shows the imaginary part of the com-

plex-valued eikonal at the final level z ¼ 1 km computed using dif-

ferent meshes. We observe that the computed imaginary part at the

center point ðx; zÞ ¼ ð0; 1Þ km is accurate up to machine epsilon.

The L1 and L2 errors in the solution

E1 ¼
X

jT�
i −Texact

i jΔx and E2 ¼

�

X

ðT�
i −Texact

i Þ2Δx

�1
2

(23)

are shown in Table 1, where i enumerates the mesh points. It

demonstrates a clean second-order convergence of the computed

imaginary part.

We also have carried out an experiment with the discontinuous

model Q ¼ Q2. The computed imaginary part of the eikonal and

the related absolute errors are plotted in Figure 2. As shown in

Table 2, the computed solution shows the second-order conver-

gence in the order ofOðΔx2Þ at the point ðx; zÞ ¼ ð0; 1Þ km. When

we look at the L1 or L2 errors in the computed imaginary part,

however, the discretization error of the discontinuous Q model

makes the accuracy of the computed imaginary part degraded

significantly so that the rate of convergence is dropped to the first

order.

Waveguide model

The computational domain is ½−1; 1� × ½0; 2� km. The reference

velocity function (km/s) is given by

cðx; zÞ ¼ 1.1 − expð−0.5x2Þ; (24)

which is symmetric with respect to x ¼ 0 km. Because we have

the same symmetry in Q, we expect the same type of symmetry
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Figure 1. Constant velocity model with Q ¼ Q1. The computed
imaginary part of the eikonal at z ¼ 1.0 km using a mesh of
(a) 121 × 121, (b) 241 × 241, and (c) 481 × 481. The exact imagi-
nary part of the eikonal is plotted using a solid red line. The cor-
responding absolute errors for different meshes are shown in (d-f),
respectively.

Table 1. Constant velocity model with Q � Q1.

L1 Rate L2 Rate

121 1.234e-7 — 1.235e-7 —

241 3.484e-8 1.824 4.114e-8 1.464

481 7.852e-9 2.149 7.141e-9 2.526

The L1 and L2 errors in the imaginary part of the complex-valued eikonal

at z ¼ 1 km.
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in the real and imaginary parts of the complex-valued eikonal and

the real-valued amplitude.

Figure 3 shows the computed real and imaginary parts of the

complex-valued eikonal at z ¼ 0.48, 0.96, and 1.6 km, where

different arrivals are plotted using different colors. The first

row in Figure 3 shows the real part of the eikonal, which is solely

determined by the given reference velocity. The second row shows

the imaginary part of the eikonal at different depths corresponding

to the smooth Q model, Q ¼ Q1. Although most rays from the

source will curve, the one with the zero initial takeoff angle will

not curve so that a reference solution for that particular ray can

be computed by integrating ∫
zf
0 dz∕cQ. We observe that this ray

corresponds to the latest arrival ray, i.e., the third arrival, to the

point ðx; zÞ ¼ ð0; zfÞkm. The numerical errors at this particular

point based on different meshes, 121 × 121, 241 × 241, and

481 × 481, are all of machine epsilon, i.e., Oð10−16Þ. This is

consistent with the conclusion from the constant case. The third

row shows the imaginary part of the eikonal at different depths cor-

responding to the discontinuous Q model, Q ¼ Q2, where the errors

at that particular point are significantly increased toOð10−5Þ. Figure 4
compares our numerical solutions with the solutions computed by the

ray-tracing method. We partition the θ-domain uniformly so that the

initial takeoff angle is evenly distributed from −9π∕20 to 9π∕20. We

plot the PDE solutions using blue dots and plot the ray-tracing sol-

utions using red circles. As we can see because there is no control of

where the arrival locations will be, the real and imaginary parts of the

complex-valued eikonal from the ray-tracing method cannot be uni-

formly sampled on the x-axis, which is in sharp contrast to our PDE

approach.

Figure 5 shows the imaginary part of the eikonal, ϕθ , Δ and also

the amplitude at z ¼ 1.6 km computed on the 481 × 481 grid,

where the Q model Q ¼ Q1. Because this particular velocity model

satisfies ux ¼ vθ ¼ 0, the equation for Δ is purely advective. This

implies that Δ is analytically given by −2 everywhere. We see that

the computed Δmatches with this exact solution very well. Because

ϕθ approaches 0 as we approach the caustics near x ¼ �0.45 km,

the amplitude function becomes infinite at these locations.

Sinusoidal model

This example is adapted from the sinusoidal model used in Symes

(1998) and Symes and Qian (2003), where the velocity function

(km/s) is given by

cðx; zÞ ¼ 1þ 0.2 sinð0.5πzÞ sin½3πðxþ 0.55Þ�; (25)

where the computational domain is ½−1; 1� × ½0; 2�km.

Figure 6 shows the velocity model, and the total number of grid

points is 241 × 241. The model dimension is 2 km in the x- and

z-directions. A particular feature of this model is that high and

low velocity regions alternate laterally. When seismic rays pass

through these areas, the rays will bend so that they will converge

or diverge alternately. Figure 6 also shows that the rays emanating

from the source at ðx; zÞ ¼ ð0; 0Þkm are overlaid on the velocity

model. There are 181 rays, where the takeoff angle is sampled

uniformly in the interval ½−π∕2; π∕2�. The figure also demonstrates

two unique features of this model. First, the diverging rays create

large shadow zones where it is challenging to obtain reliable eikonal

information. Second, the converging rays make the real part of the

complex-valued eikonal multivalued so that it is challenging for

conventional first-arrival traveltime computational methods to cap-

ture all the useful eikonal information.

Figure 7 shows the multivalued real part of the complex-valued

eikonal at z ¼ 0.6, 1.2, and 2.0 km. As z evolves, we see that a
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Figure 2. Constant velocity model with Q ¼ Q2. The computed
imaginary part of the eikonal at z ¼ 1.0 km using a mesh of
(a) 121 × 121, (b) 241 × 241, and (c) 481 × 481. The exact imagi-
nary part of the eikonal is plotted using a solid red line. The cor-
responding absolute errors for different meshed are shown in (d-f),
respectively.

Table 2. Constant velocity model with Q � Q2.

Error at ð0; 1.0Þ km Rate L1 at z ¼ 1 km Rate L2 at z ¼ 1 km Rate

121 × 121 1.208e-5 — 1.986e-4 — 3.549e-4 —

241 × 241 2.780e-6 2.1097 8.725e-5 1.1865 1.738e-4 1.0303

481 × 481 9.212e-7 1.6037 4.285e-5 1.0257 9.640e-5 0.8501

The absolute errors in the imaginary part of the complex-valued eikonal in three cases: at the single point ðx; zÞ ¼ ð0; 1.0Þ km, along the line z ¼ 1 km in the L1 norm, and along

z ¼ 1 km in the L2 norm.
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single-valued solution becomes multivalued. In the region between

−0.1 and 0.1 km at z ¼ 2.0 km, we even see as many as five arrivals.

Figure 8 shows some comparisons of our PDE approach with the ray-

tracing method. Similar to the observations made for the waveguide

model, the ray-tracing solution is not uniformly sampled on

the final arrival level; in particular, the first-arrival solution is poorly

represented. However, our PDE approach can provide uniformly

sampled solutions on any z-level. Figure 9 shows the imaginary part
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ing method. (a) The real part of the complex eikonal. (b) The
imaginary part of the complex eikonal. The numerical solutions
from our method are plotted using blue dots, and the ray-tracing
solutions are shown using red circles.
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of the eikonal, ϕθ, Δ and also the amplitude at the final level

z ¼ 2.0 km. As the rays converge, the imaginary part of the eikonal

also becomes multivalued. This shows that the proposed method ob-

tains a uniformly spaced complex-valued eikonal in the region with

diverging rays and the region with converging rays. This is beneficial

for seismic imaging in complicated areas.

To demonstrate the effect of attenuation on seismic data, we

model shot gathers in acoustic and viscoacoustic media. We assume

that the multivalued real (or complex-valued) eikonal and amplitude

functions consist of Iðx; zÞ branches at each subsurface point ðx; zÞ,
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where Iðx; zÞ is an integer varying from point to point. The shot

gather is modeled using the multivalued eikonal and amplitude

functions according to the following “truncated” formula:

dðx; z;ωÞ ¼
X

Iðx;zÞ

i¼1

gðωÞAiðx; zÞ expð−iωtiðx; zÞÞ; (26)

where ω is the angular frequency, gðωÞ is the source wavelet,

dðx; z;ωÞ is the shot gather in the frequency domain, Aiðx; zÞ is

the ith branch of the multivalued amplitude computed by the pro-

posed Liouville method, and ti is the ith branch of the multivalued

eikonal. The frequency-domain shot gather dðx; z;ωÞ can be inverse
Fourier transformed with respect to ω to obtain waves in the time

domain.

We call equation 26 the truncated formula because we have

ignored phase shifts of geometric optics across caustics (and/or

cusps) in this formula. As a result, the resulting shot gathers expe-

rience a sharp change across caustics (and/or cusps), and such sharp

changes are unrealistic. Nevertheless, in noncaustic but multivalued

regions, our truncated construction reveals those interesting aspects

of multivalued eikonals and resulting asymptotic solutions. We will

treat phase shifts associated with multivalued eikonals more thor-

oughly in a future work.

In an acoustic medium, ti is Ti, the real part of the ith branch of

the complex-valued eikonal. In a viscoacoustic medium, we define

ti using the Futterman’s dispersion relation (Keers et al., 2001):

tiðx; zÞ ¼ Tiðx; zÞ −
1

π
T�
i ðx; zÞ ln

�

ω

ω0

�

− i
T�
i ðx; zÞ

2
; (27)

where ω0 is a reference angular frequency, which is usually a value

close to the centroid of the amplitude spectrum.

We use a Ricker wavelet with a main frequency of 30 Hz. Figure 10

shows shot gathers obtained at z ¼ 2.0 km for the two cases:

Figure 10a for the acoustic medium defined by the sinusoidal velocity

model, and Figure 10b for the viscoacoustic medium with the sinus-

oidal velocity as the reference velocity and the Q2 function as the

quality factor; these results illustrate that the seismic waves passing

through the low Q area experience the frequency-dependent ampli-

tude loss due to attenuation. We remark that although the shot gathers

in both cases show unrealistic sharp changes across caustics due to

the truncated formula 26, the resulting wavefields in noncaustic but

multivalued regions do reveal the multivalued effects of eikonals. To

demonstrate the difference of the two models in detail, we compare

their traces and amplitude spectra at x ¼ −0.0834 km, as shown in

Figure 11. Note that the amplitude spectrum in Figure 11b is com-

puted from the last wavelet in Figure 11a. Figure 11a shows that the

seismic amplitude is greatly attenuated in the viscoacoustic medium,

and the phase of wavelet also is changed due to the seismic attenu-

ation. Figure 11b shows that the main frequency in the viscoacoustic

medium is reduced, which further reduces the resolution of seis-

mic data.a)
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A synthetic gas-cloud model

In this example, we apply our method to a synthetic gas-cloud

model. This synthetic model is constructed as follows. We first extract

a velocity model from the BP 2007 tilted transversely isotropic veloc-

ity model, as shown in Figure 12a. We further construct a Q model

according to the extracted velocity model: We fill the zone of low

velocity in the shallow region with low Q values to simulate the

gas cloud, and we set the Q value in other places to be 10,000 as

shown in Figure 12b. The model dimension is 8 km in depth and

10 km laterally. The grid size is 10 m in the x- and z-axes so that

the total number of grid points in physical space is 1001 × 801 in

the velocity model. Numerically, we discretize phase space, the

x-θ space, using a mesh of 1001 × 1001 so that the mesh points

in the x-direction align with the velocity model. To evolve the PDEs

in the z-direction, the step size in z is determined by the stability con-

dition of the numerical schemes for the PDEs, where the velocity and

the Q model needed for the z-direction evolution will be obtained by

linear interpolation in the z-direction.

To demonstrate that our proposed method can effectively capture

multivalued solutions, we compute the multivalued solutions at a

point source: ðx; zÞ ¼ ð4.5; 0Þkm. The computational results are

shown in Figures 13, 14, and 15. Figure 13 shows the evolution

of the zero level set at various z-levels up to z ¼ 7 km at the given

point source, where the z-levels are given by 2.3873, 3.5810,

4.7746, and 7 km. We can clearly see that the zero level-set function

overturns in phase space (the x-θ space) and develops very compli-

cated structures. For each fixed x location, we can find more than

one corresponding θ so that the level-set function vanishes. This

implies that there are multiple arrivals initiated from the point

source. Figure 14 shows magnification of the real part of the com-

plex-valued eikonal for the given point source and its corresponding

structure. The rays in the magnification area converge so that the

eikonal becomes multivalued. Therefore, the results show that
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our proposed method is able to capture effectively multivalued

eikonals. In Figure 15, we show the real part T and the imaginary

part T� of the eikonal, the amplitude function A, and also the in-

termediate quantity Δ, for the given point source.

Analogous to the sinusoidal model, we model shot gathers in the

viscoacoustic medium and in the corresponding reference acoustic

medium to demonstrate the effect of attenuation on seismic data. We

use a Ricker wavelet with a main frequency of 30 Hz. Figure 16

shows a shot gather obtained at z ¼ 7.0 km for the source located

at ðx; zÞ ¼ ð4.5; 0Þ km. The comparison of shot gathers shows

that the seismic wave passing through the low Q area suffers from

amplitude attenuation. Their traces and amplitude spectra at

x ¼ 0.5 km are compared in Figure 17. Figure 17a shows that

the amplitude of seismic waves is greatly attenuated, and the phase

of wavelet also is changed due to seismic attenuation. Figure 17b

shows that the main frequency in the viscoacoustic medium is

reduced, which further reduces the resolution of seismic data.

We remark again that although the shot gathers in both cases show

unrealistic sharp changes across caustics due to the truncated

formula 26, the resulting wavefields in noncaustic but multivalued

regions do reveal the multivalued effects of eikonals.

DISCUSSION

Lagrangian versus Eulerian formulation

Lagrangian ray-tracing methods and Eulerian methods have their

advantages and disadvantages, depending on what is needed in spe-

cific applications. As discussed and illustrated in Leung et al. (2007)

for Gaussian beams, a Lagrangian ray-tracing method is able to con-

trol how the initial values of rays, such as source locations and take-

off angles, are distributed, but it is not able to control how arrival

locations and arrival angles of rays are distributed. In contrast, an

Eulerian method as proposed here is able to control how arrival lo-

cations and arrival angles are distributed, but it is not able to control

how initial source locations and takeoff angles are distributed.

Therefore, one may choose which method to use according to

the specific application in hand.
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The subhorizontal condition

We have imposed the subhorizontal condition in our computational

formulation to expedite the development and implementation of our

algorithm; consequently, we are only able to capture one-way wave

propagation in the depth direction. This condition can be removed by

incurring some additional cost. Essentially, one may use the formu-

lation developed in Qian et al. (2003) to compute all the multivalued

ingredients in the entire phase space, so that overturning and steep-

dipping waves can be captured faithfully. This work is ongoing.

Anisotropy

Our Liouville formulation is able to compute naturally multival-

ued eikonals in nonattenuating anisotropic wave propagation, as

illustrated in Qian and Leung (2004) and Qian et al. (2003), where

the Liouville equations are developed for computing multivalued

eikonals of three wave modes (qP, qSV, and qSH). It is necessary

to further develop our framework to compute multivalued eikonals

in attenuating anisotropic media so that complex eikonals of the

three wave modes in viscoelastic anisotropic media can be com-

puted efficiently; this work is ongoing.

CONCLUSION

We have presented Liouville PDE methods for computing com-

plex-valued eikonals in real space in the multivalued sense in attenu-

ating media. The proposed method is capable of computing complex-

valued eikonals by providing the real and imaginary parts of the ei-

konal function in real space in the multivalued sense on regular

meshes. This has been achieved by solving novel paraxial Liouville

PDEs in real phase space, leading to efficient Eulerian PDE methods

for multivalued solutions. We also are able to compute multivalued

amplitudes when the quality factor satisfies certain conditions in a

viscoacoustic medium. Numerical examples, including a synthetic

gas-cloud model, illustrated that the proposed methods yield highly

accurate complex-valued eikonals in the multivalued sense. The pro-

posed methods can be used for migration and tomography in attenu-

ating media.
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