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Liouville partial-differential-equation methods for computing 2D complex
multivalued eikonals in attenuating media

Shingyu Leung’, Jiangtao Hu?, and Jianliang Qian®

ABSTRACT

We have developed a Liouville partial-differential-equation
(PDE)-based method for computing complex-valued eikonals
in real phase space in the multivalued sense in attenuating media
with frequency-independent qualify factors, where the new
method computes the real and imaginary parts of the com-
plex-valued eikonal in two steps by solving Liouville equations
in real phase space. Because the earth is composed of attenuat-
ing materials, seismic waves usually attenuate so that seismic
data processing calls for properly treating the resulting energy
losses and phase distortions of wave propagation. In the regime
of high-frequency asymptotics, the complex-valued eikonal is
one essential ingredient for describing wave propagation in at-
tenuating media because this unique quantity summarizes two
wave properties into one function: Its real part describes the
wave kinematics and its imaginary part captures the effects
of phase dispersion and amplitude attenuation. Because some
popular ordinary-differential-equation (ODE)-based ray-tracing

methods for computing complex-valued eikonals in real space
distribute the eikonal function irregularly in real space, we are
motivated to develop PDE-based Eulerian methods for comput-
ing such complex-valued eikonals in real space on regular
meshes. Therefore, we solved novel paraxial Liouville PDEs
in real phase space so that we can compute the real and imagi-
nary parts of the complex-valued eikonal in the multivalued
sense on regular meshes. We call the resulting method the Liou-
ville PDE method for complex-valued multivalued eikonals in
attenuating media; moreover, this new method provides a uni-
fied framework for Eulerianizing several popular approximate
real-space ray-tracing methods for complex-valued eikonals,
such as viscoacoustic ray tracing, real viscoelastic ray tracing,
and real elastic ray tracing. In addition, we also provide
Liouville PDE formulations for computing multivalued ray am-
plitudes in a weakly viscoacoustic medium. Numerical exam-
ples, including a synthetic gas-cloud model, demonstrate that
our methods yield highly accurate complex-valued eikonals
in the multivalued sense.

INTRODUCTION

Because the earth is composed of porous and granular subsurface
rocks, seismic wave propagation is intrinsically attenuating (Cerveny
et al., 1977; Aki and Richards, 1980; Carcione, 2015); this calls for
properly treating attenuation effects in seismic data processing so as
to delineate geologic structures reliably. Consequently, it is crucial to
develop efficient modeling methods for wave propagation in attenu-
ating media. Although direct modeling methods such as finite-differ-
ence and finite-element methods are abundant (Robertsson et al.,

1994; Blanch et al., 1995; Blanch and Robertsson, 1997; Carcione,
1999, 2009; Carcione et al., 2002; Zhang et al., 2010; Xie et al.,
2015), we seek alternative modeling methods using high-frequency
asymptotics (Cerveny et al., 1977; Gajewski and PSencik, 1992; Ha-
nyga and Seredytiska, 2000; Keers et al., 2001; Vavrycuk, 2008a;
Hao and Alkhalifah, 2017; Huang and Greenhalgh, 2018; Huang
et al., 2018). Such methods have some unique merits; for example,
they yield quantities that can be easily incorporated into existing mi-
gration, inversion, or tomography codes. To develop an asymptotic
method for waves in attenuating media, we apply the asymptotic
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method to the viscoelastic isotropic wave equation with frequency-
dependent complex-valued elastic parameters defined in complex
space, leading to the complex-valued P- and S-wave eikonal equa-
tions defined in complex space (in the sense that its variables are in
complex space). Because the imaginary part of the complex-valued
eikonal captures phase dispersion and amplitude attenuation, the
complex-valued eikonal is a unique quantity, which can be useful
for efficient seismic data processing. This raises the question of
how to compute such complex-valued eikonals efficiently. In this pa-
per, we develop novel paraxial Liouville partial-differential-equation
(PDE) methods in real phase space so that we can compute a com-
plex-valued eikonal in real space (in the sense that its variables are in
real space) in the multivalued sense on regular meshes. We develop
the new methodology by reformulating some popular real-space ordi-
nary-differential-equation (ODE)-based Lagrangian ray-tracing
methods for complex-valued eikonals into PDE-based methods, in
which the real and imaginary parts of the complex-valued eikonal
have real-space variables and are computed separately by solving
some linear Liouville equations.

To facilitate the development of our methodology, we first clarify
some notions and concepts. Although traveltime and eikonal are
treated the same in many situations of nonattenuating wave propa-
gation, we will distinguish them carefully in our discussion for the
following reasons: The real and imaginary parts of the eikonal are
well defined in attenuating wave propagation, and the traveltime
function itself in attenuating wave motion depends on complex-val-
ued eikonal and frequency (for an example, see Keers et al., 2001).
By real space in our discussion, we mean 2D or 3D physical space.
By complex space, we mean that each real coordinate becomes
complex-valued, including real and imaginary parts, so that 2D real
space becomes 2D complex space; the latter, in fact, is four dimen-
sions in the sense of having two real coordinates associated with
two real parts and two real coordinates associated with two imagi-
nary parts. Moreover, a complex-valued eikonal can be defined in
either complex or real space in the sense that its real and imaginary
parts have variables in either complex or real space. In the sequel, a
complex-valued eikonal is mainly meant to indicate that its real and
imaginary parts have variables in real (phase) space.

According to classical mechanics (Goldstein, 1950), we use real
phase space to denote the space spanned by real position and real
momentum variables, which are used to describe the motions of
particles according to Newton’s laws. Thus, in 2D real space,
the corresponding real phase space is four dimensions, consisting
of two real position variables and two real momentum variables.
However, in our application here related to the eikonal equation
in 2D real space, the eikonal equation itself serves as a constraint
to constrain real momentum variables so that one real phase angle is
sufficient to characterize the two real momentum variables; conse-
quently, we have a reduced real phase space of three dimensions
composed of two real position variables and one real phase angle.
Accordingly, for the 3D real-space eikonal equations, the corre-
sponding real phase space is six dimensions but the reduced real
phase space is five dimensions. We may generalize real phase space
to complex phase space naturally by replacing real space with com-
plex space in the context of real phase space.

As a first-order nonlinear PDE, the complex-valued eikonal equa-
tion defined in complex space can be solved by the method of char-
acteristics to yield complex-valued eikonal functions, leading to the
so-called complex-space ray-tracing method, which theoretically

enables us to solve the complex-valued eikonal equation without
any approximation. However, because sources and receivers in
the seismic acquisition geometry are located in real (physical)
space, the complex-space ray-tracing method brings about unusual
complications in that rays are now situated in complex space so that
the dimension of the ambient space becomes doubled, where a usual
2D real-space ray tracing becomes a 2D complex-space (equivalent
to a 4D real space) ray tracing; consequently, the resulting ray-trac-
ing system is high dimensional and relatively costly to solve. More-
over, it is hard to build a complex-valued elastic-parameter model
from the real-valued one, which is usually available from measure-
ments in real space (Vavrycuk, 2008a; Hao and Alkhalifah, 2017).
Therefore, some further approximations are required to develop
real-space ray-tracing methods for computing complex-valued
eikonal functions.

In viscoacoustic media, the widely used weakly attenuating
approximation (i.e., the reciprocal of frequency-independent quality
factor < 1; Cerveny et al., 1977; Gajewski and PSencik, 1992;
Keers et al., 2001; Xie et al., 2009; Xin et al., 2014; Hu et al.,
2018) can be used to reduce the complex-space ray-tracing system
to a real-space ray-tracing system approximately in terms of quality
factors, where the real and imaginary parts of the complex-valued
eikonal are defined in real space. Numerical experiments in Gajew-
ski and PSencik (1992) demonstrated that the weakly attenuating
assumption is applicable to a substantial range of quality factors
encountered in exploration geophysics. Keers et al. (2001) show
that the raypath under the weakly attenuating approximation is iden-
tical to that in a corresponding nonattenuating medium defined by a
real-valued reference velocity; therefore, the real part of the com-
plex-valued eikonal can be obtained by applying the ray-tracing
method to the eikonal equation defined by the real-valued reference
velocity, and the imaginary part can be obtained via an integration
along the known raypath defined by the reference velocity. In this
approximate real-space ray-tracing model, the real and imaginary
parts of the complex-valued eikonal at each location must be found
indirectly via solving nonlinear systems or numerical quadratures.

Viewing a viscoelastic medium as the perturbation of a perfectly
elastic medium, one may account for attenuation effects by using
first-order perturbations and tracing rays in the elastic reference
medium which is specified in real space (Vavrycuk, 2008b; Klimes
and Klimes, 2011; Hao and Alkhalifah, 2017; Li et al., 2020), lead-
ing to the real-elastic ray-tracing method (Vavrycuk, 2012). Another
real-space ray-tracing method for viscoelastic media, the real vis-
coelastic ray-tracing method (Vavrycuk, 2008a), is obtained by
modifying the Hamiltonians for viscoelastic media so that the rays
are constrained as trajectories in real space (Vavrycuk, 2012). The
resulting ray-tracing system is based on a certain real-valued refer-
ence velocity calculated from the complex-valued phase velocity
for the P- or S-wave, respectively. Although this approach is still
approximate, this method is highly accurate and applicable to
strongly attenuating media (Vavrycuk, 2012; Hao and Alkhalifah,
2017), where the real and imaginary parts of the complex-valued
eikonal are obtained in the same way as in the real elastic ray-trac-
ing method.

So far, because all the rays are traced from an arbitrary source
point to subsurface locations by solving an initial value problem
for ODEs, all these real-space ray-tracing methods yield the real
and imaginary parts of the complex-valued eikonal at irregularly
distributed points. Such methods, which track individual particles
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(pulses of seismic energy) through space along raypaths, are called
Lagrangian. Because irregular distributions of complex-valued ei-
konals hinder their applications to seismic migration and tomogra-
phy as these applications are usually posed on regular mesh points,
we are motivated to develop efficient methods to produce complex-
valued eikonals on regular grids; we do this by formulating the three
real-space ray-tracing systems into partial differential equations. It
turns out that there are two possibilities for this.

Assuming that there is a unique ray connecting any source to any
grid point, one possibility is to solve an eikonal equation with an ap-
propriate reference velocity for the real part of the complex-valued
eikonal and solve an “advection equation” with an appropriate qual-
ity-factor function as its forcing term for the imaginary part of the
complex-valued eikonal, where the advection equation is weakly
coupled to the eikonal equation in the sense that the advection coef-
ficients are defined by the gradient of the real part of the complex-
valued eikonal; the resulting method yields a single-valued approxi-
mate solution for the complex-valued eikonal equation. Such meth-
ods, which track the movement of “particles” through a fixed point in
real space, produce a field of one or more quantities at each fixed
point, are called Eulerian. Because the unique-ray assumption is very
restrictive, we would in fact solve the preceding eikonal equation for
the real part in the sense of viscosity solution (Lions, 1982; van Trier
and Symes, 1991), ending up by computing the first-arrival-based real
part of the complex-valued eikonal. This route has been taken in the
recent work of Hu et al. (2021).

However, assuming that there may be multiple rays connecting
any source to any grid point, the other possibility is to embed the
real-space ray-tracing system into real phase space Liouville equa-
tions (tracking the movement of particles through a fixed point in
real phase space) and solve the resulting linear PDEs in real phase
space so as to obtain the real and imaginary parts of the complex
multivalued eikonal on regular mesh points in physical space. The
resulting Eulerian method yields multivalued real and imaginary
parts of the complex-valued eikonal, and we call this Eulerian
method the Liouville PDE method. This is the route that we are
taking in the current work to develop Eulerian methods for comput-
ing complex-valued eikonals in real space.

If the medium is heterogeneous, there is a high probability that
more than one ray will occupy any given spatial point, resulting in a
multivalued eikonal field over physical space (White, 1984). Never-
theless, the multivalued eikonal field is essential, for example, in
obtaining high-resolution seismic images by multiarrival Kirchhoff
and Gaussian beam migrations (Liu and Bleistein, 1995; Operto
et al., 2000; Hill, 2001; Gray, 2005) and by ray-based Q-migrations
(Xie et al., 2009, 2015). The Lagrangian approach to this problem is
to use the method of characteristics to trace rays in phase space, thus
taking care of multivaluedness (Cerveny et al., 1977; Pereyra,
1992). However, because in reality only a finite number of rays
can be traced, Lagrangian methods in general produce nonuniform
distributions of the eikonal field. The solution to this nonuniformity
is interpolation, which can be cumbersome (Pereyra, 1992; Vinje
et al., 1993). Therefore, Eulerian approaches are highly desirable
for solving eikonal equations and, consequently, much research
has been devoted to this. Benamou (1999) enacts direct resolution
of multivalued phase space solutions of Hamilton-Jacobi equa-
tions. Symes (1998) and Symes and Qian (2003) derive a slowness
matching finite-difference method for computing multivalued
eikonals by patching together local single-valued solutions of the

eikonal equation via Fermat’s principle into a global multivalued
traveltime field. Engquist et al. (2002) use the segment projection
method to reparameterize multivalued wavefronts into single-val-
ued segments existing in a different space. Fomel and Sethian
(2002) introduce a phase space stationary Liouville equation
method that yields multivalued eikonals for multiple sources when
they occur. Osher et al. (2002) introduce a phase space-based level
set and Eulerian framework for constructing wavefronts, which
automatically handles multivalued solutions when they appear.
Qian et al. (2003) extend the level-set method (Osher et al., 2002)
to anisotropic wave propagation. Qian and Leung (2004, 2006)
extend the level-set method (Osher et al., 2002) to the paraxial
Liouville setting so that multivalued eikonals and amplitudes can
be computed efficiently, and this paraxial Liouville formulation is
adopted in the current work.

Our contribution consists of the following. We first formulate the
paraxial Liouville equations for computing the real part of the com-
plex-valued eikonal in real reduced phase space, and we then derive
a new paraxial Liouville equation for computing the imaginary part
of the complex-valued eikonal in real reduced phase space. The
imaginary part of the complex-valued eikonal determines phase
dispersion and amplitude attenuation. We also formulate the para-
xial Liouville equations to compute multivalued ray amplitudes in
real reduced phase space. To have an efficient algorithm, we also
develop a fast local level-set method to compute these multivalued
functions rapidly in real reduced phase space.

The rest of the paper is organized as follows. In the Methodology
section, we develop the paraxial Liouville formulation to compute
the real and imaginary parts of the complex-valued eikonal, and we
also derive necessary equations for computing amplitudes. Then,
numerical experiments on typical attenuating models demonstrate
the feasibility of the proposed method.

METHODOLOGY

Eulerian PDE framework for complex-valued eikonals:
Single arrivals

In this subsection, we briefly summarize the approach in Hu et al.
(2021) for computing complex-valued eikonals defined in real
space in attenuating media, where the real part of the complex-val-
ued eikonal is the first arrival of the isotropic eikonal equation in the
sense of viscosity solution. The correspondence principle (Keers
et al., 2001) indicates that we can treat wave propagation in a vis-
coelastic (or viscoacoustic) medium as wave propagation through
an elastic (or acoustic) medium with complex-valued elastic param-
eters in complex space (or a complex-valued velocity in complex
space). To model wave motion in such a medium efficiently, high-
frequency asymptotic approximations provide an effective alterna-
tive to direct numerical methods. One of the essential ingredients for
high-frequency asymptotics of viscous wave motion is the complex-
valued eikonal function. Hu et al. (2021) propose a unified Eulerian
framework to compute complex-valued eikonal functions in real
space for several popular high-frequency asymptotic models of vis-
cous wave motions, where the real and imaginary parts of the com-
plex-valued eikonal function satisfy the real-space isotropic eikonal
equation and a real-space advection equation, respectively. These
popular asymptotic methods include the real-space ray-tracing
method (Gajewski and PSencik, 1992; Keers et al., 2001) for
viscoacoustic media, the real-elastic ray-tracing method (Vavrycuk,
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2008b, 2012; Klimes and Klimes, 2011; Hao and Alkhalifah, 2017),
and the real viscoelastic ray-tracing method (Vavrycuk, 2008a,
2012; Hao and Alkhalifah, 2017) for viscoelastic media. Provided
that we choose an appropriate reference velocity and an appropriate
quality-factor related function, the framework in Hu et al. (2021) is
applicable to compute complex-valued eikonals in weakly and
strongly attenuating media.

Hu et al. (2021) focus on developing PDE-based methods in the
sense of first arrivals, and in the current work we are going to de-
velop PDE-based methods in the sense of multivalued solutions
(multiple arrivals). We start from Hu et al. (2021) to develop such
an approach for computing multivalued real and imaginary parts of
the complex-valued eikonal.

We assume that the complex-valued eikonal function z consists
of the real part 7" and the imaginary part 7*, which satisfy the fol-
lowing real-space eikonal and advection equation (Hu et al., 2021),
respectively,

1
VT =+ T =0. (1)

* 1 * _
VT - VT = Z00w" T*(x,) = 0, )

where x is the real-valued position vector, ¢(x) is the real-valued
reference velocity, and Q(x) is a quality-factor-related real-valued
function (and is not necessarily the frequency-independent quality
factor itself).

Because VT is parallel to the ray direction, the imaginary part 7*
actually satisfies

") Ach@»QW@»

where the integration is over the raypath R(x) connecting the source
X, to the point x, and the coordinate function y(s) varies along the
raypath R(x) parameterized by the arc length s.

Hu et al. (2021) develop high-order fast sweeping methods to solve
equations 1 and 2, and the resulting real part of the complex-valued
eikonal is understood as the minimum phase or the first-arrival
traveltime in the viscosity-solution sense for Hamilton-Jacobi equa-
tions (Lions, 1982; van Trier and Symes, 1991). However, because
the single-valued Eulerian solution may not suffice for many appli-
cations, it motivates us to develop efficient Eulerian methods for
computing the complex-valued eikonal in the multivalued sense.

ds, 3)

A paraxial Liouville formulation for complex-valued
eikonals: Multivalued

To simplify the derivation, we consider the 2D case so that we
have x = (x, z); a similar derivation can be carried out in the 3D
case (Leung et al., 2004). We follow the work in Qian and Leung
(2004, 2006) to develop a simple numerical approach so that we can
compute the multivalued real part of the complex-valued eikonal by
using the level-set method and the paraxial formulation for the ei-
konal equation 1. We assume that the eikonals of interest are carried
by the so-called subhorizontal rays (Gray and May, 1994; Symes,
1998; Qian and Symes, 2002), where subhorizontal means oriented
in the positive z-direction.

Applying the method of characteristics to the eikonal equation 1
with the point source condition under the subhorizontal condition,
we can use depth z as the running parameter so that we have the
following reduced system (Qian and Leung, 2004, 2006):

d

d—’;:tane, 4)
g 1 (oc dc
—=—(—tan 8 — — 5
dz c(@z an 0x>’ )

which is appended with the initial conditions x|._, =x, and
0|,—o = 0,. Here, 0, varies from —6,,, <0 < 0., < (7/2). In
addition, the eikonal itself is computed by integrating
d 1
dz ccosf’

(6)

with #|,_y = 0.

To develop Eulerian methods, we will use the level-set-based
Liouville equations. If we define ¢ = ¢(z, x, §) such that the zero
level set, {(x(z),0(z)):¢(z, x(z),0(z)) = 0}, gives the location of
the reduced bicharacteristic strip (x(z), 6(z)) at the “artificial time”
z, then we may differentiate the zero level set equation with respect
to z to obtain (Qian and Leung, 2004, 2006)

¢z + u¢x =+ 11055 =0, @)

where u = dx/dz and v = df/dz are given by the ray equations 4
and 5. The initial condition for the level set equation 7 is taken to be
@l.—o = ¢(0,x,0) = x — x;, which implies that the zero level is set
at z=0 and

{(x(0),0(0)): (0. x(0). 0(0)) = 0}
= { (+(0),6(0)) :x(0) - x, =0}
= { (+(0),6(0)):x(0) = x.}. ®)

parameterizes all the rays emanating from the source (x,,z = 0)
with the takeoff angle ranging from —0,,,, < 6 < G0 < (7/2).

To determine the multivalued real part of the complex-valued ei-
konal from the previous level-set equation, we give the correspond-
ing equation governing the evolution of the real part. By the
subhorizontal condition in the paraxial formulation and the ray
equation 6, let Fy(x, ; z) be the flow generated by the vector field
u = (u, v) in the reduced phase space (x, z, 8) along the z-direction.
Thus, we can write

dar 1

E(z, Fy(x,0;2)) = eos 0" )

Therefore, having ¢ = T(z,x,0) we get the following advection
equation (Qian and Leung, 2004, 2006):
dr 1

d—Z:TZ+uTx+vT0:

. 10
ccos g (10)
The initial condition for T is given by T|._, = T(0,x,6) = 0.
The imaginary part of the complex-valued eikonal can be com-
puted by converting the Lagrangian (ray-tracing) formulation to
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the corresponding Eulerian (PDE) formulation. According to the
ray-theory solution in equation 3, we can write

daTr* 1
—(z, Fy(x, 6, =—,
dz (2, Fu(x.6;2)) cQ cos 0

an
where F,(x, 0; z) is the same flow generated by the vector field u in
the reduced phase space. This implies that the imaginary part of the
eikonal, T, satisfies the following equation:

ar*
—=T; +uly+vT) =

dz (12)

cQ cos 0’

which is a new equation that will enable us to compute the multival-
ued imaginary part of the complex-valued eikonal in a PDE fashion.

A paraxial Liouville formulation for multivalued
amplitudes

According to Keers et al. (2001), when the quality factor satisfies
(1/0Q) < 1 in a viscoacoustic medium, then, to the first order, the
raypaths remain unchanged and the amplitude also is unchanged,
and furthermore they can be determined from the reference acoustic
velocity. In practice, the assumption (1/Q) < 1 may be overly re-
strictive, and we found in our experiments that the method still
works when (1/Q) < 1. However, in a generic viscoelastic medium,
it is unknown whether the P- or S-wave amplitude is unchanged to
the first order in terms of the quality factor. Therefore, we will de-
velop our paraxial Liouville formulation for multivalued amplitudes
only in a weakly viscoacoustic medium.

Consequently, in the sense of Keers et al. (2001), based on the
same paraxial Liouville framework, we can compute the multival-
ued amplitude corresponding to the multivalued real part of the
eikonal, so that the multivalued amplitude is real valued rather than
complex valued. We start from the level-set approach as developed
by Qian and Leung (2004, 2006) and the formula given in Zhang
(1993) and Qian and Symes (2002),

~ 1 -
A(x, 23X, 2,) :ﬂ\/;/wavnp, (13)

where T and i are the real part of the eikonal and the take-off angle
of a unique real-space ray reaching (x, z) from (x,, z), respectively.
When the real-space ray connecting the source (x,, z,) to the sub-
surface point (x, z) is not unique, the amplitude function becomes
multivalued, where the real part of the complex-valued eikonal and
the takeoff angle are well defined on each solution branch in physi-
cal space (x, z).

To compute the multivalued amplitude function in the reduced
phase space, we consider T as the extension of real-space T to
the reduced phase space; furthermore, we also may extend y
and A to w and A in the (z,x,6) space, respectively. Because
the takeoff angle is constant along a given ray in phase space,
we have (Qian and Leung, 2004, 2006)

W, + uy, + vy =0. (14)

Although the takeoff angle and the level-set function satisfy the
same advection equation, the initial conditions for the two advection
equations are different, so that the two equations propagate different

information. The level-set function is initialized to be ¢p(z = 0, x, 0) =
x — x, so that the zero level set {(x*,0*):¢(z,x*,0%) = 0} at a cer-
tain quasi-time z indicates that a ray emanating from the source x; at
z = 0 passes through the point (x*, z) with the arrival angle 6*. The
takeoff-angle function v is initialized to be w(z = 0, x, 8) = 0 so that
the value of w(z, x, 0) at (z, x, 0) indicates that a ray with the takeoff
angle equal to y(z, x,0) has arrived at the location (z,x) with the
arrival angle 6. Combining the two pieces of information from the
level-set function and the takeoff angle function, we can read off
the source and takeoff angle of the ray arriving at the location
(z,x*, 6*), where the takeoff angle and the source of the ray are equal
to w(z,x*,60%) and x,, respectively.

The work in Qian and Leung (2006) has shown that the amplitude
formula can be reduced to

1 c
A ;59 -~
(z;x,6) 27\ 2 cos

To compute the derivatives of the level-set function on the zero
level set, we need to advect those derivatives as well. We first let
& = ¢, and n = ¢y. Differentiating the advection equation for ¢
with respect to x and 6, respectively, we have (Qian and Leung,
2004, 2006)

'//x</59 - l//H(ﬁx
bo

. (15)

éz + ué:x + 1)2_,:9 + ux‘}:f + o = 0, (16)

N, +un, + vng + upé + vgn = 0. a7

Now, defining A = y ¢y — wy¢, and differentiating it with respect
to z, we have the advection equation (Qian and Leung, 2004, 2006):

A, + V.- (ur) =0, (18)

and the amplitude can then be computed by

1 ’ c A' (19)

A(z;x,0) = — —
(@x.0) =3\ 1T cos 0.4

We remark that the quantity A is inversely proportional to the cross-
sectional area of an infinitesimal tube of rays surrounding a certain
given ray and is conserved along the flow defined by the vector field
u. The scaling factor 1/(2 cos 0) is related to the paraxial perspec-
tive of the reduced phase space in the z-direction.

Now, we consider the initial conditions for these intermediate
quantities in the multivalued amplitude formula. At z =0, we
can set ¢, and ¢y equal to 1 and 0, respectively. However, because
v, is a singular function at the source, it is better to start computing
w, and y, at some z = dz > 0 close to zero. Assuming that the
velocity ¢ can be approximated by a constant near the source,
we have (Qian and Leung, 2004, 2006)

cos? 9
l//x(Z,X, 0)‘z:dz = dZ ’

Vo x.0)._.= 1. (Q0)

Thus at small z = dz >0, we assign ¢(z, x, 0)|._,, = x — dz tan 0
and A(dz, x,0) = -2, which is independent of dz as long as the
velocity can be well approximated by a constant near the source.
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Numerical implementations

There are well-developed numerical algorithms and packages for
solving these PDEs numerically. In this work, we apply the fifth-
order weighted essentially nonoscillatory-Godunov scheme (Jiang
and Peng, 2000) for approximating spatial derivatives and use a
third-order total-variation diminishing-Runge-Kutta method (Osher
and Shu, 1991) for time stepping. One also might consider the flow-
map-based methods developed in You et al. (2017) and You and
Leung (2018, 2020).

To speed up the overall computation of the algorithm, we propose
incorporating the local level-set framework (Peng et al., 1999; Qian
and Leung, 2006) into the algorithm. Because we are only interested
in the zero level set, all the updates can actually be done in a tube
centered at ¢p = 0. Therefore, by considering only the grid points
within this tube, the complexity of the entire algorithm can be re-
duced by a factor of N from O(N3LogN) to O(N? Log N), where N
is the number of grid points in each physical dimension.

NUMERICAL EXPERIMENTS

In the examples, we consider the following two Q models
given by

(x =x0)* + (z = %)

0,(x,z) =100 — 50 exp |— (21)

2062 ’
b)
0.016
@
~0.014
0.012
05 0 05
5 X (km)
c) d) 5 x10
0.016 ) )
n ~
o £ 1
~0.014 5
L0

Errorin T7(s)
Errorin T (s) =

Figure 1. Constant velocity model with Q = Q. The computed
imaginary part of the eikonal at z = 1.0 km using a mesh of
(a) 121 x 121, (b) 241 x 241, and (c) 481 x 481. The exact imagi-
nary part of the eikonal is plotted using a solid red line. The cor-
responding absolute errors for different meshes are shown in (d-f),
respectively.

05(x.z) = 10000 — 9950115, (005 (%, 2)
50 if (x.2) € By,(0,0.5),
~ ] 10000

otherwise
where (xg,z9) = (0.5,0) km, 6 = 0.25, By,,(0,0.5) represents the
disk centered at (0,0.5) km with radius 0.2 km, and 1, is the char-
acteristic function of the set Q.

(22)

Constant velocity model

We take the reference velocity to be c¢(x,z) =1 km/s and the
domain to be [—1,1] x [0, 1] km. We first consider the smooth
model Q = Q,. Figure 1 shows the imaginary part of the com-
plex-valued eikonal at the final level z = 1 km computed using dif-
ferent meshes. We observe that the computed imaginary part at the
center point (x,z) = (0, 1) km is accurate up to machine epsilon.
The L, and L, errors in the solution
1

2

E, = Z |Tf - T?Xact|Ax and E,= [Z(TT _ T?xact)ZAx:|
(23)

are shown in Table 1, where i enumerates the mesh points. It
demonstrates a clean second-order convergence of the computed
imaginary part.

We also have carried out an experiment with the discontinuous
model Q = Q,. The computed imaginary part of the eikonal and
the related absolute errors are plotted in Figure 2. As shown in
Table 2, the computed solution shows the second-order conver-
gence in the order of O(Ax?) at the point (x, z) = (0, 1) km. When
we look at the L; or L, errors in the computed imaginary part,
however, the discretization error of the discontinuous Q model
makes the accuracy of the computed imaginary part degraded
significantly so that the rate of convergence is dropped to the first
order.

Waveguide model

The computational domain is [—1, 1] X [0,2] km. The reference
velocity function (km/s) is given by
c(x,z) = 1.1 —exp(—0.5x%), (24)

which is symmetric with respect to x = 0 km. Because we have
the same symmetry in Q, we expect the same type of symmetry

Table 1. Constant velocity model with Q = Q;.

L, Rate L, Rate
121 1.234e-7 — 1.235e-7 —
241 3.484e-8 1.824 4.114e-8 1.464
481 7.852e-9 2.149 7.141e-9 2.526

The L; and L, errors in the imaginary part of the complex-valued eikonal
at z=1km.
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in the real and imaginary parts of the complex-valued eikonal and
the real-valued amplitude.

Figure 3 shows the computed real and imaginary parts of the
complex-valued eikonal at z = 0.48, 0.96, and 1.6 km, where
different arrivals are plotted using different colors. The first
row in Figure 3 shows the real part of the eikonal, which is solely
determined by the given reference velocity. The second row shows
the imaginary part of the eikonal at different depths corresponding
to the smooth Q model, Q = Q. Although most rays from the
source will curve, the one with the zero initial takeoff angle will
not curve so that a reference solution for that particular ray can
be computed by integrating f (Z)f dz/cQ. We observe that this ray
corresponds to the latest arrival ray, i.e., the third arrival, to the
point (x,z) = (0,z,)km. The numerical errors at this particular
point based on different meshes, 121 x 121, 241 x 241, and
481 x 481, are all of machine epsilon, i.e., O(107!%). This is

a) 001 b) o.01
@ 0.008 % 0.006
i ~
0.002 ; ] 0.002
J b
—0.5 0 0.5 —05 0 05
x (km) x (km)
C) d) 10'3
0.01 1%
@
= 0.006 ~ 06
; £
~ —
S
0.002 w 0.2 .
—05 0 0.5 —05 0 05
x (km) . x(km)
e) 6 X10 f) gx10
w4 4 .,
= c H .
S 2 s 2 9 §
w .o .. 0 o S
0 5 NP 4 0 I
-0.5 0 05 -05 0 05
x (km) x (km)

Figure 2. Constant velocity model with Q = Q,. The computed
imaginary part of the eikonal at z = 1.0 km using a mesh of
(a) 121 x 121, (b) 241 x 241, and (c) 481 x 481. The exact imagi-
nary part of the eikonal is plotted using a solid red line. The cor-
responding absolute errors for different meshed are shown in (d-f),
respectively.

Table 2. Constant velocity model with Q = Q,.

consistent with the conclusion from the constant case. The third
row shows the imaginary part of the eikonal at different depths cor-
responding to the discontinuous Q model, Q = Q,, where the errors
at that particular point are significantly increased to O(107°). Figure 4
compares our numerical solutions with the solutions computed by the
ray-tracing method. We partition the #-domain uniformly so that the
initial takeoff angle is evenly distributed from —97/20 to 9z/20. We
plot the PDE solutions using blue dots and plot the ray-tracing sol-
utions using red circles. As we can see because there is no control of
where the arrival locations will be, the real and imaginary parts of the
complex-valued eikonal from the ray-tracing method cannot be uni-
formly sampled on the x-axis, which is in sharp contrast to our PDE
approach.

Figure 5 shows the imaginary part of the eikonal, ¢y, A and also
the amplitude at z = 1.6 km computed on the 481 x 481 grid,
where the Q model Q = Q. Because this particular velocity model
satisfies u, = vy = 0, the equation for A is purely advective. This
implies that A is analytically given by —2 everywhere. We see that
the computed A matches with this exact solution very well. Because
¢ approaches 0 as we approach the caustics near x = +0.45 km,
the amplitude function becomes infinite at these locations.

Sinusoidal model

This example is adapted from the sinusoidal model used in Symes
(1998) and Symes and Qian (2003), where the velocity function
(km/s) is given by

¢(x,z) = 14 0.2 sin(0.5zz) sin[3z(x + 0.55)],  (25)

where the computational domain is [-1, 1] X [0, 2]km.

Figure 6 shows the velocity model, and the total number of grid
points is 241 X 241. The model dimension is 2 km in the x- and
z-directions. A particular feature of this model is that high and
low velocity regions alternate laterally. When seismic rays pass
through these areas, the rays will bend so that they will converge
or diverge alternately. Figure 6 also shows that the rays emanating
from the source at (x,z) = (0,0)km are overlaid on the velocity
model. There are 181 rays, where the takeoff angle is sampled
uniformly in the interval [-z/2, x/2]. The figure also demonstrates
two unique features of this model. First, the diverging rays create
large shadow zones where it is challenging to obtain reliable eikonal
information. Second, the converging rays make the real part of the
complex-valued eikonal multivalued so that it is challenging for
conventional first-arrival traveltime computational methods to cap-
ture all the useful eikonal information.

Figure 7 shows the multivalued real part of the complex-valued
eikonal at z = 0.6, 1.2, and 2.0 km. As z evolves, we see that a

Error at (0, 1.0) km Rate Lyatz=1km Rate L, at z=1km Rate
121 x 121 1.208e-5 — 1.986e-4 — 3.549¢-4 —
241 x 241 2.780e-6 2.1097 8.725e-5 1.1865 1.738e-4 1.0303
481 x 481 9.212e-7 1.6037 4.285e-5 1.0257 9.640e-5 0.8501

The absolute errors in the imaginary part of the complex-valued eikonal in three cases: at the single point (x, z) = (0, 1.0) km, along the line z = 1 km in the L, norm, and along

z=1km in the L, norm.
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single-valued solution becomes multivalued. In the region between
—0.1 and 0.1 km at z = 2.0 km, we even see as many as five arrivals.
Figure 8 shows some comparisons of our PDE approach with the ray-
tracing method. Similar to the observations made for the waveguide
model, the ray-tracing solution is not uniformly sampled on
the final arrival level; in particular, the first-arrival solution is poorly
represented. However, our PDE approach can provide uniformly
sampled solutions on any z-level. Figure 9 shows the imaginary part
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@ ©0.16
" 0.1 -
0.12
0.08——3 0 05 —05 0 05
g) x (km) h) X (km)
0.04 0.1
O A < 0.06 :
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~
0.02
—05 0 05
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Figure 3. Waveguide model. The real part of the complex eikonal at
(a) z=0.48 km, (b) z = 0.96 km, and (c) z = 1.6 km using a 480
X 480 grid. The imaginary part of the eikonal at (d) z = 0.48 km,
() z=0.96 km, and (f) z=1.6 km with the smooth model
Q = Q,. The imaginary part of the eikonal at (g) z = 0.48 km,
(h) z=10.96 km, and (i) z = 1.6 km with the discontinuous model
QO = Q,. The error in the imaginary part of the eikonal for the third
arrival (marked in yellow) at (x,z) = (0,1.6)km is given by
3.7947 x 10716 for 0 = Q, and 1.3317 x 107 for Q = Q,, respec-
tively. Blue curves: first arrival; cyan curves: second arrival; and
yellow curves: third arrival.
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Figure 4. Waveguide model with Q = Q,. Comparison of the com-
plex-valued eikonal at z = 1.6 km for our method and the ray-trac-
ing method. (a) The real part of the complex eikonal. (b) The
imaginary part of the complex eikonal. The numerical solutions
from our method are plotted using blue dots, and the ray-tracing
solutions are shown using red circles.
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Figure 5. Waveguide model with Q = Q;. The imaginary part 7*
of the eikonal, the derivative of the level-set function ¢y, the inter-
mediate quantity A, and the amplitude A at z = 1.6 km using a 481
X 481 grid. Blue curves: first arrival; cyan curves: second arrival;
and yellow curves: third arrival.
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of the eikonal, ¢y, A and also the amplitude at the final level
z = 2.0 km. As the rays converge, the imaginary part of the eikonal
also becomes multivalued. This shows that the proposed method ob-
tains a uniformly spaced complex-valued eikonal in the region with
diverging rays and the region with converging rays. This is beneficial
for seismic imaging in complicated areas.

To demonstrate the effect of attenuation on seismic data, we
model shot gathers in acoustic and viscoacoustic media. We assume
that the multivalued real (or complex-valued) eikonal and amplitude
functions consist of /(x, z) branches at each subsurface point (x, z),

1150

1050

Velocity (m/s)

950

Depth (km)

850
2.0

Figure 6. Sinusoidal model with rays.
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Figure 7. Sinusoidal model with Q = Q, using a 241 x 241 grid.
The zero level set at (a) z=0.6km, (¢) z=1.2km, and
(e) z=2.0 km. The real part of the complex-valued eikonal at
(b) z=10.6 km, (d) z = 1.2 km, and (f) z = 2.0 km. Blue curves:
first arrival; cyan curves: second arrival; yellow curves: third arrival;
pink curves: fourth arrival; and green curves: fifth arrival.

a) 24r
22F ;
Y i
hy /
ol _ )
1.8
b) ooty
0.006 |
@
=
0.002 |
0

Figure 8. Sinusoidal model with Q = Q,. Comparison of the com-
plex-valued eikonal at z = 2 km for our method and the ray-tracing
method. (a) The real part of the complex eikonal. (b) The imaginary
part of the complex eikonal. The numerical solutions from our
method are plotted using blue dots, and the ray-tracing solutions
are shown using red circles.
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Figure 9. Sinusoidal model with Q = Q,. The imaginary part 7* of
the complex-valued eikonal, the derivative of the level-set function
¢y, the intermediate quantity A, and the amplitude A at z = 2.0 km.
Blue curves: first arrival; cyan curves: second arrival; yellow curves:
third arrival; pink curves: fourth arrival; and green curves: fifth
arrival.
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where I(x,z) is an integer varying from point to point. The shot
gather is modeled using the multivalued eikonal and amplitude
functions according to the following “truncated” formula:

I
d(x,z,w) = (26)

(x.2)
9(@)A;(x, z) exp(—iwt;(x, z)),
i=1

=

where @ is the angular frequency, g(w) is the source wavelet,
d(x,z, ) is the shot gather in the frequency domain, A;(x,z) is
the ith branch of the multivalued amplitude computed by the pro-
posed Liouville method, and ¢; is the ith branch of the multivalued
eikonal. The frequency-domain shot gather d(x, z, ) can be inverse
Fourier transformed with respect to @ to obtain waves in the time
domain.

We call equation 26 the truncated formula because we have
ignored phase shifts of geometric optics across caustics (and/or
cusps) in this formula. As a result, the resulting shot gathers expe-
rience a sharp change across caustics (and/or cusps), and such sharp
changes are unrealistic. Nevertheless, in noncaustic but multivalued
regions, our truncated construction reveals those interesting aspects
of multivalued eikonals and resulting asymptotic solutions. We will
treat phase shifts associated with multivalued eikonals more thor-
oughly in a future work.
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Figure 10. Comparison of shot gathers at z = 2.0 km for the acous-
tic medium and the viscoacoustic medium with Q = Q,, where the
reference velocity is the sinusoidal model. (a) The acoustic case and
(b) the viscoacoustic case.

In an acoustic medium, ¢; is T, the real part of the ith branch of
the complex-valued eikonal. In a viscoacoustic medium, we define
t; using the Futterman’s dispersion relation (Keers et al., 2001):

ti(x,2) = T(x,2) —%T?(x, 2) ln(£> - l‘w

(2]

. @)

where ), is a reference angular frequency, which is usually a value
close to the centroid of the amplitude spectrum.

We use a Ricker wavelet with a main frequency of 30 Hz. Figure 10
shows shot gathers obtained at z = 2.0 km for the two cases:
Figure 10a for the acoustic medium defined by the sinusoidal velocity
model, and Figure 10b for the viscoacoustic medium with the sinus-
oidal velocity as the reference velocity and the Q, function as the
quality factor; these results illustrate that the seismic waves passing
through the low Q area experience the frequency-dependent ampli-
tude loss due to attenuation. We remark that although the shot gathers
in both cases show unrealistic sharp changes across caustics due to
the truncated formula 26, the resulting wavefields in noncaustic but
multivalued regions do reveal the multivalued effects of eikonals. To
demonstrate the difference of the two models in detail, we compare
their traces and amplitude spectra at x = —0.0834 km, as shown in
Figure 11. Note that the amplitude spectrum in Figure 11b is com-
puted from the last wavelet in Figure 11a. Figure 11a shows that the
seismic amplitude is greatly attenuated in the viscoacoustic medium,
and the phase of wavelet also is changed due to the seismic attenu-
ation. Figure 11b shows that the main frequency in the viscoacoustic
medium is reduced, which further reduces the resolution of seis-
mic data.
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Figure 11. Comparison of traces for the sinusoidal model with Q =
0, at x = —0.0834 km and z = 2.0 km. (a) Traces and (b) their
amplitude spectra. Black lines: the acoustic medium and red lines:
the viscoacoustic medium.
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A synthetic gas-cloud model

In this example, we apply our method to a synthetic gas-cloud
model. This synthetic model is constructed as follows. We first extract
a velocity model from the BP 2007 tilted transversely isotropic veloc-
ity model, as shown in Figure 12a. We further construct a O model
according to the extracted velocity model: We fill the zone of low
velocity in the shallow region with low Q values to simulate the
gas cloud, and we set the Q value in other places to be 10,000 as
shown in Figure 12b. The model dimension is 8 km in depth and
10 km laterally. The grid size is 10 m in the x- and z-axes so that
the total number of grid points in physical space is 1001 x 801 in
the velocity model. Numerically, we discretize phase space, the
x-0 space, using a mesh of 1001 X 1001 so that the mesh points
in the x-direction align with the velocity model. To evolve the PDEs
in the z-direction, the step size in z is determined by the stability con-
dition of the numerical schemes for the PDEs, where the velocity and
the Q model needed for the z-direction evolution will be obtained by
linear interpolation in the z-direction.

To demonstrate that our proposed method can effectively capture
multivalued solutions, we compute the multivalued solutions at a
point source: (x,z) = (4.5,0)km. The computational results are
shown in Figures 13, 14, and 15. Figure 13 shows the evolution
of the zero level set at various z-levels up to z = 7 km at the given
point source, where the z-levels are given by 2.3873, 3.5810,
4.7746, and 7 km. We can clearly see that the zero level-set function
overturns in phase space (the x-0 space) and develops very compli-
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Figure 12. A synthetic gas-cloud model. (a) The velocity model
and (b) the function Q defined on the domain [0,10] X [0,8] km
with three different sources located at (x,z) = (4.5,0) km,
(x,z) = (5,0) km, and (x,z) = (5.5,0) km, where we will only
show results for one source. Numerical solutions will be shown
for the line z = 7 km.

cated structures. For each fixed x location, we can find more than
one corresponding € so that the level-set function vanishes. This
implies that there are multiple arrivals initiated from the point
source. Figure 14 shows magnification of the real part of the com-
plex-valued eikonal for the given point source and its corresponding
structure. The rays in the magnification area converge so that the
eikonal becomes multivalued. Therefore, the results show that
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Figure 13. A synthetic gas-cloud model. The zero level set at
(a) z=2.3873 km, (b) z=3.5810 km, (c) z = 4.7746 km, and
(d) z=7 km with the source located at (x,z)= (4.5,0) km.
Numerical solutions are computed on a mesh of 1001 x 1001 grid
points.
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Figure 14. A synthetic gas-cloud model. (a) Magnification of the
real part of the complex-valued eikonal at z = 7 km with the source
located at (x,z) = (4.5,0) km and (b) the related ray structure.
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our proposed method is able to capture effectively multivalued
eikonals. In Figure 15, we show the real part 7' and the imaginary
part 7% of the eikonal, the amplitude function A, and also the in-
termediate quantity A, for the given point source.

Analogous to the sinusoidal model, we model shot gathers in the
viscoacoustic medium and in the corresponding reference acoustic
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Figure 15. A synthetic gas-cloud model. The real part 7 and the
imaginary part 7* of the complex-valued eikonal, the amplitude
A, and the intermediate quantity A at z =7 km with the source
located at (x,z) = (4.5,0)km.
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Figure 16. Comparison of shot gathers for the synthetic gas-cloud
model at z = 7.0 km. (a) The acoustic case and (b) the viscoacous-
tic case. The source is located at (x,z) = (4.5,0) km.

medium to demonstrate the effect of attenuation on seismic data. We
use a Ricker wavelet with a main frequency of 30 Hz. Figure 16
shows a shot gather obtained at z = 7.0 km for the source located
at (x,z) = (4.5,0) km. The comparison of shot gathers shows
that the seismic wave passing through the low Q area suffers from
amplitude attenuation. Their traces and amplitude spectra at
x = 0.5 km are compared in Figure 17. Figure 17a shows that
the amplitude of seismic waves is greatly attenuated, and the phase
of wavelet also is changed due to seismic attenuation. Figure 17b
shows that the main frequency in the viscoacoustic medium is
reduced, which further reduces the resolution of seismic data.
We remark again that although the shot gathers in both cases show
unrealistic sharp changes across caustics due to the truncated
formula 26, the resulting wavefields in noncaustic but multivalued
regions do reveal the multivalued effects of eikonals.

DISCUSSION
Lagrangian versus Eulerian formulation

Lagrangian ray-tracing methods and Eulerian methods have their
advantages and disadvantages, depending on what is needed in spe-
cific applications. As discussed and illustrated in Leung et al. (2007)
for Gaussian beams, a Lagrangian ray-tracing method is able to con-
trol how the initial values of rays, such as source locations and take-
off angles, are distributed, but it is not able to control how arrival
locations and arrival angles of rays are distributed. In contrast, an
Eulerian method as proposed here is able to control how arrival lo-
cations and arrival angles are distributed, but it is not able to control
how initial source locations and takeoff angles are distributed.
Therefore, one may choose which method to use according to
the specific application in hand.
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Figure 17. Comparison of traces for the synthetic gas-cloud model
at x = 0.5 km and z = 7.0 km. (a) Traces and (b) their amplitude
spectra. Black lines: the acoustic case and red lines: the viscoacous-
tic case. The source is located at (x,z) = (4.5,0) km.
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The subhorizontal condition

‘We have imposed the subhorizontal condition in our computational
formulation to expedite the development and implementation of our
algorithm; consequently, we are only able to capture one-way wave
propagation in the depth direction. This condition can be removed by
incurring some additional cost. Essentially, one may use the formu-
lation developed in Qian et al. (2003) to compute all the multivalued
ingredients in the entire phase space, so that overturning and steep-
dipping waves can be captured faithfully. This work is ongoing.

Anisotropy

Our Liouville formulation is able to compute naturally multival-
ued eikonals in nonattenuating anisotropic wave propagation, as
illustrated in Qian and Leung (2004) and Qian et al. (2003), where
the Liouville equations are developed for computing multivalued
eikonals of three wave modes (qP, qSV, and qSH). It is necessary
to further develop our framework to compute multivalued eikonals
in attenuating anisotropic media so that complex eikonals of the
three wave modes in viscoelastic anisotropic media can be com-
puted efficiently; this work is ongoing.

CONCLUSION

We have presented Liouville PDE methods for computing com-
plex-valued eikonals in real space in the multivalued sense in attenu-
ating media. The proposed method is capable of computing complex-
valued eikonals by providing the real and imaginary parts of the ei-
konal function in real space in the multivalued sense on regular
meshes. This has been achieved by solving novel paraxial Liouville
PDE:s in real phase space, leading to efficient Eulerian PDE methods
for multivalued solutions. We also are able to compute multivalued
amplitudes when the quality factor satisfies certain conditions in a
viscoacoustic medium. Numerical examples, including a synthetic
gas-cloud model, illustrated that the proposed methods yield highly
accurate complex-valued eikonals in the multivalued sense. The pro-
posed methods can be used for migration and tomography in attenu-
ating media.
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