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ABSTRACT

First-arrival traveltime tomography is an essential method for
obtaining near-surface velocity models. The adjoint-state first-
arrival traveltime tomography is appealing due to its straightfor-
ward implementation, low computational cost, and low memory
consumption. Because solving the point-source isotropic eiko-
nal equation by either ray tracers or eikonal solvers intrinsically
corresponds to emanating discrete rays from the source point,
the resulting traveltime gradient is singular at the source point,
and we denote such a singular pattern the imprint of ray-illumi-
nation. Because the adjoint-state equation propagates traveltime
residuals back to the source point according to the negative trav-
eltime gradient, the resulting adjoint state will inherit such an
imprint of ray-illumination, leading to singular gradient-descent
directions when updating the velocity model in the adjoint-state
traveltime tomography. To mitigate this imprint, we solve the

adjoint-state equation twice but with different boundary con-
ditions: one being taken to be regular data residuals and the
other taken to be ones uniformly, so that we are able to use
the latter adjoint state to normalize the regular adjoint state
and we further use the normalized quantity to serve as the gra-
dient direction to update the velocity model; we call this proc-
ess ray-illumination compensation. To overcome the issue of
limited aperture, we have developed a spatially varying regu-
larization method to stabilize the new gradient direction. A
synthetic example demonstrates that our method is able to mit-
igate the imprint of ray-illumination, remove the footprint ef-
fect near source points, and provide uniform velocity updates
along raypaths. A complex example extracted from the Mar-
mousi2 model and a migration example illustrate that the new
method accurately recovers the velocity model and that an off-
set-dependent inversion strategy can further improve the qual-
ity of recovered velocity models.

INTRODUCTION

Reliable velocity models are crucial for seismic imaging and are
usually inferred from kinetic properties of seismic waves, such as
first-arrival or multiarrival traveltimes. First-arrival traveltime usu-
ally captures the minimum traveltime of direct, refracted, or diving
waves. Because these seismic waves normally propagate in the
near-surface region, first-arrival traveltime tomography is widely
used to build velocity models for such regions (Zhu et al., 1992;
Zelt and Barton, 1998). Because reliable near-surface velocity

models are useful in at least three situations — providing an initial
model for the full-waveform inversion to obtain a further improved
velocity model, providing a velocity structure for near-surface mi-
gration velocity analysis, and providing a velocity structure for
near-surface static correction, which greatly affects the quality of
imaging in areas with complex surface conditions (Zhu et al.,
1992) — we are motivated to develop effective first-arrival trav-
eltime tomography methods.

First-arrival traveltime tomography is a classic data-fitting non-
linear inverse problem that needs a forward-modeling method to
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generate first-arrival traveltimes from the current model and a
method to compute the gradient of the data-fitting functional with
respect to the current model. Various methods can be used to obtain
the first-arrival traveltimes, such as ray-tracing techniques (Vinje
et al., 1993; Lambaré et al., 1996; éerveny, 2001), finite-difference
eikonal solvers (Vidale, 1988; Podvin and Lecomte, 1991; van Trier
and Symes, 1991; Qin et al., 1992; Gray and May, 1994; Sethian
and Popovici, 1999; Qian and Symes, 2002; Kao et al., 2004; Zhao,
2005; Qian et al., 2007a, 2007b), and Fermat’s principle-based
methods (Schneider et al., 1992; Wang et al., 1999; Hu et al.,
2017, 2018). Ray tracing computes traveltimes along raypaths so
that the resulting traveltimes are on irregular grids. When a velocity
model has complex structures, ray-tracing techniques may suffer
from shadow zones. The wavefront construction method (Vinje
et al., 1993; Lambaré et al., 1996) alleviates this problem by carry-
ing out ray interpolation. However, finite-difference eikonal solvers
and Fermat’s principle-based methods produce traveltimes at regu-
lar grid points including all regularly spaced receivers so that it is
convenient to use these methods to update traveltime misfits at
receivers.

Because the traveltime tomography problem is in essence an ei-
konal-constrained optimization problem, naturally there are two
possible approaches for computing the gradient of the traveltime-
misfit functional with respect to the (current) slowness function:
One is the primal formulation and the other is the dual (adjoint-
state) formulation. The primal approach is based on linearization
(first-order perturbation) of the traveltime with respect to slowness
along raypaths, which states that the first-order traveltime perturba-
tion is the integral of the slowness perturbation along the reference
(current) ray; this is in fact a consequence of Fermat’s least-trav-
eltime principle (Snieder and Sambridge, 1992). Therefore, because
the resulting gradient of the traveltime with respect to slowness is
defined through a well-behaved integral of slowness perturbation
along the ray, after discretization the Jacobian of traveltime with
respect to slowness is a sparse matrix, in which nonzero entries
are lengths of ray segments and may appear in arbitrary locations
due to the underlying possibly twisted raypaths (Peterson et al.,
1985; Berryman, 1989; Bregman et al., 1989; Nolet, 1993; Wang
and Braile, 1995; Hu and Marcinkovich, 2012). Because of this
irregular sparsity of the Jacobian matrix, it is challenging to manage
storage of this matrix at large scale, giving rise to implementational
difficulties for large-scale seismic applications; see Nolet (2012) for
an overview of seismic tomography and many applications.

Conversely, the dual or adjoint-state formulation introduces the
adjoint state (or the Lagrange multiplier) as a dual variable to the
eikonal so that the eikonal equation as a constraint comes into play
directly when minimizing the traveltime-misfit functional (Leung
and Qian, 2006); consequently, the gradient of the traveltime-misfit
functional with respect to the slowness is obtained from the adjoint-
state variable defined in the entire space rather than on individual
rays. Because of this dual property, the dual variable satisfies a
linear conservative equation, the so-called adjoint-state equa-
tion (Sei and Symes, 1994, 1995; Leung and Qian, 2006). To de-
velop an efficient algorithm to implement this dual formulation,
Leung and Qian (2006) propose a fast sweeping method to solve
this adjoint-state equation; the resulting framework is easy to imple-
ment, and it is memory efficient and computationally efficient.
Since then, the adjoint-state tomography method has undergone ex-
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tensive development (Taillandier et al., 2009; Noble et al., 2010; Li
and Leung, 2013; Li et al., 2014; Waheed et al., 2016).

Because solving the point-source isotropic eikonal equation ei-
ther by ray tracers or by eikonal solvers intrinsically corresponding
to emanating discrete rays from the source point, the resulting trav-
eltime gradient is singular at the source point, and we term such a
singular pattern the imprint of ray-illumination. Because traveltime
tomography is based on either ray tracers or eikonal solvers, primal
and dual approaches to traveltime tomography face the issue of
imprint of ray-illumination. For example, to overcome the noncon-
vergence difficulty in applying the algebraic reconstruction tech-
nique to straight-ray traveltime tomography, Dines and Lytle
(1979) develop a minimax-correction-based simultaneous itera-
tive-reconstruction technique (SIRT) to account for the ray density
map by updating the velocity model only after accumulating
the updates from all available rays, which mitigates the effect of
imprint of ray-illumination. Many works on ray-tracing traveltime
tomography have developed various strategies to deal with the ray-
coverage issue in traveltime tomography (Peterson et al., 1985; Ber-
ryman, 1989; Bregman et al., 1989; Nolet, 1993; Wang and Braile,
1995; Hu and Marcinkovich, 2012).

Because the adjoint-state equation propagates traveltime resid-
uals back to the source point according to the reversed ray direction,
namely, the negative traveltime gradient from the eikonal equation,
the resulting adjoint state will inherit a similar imprint of ray-illu-
mination as the primal approach does. This imprint of ray-illumi-
nation leads to singular gradient-descent directions in adjoint-state
traveltime tomography. To mitigate this imprint, we propose to
solve the adjoint-state equation twice but with different boundary
conditions: one being taken to be regular data residuals and the
other taken to be ones uniformly, so that we are able to use the latter
adjoint state to normalize the regular adjoint state and we further use
the normalized quantity to serve as the gradient direction to update
the slowness model. We call this process the ray-illumination com-
pensation. We mention that a similar idea has been used in Benai-
chouche et al. (2015) for estimating the Hessian of the misfit
functional with respect to the slowness. Although our formulation
is analogous to that in Benaichouche et al. (2015), our motivation is
different from that in Benaichouche et al. (2015); moreover, we em-
phasize that we also provide rigorous mathematical derivation to
justify our motivation, and such mathematical justification is miss-
ing in Benaichouche et al. (2015). We will show the mathematical
meaning of this normalized quantity. In addition, a spatially varying
regularization method is proposed to stabilize the ray-illumination
compensation. As we can see from the analysis of our illustrative
example, our normalization strategy just distributes the boundary
traveltime residual uniformly along a raypath without considering
the ray length. Therefore, our strategy is different from the mini-
max-correction-based SIRT (Dines and Lytle, 1979) in that the latter
uses the ray length to balance the velocity updating process so that
longer rays tend to dominate, smearing any zones of anomalous
velocity (Peterson et al., 1985). Hence, to some extent, our normali-
zation method provides a mathematically justified strategy to
compensate for the imprint of ray-illumination in adjoint-state trav-
eltime tomography.

This paper is organized as follows. First, the methodology of ad-
joint-state first-arrival traveltime tomography is analyzed to illus-
trate the effect of ray-illumination, and we further propose to
solve the adjoint-state equation with a different boundary condition
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so that we obtain a normalized gradient direction of the misfit
functional. We then discuss the regularization method with spatially
varying regularization factors. Finally, numerical experiments on
two synthetic data sets demonstrate the feasibility of the proposed
method.

ADJOINT-STATE FIRST-ARRIVAL TRAVELTIME
TOMOGRAPHY

Adjoint-state equation for gradient

We start from the point-source eikonal equation to consider the
first-arrival traveltime tomography in terms of an adjoint-state
(dual) formulation. The traveltime misfit functional for a single shot
takes the following form (Sei and Symes, 1994, 1995; Leung and
Qian, 2006):

1
10 = 5 [ 11086%,50) = Tl x, P

o z<x>(|vr<x;xx>|2—@)dx, M

where Q is the subsurface domain with boundary 02, I' C 0Q is the
acquisition surface, dI" is the surface differential element on I, T
is the observed first-arrival traveltime data on I" due to the source X,
T is the first-arrival traveltime due to the velocity v, x = (x, z) is the
spatial coordinate, A is the adjoint-state variable (the Lagrange
multiplier), and x; is the shot location.

To minimize the misfit function J[v] with respect to v, we need to
find its gradient, which can be obtained from the following first-or-
der variation of J in terms of the first-order variation v (Leung and
Qian, 20006):

aJ ov
8J =< o 5v >2= Lv3(x)ﬂ(x)dx, )
so that
oJ  Alx)
> , 3
o 3 (x) ©)

where <-,->,> indicates the inner product in the L? space. The ad-
joint-state variable A satisfies the following linear conservative ad-
vection equation (Leung and Qian, 2006):

-V (A(x)VT(x)) =0 inQ, “)

n(x) - VI (X)A(X)|r = Tops = T, 5

where n is the outward normal to I'. Equations 4 and 5 can be solved
by the fast sweeping method designed in Leung and Qian (2006).

Consequently, we take the negative gradient direction to update
the velocity model » so as to minimize J{v],

oJ

(k1) (x) = pR)(x) — y ==
() = o x) =7

(6)

where k is the iteration number with k = 0,1, 2, ... and y is the step
length. We use a three-point parabolic interpolation method (Vigh
et al., 2009) to determine the step length.

To carry out this adjoint-state tomography strategy, we need an
efficient method to compute the traveltime and its gradient because
the traveltime gradient is used as known coefficients to back propa-
gate the traveltime residual into the entire computational domain. In
practice, we may choose any efficient eikonal solver to solve the
eikonal equations, but we choose a Fermat’s principle-based fast
marching method (Hu et al., 2017), which is a variant of the popular
fast marching method developed by Sethian and Popovici (1999)
method. This method yields highly accurate traveltimes at each grid
point by solving a nonlinear optimization problem, so that the trav-
eltime gradient is also highly accurate.

Adjoint-state equation for ray-illumination

As we allude in the preceding section, similar to the primal ap-
proach, the adjoint-state defined gradient direction has singular
behavior at the source due to the imprint of ray-illumination.
The discrete acquisition geometry further amplifies this singular
behavior, causing the so-called footprint phenomenon in the usual
eikonal-based first-arrival traveltime tomography (Leung and Qian,
2006). Such footprint effects can be depressed by heavy regulari-
zation at the cost of degraded overall resolution.

We use a simple velocity model to demonstrate the behavior of
this gradient. The exact velocity model is shown in Figure 1a. The
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Figure 1. Velocity model with elliptical velocity perturbation.
(a) The exact velocity model, (b) the velocity model defined by
a linear function in the spatial coordinates, and (c) the elliptical
velocity perturbation.
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model is 1.2 km in depth and 10 km laterally. The grid spacing in
the x- and z-axes is 10 m. This model is a perturbed velocity model,
in which the background consists of a velocity model defined by a
linear function in the spatial coordinates (Figure 1b) and the added
perturbation is defined by an elliptical shape (Figure 1c). The source
and receivers are located on the surface. We simulate 80 shots using
the exact velocity model (Figure la) at a 100 m shot interval.
The lateral position of the first shot is located at x = 1000 m
(i.e., common depth point [CDP] 100). The maximum offset for
each shot is 7 km, and the receiver interval is 10 m. The velocity
model with a constant gradient (Figure 1b) is used as the initial
model in tomography. Therefore, the inversion target is to recover
the elliptical velocity perturbation in Figure 1c.
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Figure 2. Illustration of gradient for a single source. The (a) trav-
eltime error, (b) normalized gradient, (c) raypath for a single source
located at x = 1000 m, and the (d) normalized gradient’s common
depth curve at a depth of 100 m. Because the gradient near the
source is too strong, we clip the maximum value in (b) for the pur-
pose of display.
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We show the gradient of the misfit functional due to the first shot.
We first calculate the first-arrival traveltimes from the current
model, which are compared with the observed first-arrival travel-
times to obtain traveltime residuals, as shown in Figure 2a. These
traveltime residuals are used to solve equation 4 to obtain the ad-
joint-state variable, which is then divided by »* to obtain the gra-
dient of the misfit functional for this shot, as shown in Figure 2b.
Figure 2c also shows a part of raypaths for this shot, and the primal
approach back propagates the traveltime residuals along these ray-
paths. The gradient in Figure 2b shows that the adjoint-state method
back propagates the traveltime residuals in a similar way using the
adjoint-state equation. Although this is a valid way of back propa-
gating traveltime residuals in traveltime tomography, the amplitude
distribution of this gradient is not appealing. The gradient near the
source is quite strong, and this may cause footprints in the overall
gradient in the setting of discrete acquisition geometry. Moreover,
the gradient is nonuniformly distributed along the raypath, and it
gets stronger as it moves from the receivers to the source point,
as shown in Figure 2b and 2d. However, the strength of the desired
gradient should reveal the magnitude of the velocity errors. The
functional gradient in Figure 2b shows that the velocity of the
neighborhood near the source will be updated in a distorted or
biased manner that is not suitable. It also can be observed that
the strength of the functional gradient in Figure 2b is similar to
the ray-illumination in Figure 2c. The strength of the functional gra-
dient is weak near the neighborhood of a receiver because the ray
coverage at each receiver is coarse, and the strength of the gradient
is strong near the source neighborhood because the rays converge.
To understand the behavior of the adjoint-state gradient, the adjoint-
state equation should be analyzed.

Singular behavior of the adjoint state: An example

We consider the eikonal equation on a unit sphere Q = B(0, 1)
for d = 2,3, where Q is a unit disk when d = 2 and a unit sphere
when d = 3:

[VT| =5y on Q\{0}, Tl|,o=0, 7
where the slowness s, is constant, and the source is set at the origin.

To carry out traveltime tomography, we need to solve the follow-
ing adjoint-state equation after solving the eikonal equation:

oT
—V.(AVT)=0, —i =f 8
(AVT) =7 ®)

where f is the traveltime residual and dQ = dB(0, 1). We denote the
solution of this equation by A/.

To normalize the singular behavior of the adjoint state, we pro-
pose to solve the adjoint-state equation 8§ once more by setting
f =1, and we denote the resulting solution by A!. It is easy to check
that

Al =1/ (solx[*), ©)

which is singular at the source (the origin). Such a singular behavior
holds in general for the solution of the adjoint-state equation.
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Then, we propose to normalize A/ by 1! so that we have a new
function

B(x) = ¥ (x) /2" (x), (10)

which is nonsingular. To see this, in fact we can show that

ﬂ(x)f(x). (11)

x|

First, we construct a tube of rays ending at x and x/|x|. Because,
in an isotropic medium, the point-source first-arrival ray direction is
defined by the traveltime gradient, in our constant case here, VT'(x)
is parallel to the vector x which is the ray from the source at the
origin to the point x. Thus, the tube of rays is a cylinder whose
longitudinal direction is parallel to V7' (x) and transversal direction
is perpendicular to VT'(x). We denote the ray tube by G.

Second, we integrate the adjoint-state equation 8 around the ray
tube G, yielding

O:/V~(/1VT)dx :/ n. AVTdr
G oG

(@)

where ds, and ds, indicate the area of the top and bottom trans-
versal sections of the ray tube, respectively. Applying the two boun-
dary conditions f =1 and generic f in the above integration result,
we end up with

(12)
dSl - Soﬁ(x)déé,

X

x|

sodf (X)ds, = f(%) ds,, (13)
SQAI (X)dS2 = ldsl, (14)

and these two equalities yield the desired claim in equation 11.

Modified gradient direction via normalized adjoint-
state

Consequently, we propose to solve the adjoint-state equation
twice with two different boundary conditions to normalize the ad-
joint-state variable so as to modify the gradient, yielding a well-be-
haved gradient descent direction. The new boundary condition for
the adjoint-state equation 4 is

n(x) - VI (x)A(x)|r = 1, (15)

which yields the solution AR.
Denoting the solution of equations 4 and 5 by 4, we normalize the
adjoint state 1 by AF to get

Ae(x) = A(x) /2% (x), (16)

so that the gradient of the misfit functional is modified to
be 1.(x)/v3(x).

U113

Figure 3a shows the computed ray-illumination using equations 4
and 15 for the first shot. The strength of this ray-illumination gets
stronger as it approaches the source, and this is quite similar to the
ray distribution in Figure 2c. Therefore, we can compensate for the
gradient using this ray-illumination. Equation 11 shows that the nor-
malized adjoint state from one shot is nonsingular. Therefore, in this
work, we perform the ray-illumination compensation shot by shot,
and then stack all of the compensated gradients to form the final
gradient for all the shots.

Regularization method with spatially varying regulari-
zation factors

We will use the normalized adjoint state to update the velocity
model. However, when the aperture is incomplete, AR may be zero
or very small, which may cause instability issues. Figure 3b shows a
common depth curve of Figure 3a at a depth of 100 m, and it clearly
shows that the illumination factor is zero or very small in a certain
area. The regularization method is a common way of avoiding this
instability issue. The conventional regularization method normally
uses a constant regularization factor, yielding

)
F+a 0

where « is the regularization factor, which is a positive value related
to the smallest ray-illumination factor among all the receiver points
AB. . The regularization factor is an important parameter to balance
between the compensation quality and stability.

Figure 4 shows compensation results using different regulariza-
tion factors. After the ray-illumination compensation, the strength
of the gradient is balanced along the raypath. The strong gradient
near the source also disappears, and this helps remove the footprints
near the source point. However, this regularization method is not
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Figure 3. Ray illumination for a single source located at
x = 1000 m. (a) Ray illumination and (b) its common depth curve
at a depth of 100 m. Because the ray-illumination near the source is
too strong, we clip the maximum value in (a) for display purposes.



Downloaded 09/27/21 to 35.8.11.2. Redistribution subject to SEG license or copyright; see Terms of Use at http:/library.seg.org/page/policies/terms

DOI:10.1190/ge02020-0140.1

uti4 Hu et al.
optimal. When the regularization factor is large, the compensation is
stable, but the compensation result is not optimal because the
receiver side is undercompensated, as shown in Figure 4a and
4b. When the regularization factor is small, the compensation
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Figure 4. Ray-illumination compensated gradients using the conventional regulariza-
tion method. (a) Normalized gradient using a = /Ifm and (b) its common depth curve
at a depth of 100 m; (c) normalized gradient using a@ = 0.1 % AB and (d) its common
depth curve at a depth of 100 m; and (e) normalized gradlent usmg a=0.01x28, and
(f) its common depth curve at a depth of 100 m. The term JB. is the smallest ray-illu-
mination factor among all of the receiver points. Because there are instability issues in (c

and e), we clip their maximum values for display purposes.

quality is better in terms of amplitude balancing along the raypath,
but it also amplifies small values leading to instability issues, as
shown in Figure 4c—4f.

For the effective raypath, the adjoint-state equation 4 with the

boundary condition in equation 15 shows that
the value of the ray-illumination factor is big
enough at each receiver point. Its value gradually
increases as the observation point moves toward
the source point. Therefore, it should have no in-
stability issues. As the observation point gets
away from the effective raypath, the correspond-
ing value of the ray-illumination factor becomes
smaller, and the instability issue arises. There-
fore, we can apply spatially varying regulariza-
tion factors according to the spatial distribution
of the ray-illumination factor. We set the regulari-
zation factor to be small in areas with large illu-
mination factors so that the regularization does
not compromise the quality of compensation.
We set the regularization factor to be large in
areas with small illumination factors so that
the instability issue is alleviated. This strategy
can be implemented by replacing the constant
regularization factor in equation 17 with a spa-
tially varying regularization factor,

rmin if A% (%) 2 Zax
G i)

min ~Amax

Xmax if 2% (X) < j'min~

a, = if Amax > 2R (X) > Zinin,

(18)

where @, and a,,,, are the minimum and maxi-
mum values of the regularization factor, respec-
tively, and A, and 4., are the minimum and
maximum values of the ray-illumination factor

that we wish for compensation, respectively.
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Figure 5. (a) Ray-illumination compensated gradient using the
regularization method with spatially varying regularization factors
and (b) its common depth curve at a depth of 100 m.

tion factor 1B,

The term a,;, is a very small positive value for large ray-illumi-
nation factors, and it also can be set to zero. It is used to guarantee
the quality of compensation in areas with an illumination factor
larger than A,,,. The term a,,, is a sufficiently large positive value
for small ray-illumination factors. It is used to guarantee the stabil-
ity in areas with an illumination factor smaller than A,,;,. The terms
Amax and Ay, should be set according to the smallest ray-illumina-
among all of the receiver points. The term A,
should be equal to or a little bit smaller than AB
be smaller than 22, .
Amin 10 Amax, its regularization factor is linearly interpolated to en-
able a smooth variation of regularization factors. Therefore, this
spatially varying regularization factor can guarantee the stability
051 of the ray-illumination compensation without compromising its

mins and A, should
When the ray-illumination factor ranges from

To test the feasibility of this regularization method, the values of
Amin and Ap,, are set to 0.01 % AB.
0 | . . . . values of a,;, and a,,,, are set to 0.01 * 1B

and 4B

oin» Tespectively; and the

and 2B, | respectively.

Figure 5 shows the ray-illumination compensatlon result. The origi-
nal gradient in Figure 2b is unbalanced along the raypath due to the
ray-illumination. However, the gradient along the raypath is well
balanced, as shown in Figure 5. Therefore, the compensated gra-
dient along the raypath is not smeared (or biased) due to the
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ray-illumination compensation. In addition, this compensated
gradient does not suffer from instability issues.

Inversion strategy

The adjoint-state traveltime tomography can update the raypath
(i.e., the traveltime field) and velocity field simultaneously. Updat-
ing the raypath is quite important if the initial velocity model is far
away from the true solution. This makes the whole inversion proc-
ess a typical nonlinear inverse problem. To stabilize the nonlinear
inversion process, the inversion strategy is important.

In the early stage when the velocity mismatch is large, the raypath
provided by the traveltime field is far away from the true raypath. To
ensure convergence of the inversion process, we intentionally
choose smaller step lengths to gradually update the raypath and
velocity field simultaneously. This step helps to obtain a reasonable
background velocity model.

After the early stage, the traveltime residuals become small, and
the step length is not restricted. The velocity updating from far off-
sets usually contributes to the deep part, and that from near offsets
usually contributes to the shallow part. However, because the ray-
path from far offsets overlays with that from near offsets, the veloc-
ity updating from near offsets is affected by that from far offsets.
This may degrade the inverted velocity in the shallow part. To avoid
this issue, we adopt an offset-dependent inversion strategy. The
maximum offset used in inversion is gradually reduced during in-
version. In this way, the later iteration will focus on updating the
shallow area.

NUMERICAL EXAMPLES

In this section, the proposed method is tested on synthetic data
sets to demonstrate its feasibility.

In the first example, the synthetic data set in Figure 1 is further
tested. The previous section shows the gradient from one single
shot. Figure 6 shows the functional gradient for all shots. Because
the conventional adjoint-state equation does not incorporate the ray-
illumination (Figure 2a), its cumulative gradient suffers from strong
footprints near sources, as shown in Figure 6a. This is not an ideal
gradient for updating the velocity function because it brings strong
footprints into the inversion result. After the ray-illumination com-
pensation, the strength of the gradient is balanced along the whole
raypath. Therefore, its cumulative gradient does not suffer from
footprints near sources, and the overall gradient is smooth (as
shown in Figure 6b), which is useful for tomographic velocity up-
dating. In addition, due to the ray-illumination compensation, the
effective updating depth of gradient with ray-illumination compen-
sation is deeper than that of the gradient without ray-illumination
compensation. Figure 6¢ shows the common depth curve compari-
son between these two different gradients at a depth of 30 m. It
shows that the gradient without ray-illumination compensation
changes rapidly in the shallow area due to the strong footprints near
sources, and the gradient with ray-illumination is much smoother.
Figure 6d shows the CDP curve comparison at CDP500. It shows
that the maximum values for gradients without and with ray-illumi-
nation compensation are located at depths of approximately 400 and
500 m, respectively. Because the center of this elliptical velocity
perturbation is located at a depth of 500 m, the gradient with
ray-illumination compensation performs better. The comparison
between gradients shows that the proposed method can effectively

U115

remove the imprint of ray-illumination and produce a more reliable
gradient. Because the conventional gradient contains footprints near
sources, it results in incorrect inverted models near sources if they
are not processed. Therefore, to obtain inverted results from conven-
tional gradients, we remove these large values near sources for the
conventional gradient and apply a smooth filter to it. We also apply
the same smoothing filter to the gradient with the ray-illumination
compensation for comparison purposes. Figure 7 shows the inverted
velocity perturbations from the conventional gradient and the
proposed gradient. Because the ray-illumination compensation bal-
ances the gradient in the deeper area, the inverted velocity pertur-
bation with ray-illumination compensation is better in the deeper
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Figure 6. Gradient for all sources. (a) The normalized gradient
without ray-illumination compensation, (b) the normalized gradient
with ray-illumination compensation, (c) the common depth curve
comparison at a depth of 30 m, and (d) the CDP curve comparison
at CDP500. The black curve is the gradient without ray-illumination
compensation, and the red curve is the gradient with ray-illumina-
tion compensation.
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Figure 7. Inverted velocity perturbation comparison. (a) The in-
verted velocity perturbation without ray-illumination compensation
and (b) the inverted velocity perturbation with ray-illumination
compensation.
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Figure 8. Misfit curve. The black and red curves are misfit curves
without and with ray-illumination compensation, respectively.
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Figure 9. Modified Marmousi2 velocity model extracted from the
Marmousi2 model. (a) The exact velocity model and (b) the initial
velocity model taken to be a linear function in the spatial coordi-
nates.

area. Moreover, the ray-illumination compensation also enhances
convergence, as shown in Figure 8.

In the second example, a synthetic data set from the modified
Marmousi2 velocity model (Figure 9a) is tested. This velocity
model is extracted from the original Marmousi2 model (Martin
et al., 2006). The model dimension is 1.5 km in depth and
15 km laterally. The grid spacing in the x- and z-axes is 10 m.
The source and receivers are located on the surface. The maximum
offset for each shot is 6 km, and the receivers are located on both
sides of the source. The receiver interval is 10 m. We acquire 150
shots using the exact velocity model (Figure 9a), and the shot
interval is 100 m. The lateral position of the first shot is located
at x =10 m (i.e., CDP = 1).

After simulating the first-arrival traveltime for each shot, we use a
velocity model defined to be a linear function in the spatial coor-
dinates (Figure 9b) as the initial model. Figure 10 shows the func-
tional gradients obtained by the conventional adjoint-state method
and the proposed method. The regularization parameters are the
same as the first example. The conventional functional gradient
is affected by the imprint of the ray-illumination. There is a strong
footprint in the shallow region, where the velocity needs updating,
but the footprint causes a velocity distortion in the shallow region.
The proposed method compensates for the ray-illumination, and
there is no footprint near the source. The functional gradient better
reveals the trend of velocity updating.

Because the footprints in the conventional gradient lead to incor-
rect velocity models in the shallow area, we remove these big values
near sources and apply a smoothing filter to obtain the inverted re-
sults for the conventional method. Figure 11a shows the result from
the conventional method. Figure 11b shows the result using ray-il-
lumination compensation. Because the raypaths from large-offset
data cover deep and shallow areas, they interfere with the velocity
updating contributed by the near-offset data. Then, we use the off-
set-dependent inversion strategy to improve the result by using the
velocity model in Figure 11b as an initial model. During the inver-
sion, the maximum offset is gradually reduced from 6 to 2 km with a
2 km interval. Figure 11c shows the result from the offset-dependent
inversion strategy. These three tomographic results successfully
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Figure 10. Gradient for all sources for the modified Marmousi2
velocity model. (a) The normalized gradient without ray-illumina-
tion compensation and (b) the normalized gradient with ray-illumi-
nation compensation.
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recover the main velocity structure. To compare these results in
detail, Figure 12 shows the inverted velocity perturbations, and
Figure 13 shows velocity logs laterally and vertically. Compared
with the true velocity perturbation in Figure 12a, these three results
recover reliable background velocity models. Comparing Figure 12b
with Figure 12c¢, the conventional method and the ray-illumination
compensation method perform similarly. However, the velocity log
comparison in Figure 13 shows that the ray-illumination compen-
sation method obtains a better result in the shallow area (Figure 13a),
and it also gets more velocity updates in the deeper area due to
the balanced gradient in the deeper area (Figure 13b). Moreover,
Figure 14 also shows that the ray-illumination compensation
method converges faster than the conventional method. Comparing
Figure 12d with the true velocity perturbation, the offset-dependent
inversion strategy enhances details of the velocity structure in the
shallow area, which also can be observed in Figure 13.

Figure 15 shows migration results using different velocity mod-
els. Because the initial velocity model deviates far from the true
velocity model, its migration result in Figure 15b is of low quality,
especially in the two circled areas. However, because the reflection
signals for these shallow reflectors are recorded by near-offset data
with quite limited offset range, the migration result in Figure 15b
shows mostly the mispositioned reflectors, and it does not exhibit
obvious focusing or defocusing effect. Because the tomographic
velocity model improves the accuracy of velocity, the migration
result from the inverted velocity model without ray-illumination
compensation in Figure 15¢ greatly corrects the positions of these
reflectors. Compared with Figure 15¢, the migration result from
the inverted velocity model with ray-illumination compensation
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Figure 11. Tomographic result comparison for the modified Mar-
mousi2 velocity model. (a) The inverted velocity model without
ray-illumination compensation, (b) the inverted velocity model with
ray-illumination compensation, and (c) the inverted velocity model
using the offset-dependent inversion strategy.
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Figure 12. Velocity perturbation comparison. (a) The true velocity
perturbation, (b) the inverted velocity perturbation without ray-illu-
mination compensation, (c) the inverted velocity perturbation with
ray-illumination compensation, and (d) the inverted velocity pertur-
bation using the offset-dependent inversion strategy.
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Figure 13. Velocity log comparison: (a) 200 m depth and
(b) CDP800. Velocity logs from the exact velocity model, the initial
velocity model, the inverted velocity model without ray-illumina-
tion compensation, the inverted velocity model with ray-illumina-
tion compensation, and the inverted velocity model using the offset-
dependent inversion strategy are indicated by the black, red, gray,
green, and blue curves, respectively.
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in Figure 15d further improves the positions of these reflectors,
especially in the marked lower left and upper right regions. Com-
pared with Figure 15c, the migration result using the velocity
model with offset-dependent inversion strategy further corrects
the positions of these reflectors. The reflector positions in the left
and upper right regions in Figure 15e are comparable with those
in the migration result using the true velocity model shown in
Figure 15a. Figure 15f compares traces from different migration
results at CDP1285. As can be seen, there are large errors in depth
in the migration result from the initial velocity model. The migra-
tion result from the inverted velocity model without ray-illumina-
tion compensation greatly reduces errors in depth, but there are
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Figure 14. Misfit curve for the modified Marmousi2 velocity
model. The black and red curves are misfit curves without and with
ray-illumination compensation, respectively.
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still some residual errors. The result from the inverted velocity
model with ray-illumination compensation further reduces the er-
rors in depth. Finally, the migration result from the inverted veloc-
ity model with offset-dependent inversion strategy significantly
reduces the errors in depth.

CONCLUSION

We propose a method to eliminate the imprint of ray-illumination
in the adjoint-state first-arrival traveltime tomography by analyzing
the mechanism of the imprint of ray-illumination. The proposed ad-
joint-state equation with a modified boundary condition is effective
in obtaining the ray-illumination. A regularization method with spa-
tially varying regularization factors stabilizes the ray-illumination
compensation. Numerical experiments on two synthetic examples
show that the proposed method can effectively remove footprints
caused by the imprint of ray-illumination. The inversion strategy
succeeds in recovering the velocity structure and minimizing the
traveltime residuals. The proposed method also can be used in other
seismic acquisition geometries, such as vertical seismic profiling
and cross-hole geometry, and it can be extended to adjoint-state re-
flection traveltime tomography.
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