


generate first-arrival traveltimes from the current model and a

method to compute the gradient of the data-fitting functional with

respect to the current model. Various methods can be used to obtain

the first-arrival traveltimes, such as ray-tracing techniques (Vinje

et al., 1993; Lambaré et al., 1996; Červený, 2001), finite-difference

eikonal solvers (Vidale, 1988; Podvin and Lecomte, 1991; van Trier

and Symes, 1991; Qin et al., 1992; Gray and May, 1994; Sethian

and Popovici, 1999; Qian and Symes, 2002; Kao et al., 2004; Zhao,

2005; Qian et al., 2007a, 2007b), and Fermat’s principle-based

methods (Schneider et al., 1992; Wang et al., 1999; Hu et al.,

2017, 2018). Ray tracing computes traveltimes along raypaths so

that the resulting traveltimes are on irregular grids. When a velocity

model has complex structures, ray-tracing techniques may suffer

from shadow zones. The wavefront construction method (Vinje

et al., 1993; Lambaré et al., 1996) alleviates this problem by carry-

ing out ray interpolation. However, finite-difference eikonal solvers

and Fermat’s principle-based methods produce traveltimes at regu-

lar grid points including all regularly spaced receivers so that it is

convenient to use these methods to update traveltime misfits at

receivers.

Because the traveltime tomography problem is in essence an ei-

konal-constrained optimization problem, naturally there are two

possible approaches for computing the gradient of the traveltime-

misfit functional with respect to the (current) slowness function:

One is the primal formulation and the other is the dual (adjoint-

state) formulation. The primal approach is based on linearization

(first-order perturbation) of the traveltime with respect to slowness

along raypaths, which states that the first-order traveltime perturba-

tion is the integral of the slowness perturbation along the reference

(current) ray; this is in fact a consequence of Fermat’s least-trav-

eltime principle (Snieder and Sambridge, 1992). Therefore, because

the resulting gradient of the traveltime with respect to slowness is

defined through a well-behaved integral of slowness perturbation

along the ray, after discretization the Jacobian of traveltime with

respect to slowness is a sparse matrix, in which nonzero entries

are lengths of ray segments and may appear in arbitrary locations

due to the underlying possibly twisted raypaths (Peterson et al.,

1985; Berryman, 1989; Bregman et al., 1989; Nolet, 1993; Wang

and Braile, 1995; Hu and Marcinkovich, 2012). Because of this

irregular sparsity of the Jacobian matrix, it is challenging to manage

storage of this matrix at large scale, giving rise to implementational

difficulties for large-scale seismic applications; see Nolet (2012) for

an overview of seismic tomography and many applications.

Conversely, the dual or adjoint-state formulation introduces the

adjoint state (or the Lagrange multiplier) as a dual variable to the

eikonal so that the eikonal equation as a constraint comes into play

directly when minimizing the traveltime-misfit functional (Leung

and Qian, 2006); consequently, the gradient of the traveltime-misfit

functional with respect to the slowness is obtained from the adjoint-

state variable defined in the entire space rather than on individual

rays. Because of this dual property, the dual variable satisfies a

linear conservative equation, the so-called adjoint-state equa-

tion (Sei and Symes, 1994, 1995; Leung and Qian, 2006). To de-

velop an efficient algorithm to implement this dual formulation,

Leung and Qian (2006) propose a fast sweeping method to solve

this adjoint-state equation; the resulting framework is easy to imple-

ment, and it is memory efficient and computationally efficient.

Since then, the adjoint-state tomography method has undergone ex-

tensive development (Taillandier et al., 2009; Noble et al., 2010; Li

and Leung, 2013; Li et al., 2014; Waheed et al., 2016).

Because solving the point-source isotropic eikonal equation ei-

ther by ray tracers or by eikonal solvers intrinsically corresponding

to emanating discrete rays from the source point, the resulting trav-

eltime gradient is singular at the source point, and we term such a

singular pattern the imprint of ray-illumination. Because traveltime

tomography is based on either ray tracers or eikonal solvers, primal

and dual approaches to traveltime tomography face the issue of

imprint of ray-illumination. For example, to overcome the noncon-

vergence difficulty in applying the algebraic reconstruction tech-

nique to straight-ray traveltime tomography, Dines and Lytle

(1979) develop a minimax-correction-based simultaneous itera-

tive-reconstruction technique (SIRT) to account for the ray density

map by updating the velocity model only after accumulating

the updates from all available rays, which mitigates the effect of

imprint of ray-illumination. Many works on ray-tracing traveltime

tomography have developed various strategies to deal with the ray-

coverage issue in traveltime tomography (Peterson et al., 1985; Ber-

ryman, 1989; Bregman et al., 1989; Nolet, 1993; Wang and Braile,

1995; Hu and Marcinkovich, 2012).

Because the adjoint-state equation propagates traveltime resid-

uals back to the source point according to the reversed ray direction,

namely, the negative traveltime gradient from the eikonal equation,

the resulting adjoint state will inherit a similar imprint of ray-illu-

mination as the primal approach does. This imprint of ray-illumi-

nation leads to singular gradient-descent directions in adjoint-state

traveltime tomography. To mitigate this imprint, we propose to

solve the adjoint-state equation twice but with different boundary

conditions: one being taken to be regular data residuals and the

other taken to be ones uniformly, so that we are able to use the latter

adjoint state to normalize the regular adjoint state and we further use

the normalized quantity to serve as the gradient direction to update

the slowness model. We call this process the ray-illumination com-

pensation. We mention that a similar idea has been used in Benai-

chouche et al. (2015) for estimating the Hessian of the misfit

functional with respect to the slowness. Although our formulation

is analogous to that in Benaichouche et al. (2015), our motivation is

different from that in Benaichouche et al. (2015); moreover, we em-

phasize that we also provide rigorous mathematical derivation to

justify our motivation, and such mathematical justification is miss-

ing in Benaichouche et al. (2015). We will show the mathematical

meaning of this normalized quantity. In addition, a spatially varying

regularization method is proposed to stabilize the ray-illumination

compensation. As we can see from the analysis of our illustrative

example, our normalization strategy just distributes the boundary

traveltime residual uniformly along a raypath without considering

the ray length. Therefore, our strategy is different from the mini-

max-correction-based SIRT (Dines and Lytle, 1979) in that the latter

uses the ray length to balance the velocity updating process so that

longer rays tend to dominate, smearing any zones of anomalous

velocity (Peterson et al., 1985). Hence, to some extent, our normali-

zation method provides a mathematically justified strategy to

compensate for the imprint of ray-illumination in adjoint-state trav-

eltime tomography.

This paper is organized as follows. First, the methodology of ad-

joint-state first-arrival traveltime tomography is analyzed to illus-

trate the effect of ray-illumination, and we further propose to

solve the adjoint-state equation with a different boundary condition
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so that we obtain a normalized gradient direction of the misfit

functional. We then discuss the regularization method with spatially

varying regularization factors. Finally, numerical experiments on

two synthetic data sets demonstrate the feasibility of the proposed

method.

ADJOINT-STATE FIRST-ARRIVAL TRAVELTIME

TOMOGRAPHY

Adjoint-state equation for gradient

We start from the point-source eikonal equation to consider the

first-arrival traveltime tomography in terms of an adjoint-state

(dual) formulation. The traveltime misfit functional for a single shot

takes the following form (Sei and Symes, 1994, 1995; Leung and

Qian, 2006):

J½v� ¼
1

2

Z

Γ

jTðx; xs; vÞ − Tobsðx; xsÞj
2dΓ

þ
1

2

Z

Ω

λðxÞ

�

j∇Tðx; xsÞj
2 −

1

vðxÞ2

�

dx; (1)

where Ω is the subsurface domain with boundary ∂Ω, Γ ⊂ ∂Ω is the

acquisition surface, dΓ is the surface differential element on Γ, Tobs

is the observed first-arrival traveltime data on Γ due to the source xs,

T is the first-arrival traveltime due to the velocity v, x ¼ ðx; zÞ is the
spatial coordinate, λ is the adjoint-state variable (the Lagrange

multiplier), and xs is the shot location.

To minimize the misfit function J½v� with respect to v, we need to
find its gradient, which can be obtained from the following first-or-

der variation of J in terms of the first-order variation δv (Leung and

Qian, 2006):

δJ ¼<
∂J

∂v
; δv >L2¼

Z

Ω

δv

v3ðxÞ
λðxÞdx; (2)

so that

∂J

∂v
¼

λðxÞ

v3ðxÞ
; (3)

where <·; ·>L2 indicates the inner product in the L2 space. The ad-

joint-state variable λ satisfies the following linear conservative ad-

vection equation (Leung and Qian, 2006):

−∇ · ðλðxÞ∇TðxÞÞ ¼ 0 in Ω; (4)

nðxÞ · ∇TðxÞλðxÞj
Γ
¼ Tobs − T; (5)

where n is the outward normal to Γ. Equations 4 and 5 can be solved

by the fast sweeping method designed in Leung and Qian (2006).

Consequently, we take the negative gradient direction to update

the velocity model v so as to minimize J½v�,

vðkþ1ÞðxÞ ¼ vðkÞðxÞ − γ
∂J

∂v
; (6)

where k is the iteration number with k ¼ 0;1; 2; : : : and γ is the step

length. We use a three-point parabolic interpolation method (Vigh

et al., 2009) to determine the step length.

To carry out this adjoint-state tomography strategy, we need an

efficient method to compute the traveltime and its gradient because

the traveltime gradient is used as known coefficients to back propa-

gate the traveltime residual into the entire computational domain. In

practice, we may choose any efficient eikonal solver to solve the

eikonal equations, but we choose a Fermat’s principle-based fast

marching method (Hu et al., 2017), which is a variant of the popular

fast marching method developed by Sethian and Popovici (1999)

method. This method yields highly accurate traveltimes at each grid

point by solving a nonlinear optimization problem, so that the trav-

eltime gradient is also highly accurate.

Adjoint-state equation for ray-illumination

As we allude in the preceding section, similar to the primal ap-

proach, the adjoint-state defined gradient direction has singular

behavior at the source due to the imprint of ray-illumination.

The discrete acquisition geometry further amplifies this singular

behavior, causing the so-called footprint phenomenon in the usual

eikonal-based first-arrival traveltime tomography (Leung and Qian,

2006). Such footprint effects can be depressed by heavy regulari-

zation at the cost of degraded overall resolution.

We use a simple velocity model to demonstrate the behavior of

this gradient. The exact velocity model is shown in Figure 1a. The
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Figure 1. Velocity model with elliptical velocity perturbation.
(a) The exact velocity model, (b) the velocity model defined by
a linear function in the spatial coordinates, and (c) the elliptical
velocity perturbation.
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model is 1.2 km in depth and 10 km laterally. The grid spacing in

the x- and z-axes is 10 m. This model is a perturbed velocity model,

in which the background consists of a velocity model defined by a

linear function in the spatial coordinates (Figure 1b) and the added

perturbation is defined by an elliptical shape (Figure 1c). The source

and receivers are located on the surface. We simulate 80 shots using

the exact velocity model (Figure 1a) at a 100 m shot interval.

The lateral position of the first shot is located at x ¼ 1000 m

(i.e., common depth point [CDP] 100). The maximum offset for

each shot is 7 km, and the receiver interval is 10 m. The velocity

model with a constant gradient (Figure 1b) is used as the initial

model in tomography. Therefore, the inversion target is to recover

the elliptical velocity perturbation in Figure 1c.

We show the gradient of the misfit functional due to the first shot.

We first calculate the first-arrival traveltimes from the current

model, which are compared with the observed first-arrival travel-

times to obtain traveltime residuals, as shown in Figure 2a. These

traveltime residuals are used to solve equation 4 to obtain the ad-

joint-state variable, which is then divided by v3 to obtain the gra-

dient of the misfit functional for this shot, as shown in Figure 2b.

Figure 2c also shows a part of raypaths for this shot, and the primal

approach back propagates the traveltime residuals along these ray-

paths. The gradient in Figure 2b shows that the adjoint-state method

back propagates the traveltime residuals in a similar way using the

adjoint-state equation. Although this is a valid way of back propa-

gating traveltime residuals in traveltime tomography, the amplitude

distribution of this gradient is not appealing. The gradient near the

source is quite strong, and this may cause footprints in the overall

gradient in the setting of discrete acquisition geometry. Moreover,

the gradient is nonuniformly distributed along the raypath, and it

gets stronger as it moves from the receivers to the source point,

as shown in Figure 2b and 2d. However, the strength of the desired

gradient should reveal the magnitude of the velocity errors. The

functional gradient in Figure 2b shows that the velocity of the

neighborhood near the source will be updated in a distorted or

biased manner that is not suitable. It also can be observed that

the strength of the functional gradient in Figure 2b is similar to

the ray-illumination in Figure 2c. The strength of the functional gra-

dient is weak near the neighborhood of a receiver because the ray

coverage at each receiver is coarse, and the strength of the gradient

is strong near the source neighborhood because the rays converge.

To understand the behavior of the adjoint-state gradient, the adjoint-

state equation should be analyzed.

Singular behavior of the adjoint state: An example

We consider the eikonal equation on a unit sphere Ω ¼ Bð0; 1Þ

for d ¼ 2;3, where Ω is a unit disk when d ¼ 2 and a unit sphere

when d ¼ 3:

j∇Tj ¼ s0 on Ω \ f0g; Tjx¼0 ¼ 0; (7)

where the slowness s0 is constant, and the source is set at the origin.

To carry out traveltime tomography, we need to solve the follow-

ing adjoint-state equation after solving the eikonal equation:

−∇ · ðλ∇TÞ ¼ 0;
∂T

∂n
λ

�

�

�

�

∂Ω

¼ f; (8)

where f is the traveltime residual and ∂Ω ¼ ∂Bð0; 1Þ. We denote the

solution of this equation by λf.

To normalize the singular behavior of the adjoint state, we pro-

pose to solve the adjoint-state equation 8 once more by setting

f ≡ 1, and we denote the resulting solution by λ1. It is easy to check

that

λ1 ¼ 1∕ðs0jxj
d−1Þ; (9)

which is singular at the source (the origin). Such a singular behavior

holds in general for the solution of the adjoint-state equation.
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Figure 2. Illustration of gradient for a single source. The (a) trav-
eltime error, (b) normalized gradient, (c) raypath for a single source
located at x ¼ 1000 m, and the (d) normalized gradient’s common
depth curve at a depth of 100 m. Because the gradient near the
source is too strong, we clip the maximum value in (b) for the pur-
pose of display.
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Then, we propose to normalize λf by λ1 so that we have a new

function

βðxÞ ¼ λfðxÞ∕λ1ðxÞ; (10)

which is nonsingular. To see this, in fact we can show that

βðxÞ ¼ f

�

x

jxj

�

: (11)

First, we construct a tube of rays ending at x and x∕jxj. Because,

in an isotropic medium, the point-source first-arrival ray direction is

defined by the traveltime gradient, in our constant case here, ∇TðxÞ
is parallel to the vector x which is the ray from the source at the

origin to the point x. Thus, the tube of rays is a cylinder whose

longitudinal direction is parallel to ∇TðxÞ and transversal direction

is perpendicular to ∇TðxÞ. We denote the ray tube by G.

Second, we integrate the adjoint-state equation 8 around the ray

tube G, yielding

0 ¼

Z

G

∇ · ðλ∇TÞdx ¼

Z

∂G

n · λ∇TdΓ

¼

�

∂T

∂n
λ

��

�

�

�

x
jxj

ds1 − s0λðxÞds2;
(12)

where ds1 and ds2 indicate the area of the top and bottom trans-

versal sections of the ray tube, respectively. Applying the two boun-

dary conditions f ≡ 1 and generic f in the above integration result,

we end up with

s0λ
fðxÞds2 ¼ f

�

x

jxj

�

ds1; (13)

s0λ
1ðxÞds2 ¼ 1ds1; (14)

and these two equalities yield the desired claim in equation 11.

Modified gradient direction via normalized adjoint-
state

Consequently, we propose to solve the adjoint-state equation

twice with two different boundary conditions to normalize the ad-

joint-state variable so as to modify the gradient, yielding a well-be-

haved gradient descent direction. The new boundary condition for

the adjoint-state equation 4 is

nðxÞ · ∇TðxÞλðxÞj
Γ
¼ 1; (15)

which yields the solution λR.

Denoting the solution of equations 4 and 5 by λ, we normalize the

adjoint state λ by λR to get

λcðxÞ ¼ λðxÞ∕λRðxÞ; (16)

so that the gradient of the misfit functional is modified to

be λcðxÞ∕v
3ðxÞ.

Figure 3a shows the computed ray-illumination using equations 4

and 15 for the first shot. The strength of this ray-illumination gets

stronger as it approaches the source, and this is quite similar to the

ray distribution in Figure 2c. Therefore, we can compensate for the

gradient using this ray-illumination. Equation 11 shows that the nor-

malized adjoint state from one shot is nonsingular. Therefore, in this

work, we perform the ray-illumination compensation shot by shot,

and then stack all of the compensated gradients to form the final

gradient for all the shots.

Regularization method with spatially varying regulari-
zation factors

We will use the normalized adjoint state to update the velocity

model. However, when the aperture is incomplete, λR may be zero

or very small, which may cause instability issues. Figure 3b shows a

common depth curve of Figure 3a at a depth of 100 m, and it clearly

shows that the illumination factor is zero or very small in a certain

area. The regularization method is a common way of avoiding this

instability issue. The conventional regularization method normally

uses a constant regularization factor, yielding

λcðxÞ ¼
λðxÞ

λRðxÞ þ α
; (17)

where α is the regularization factor, which is a positive value related

to the smallest ray-illumination factor among all the receiver points

λBmin. The regularization factor is an important parameter to balance

between the compensation quality and stability.

Figure 4 shows compensation results using different regulariza-

tion factors. After the ray-illumination compensation, the strength

of the gradient is balanced along the raypath. The strong gradient

near the source also disappears, and this helps remove the footprints

near the source point. However, this regularization method is not
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at a depth of 100 m. Because the ray-illumination near the source is
too strong, we clip the maximum value in (a) for display purposes.
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optimal. When the regularization factor is large, the compensation is

stable, but the compensation result is not optimal because the

receiver side is undercompensated, as shown in Figure 4a and

4b. When the regularization factor is small, the compensation

quality is better in terms of amplitude balancing along the raypath,

but it also amplifies small values leading to instability issues, as

shown in Figure 4c–4f.

For the effective raypath, the adjoint-state equation 4 with the

boundary condition in equation 15 shows that

the value of the ray-illumination factor is big

enough at each receiver point. Its value gradually

increases as the observation point moves toward

the source point. Therefore, it should have no in-

stability issues. As the observation point gets

away from the effective raypath, the correspond-

ing value of the ray-illumination factor becomes

smaller, and the instability issue arises. There-

fore, we can apply spatially varying regulariza-

tion factors according to the spatial distribution

of the ray-illumination factor. We set the regulari-

zation factor to be small in areas with large illu-

mination factors so that the regularization does

not compromise the quality of compensation.

We set the regularization factor to be large in

areas with small illumination factors so that

the instability issue is alleviated. This strategy

can be implemented by replacing the constant

regularization factor in equation 17 with a spa-

tially varying regularization factor,

αv ¼

8

>

>

>

<

>

>

>

:

αmin if λRðxÞ ≥ λmax;

αmin þ
ðλRðxÞ−λmaxÞðαmax−αminÞ

λmin−λmax
if λmax > λRðxÞ > λmin;

αmax if λRðxÞ ≤ λmin;

(18)

where αmin and αmax are the minimum and maxi-

mum values of the regularization factor, respec-

tively, and λmin and λmax are the minimum and

maximum values of the ray-illumination factor

that we wish for compensation, respectively.

The term αmin is a very small positive value for large ray-illumi-

nation factors, and it also can be set to zero. It is used to guarantee

the quality of compensation in areas with an illumination factor

larger than λmax. The term αmax is a sufficiently large positive value

for small ray-illumination factors. It is used to guarantee the stabil-

ity in areas with an illumination factor smaller than λmin. The terms

λmax and λmin should be set according to the smallest ray-illumina-

tion factor λBmin among all of the receiver points. The term λmax

should be equal to or a little bit smaller than λBmin, and λmin should

be smaller than λBmin. When the ray-illumination factor ranges from

λmin to λmax, its regularization factor is linearly interpolated to en-

able a smooth variation of regularization factors. Therefore, this

spatially varying regularization factor can guarantee the stability

of the ray-illumination compensation without compromising its

quality.

To test the feasibility of this regularization method, the values of

λmin and λmax are set to 0.01 � λBmin and λBmin, respectively; and the

values of αmin and αmax are set to 0.01 � λBmin and λBmin, respectively.

Figure 5 shows the ray-illumination compensation result. The origi-

nal gradient in Figure 2b is unbalanced along the raypath due to the

ray-illumination. However, the gradient along the raypath is well

balanced, as shown in Figure 5. Therefore, the compensated gra-

dient along the raypath is not smeared (or biased) due to the
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ray-illumination compensation. In addition, this compensated

gradient does not suffer from instability issues.

Inversion strategy

The adjoint-state traveltime tomography can update the raypath

(i.e., the traveltime field) and velocity field simultaneously. Updat-

ing the raypath is quite important if the initial velocity model is far

away from the true solution. This makes the whole inversion proc-

ess a typical nonlinear inverse problem. To stabilize the nonlinear

inversion process, the inversion strategy is important.

In the early stage when the velocity mismatch is large, the raypath

provided by the traveltime field is far away from the true raypath. To

ensure convergence of the inversion process, we intentionally

choose smaller step lengths to gradually update the raypath and

velocity field simultaneously. This step helps to obtain a reasonable

background velocity model.

After the early stage, the traveltime residuals become small, and

the step length is not restricted. The velocity updating from far off-

sets usually contributes to the deep part, and that from near offsets

usually contributes to the shallow part. However, because the ray-

path from far offsets overlays with that from near offsets, the veloc-

ity updating from near offsets is affected by that from far offsets.

This may degrade the inverted velocity in the shallow part. To avoid

this issue, we adopt an offset-dependent inversion strategy. The

maximum offset used in inversion is gradually reduced during in-

version. In this way, the later iteration will focus on updating the

shallow area.

NUMERICAL EXAMPLES

In this section, the proposed method is tested on synthetic data

sets to demonstrate its feasibility.

In the first example, the synthetic data set in Figure 1 is further

tested. The previous section shows the gradient from one single

shot. Figure 6 shows the functional gradient for all shots. Because

the conventional adjoint-state equation does not incorporate the ray-

illumination (Figure 2a), its cumulative gradient suffers from strong

footprints near sources, as shown in Figure 6a. This is not an ideal

gradient for updating the velocity function because it brings strong

footprints into the inversion result. After the ray-illumination com-

pensation, the strength of the gradient is balanced along the whole

raypath. Therefore, its cumulative gradient does not suffer from

footprints near sources, and the overall gradient is smooth (as

shown in Figure 6b), which is useful for tomographic velocity up-

dating. In addition, due to the ray-illumination compensation, the

effective updating depth of gradient with ray-illumination compen-

sation is deeper than that of the gradient without ray-illumination

compensation. Figure 6c shows the common depth curve compari-

son between these two different gradients at a depth of 30 m. It

shows that the gradient without ray-illumination compensation

changes rapidly in the shallow area due to the strong footprints near

sources, and the gradient with ray-illumination is much smoother.

Figure 6d shows the CDP curve comparison at CDP500. It shows

that the maximum values for gradients without and with ray-illumi-

nation compensation are located at depths of approximately 400 and

500 m, respectively. Because the center of this elliptical velocity

perturbation is located at a depth of 500 m, the gradient with

ray-illumination compensation performs better. The comparison

between gradients shows that the proposed method can effectively

remove the imprint of ray-illumination and produce a more reliable

gradient. Because the conventional gradient contains footprints near

sources, it results in incorrect inverted models near sources if they

are not processed. Therefore, to obtain inverted results from conven-

tional gradients, we remove these large values near sources for the

conventional gradient and apply a smooth filter to it. We also apply

the same smoothing filter to the gradient with the ray-illumination

compensation for comparison purposes. Figure 7 shows the inverted

velocity perturbations from the conventional gradient and the

proposed gradient. Because the ray-illumination compensation bal-

ances the gradient in the deeper area, the inverted velocity pertur-

bation with ray-illumination compensation is better in the deeper
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area. Moreover, the ray-illumination compensation also enhances

convergence, as shown in Figure 8.

In the second example, a synthetic data set from the modified

Marmousi2 velocity model (Figure 9a) is tested. This velocity

model is extracted from the original Marmousi2 model (Martin

et al., 2006). The model dimension is 1.5 km in depth and

15 km laterally. The grid spacing in the x- and z-axes is 10 m.

The source and receivers are located on the surface. The maximum

offset for each shot is 6 km, and the receivers are located on both

sides of the source. The receiver interval is 10 m. We acquire 150

shots using the exact velocity model (Figure 9a), and the shot

interval is 100 m. The lateral position of the first shot is located

at x ¼ 10 m (i.e., CDP = 1).

After simulating the first-arrival traveltime for each shot, we use a

velocity model defined to be a linear function in the spatial coor-

dinates (Figure 9b) as the initial model. Figure 10 shows the func-

tional gradients obtained by the conventional adjoint-state method

and the proposed method. The regularization parameters are the

same as the first example. The conventional functional gradient

is affected by the imprint of the ray-illumination. There is a strong

footprint in the shallow region, where the velocity needs updating,

but the footprint causes a velocity distortion in the shallow region.

The proposed method compensates for the ray-illumination, and

there is no footprint near the source. The functional gradient better

reveals the trend of velocity updating.

Because the footprints in the conventional gradient lead to incor-

rect velocity models in the shallow area, we remove these big values

near sources and apply a smoothing filter to obtain the inverted re-

sults for the conventional method. Figure 11a shows the result from

the conventional method. Figure 11b shows the result using ray-il-

lumination compensation. Because the raypaths from large-offset

data cover deep and shallow areas, they interfere with the velocity

updating contributed by the near-offset data. Then, we use the off-

set-dependent inversion strategy to improve the result by using the

velocity model in Figure 11b as an initial model. During the inver-

sion, the maximum offset is gradually reduced from 6 to 2 km with a

2 km interval. Figure 11c shows the result from the offset-dependent

inversion strategy. These three tomographic results successfully
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recover the main velocity structure. To compare these results in

detail, Figure 12 shows the inverted velocity perturbations, and

Figure 13 shows velocity logs laterally and vertically. Compared

with the true velocity perturbation in Figure 12a, these three results

recover reliable background velocity models. Comparing Figure 12b

with Figure 12c, the conventional method and the ray-illumination

compensation method perform similarly. However, the velocity log

comparison in Figure 13 shows that the ray-illumination compen-

sationmethod obtains a better result in the shallow area (Figure 13a),

and it also gets more velocity updates in the deeper area due to

the balanced gradient in the deeper area (Figure 13b). Moreover,

Figure 14 also shows that the ray-illumination compensation

method converges faster than the conventional method. Comparing

Figure 12d with the true velocity perturbation, the offset-dependent

inversion strategy enhances details of the velocity structure in the

shallow area, which also can be observed in Figure 13.

Figure 15 shows migration results using different velocity mod-

els. Because the initial velocity model deviates far from the true

velocity model, its migration result in Figure 15b is of low quality,

especially in the two circled areas. However, because the reflection

signals for these shallow reflectors are recorded by near-offset data

with quite limited offset range, the migration result in Figure 15b

shows mostly the mispositioned reflectors, and it does not exhibit

obvious focusing or defocusing effect. Because the tomographic

velocity model improves the accuracy of velocity, the migration

result from the inverted velocity model without ray-illumination

compensation in Figure 15c greatly corrects the positions of these

reflectors. Compared with Figure 15c, the migration result from

the inverted velocity model with ray-illumination compensation
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in Figure 15d further improves the positions of these reflectors,

especially in the marked lower left and upper right regions. Com-

pared with Figure 15c, the migration result using the velocity

model with offset-dependent inversion strategy further corrects

the positions of these reflectors. The reflector positions in the left

and upper right regions in Figure 15e are comparable with those

in the migration result using the true velocity model shown in

Figure 15a. Figure 15f compares traces from different migration

results at CDP1285. As can be seen, there are large errors in depth

in the migration result from the initial velocity model. The migra-

tion result from the inverted velocity model without ray-illumina-

tion compensation greatly reduces errors in depth, but there are

still some residual errors. The result from the inverted velocity

model with ray-illumination compensation further reduces the er-

rors in depth. Finally, the migration result from the inverted veloc-

ity model with offset-dependent inversion strategy significantly

reduces the errors in depth.

CONCLUSION

We propose a method to eliminate the imprint of ray-illumination

in the adjoint-state first-arrival traveltime tomography by analyzing

the mechanism of the imprint of ray-illumination. The proposed ad-

joint-state equation with a modified boundary condition is effective

in obtaining the ray-illumination. A regularization method with spa-

tially varying regularization factors stabilizes the ray-illumination

compensation. Numerical experiments on two synthetic examples

show that the proposed method can effectively remove footprints

caused by the imprint of ray-illumination. The inversion strategy

succeeds in recovering the velocity structure and minimizing the

traveltime residuals. The proposed method also can be used in other

seismic acquisition geometries, such as vertical seismic profiling

and cross-hole geometry, and it can be extended to adjoint-state re-

flection traveltime tomography.
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