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Abstract

We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the
High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources,
with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is
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leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions
are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we
discuss implications for detection prospects by multi-messenger campaigns.

Unified Astronomy Thesaurus concepts: Gamma-ray sources (633); Gamma-rays (637); Pulsars (1306); Supernova
remnants (1667); Gamma-ray astronomy (628)

1. Introduction

1.1. Previous TeV observations

MGRO J1908+06, which is in the Galactic plane, was
originally discovered by the Milagro detector (Abdo et al.
2007) in the very-high-energy regime (median energy ∼20
TeV) and subsequently confirmed by other TeV observatories,
including H.E.S.S, VERITAS, and ARGO (Aharonian et al.
2009; Aliu et al. 2014; Bartoli et al. 2012). Both imaging
atmospheric Cherenkov telescopes (IACTs) report that the
source is extended and has a fairly hard spectral index (�2.2),
while ARGO reports a slightly softer index (2.54± 0.36).

Emission from this region has recently been detected by the
High Altitude Water Cherenkov (HAWC) Observatory and
included in the collaboration’s third catalog (3HWC) with the
source name 3HWC J1908+063 (Albert et al. 2020). This
emission is centered at (287°.05, 6°.39) in the (R.A., decl.)
J2000 coordinate system. The 1σ statistical uncertainty in this
location is 0°.06.

Recently, both HAWC and LHAASO reported that this
region is one of only a handful emitting above 100 TeV
(Abeysekara et al. 2020; Cao et al. 2021). Even at the highest
energies, the source remains extended, with the HAWC
collaboration reporting a Gaussian width of 0°.52 above
56 TeV.

The high-energy emission makes this an intriguing source to
study. The cosmic-ray spectrum contains a bump known as the
“knee” around 1 PeV (Particle Data Group et al. 2020). Which
Galactic sources are capable of accelerating particles to this
energy is still an open question. Cosmic-ray interactions with
their environment produce neutron pions, which then, in turn,
decay to gamma rays. These gamma rays are approximately
one order of magnitude less in energy compared to the primary
cosmic ray. Therefore, in order to probe the knee of the cosmic-
ray spectrum, studies of 100 TeV gamma rays are essential.
These 100 TeV gamma rays can also be produced in other
ways, such as inverse Compton scattering. In fact, leptonic
mechanisms likely dominate the highest-energy sky (Albert
et al. 2021; Breuhaus et al. 2021a, 2021b; Sudoh et al. 2021)

1.2. Multiwavelength/multi-messenger Observations

There are several objects in the region that could serve as
counterparts to the TeV emission, including a supernova
remnant (SNR) and several pulsars. The radio SNR G40.5-
0.5 (Green 2009) has an estimated age of 20–40 kyr (Downes
et al. 1980). The distance to this supernova remnant is quite
uncertain, with distances between 3.4 kpc and 8.7 kpc appear-
ing in the literature (Duvidovich et al. 2020). The SNR is offset
from the TeV emission seen by VERITAS, which led the
collaboration to conclude that it is not the main source of the
TeV emission (Aliu et al. 2014). The SNR has an angular
separation of 0°.29 from the center of the 3HWC source.

There are also three pulsars nearby. The most energetic is
PSR J1907+0602, a radio-faint pulsar that was discovered in
the GeV energy range by the Fermi Large Area Telescope

(Fermi-LAT) (Abdo et al. 2010). According to the ATNF
pulsar database37 (Manchester et al. 2005), this pulsar has a
high spin-down power ( E) of 2.8× 1036 erg s−1, a character-
istic age of 19.5 kyr, and is estimated to be 2.37 kpc from the
Earth.
While it is possible that this pulsar could have been born in

SNR G40.5-0.5, it seems somewhat unlikely. Given the present
distance between them (∼28 pc, assuming both objects are the
same distance from the Earth), a transverse velocity three times
higher than typical due to a supernova kick is required (Aliu
et al. 2014).
There has been X-ray emission observed near PSR J1907

+0602 with the Chandra X-ray Observatory (Abdo et al. 2010).
Originally, it was thought that this emission may be slightly
extended and could be the X-ray pulsar wind nebula (PWN),
but recently Li et al. (2021) have shown that the X-ray data is
consistent with a point source and can be attributed to the
pulsar. Additionally, a study using XMM-Newton data found
no diffuse or extended emission in a 0.75 by 0°.75
area (Pandel 2015) around the TeV source.
A second pulsar in the region, PSR J1907+0631, is not as

energetic as PSR J1907+0602 ( E of 5.3× 1035 erg s−1).38 Its
location is very close to the center of the SNR G40.5-0.5 and its
estimated age is consistent with the estimated age of the SNR.
It has been suggested that this is the pulsar formed in the
supernova event (Lyne et al. 2017).
The centroid of the HAWC emission lies roughly in between

these two pulsars, roughly ∼0°.3 from both of them. Figure 1
shows the HAWC significance map of the region with the
possible counterparts to the emission labeled.
There is also a third pulsar in the region, PSR J1905+0600,

but it is weaker ( E = 5.1× 1032 erg s−1) and older (6 Myr) than
the other two pulsars (Hobbs et al. 2004), so it is not expected
to contribute to the observed TeV emission. This pulsar is
∼0°.87 away from the centroid of the HAWC emission. Its
distance is 8.8 kpc away from Earth.
If any of the emission is hadronic in nature, neutrinos are

also expected. Due to the size and hard spectrum of the TeV
gamma-ray emission, MGRO J1908+06 has been frequently
suggested as a target for neutrino searches (Gonzalez-Garcia
et al. 2009; Halzen et al. 2017). In an IceCube search for point-
like sources in the astrophysical muon neutrino flux, this region
had the second-best p value (highest for a Galactic source),
although still consistent with background (Aartsen et al. 2019).
A radio study of the region (Duvidovich et al. 2020) resulted

in the discovery of new molecular clouds to the eastern,
southern, and western borders of the radio shell of the SNR.
The authors of that paper hypothesized that the TeV emission
actually consists of two separate components: a leptonic
component powered by PSR J1907+0602 and a hadronic
component produced by interactions between G40.5-0.5 and
the newly discovered molecular gas. If SNR G40.5-0.5 is

37 version 1.63, https://www.atnf.csiro.au/research/pulsar/psrcat/.
38 version 1.63, https://www.atnf.csiro.au/research/pulsar/psrcat.
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8.5 kpc away, as some distance estimates suggest, it is much
further away than PSR J1907+0602 and the source we see may
actually consist of two superimposed sources. Crestan et al.
(2021) also suggest that the emission is comprised of two
populations.

Recent observations using Fermi-LAT (Li et al. 2021) have
resulted in the detection of extended GeV gamma-ray emission
in this area, said to be the GeV counterpart of the TeV emission.
This emission contains two components: a soft, low-energy
(<10 GeV) component and a harder (>10 GeV) component.
The first component is attributed to molecular clouds surround-
ing the supernova remnant, while the second is likely leptonic in
origin and originates from the PWN of PSR J1908+0602.

1.3. Description of HAWC and HAWC Data

In this work, we use data from the HAWC Observatory to
study 3HWC J1908+063. The HAWC detector consists of 300
water Cherenkov detectors, each instrumented with four
photomultiplier tubes. It is designed to detect the byproducts
of the extensive air showers that are induced when a gamma
ray or a cosmic ray enters the Earth’s atmopshere and interacts
with particles there.

Located in the state of Puebla, Mexico, HAWC is sensitive
to sources with declinations between −26° and +64°. It is
capable of continuously monitoring the sky and has achieved a
sensitivity of a few percent of the Crab flux over the last five
years (Albert et al. 2020). More information on the design of
HAWC can be found in Smith (2015) and Abeysekara et al.
(2017a).

This paper uses a data set consisting of 1343 days of data
collected between 2015 June and 2019 June. The data is binned

using a 2D scheme of the estimated energy (Ê) and the fraction
of the HAWC array hit during an air-shower event, as
described in Abeysekara et al. (2019). The estimated energy
bins are each a quarter decade in width in log10 space; the first
bin starts at Ê = 1 TeV and the last bin ends at Ê = 316 TeV.
The “ground parameter” energy estimator is used. This
algorithm uses the fit to the lateral distribution function to
measure the charge density 40 m from the shower core, along
with the zenith angle of the air shower, to estimate the energy
of the primary gamma ray. The standard quality cuts described
in Abeysekara et al. (2019) are used.
The paper is organized as follows. In Section 2, we describe

the diffusion model we use to fit data in the 3HWC J1908+063
region. Section 3 gives the best-fit results using this diffusion
model. We also compare the results presented here to those
obtained by other observatories. A potential spectral hardening
feature at the highest energies is also discussed. In Section 4,
we discuss possible models to describe the TeV emission from
HAWC. In Section 5, we discuss implications of this model for
detection by observatories operating at different wavelengths
and with different messengers. In Section 6, we present the
conclusions.

2. Description of the Diffusion Model

The model we fit to the region contains three sources: 3HWC
J1908+063 as well as the east and west lobes of SS433. The
lobes of SS433 overlap the edge of the significant 3HWC
J1908+063 emission.
Both lobes of SS433 are modeled as point sources with their

locations fixed to the reported location in Abeysekara et al.
(2018). As in that paper, they are assumed to emit according to
power-law spectra with spectral indices fixed at 2.0:

( )f=
-dN

dE

E

20TeV
. 10

2.0
⎛
⎝

⎞
⎠

The spectral indicies are fixed as it is not possible to fit them
due to the low number of counts for these sources. This
statistical limitation does not have an effect on the fit
parameters of 3HWC J1908+063, which is brighter by orders
of magnitude. The normalization of each lobe, f0, is allowed to
float separately in the fit.
The source 3HWC J1908+063 is modeled as an extended

source with the centroid fixed at the location from the 3HWC
catalog (R.A.= 287°.05, decl.= 6°.39) (Albert et al. 2020).
Three spectral shapes are considered: a power-law, a power-
law with an exponential cutoff, and a log-parabolic function. The
log-parabolic function is found to be significantly preferred,
using the Bayesian information criterion (Schwarz 1978; Kass &
Raftery 1995) (BIC), over other spectral shapes:

( )
( )

f=
a b- -dN

dE

E

10TeV
. 2

E

0

ln 10TeV
⎛
⎝

⎞
⎠

The flux normalization f0, the spectral index α, and the
curvature parameter β are all free parameters in the fit. The BIC
for this fit is 139,459, while the BIC for a power-law fit is
139,523 and the BIC for a power-law with an exponential
cutoff is 139,491. The ΔBIC between this model and the
power-law (power-law with an exponential cutoff) is 64 (32). A
ΔBIC value of >10 implies very strong evidence against the
higher BIC (Kass & Raftery 1995).

Figure 1. HAWC significance map of the region, in Galactic coordinates, with
the two pulsars and the SNR labeled. PSR J1907+0631 and SNR G40.5-
0.5 are only 0°. 03 away from each other so their markers on this plot overlap.
The maximum significance is 38.82σ. The contours are the 5, 10, 15, 20, 25,
30, and 35σ significance contour levels.
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The source is spatially extended; a diffusion model is chosen
to describe the source. The model is similar to the one used in
the HAWC analysis of the Geminga TeV halo (Abeysekara
et al. 2017b). The pulsars in this region are much younger than
Geminga’s pulsar, but are old enough that the source could
have begun the transition to a TeV halo. If this is the case, the
electrons and positrons are expected to be transported via a
diffusive mechanism. This diffusion model assumes that
electrons and positrons are continually injected from a central
point, with isotropic diffusion. Contributions from the cosmic
microwave background (CMB), infrared and optical photon
fields are considered, with the same values as Abeysekara et al.
(2017b). The magnetic field is fixed at 3 μG.

The spatial morphology for this diffusion model is:

( )( ( ))
( ( )) ( )

p q q q
q q

W
=

+
-

dN

d E E
E

1.22

0.06
exp , 3

3 2
d d

2
d
2/

where N is the total flux, E is the gamma-ray energy, θ is the
angle from the source, Ω denotes a solid angle, and θd is the
diffusion angle, which is a free parameter in the fit. It is related
to the diffusion radius, rd, by

( )q
p

=
r

d

180
, 4d

d

src

where dsrc is the distance from the source to the Earth. Then,

( ) ( )=r D E t2 , 5Ed e

where D is the diffusion coefficient for electrons at energy Ee

and tE is the smaller of the injection time and the cooling time.
The mean electron energy, Ee, can be calculated from the
mean gamma-ray energy, 〈E〉 as follows (Aharonian 2004;
Abeysekara et al. 2017b):

( )( )» +E E17 , 6E
e

0.54 0.046 log TeV10

and D is defined as

( ) ( ) ( )= dD E D E 10GeV . 7e 0 e

In this paper, δ is fixed to 1/3, motivated by the Kolmogorov
turbulence model describing the magnetic field. In the theory of
cosmic-ray diffusion, the energy dependence is (2− γ), where
γ is the shape of the power spectrum. According to
Kolmogorov, γ is equal to 5/3 (Kolmogorov 1941; Giacalone
& Jokipii 1999). D(Ee) can then be used in Equation (5) to
calculate the diffusion radius.

The free parameters (f0, α, β, and θd for 3HWC J1908+063
and f0 for each of the lobes of SS433) are determined
simultaneously via a likelihood fit done using the HAL
(Brisbois 2021)39 plug-in to the 3ML (Multi-mission Max-
imum Likelihood) software (Vianello et al. 2015).40 A circular
region of interest (radius of 3°) is used. The diffusion model
can be found in astromodels,41 a software package that
interfaces with 3ML.

3. Results

In the following sections, we discuss the best-fit results and
compare them to those of other detectors. We also consider

systematic uncertainties and discuss a potential spectral
hardening feature at the highest energies.

3.1. Best-fit Results

Figure 2 shows the HAWC significance map and the best-fit
model for this region. Figure 3 shows the residual map (the
significance map of the difference between the data and the
model). The best-fit parameters can be seen in Table 1, and the
HAWC spectral energy distribution (SED) can be seen in
Figure 4.
A test statistic (TS) for each source in the model is

computed. TS is defined as twice the likelihood ratio:

( )=TS
L

L
2 ln , 8s

n

⎜ ⎟
⎛
⎝

⎞
⎠

where Ls is the best-fit likelihood for the hypothesis including
the source and Ln denotes the null hypothesis. When Wilks’
theorem (Wilks 1938) is assumed, the square root of the TS can
be equated to Gaussian significance. Wilks’ theorem is valid
for HAWC data (Abeysekara et al. 2017c).
The source 3HWC J1908+063 is significantly detected

(>2σ) in each energy bin. Using the method presented in
Abeysekara et al. (2019), this corresponds to a detection
between 470 GeV and 213 TeV. The TS for this source is
1924.9. The east and west lobes of SS433 have TS values of
8.5 and 15.0, respectively. The TS values for the lobes of
SS433 are lower than previously published because the
analysis presented here uses an additional quality cut that
removes all events whose reconstructed shower core is off the
main HAWC array. This greatly increases the angular
resolution of the detector, allowing for better morphological
studies, but removes approximately half of the data.
The spectral index of 3HWC J1908+063, α, is

2.545± 0.026 -
+
0.04
0.01, and the curvature parameter, β, is

0.134± 0.018 -
+
0.03
0.01. The first set of uncertainties are statistical,

and the second set is systematic uncertainties stemming from
the mis-modeling of the detector (discussed further in
Section 3.2). The flux normalization, f0 is (1.17± 0.06±
0.10)× 10−13 (TeV cm2 s)−1.
The values reported here are different from those reported in

the HAWC highest-energy (>56 TeV) catalog (Abeysekara
et al. 2020); most notably the source has a slighter softer
spectral index than previously reported. This can be attributed
to two differences in the analysis. First, in this paper, we report
the spectrum assuming that the reported 3HWC source location
is the center of the source (R.A.= 287°.05± 0°.06,
decl.= 6°.39± 0°.06), while in Abeysekara et al. (2020), the
peak of the >56 TeV emission (R.A.= 286°.91± 0°.10, decl.=
6°.32± 0°.09) was assumed to be the center of the source.
These coordinates are 0°.16 away from the 3HWC source
location. Second, the high-energy catalog assumed a Gaussian
morphology instead of the diffusion model presented here.
These two models predict different fluxes, especially at the
lower energy end of the spectrum.
The source 3HWC J1908+063 has a best-fit diffusion angle,

θd, of 1.78± 0.08 -
+
0.02
0.07 degrees, reported at the gamma-ray

pivot energy of 10 TeV. The 10 TeV gamma rays imply
∼65 TeV electrons (Equation (6)). Assuming that the distance
to the pulsar J1907+0602, 2.37 kpc, is the same as the distance
to the source, this means that the 65 TeV electrons will have
diffused ∼74 pc (see Equation (4)).

39 HAWC Accelerated Likelihood; https://github.com/threeML/hawc_hal.
40 https://github.com/threeML/threeML
41 https://github.com/threeML/astromodels
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The cooling time of 65 TeV electrons is ∼14,000 yr
assuming a magnetic field of 3 μG. This is slightly smaller than
the age of the source, so it is used in Equation (5) to calculate
the diffusion coefficient. The diffusion coefficient, D, for
65 TeV electrons is 2.92× 1028 cm2 s−1. While this is lower
than the interstellar medium (ISM) value by approximately one
order of magnitude, this value is not unrealistic. Lower
diffusion coefficients have been observed before (Abeysekara
et al. 2017b) and a suppression of the diffusion coefficient has
been predicted in certain cases, such as near TeV halos (Evoli
et al. 2018).

Figure 5 shows the radial profile of 3HWC J1908+063. As
can be seen from the figure, the data matches the expectation
for continuous injection of particles with diffusion away from
the center of the source. Emission is seen out to several parsecs.

The flux normalization, f0, for the East (West) lobe of
SS433 is 2.0-

+
0.7
1.0 (3.0-

+
0.8
1.1)× 10−16 (TeV cm2 s)−1. These values

agree with those reported in Abeysekara et al. (2018), within
uncertainties.

A comparison between the spectrum reported here and
results from other detectors is discussed in Section 3.3.

3.2. Systematic Uncertainties

Systematic uncertainties related to the modeling of the
HAWC detector are investigated as described in Abeysekara
et al. (2019). The effects of the detector systematic uncertain-
ties are shown as the pink band in Figure 4. These uncertainties
are a function of energy. The width of the systematic
uncertainties on the flux range from ~-

+
11%
14% at 1 TeV to

~-
+
10%
22% at 100 TeV.
The other main source of uncertainty is the effect of Galactic

diffuse emission (GDE) on the spectrum. The base model

neglects diffuse emission, as was done with past analyses of the
region. The source is located 0°.8 away from the Galactic plane
but is quite extended, with some emission observed at b= 0.
Here, we investigate whether diffuse emission has any effect on
the reported fits.
The GDE is modeled as a Gaussian distribution in Galactic

latitude, centered on the Galactic plane. The width of the
Gaussian distribution, σ, is allowed to float in the fit.
The emission is assumed to emit according to a power-law
spectrum:

( )f=
a-dN

dE

E

7TeV
. 90

⎛
⎝

⎞
⎠

The value of α is fixed at 2.75, chosen to match the observed
cosmic-ray spectrum around 10 TeV (Abdo et al. 2008; Zhou
et al. 2017). The flux normalization, f0, is a free parameter in
the fit, along with σ.
The best-fit values for the GDE are f0= (1.9± 0.4)× 10−14

(TeV cm−2 s)−1 and σ= 0°.64± 0°.17.
The best-fit values for 3HWC J1908+063, with diffuse

emission included, are θd= 1°.50 ± 0°.10; f0= (0.96±
0.08)× 10−13 (TeV cm−2 s)−1; α= 2.505± 0.032; and β=
0.150± 0.022.
The estimated systematic uncertainty of the diffusion angle

due to diffuse emission is −15.7%. The effect on the flux varies
by energy, ranging from 31.2% at 1 TeV to 17.7% at 100 TeV.
The effect is larger at lower energies.
A follow-up analysis investigating the morphology of

3HWC J1908+063 is in progress. This will include an in-
depth study of the energy-dependent effect of the diffuse
emission.

Figure 2. Left: HAWC significance map of the region, for reconstructed energies between 1 and 316 TeV. The map is in Galactic coordinates. For each pixel, the
significance is calculated assuming that a disk of radius 0°. 6 is centered at that location and that the spectrum is a power-law with a spectral index of −2.4. Right: the
best-fit model used in this analysis. The bulk of the emission comes from 3HWC J1908+063. The east and west lobes of SS433 are modeled as point sources. The
maximum significance in this map is 38.82σ. In both figures, the white circle is the ROI.
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3.3. Comparison to Other Experiments

Figure 6 compares the HAWC result (black line) to those
obtained using other detectors, including both IACTs and other
air-shower arrays. HAWC measures a higher flux than IACT
detectors. Differences in the field of view, angular resolution,
and background estimation methods between IACTs and
HAWC contribute to discrepancies in the measured flux
(Abdalla et al. 2021).
Additionally, as discussed previously in Albert et al. (2021),

IACTs may extract their spectrum from a region that may be
different than the measured morphology. This is a difference

from HAWC, where the spectrum and morphology are fit
simultaneously.
These effects combined lead to a systematic flux offset

between HAWC and IACTs. To account for this, the
VERITAS points (Aliu et al. 2014) have been scaled by a
factor of 2.03 using the technique outlined in Brisbois (2019).
The H.E.S.S. points, taken from the H.E.S.S. Galactic Plane
survey (Abdalla et al. 2018), are not scaled as the H.E.S.S.
collaboration took this effect into account.
It is apparent that, even with the scaling described above, the

HAWC result includes more flux than the IACTs. The
discrepancy is more prominent at the lower energies.

Figure 3. Left: the significance map of the residuals, which is computed by subtracting the best-fit model from the HAWC data. This significance map is computed
using a point-source morphology to avoid correlations between pixels that are inherently unavoidable in the extended source assumption. The 2–3σ emission in the
northwest corner of the ROI could be associated with either PSR J1906+0722 or SNR 3C397. The H.E.S.S. detector has presented evidence of emission in this
region (Kostunin et al. 2021). The white circle is the ROI. Right: the corresponding histogram of the residual values within the region of interest. The excess at σ > 5
is due to the emission centered around l = 37°, b = 0°, the edge of which largely outside the ROI for this analysis. There is no source at this location in the 3HWC
catalog and it is likely diffuse emission. See Section 3.2 for a discussion of how diffuse emission affects the results presented here.

Table 1
Best-fit Values for the Continuous Injection Diffusion Model

Parameter Best-fit Value Statistical Uncertainty
Systematic
Uncertainty

θd 1°. 78 ±0°. 08 -
+
0.28
0.07

f0 1.17 × 10−13

(TeV cm2 s)−1
±0.06 × 10−13 (TeV

cm2 s)−1
-
+
0.23
0.10×10−13

(TeV cm2 s)−1

α 2.545 ±0.026 -
+
0.06
0.01

β 0.134 ±0.018 -
+
0.03
0.02

fSS433E 2.0 × 10−16

(TeV cm2 s)−1
-
+
0.7
1.0×10−16

(TeV cm2 s)−1
-
+
0.1
0.2×10−16

(TeV cm2 s)−1

fSS433W 3.0 × 10−16

(TeV cm2 s)−1
-
+
0.8
1.1×10−16

(TeV cm2 s)−1
-
+
0.6
0.2×10−16

(TeV cm2 s)−1

Note. The first four variables pertain to 3HWC J1908+063 while fSS433E and
fSS433W are the f0 values for the east and west lobes of SS433, respectively
(see Equation (1)). The pareameter θd is reported at the gamma-ray pivot
energy of 10 TeV, which corresponds to electrons with energy ∼65 TeV. The
column labeled “Systematic Uncertainty” contains the uncertainty from mis-
modeling of the detector along with the uncertainty related to modeling of the
Galactic diffuse emission. These two uncertainties are combined in quadrature.
See Section 3.2 for a discussion of systematic uncertainties.

Figure 4. The HAWC spectrum of 3HWC J1908+063. The gray band is the
forward-folded statistical uncertainty band, while the pink band denotes
systematic uncertainties related to the modeling of the detector (discussed in
Section 3.2). A table containing the flux points can be found in the Appendix.
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There are also differences between HAWC and other air-
shower arrays. Note the Milagro result (magenta point). The
ARGO spectrum (Bartoli et al. 2012) agrees with the HAWC
spectrum at the very lowest energies but quickly begins to
diverge as the energy increases. It is interesting to note that the
LHAASO result (Cao et al. 2021) agrees with the HAWC result
relatively well, especially at the highest energies.

The source of this difference can be attributed to differences
between the morphologies assumed by the other observatories.
HAWC is unique in using a diffusion model, which has a long
tail. If the HAWC data is instead fit assuming a Gaussian
morphology with the extent fixed to the IACT extent (here,
0°.44 is used to match the VERITAS extent), the discrepancy
disappears (see the blue curve in Figure 6). In this study, the
R.A. and decl. are left fixed to the 3HWC coordinates. Due to
their background estimation methods and morphological
assumptions, IACTs are not sensitive to the long, extended
tails of the gamma-ray emission. This may affect their physics
conclusions.

The HAWC Gaussian flux points are consistent with the
HAWC diffusion flux points above 100 TeV. This will be
important in the Theoretical Modeling section (Section 4)
where these data points are used to draw conclusions.

3.4. Potential Spectral Hardening at the Highest Energies

We look for evidence that the spectrum hardens at the
highest energies. Such a discovery could indicate that there are
hadronic contributions; if the source were entirely leptonic,
curvature in the spectrum is expected at the highest energies
due to Klein-Nishina effects (Moderski et al. 2005). This study
is motivated by the last two flux points shown in Figure 4,
which appear as if they are beginning to deviate from the best-
fit log-parabola shape by exhibiting a slight flux enhancement
over expectation. It is advantageous to have more flux points at
the highest energies because this is where the deviations
between leptonic and hadronic models will have the most
prominent differences. To investigate this, the three highest-
energy bins, which each span a quarter decade in log10-energy
space ( ˆ >E 56 TeV) are subdivided into six smaller bins, each
spanning an eighth of a decade in width, before rerunning the
spectral fit.

Figure 7 shows the spectrum of 3HWC J1908+063 with the
highest-energy bins split into sub-bins. As in the nominal
analysis, a log-parabola spectral shape and the diffusion
morphology are used. The overall forward-folded fit results are
compatible with those presented in Section 3.1: θd= 1.77±
0.08, f0= 1.16× 10−13, α=−2.544± 0.026, and β= 0.133±
0.018. All uncertainties are statistical only.
A potential spectral hardening feature is visible in the flux

points by eye, beginning around ∼70 TeV. The source is not
significantly detected in the last energy bin ( ˆ< <E234 316
TeV; TS= 0.39) so a 90% confidence level upper limit is
computed. In all of the other sub-bins, the TS is >16 (>4σ).
This spectral hardening feature is presently not significant.

The last two flux points in Figure 7 that are significantly
detected are only 1.5σ and 1.8σ away from the best-fit log-
parabola line. Adding these two points in quadrature, the total
significance of this potential feature is 2.3σ. Improvements to
the HAWC reconstruction algorithms or studies using future
detectors will decrease the uncertainties and make a more
definitive statement. It is worth noting that this feature is
remains visible by eye if detector response functions designed
to probe systematic uncertainties related to the mis-modeling of
the HAWC detector are used, so it is unlikely to be an
instrumental effect
If this feature is shown to be significant in the future, it

would be strong evidence for hadronic processes associated
with this source. See the Theoretical Modeling section
(Section 4) for a further discussion of this.
If the >100 TeV gamma rays originate from hadronic

processes, this requires proton energies corresponding to the
knee of the cosmic-ray spectrum. It is unclear what the origin
of these cosmic rays would be. One scenario is that they could
be from the SNR interacting with molecular clouds in the
region. Another scenario is that hadronic acceleration mechan-
isms occur in PWN. While this does not occur in conventional
models, this possibility has been explored in the literature
(Bednarek 2003; Di Palma et al. 2017).

4. Theoretical Modeling

Here, we model the TeV data to explore possible emission
mechanisms. In general, the lack of available multiwavelength
data means that the parameter space is largely unconstrained.
For example, the magnetic field in the region is unknown.
Different conclusions can be reached depending on what

modeling assumptions are made. We begin by showing that a
one-population hadronic model is unlikely, although it cannot
be completely ruled out. We then present two models: one
where the radiation energy density dominates over the
magnetic field energy density (urad? uB), and one where the
converse is true (uB? urad).
Note that, throughout this section, the phrases “one-

population” and “two-population” refer to the number of
particle populations present in the TeV range. As will be
discussed later, there is an additional component in the GeV
range, based on recent Fermi-LAT data (Li et al. 2021).

4.1. One-population Hadronic Model

A purely hadronic model is disfavored due to a lack of
sufficient energy to power the hadronic emission. To show this,
first we calculate the target proton density in the region.
Molecular clouds in the region can affect this density. There are

Figure 5. The radial profile of 3HWC J1908+063. The blue line shows the
expectation for the diffusion model. This figure assumes that the source is
2.37 kpc away, which is the distance to PSR J1907+0602.
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several known clouds near 3HWC J1908+063. Here, we use
data from a CO survey published in Dame et al. (2001). Data
from the 35–50 km s−1 range is used, as this corresponds to the
distance to PSR J1907+0602. Atomic gas is also considered,
using the HI4PI survey (HI4PI Collaboration et al. 2016).
Assuming a circle of radius 1° centered on the HAWC source,
the average combined column density from these two surveys
totals 9.9× 1021 cm−2. A rough estimate of the mass can then
be obtained. The radius of the 1° circle is 41.36 pc, assuming

that the gas is 2.37 kpc away (the distance to PSR J1907
+0602). Then,

( )p=m r Nm , 102
p

where m is the total mass in the region, r is the radius, N is the
column density, and mp is the mass of the proton. The total
mass is 8.5× 1035 kg, which leads us to a proton density (n) of
∼60 protons cm−3. This is considerably higher than the typical
ISM value of 1 cm−3. This calculation assumes that the gas is
spherical.
Assuming that the source is purely hadronic and that the

population of protons is trapped within the cloud, the total
energy in nonthermal hadrons is

( )
h

= gW L
t

11pp
pp

n

where Lγ is the gamma-ray luminosity:

( )òp=gL d
dN

dE
EdE4 , 12

E

E
2

min

max

tpp, the proton energy loss timescale, is equal to 2× 1015n−1

sec cm−3 and ηn is equal to 1.5. The parameter ηn accounts for
the fact that there are nuclei heavier than hydrogen in both
cosmic rays and interstellar matter (HESS Collaboration et al.
2016). In Equation (12), dN

dE
is the gamma-ray flux per energy. It

is not related to N (the column density) from Equation (10).
From the fitted HAWC spectrum (see Section 3.1), Emin is

470 GeV and Emax is 213 TeV. Using the best-fit values for the
spectrum to calculate Lγ and 60 protons cm−3 for the number
density, n, we obtain a value of 1.7× 1048 erg for Wpp over the

Figure 6. A comparison between the spectrum reported in the main text and results from other observatories. The discrepancy between the HAWC SED and the other
observatories is discussed in Section 3.3. References for other experiment’s measurements: VERITAS (Aliu et al. 2014), ARGO (Bartoli et al. 2012), Milagro (Abdo
et al. 2007), H.E.S.S.: Online catalog (H.E.S.S. Collaboration 2018) from the H.E.S.S. Galactic plane survey (Abdalla et al. 2018), LHAASO (Cao et al. 2021).

Figure 7. The HAWC spectrum of 3HWC J1908+063 when the three highest-
energy bins are subdivided into six sub-bins. The potential spectral hardening
feature begins around 70 TeV. The source is not significantly detected in the
last energy bin so a 90% confidence level upper limit is plotted. A table
containing the flux points can be found in the Appendix.
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energy range of HAWC. This is the total energy available
based on the gas in the region. However, in order to explain the
HAWC data points, a simple hadronic model requires a total
energy on the order of ∼1050 erg, assuming that n is ∼60 cm−3

and the parent proton spectrum can be modeled by a single
power law. This is two orders of magnitude higher in energy
than the available energy calculated above, so the hadronic
model is difficult to explain.

We cannot completely reject a one-population model
because the lower energies are unconstrained by the HAWC
data. The energy requirement of 1050 erg assumes that the
protons can be modeled by a power law all the way down to the
lowest energies. However, if the spectrum of the protons is
instead curved, it is conceivable that the total energy required
could be lower, as calculating the energy budget involves
integrating over the spectrum.

4.2. One-population Inverse Compton Model

An inverse Compton (IC) origin of the emission is attractive
given the absence of a clear correlation with target material.

In a single zone/population model and in the case that
synchrotron losses are dominant at all energies, the equilibrium
high-energy electron spectrum is steep and Klein-Nishina (KN)
suppression results in a very steep IC spectrum that is not
consistent with the HAWC data. Alternatives to this picture are
the existence of more than one emission component (see
Section 4.3) or that the magnetic field energy density lies below
that of radiation fields such that IC cooling effects become
important. This case was considered in detail by Breuhaus et al.
(2021a, 2021b) and here we adopt the same approach.

Electrons following an exponential cutoff power-law
equation

( )= -
a-

dN

dE
N

E E

E1erg
exp 130

cut
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

are injected into a region with constant, isotropic, and
homogeneous radiation fields and a fixed magnetic field of
3 μG. The radiation field adopted is that of the large-scale
Galactic radiation field model of Popescu et al. (2017) at the
location of the possibly associated pulsar PSR 1907+0602
(plus the CMB). The injection at a constant rate takes place for
19.5 kyr, the characteristic age of the pulsar. A fit to the
data with N0, the injection index α and the cutoff energy Ecut

as free parameters gives N0= (1.3± 0.2)× 1036 erg s−1 and
α= 2.68± 0.04. The cutoff energy Ecut can only be con-
strained to be larger than 610 TeV with 95% confidence and
therefore a value of Ecut= 10 PeV is used. The quoted values
correspond to a mean electron/positron luminosity of 50% of
the current spin-down power of the pulsar injected above 1
TeV. For the numerical calculations, we made use of the open-
source code GAMERA (Hahn 2015).

To account for absorption of the γ-ray emission due to pair
production in the interstellar photon fields on the way to Earth,
the same radiation model together with the CMB was used. The
model is shown in Figure 8.

4.3. Two-population Models

Assume instead that there is a region near the PWN where
the magnetic field is high (>10 μG) and there is a TeV halo
driven by the pulsar, so that uB is very high. Electrons have

been continuously injected with constant power over the
lifetime of the system. This leads to a complete dominance of
synchrotron losses over Inverse Compton losses. Under
these conditions, one population of leptonic particles cannot
explain the TeV emission. The inverse Compton component
suffers from considerable Klein-Nishina effects at the
highest energies, which suppresses the high-energy gamma-
ray flux.
In this section, we explore the possibility that there are two

populations responsible for the TeV particles present in the
emission region: a primary population of nonthermal electrons
that is responsible for the bulk of the emission, and a secondary
nonthermal particle population that dominates the emission
above 50 TeV. The secondary component may be either of
leptonic or hadronic origin.
Due to the unconstrained parameter space, the number of

free parameters in the models described in this section are
larger than the number of data points. Therefore, both models
presented here are merely possible combinations of parameters
that describe the data well. Both models assume that the source
is located 2.37 kpc from the Earth and the ISM magnetic field
strength is assumed to be 3 μG. Only contributions from the
CMB photon field are considered. The spin-down power of the
pulsar is assumed to be 2.8× 1036 erg s−1.
In both two-population models presented here, the first

component is a nonthermal electron distribution with a broken-
power-law shape. The electron spectrum is given by:
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where γe is the electron Lorentz factor, ne0 is the spectral
normalization factor, γe0,b is the Lorentz factor at the cooling
break, γe0,cut is the electron Lorentz factor at the spectral cutoff,
and pe0 is the spectral index. The spectral index changes by one
unit after the break, as is expected from radiative cooling. The
spectrum begins at ge0,min = 103 (∼500 Mev).

Figure 8. Inverse Compton model fit to the HAWC spectra data for J1908. The
solid/dashed lines show the spectrum with/without the effects of γ-γ
absorption on the CMB and Galactic radiation fields.
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The nonthermal electron energy density in the emission
region is given by

( )ò g
g g=

¥
u

dn

d
m c d . 15ne, th

1

e

e
e e

2
e

Values of γe0,b= 5× 107 (26 TeV), γe0,cut= 1.2× 108 (61
TeV), and pe0= 2 provide a good description of the data.
Assuming that the emission region is homogeneous, the total
nonthermal electron energy is 1.6× 1048 erg. The location of
the cooling break (γe0,b) corresponds to a cooling time of
τcool= 2.57× 104 yr, which is roughly the same as the
characteristic age of the pulsar. 93% of the spin-down power
of the pulsar is contained in this component.

4.3.1. Two-population Purely Leptonic Model

To describe the hard spectrum at 50 TeV, we introduce a
second nonthermal electron population. The second population
is assumed to be from a more recent active phase of the source
and has the form:

( )
g

g= g g- -dn

d
n e , 16pe

e
e1 e

e1 e e1,cut

where the spectrum extends from g = 10e1,min
3 (∼500 MeV) to

γe1,cut= 109 (∼500 TeV) and pe1= 2. The total energy in this
component is 4× 1046 erg. This is only a fraction of the
primary leptonic component. We assume that the electrons in
this second component were injected in the last ∼2000 yr. This
component contains 2% of the spin-down power of the pulsar.

Note that the second pulsar in the region, PSR J1907+0631,
is unlikely to be able to accelerate particles to the energies
discussed here, so this second component is still likely
associated with PSR J1907+0602.
This model is shown as the thick blue line in Figure 9. Note

that this model violates the X-ray upper limit from XMM-
Newton. However, we note that the XMM-Newton upper limit
is extracted from a region that is smaller (a 0°.75 by 0°.75
square) than the HAWC extent. The observation was centered
on the pulsar, which is ∼0°.3 away from the centroid of the
HAWC source. It is difficult for X-ray satellites to observe
regions that are 1 degree across, as this source is, due to their
relatively small fields of view. Nevertheless, the second
electron population results in extra flux in the X-ray band,
which may be examined by future X-ray telescopes.

4.3.2. Two-population Hybrid Lepto-hadronic Model

A hybrid lepto-hadronic model can also explain the HAWC
data well. In this scenario, the extra nonthermal particle
distribution consists of protons. The TeV gamma-ray emission
is created via proton-proton collision. The hadronic population
is modeled as follows:

( )
g

g= g g- -dn

d
n e 17

pp

p
p p

p p p,cut

where the proton spectrum extends from g = 1p,min (∼900
MeV) to γp,cut= 107 (∼9 PeV), and the spectral index pp is 2.
Assuming these model parameters, the energy in protons is
1.5× 1048 ergs. Note that this is close to the energy in the
electrons. The solid red line in Figure 9 shows the predicted

Figure 9. The best-fit multi-population TeV leptonic (the thick red line, which is the sum of the dashed orange, dotted green lines, and dashed gray lines) and the TeV
lepto-hadronic models (thick blue line, which is the sum of the dashed orange, dotted purple, and dashed gray lines). Both models contain an additional component in
the GeV range, as recently discovered using Fermi-LAT data (see Section 4.3.3 for a discussion). The LHAASO points, from Cao et al. (2021), are shown for
comparison purposes only. Note that one-population TeV models can also fit the data well (see the disucssion in Section 4.2).
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flux for the lepto-hadronic model. There is much less tension
with the X-ray upper limit than in the two-population leptonic
model. This is expected, because the pair synchrotron emission,
a byproduct of proton-proton collision, gives trivial contrib-
ution to the emission due to the very low ISM magnetic field
(3 μG). Note that this model also overshoots the X-ray upper
limit, although only slightly.

A major issue is how to accelerate nonthermal protons in the
source. There are two possible scenarios. The first scenario is
that the protons were accelerated when the supernova
exploded, and then diffused out of the shock. The other
scenario is that the protons were accelerated at the termination
shock by the pulsar wind. In either scenario, the nearby
molecular clouds provide a target for the gamma-ray emission.

4.3.3. Comparison of Two-population Model to Recent Fermi-LAT
Results

Extended GeV emission has recently been detected using
data from the Fermi-LAT (Li et al. 2021). This GeV spectrum
consists of two components: a softer component below 10 GeV
which is likely associated with molecular clouds near SNR
G40.5-0.5, and a harder, higher-energy component that is likely
inverse Compton in origin and associated with the PWN.

The modeling presented in the preceding two sections was
developed using TeV data only. In Figure 9, we show the sum
of each of the two-population TeV models with the lower-
energy GeV component. Since HAWC is not sensitive to multi-
GeV energies, we simply use the parameters from Li et al.
(2021). The second, higher-energy GeV component is not
shown because it is simply the extrapolation down to lower
energies of the inverse Compton TeV component.

The higher-energy Fermi-LAT data points do not smoothly
connect to the HAWC data points or modeling. However, they
do smoothly connect with IACT measurements from H.E.S.S.
and VERITAS. Li et al. (2021) hypothesize that this is due to
background estimation differences between Fermi-LAT/
IACTs and HAWC, a statement consistent with the discussion
in Section 3.3.

The addition of the lower-energy Fermi-LAT component
indicates that there may be as many as three particle
populations across all wavelengths: the GeV SNR/molecular
cloud emission, the GeV/TeV inverse Compton emission, and
then the third component that is prominent above 56 TeV. This
third component, if hadronic, may not be linked to the SNR.
Instead, it could originate from more exotic mechanisms such
as hadron acceleration in PWN, as has been proposed by
Amato et al. (2003), Bednarek (2003), and Di Palma et al.
(2017), among others. This component could also result from
interactions between the PWN and the SNR.

4.3.4. Comparing the different Two-population Models

Figure 9 shows a comparison of the two different multi-
population models.

In the event that there are two populations of particles
responsible for the TeV emission, the current energy resolution
of HAWC prevents us from definitively saying whether the
two-population leptonic model is preferred over the lepto-
hadronic model. Both models fit the data above 50 TeV within
the uncertainties on the flux points. This strengthens the
case for future detectors, both proposed and currently

under construction, that will have greater sensitivity above
100 TeV. This is discussed further in Section 5.

5. Implications for Multiwavelength and Multi-messenger
Experiments

The modeling presented above has implications for the
detection of this source by multiwavelength and multi-
messenger detectors.
The LHAASO experiment (Bai et al. 2022) is able to probe

higher energy ranges than HAWC. A recent publication by the
collaboration detected ultra-high-energy emission from the
region; the maximum photon energy detected was 440 TeV
(Cao et al. 2021). An in-depth study of the spectrum and
morphology at the highest energies using LHAASO data could
help distinguish between the models presented in this work.
Note that the Inverse Compton model and the two-population
models predict different fluxes at the very highest energies.
Neither of our models are able to distinguish between the
highest-energy emission mechanisms, as the uncertainties on
the highest-energy flux points are presently too large.
Additionally, the two-population leptonic model and the

lepto-hadronic model predict very different amounts of
synchrotron emission in the keV to MeV energy bands.
Proposed detectors such as AMEGO (Kierans 2020) will be
important in distinguishing emission mechanisms. Additional
X-ray to GeV gamma-ray observations will allow us to
pinpoint the spectral shape and energy budget.
Additional x-ray observations may also allow us to

determine the magnetic field in the region, allowing us to
differentiate between one-population and two-population
models. For example, if it is shown that there is considerable
synchrotron emission in the region, the magnetic field is likely
high (tens of μG) and two particle distributions are required to
explain the spectrum.
Most hypotheses of whether the IceCube Neutrino Observa-

tory will see this source assume that the emission is entirely
hadronic (Gonzalez-Garcia et al. 2009; Halzen et al. 2017). As
discussed in Section 4.1, a pure hadronic scenario seems
unlikely based on the energy budget. Here, we estimate
whether IceCube will see 3HWC J1908+063 in the lepto-
hadronic model, where the hadronic component accounts for
approximately 10% of the TeV flux and can be approximated
as a power-law. In the case of either a one-population leptonic
or two-population leptonic model, no neutrinos are expected.
Equations (2) and (3) of Halzen et al. (2017) show the

relation between a gamma-ray flux and the corresponding
neutrino flux. If the TeV gamma-ray flux due to hadrons is

( )
( )=g g

g
g

g
a-

- g
g

dN E

dE
k

E
e

1 TeV
18

E
Ecut,⎛

⎝
⎞
⎠

where Eγ, kγ, αγ, and Ecut,γ are the gamma-ray energy, flux
normalization, spectral index, and energy cutoff, respectively,
then the corresponding neutrino flux is

( )¯ ( )
=

n n

n
n

n
a+ -

-m m n
n n

n
dN

dE
k

E
e

1 TeV
19

E E
Ecut,⎛

⎝
⎞
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Here, kν= (0.694–0.16αγ)kγ, αν= αγ, and Ecut,ν= 0.59Ecut,γ.
Since the leptonic contribution to the gamma-ray flux is not

expected to contribute to the neutrino flux, we use only the
hadronic contribution when computing the gamma-ray flux in
Equation (18). This component has approximately the
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following values: αγ= 2, kγ= 2× 10−12 (TeV cm2 s)−1, and
no gamma-ray cutoff (Ecut,γ=∞ ). The lack of cutoff allows us
to neglect the exponential terms in Equations (18) and (19).

Using the conversion between kν and kγ given above, kν is
equal to ∼7.5× 10−13 (TeV cm2 s)−1.

Now that the expected neutrino flux has been computed, we
can discuss whether IceCube will see this source. We assume
that the neutrino source, if it exists, is extended. IceCube’s
discovery potential for extended sources is given in Figure 3 of
Pinat et al. (2017). The discovery potential increases as the size
of the source decreases, but even if the source is only 1° across,
the predicted neutrino flux is approximately an order of
magnitude below the discovery potential.

The proposed next-generation IceCube-Gen2 will have a
better discovery potential and may be able to detect this source
if the lepto-hadronic hypothesis is true. The predicted neutrino
flux is near the discovery potential, as can be seen in Figure 8
of Aartsen et al. (2021). In the absence of a detection in 10
years of IceCube-Gen2 observations, it will be possible to place
constraints on the hadronic emission.

6. Conclusions

We report HAWC observations of the spectrum of the ultra-
high-energy source 3HWC J1908+063, which emits to at least
200 TeV. The source is modeled using an electron diffusion
model. There is potential spectral hardening observed at the
highest energies, although more data is needed to test this
hypothesis.

We investigate the origins of the TeV gamma-ray emission
and conclude that an entirely hadronic scenario is unlikely. Due
to the unconstrained parameter space, one-population leptonic,
two-population leptonic, and lepto-hadronic models are all
allowed. In the case of a lepto-hadronic model, the hadronic
contribution is most important at the highest energies. Multi-
messenger and multiwavelength observations will be important
in distinguishing between these two scenarios.
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Appendix
HAWC Data Points

The two tables in this section (Tables 2 and 3) contain the
HAWC flux points for 3HWC J1908+063.

ORCID iDs

A. Albert https://orcid.org/0000-0003-0197-5646
H. A. Ayala Solares https://orcid.org/0000-0002-2084-5049
E. Belmont-Moreno https://orcid.org/0000-0003-
3207-105X
C. Brisbois https://orcid.org/0000-0002-5493-6344
T. Capistrán https://orcid.org/0000-0003-2158-2292
A. Carramiñana https://orcid.org/0000-0002-8553-3302
M. A. DuVernois https://orcid.org/0000-0002-2987-9691
M. Durocher https://orcid.org/0000-0003-2169-0306
J. C. Díaz-Vélez https://orcid.org/0000-0002-0087-0693

Table 2
HAWC Flux Points for the Nominal Fit

Energy E2
flux (TeV cm−2 s−1) Test statistic

1.19 ´-
+ -1.95 100.15
0.14 11 187.88

1.82 ´-
+ -1.98 100.13
0.14 11 216.88

3.12 2.00 ± 0.13 × 10−11 265.03
5.52 1.57 ± 0.09 × 10−11 351.59
9.96 1.18 ± 0.07 × 10−11 372.40
18.65 ´-

+ -7.19 100.53
0.55 12 234.39

34.17 ´-
+ -4.70 100.45
0.46 12 178.21

59.71 ´-
+ -2.75 100.42
0.43 12 74.18

103.07 ´-
+ -2.13 100.47
0.44 12 42.98

176.38 1.38 ± 0.54 × 10−12 13.37

Note. This table contains the HAWC flux points for the nominal best fit, which
is shown in Figure 4.

Table 3
HAWC Flux Points for the Subdivided Fit

Energy E2
flux (TeV cm−2 s−1) Test statistic

1.19 1.94 ± 0.15 × 10−11 187.82
1.82 1.98±0.14 × 10−11 216.59
3.12 ´-

-1.99 100.12
0.13 11 265.04

5.52 1.56 ± 0.09 × 10−11 351.51
9.96 1.18 ± 0.07 × 10−11 372.20
18.65 7.17 ± 0.5410−12 234.28
34.18 ´-

+ -4.66 100.43
0.45 12 178.19

54.08 3.24 ± 0.60 × 10−12 53.24
71.30 ´-

+ -2.07 100.56
0.58 12 22.29

93.89 ´-
+ -1.88 100.56
0.57 12 19.12

124.36 ´-
+ -2.23 100.65
0.66 12 23.80

166.97 ´-
+ -2.26 100.79
0.80 12 19.30

224.45 7.91 × 10−13 0.39

Note. This table contains the HAWC flux points for the scenario where the
highest-energy bins are subdivided into smaller energy bins to look for
evidence of spectral hardening, which is shown in Figure 7. The last point is an
upper limit.
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