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Abstract. The Greenland Ice Sheet (GrIS) rapid mass loss is
primarily driven by an increase in meltwater runoff, which
highlights the importance of understanding the formation,
evolution, and impact of meltwater features on the ice sheet.
Buried lakes are meltwater features that contain liquid water
and exist under layers of snow, firn, and/or ice. These lakes
are invisible in optical imagery, challenging the analysis of
their evolution and implication for larger GrIS dynamics and
mass change. Here, we present a method that uses a convo-
lutional neural network, a deep learning method, to automat-
ically detect buried lakes across the GrIS. For the years 2018
and 2019 (which represent low- and high-melt years, respec-
tively), we compare total areal extent of both buried and sur-
face lakes across six regions, and we use a regional climate
model to explain the spatial and temporal differences. We
find that the total buried lake extent after the 2019 melt sea-
son is 56 % larger than after the 2018 melt season across the
entire ice sheet. Northern Greenland has the largest increase
in buried lake extent after the 2019 melt season, which we
attribute to late-summer surface melt and high autumn tem-
peratures. We also provide evidence that different processes
are responsible for buried lake formation in different regions
of the ice sheet. For example, in southwest Greenland, buried
lakes often appear on the surface during the previous melt
season, indicating that these meltwater features form when
surface lakes partially freeze and become insulated as snow-
fall buries them. Conversely, in southeast Greenland, most
buried lakes never appear on the surface, indicating that these
features may form due to downward percolation of meltwa-
ter and/or subsurface penetration of shortwave radiation. We

provide support for these processes via the use of a physics-
based snow model. This study provides additional perspec-
tive on the potential role of meltwater on GrIS dynamics and
mass loss.

1 Introduction

The Greenland Ice Sheet (GrIS), which holds enough ice to
raise sea level globally by more than 7 m (Smith et al., 2020),
has experienced net mass loss every year since 1998 (Moug-
inot et al., 2019). Since 1972, the GrIS has contributed a to-
tal of 13.7 & 1.1 mm of sea level rise. Prior to 2005, ice dis-
charge was the primary driver of Greenland mass loss (En-
derlin et al., 2014). However, meltwater runoff, which has
accelerated recently, is now the dominant factor in Green-
land mass loss (Smith et al., 2020; van Den Broeke et al.,
2016; Enderlin et al., 2014). Thus, surface melt plays an in-
creasingly important role in the mass balance of the GrIS.
Melting is exacerbated by the positive melt—albedo feed-
back, whereby melting acts to lower surface albedo, which in
return allows for greater absorption of incoming solar radia-
tion, thus further enhancing surface melt (Box et al., 2012;
Liithje et al., 2006; Tedesco et al., 2012). Meltwater often
pools in surface lakes in the ablation zone during the summer
from May to October (McMillan et al., 2007; Banwell et al.,
2012). Water in these lakes then runs off the ice sheet, drains
via hydrofracture (Das et al., 2008; Tedesco et al., 2013;
Williamson et al., 2018b), or refreezes in the firn (Bell et al.,
2018). Firn takes up meltwater and buffers against mass loss
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(Harper et al., 2012). Water that refreezes in near-surface firn
leads to the formation of ice lenses, which increase the den-
sity and decrease the porosity of the near-surface firn, thus
reducing the capacity of Greenland’s firn to hold future melt-
water (Machguth et al., 2016). Ice lenses due to refrozen
meltwater are rapidly increasing in areal extent across the
GrlS, leading to increased runoff (MacFerrin et al., 2019;
Culberg et al., 2021).

However, not all meltwater stored within the firn refreezes.
In fact, some meltwater remains liquid, buried several metres
below the surface (Koenig et al., 2015). These shallow buried
lakes (or subsurface lakes) have been discovered later in the
summer and at higher elevations on the GrIS than their sur-
face counterparts (Miles et al., 2017; Lampkin et al., 2020).
Liquid water exists in buried lakes even throughout the win-
ter (Schroder et al., 2020), and some have been shown to
rapidly drain, delivering liquid water to the bedrock during
the winter months (Benedek and Willis, 2021).

Because meltwater runoff is the dominant driver of mass
loss from the GrIS, developing methods to detect surface wa-
ter has been the focus of many recent studies (Yuan et al.,
2020; Sundal et al., 2009; Williamson et al., 2017; Liang
et al., 2012). Many of these methods, however, rely on op-
tical imagery to detect meltwater. Buried lakes, in contrast,
are invisible in optical images, challenging the study of their
extent, evolution, and interaction with drainage systems us-
ing conventional methods. More recently, studies have begun
using synthetic aperture radar (SAR) to detect both surface
and buried lakes (Miles et al., 2017; Johansson and Brown,
2012; Dunmire et al., 2020; Schroder et al., 2020; Benedek
and Willis, 2021). As an active sensor, SAR does not require
a light source and thus is useful at night or during the po-
lar winter. The European Space Agency’s Sentinel-1 satellite
uses C-band radiation, which is particularly useful because it
is capable of penetrating clouds, ice, and snow up to several
metres (Rignot et al., 2001). Water is a strong absorber of C-
band SAR radiation. Because of this, Sentinel-1 microwave
backscatter can be used as a diagnostic indicator of both the
presence of melt and melt intensity and can even detect lig-
uid meltwater buried beneath several metres of ice and snow
(Miles et al., 2017).

Fast, automatic detection of buried water features across
large spatial and temporal scales is an important step in bet-
ter understanding their impact on GrIS mass balance. In this
study we develop a convolutional neural network (CNN), a
deep learning technique for automatic detection of features
from images, to detect buried lakes across the GrIS. CNNs
are beneficial for feature detection because of their ability to
learn spatial relationships from two-dimensional images, and
because they can easily be applied across large spatial and
temporal scales. CNNs are becoming an increasingly popu-
lar choice for automatic feature detection in polar regions and
have been used for detecting features such as glacier calv-
ing margins (Mohajerani et al., 2019; Zhang et al., 2019),
icebergs (Rezvanbehbahani et al., 2019), sea ice concentra-
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tion (Wang et al., 2016, 2017; Cooke and Scott, 2019; Song
etal., 2019), and surface water (Daneshgar et al., 2019; Yuan
et al., 2020). Here, we develop and use a CNN to compare
the distribution of buried lakes in Greenland’s six subregions
(Rignot and Mouginot, 2012) during a relatively cold, low-
melt year (2018) and a warmer, high-melt year (2019). We
compare both buried lake distribution and surface lake distri-
bution between the 2 years and subsequently use a regional
climate model to help explain the spatial and temporal dif-
ferences. Finally, by investigating optical imagery acquired
prior to the date of the SAR imagery used here for buried
lake detection, we hypothesize that different processes are
responsible for the formation of these features in different
regions of the GrIS.

2 Methods
2.1 Buried lake detection
2.1.1 Training/testing dataset preparation

Our study region covers the entire GrIS. To create training
and testing datasets, we collected Sentinel-2 (S2) optical im-
agery and Sentinel-1 (S1) C-band SAR microwave backscat-
ter imagery from all six GrIS subregions (Rignot and Moug-
inot, 2012). S2 images were collected during the late sum-
mer (September) of 2016 and 2017, and S1 images were col-
lected during the winter between January 1 and January 7
following the 2018 and 2019 melt seasons. S1 images were
chosen during the winter to minimize firn saturation that can
obscure buried lakes in microwave imagery. Google Earth
Engine (Gorelick et al., 2017) (GEE) was used to collect
all images used in this study. GEE preprocesses S1 images
with the following steps: (1) thermal noise removal, (2) ra-
diometric calibration, (3) terrain correction using ASTER
DEM, and (4) values converted to decibels via log scaling.
S2 images are available as top-of-atmosphere reflectance di-
vided by 10000. All S1 and S2 images exported from GEE
were rescaled to 30 x 30 m resolution (to increase processing
speed) on the same grid using nearest-neighbour resampling
and reprojected to an Arctic stereographic grid (EPSG:3995).
Images were broken up into 256 x 256 and 512 x 512 pixel
tiles, all resized to 256 x 256 pixels using a first-order spline
interpolation. For each tile, a false-colour image was created
using both the S1 and S2 imagery. The false-colour images
are made up of the following bands.

— Band 1 = greyscale (from S2) = 0.299 - red 4 0.5870 -
green + 0.1140 - blue.

— Band 2 = horizontally transmitted — vertically received
(HV) band (from S1) normalized from O to 1 with re-
spect to the individual image tile such that the minimum
tile pixel is O and the maximum tile pixel is 1. The pur-
pose of this band is to emphasize microwave backscatter
changes that result from the presence of liquid water.
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— Band 3 = HV band (from S1) normalized between —30
and 0. This band functions to mute backscatter changes
that are small with respect to the surrounding area and
thus not likely due to the presence of buried liquid water.

Image tiles were manually classified into seven different
categories (1) uniform ice and snow (Fig. la, 1277 tiles to-
tal), (2) textured ice and snow (Fig. 1b, 1362 tiles total), (3)
surface lake remnants (Fig. 1c, 1322 tiles total), (4) open
ocean and sea water (Fig. 1d, 99 tiles total), (5) buried lakes
(Fig. le, 1399 tiles total), (6) land (Fig. 1f, 542 tiles total),
and (7) mountains surrounded by snow (Fig. 1g, 227 tiles to-
tal). A total of 70 % of the image tiles for each class were
used for model training, 15 % for model validation during
the training process, and 15 % for a final model test. The
training dataset was augmented such that at each iteration of
model training, image tiles were randomly flipped horizon-
tally and/or rotated by a random increment of 30°.

2.1.2 Model training

A CNN was the method of choice for detecting subsur-
face lakes across Greenland. Unsupervised learning has been
shown to be unsuitable for similar analysis on Antarctica
(Moussavi et al., 2020), and CNNs have proven superior
over other supervised classification algorithms at detecting
surface water on Greenland (Yuan et al., 2020). CNNs are
being increasingly used for land and surface classification
problems (Maggiori et al., 2017). Here, we use the pre-
trained AlexNet architecture (Krizhevsky et al., 2012) be-
cause it outperformed other model architectures on our vali-
dation dataset (Appendix Table A1). To optimize the model
for our specific goal of detecting buried lakes, the fully con-
nected layer was rebuilt using one which we designed. This
layer used the rectified linear unit (ReLU) activation func-
tion (Hara et al., 2015) to solve the vanishing gradient prob-
lem and implemented a dropout layer to prevent the model
from overfitting (Srivastava et al., 2014). To optimize model
parameters, we used the negative likelihood log loss func-
tion and Adam optimizer (Kingma and Ba, 2015). The learn-
ing rate began as 0.005, decreasing by a factor of 0.1 every
seven epochs using a scheduler. Our model was trained for
20 epochs with a batch size of 32 false-colour training image
tiles. Finally, our model was further optimized by feeding in-
correctly classified tiles back into the training dataset.

2.1.3 Model evaluation and testing

Two different methods were used to evaluate model perfor-
mance: F1 score and receiver operating characteristic (ROC)
curves. F1 score (Eq. 1) is the harmonic mean of precision
and recall. Precision (Eq. 2) is essentially a measure of how
many positive classifications are actually buried lakes, while
recall (Eq. 3) is a measure of how many buried lakes are cor-
rectly classified.
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precision - recall

Fl=m — (1)
precision + recall
.. TP
Precision = —— 2)
TP +FP
TP
Recall= ———— 3)
TP +FN

TP is true positive, FP is false positive, and FN is false nega-
tive.

Our second model performance metric is a ROC curve.
This metric compares true and false positive rates at differ-
ent classification thresholds. For example, with a threshold
of 0, any image tile that the model says has > 0 % chance of
being a buried lake is classified as such. Thus, at a thresh-
old of 0, all image tiles will be classified as buried lakes, and
there will be high true and false positive rates. Similarly, for
a threshold of 1, no image tiles will be classified as buried
lakes, and there will be low true and false positive rates. The
area under the ROC curve (AUC) is used as an evaluation
of model performance, with a larger AUC corresponding to
better models.

Appendix Table Al compares F1 score and AUC for all
model architectures we trained to detect buried lakes. Our
initial iteration of AlexNet had a relatively high recall and
low precision. However, we decided that it was more im-
portant to mitigate false positives than to detect all possi-
ble subsurface lakes, thus prioritizing precision over recall.
Therefore, to minimize false positives, we chose a relatively
high threshold of 0.7 for classifying buried lakes. Using this
threshold, our final model had a buried lake precision of
0.929, recall of 0.880, and F1 score of 0.904. Precision for
all classes can be seen in Appendix Fig. A1, which illustrates
the confusion matrix for the test dataset.

2.1.4 Classification

To detect buried lakes across the GrIS, we followed the work-
flow outlined in Fig. 2. First, we collected S1 and S2 im-
ages across the entire periphery of the GrIS for the years
2018 and 2019, and we followed the same data collection
and pre-processing steps as outlined above in Sect. 2.1.1. As
described above, we used a threshold of 0.7 for buried lake
classification such that if an image tile had > 70 % probabil-
ity of being a buried lake, according to the model, the tile
was classified as such.

We also created a mountain/land mask to ensure that
mountain areas were not erroneously classified as buried
lakes. The mask was created by masking out areas where the
grayscale band was < 0.4 in image tiles that had > 75 % of
being either a mountain or land tile, according to the model.
The mask was dilated by 20 pixels to include regions of the
ice that could have been affected by mountain shadows.

We then used a combination of thresholding and morpho-
logical operations to outline individual buried lakes in the im-
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Figure 1. Two example false-colour image tiles for each class used for CNN training. (a) Class 1: uniform ice and snow. (b) Class 2: textured
ice and snow including bare ice regions (above) and crevassed regions (below). (¢) Class 3: surface lake remnants. (d) Class 4: open ocean
and sea water. (e) Class 5: buried lakes. (f) Class 6: land. (g) Class 7: mountains surrounded by snow.

age tiles. First, we applied a threshold to band 1 of the false-
colour image (normalized HV backscatter from S1) such that
all but the darkest 5 % of pixels were masked out. We next
performed a series of opening—closing operations using 3 x 3,
6 x 6, and finally 12 x 12 pixel kernels to fill holes in the
lake and mask out darker pixels outside the lake. All binary
image tiles were then mosaicked, and the individual buried
lakes were contoured. We found that repeating this process of
thresholding and using morphological operations improved
the delineation of buried lakes so these steps were repeated
for each contoured area.

Finally, each contoured area had to meet a series of con-
ditions to be considered a buried lake (Appendix Fig. A2).
These conditions, which depend on the shape and size of
the lake, were optimized by manual inspection to avoid false
positives. For example, for smaller buried lakes to be con-
sidered, they had to have a lower (compared to larger lakes)
microwave backscatter compared to the surrounding back-
ground area.

2.2 Surface lake detection

We used all S2 images with < 10 % cloud cover, rescaled
from the native resolution of 10 x 10 to 30 x 30 m resolu-
tion (to match S1 image resolution for CNN work and for
increased processing speed), from GEE to detect surface
lakes across the GrIS during the 2018 and 2019 melt sea-
sons. We followed Williamson et al. (2018a) to mask out
clouds by removing pixels in which the band 11 (SWIR)
top-of-atmosphere (TOA) reflectance exceeded a threshold
of 0.140. To mask ice-marginal areas, we followed Moussavi
et al. (2020) by removing pixels with a normalized difference
snow index (NDSI = %) < 0.85 and where band 2
(blue) < 0.4. Pixels above a normalized difference water in-
dex (NDWI = pe—Red) threshold of 0.5 (Miles et al., 2017)
were considered to be a surface lake pixel. This threshold
is higher than that used in other studies (Yang and Smith,
2013; Williamson et al., 2018a; Benedek and Willis, 2021),
but we found that using a lower threshold resulted in the erro-
neous inclusion of cloud and mountain shadows in the anal-

The Cryosphere, 15, 2983-3005, 2021

ysis. Additionally, use of this higher threshold was appropri-
ate for our goal of comparing relative surface water pond-
ing between the 2018 and 2019 melt seasons in each GrIS
subregion. For lakes with small areas of floating surface ice,
we filled in these areas by twice performing a morphological
closing operation using a 5 x 5 pixel kernel. We only con-
sidered surface lakes that had an area > 0.05 km?, which is
consistent with our area threshold for buried lake detection.

2.3 Buried lake analysis

We compared buried and surface lake elevations by calcu-
lating the mean elevation of each lake using the Greenland
Ice Mapping Project (GIMP) elevation dataset (Howat et al.,
2015). GIMP estimates of surface elevation have an ice-
sheet-wide root-mean-square error relative to ICESat eleva-
tions of =10 m above sea level (a.s.l.) ranging from a mini-
mum of +1ma.s.l. in most ice areas to =30 m a.s.1. in high-
relief regions (Howat et al., 2015).

To investigate the buried lake formation process in differ-
ent regions of the GrIS, we determined the percentage of de-
tected buried lakes in each region that showed any evidence
of surface meltwater during the previous summer. We define
“evidence of surface meltwater” as the presence of > 5 pixels
with an NDWI > 0.25 within the bounds of the buried lake.
For several buried lakes, we also examined a combination of
optical imagery from Sentinel-2, Landsat 8, and Landsat 7
from summers dating back to 2012. We also looked at sur-
face topography profiles above select buried lakes using the
Arctic DEM Mosaic at 2 m resolution (Porter et al., 2018).

Finally, we compared buried lake distribution with the lo-
cations of firn aquifers from 2015-2017 using the Miege
(2018) firn aquifer dataset derived from Operation Ice Bridge
radar.

2.4 Regional climate model analysis
To relate our buried lake detection results in the 2 consecutive

years to the interannual variations in surface climate and sur-
face mass balance, we used output from the regional climate
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Figure 2. Flow diagram of the methodology with key steps illustrated in image panels (a—e). The final product is shown in (e).
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model RACMO2.3_p2 (Noél et al., 2018; RACMO?2 here-
after). RACMO?2 provides output of Greenland climate and
surface mass balance from 1958 to 2020 at 5.5 km horizon-
tal resolution, which is then further statistically downscaled
to 1km horizontal resolution (Noél et al., 2016). We refer
the reader to Noél et al. (2018) for a detailed description and
evaluation of RACMO?2 over the GrIS.

In this study, we analysed RACMO2-derived monthly
mean fields of 2m air temperature, surface melt, precipita-
tion, and surface mass balance for the GrIS from 1 June to
31 December in 2018 and 2019. We also compared these
data to the long-term 1958-2017 climatology at elevations
< 2500ma.s.l.

2.5 SNOWPACK modelling

To assess meltwater production, percolation, and refreezing
in the firn layer in areas with buried meltwater, we used
the one-dimensional, physics-based, multi-layer snow cover
model SNOWPACK (Lehning et al., 2002b, a). We forced
SNOWPACK with RACMO?2-derived precipitation, air tem-
perature, relative humidity, incoming longwave and short-
wave radiation, and wind speed for the closest grid point to
a select buried lake in each of the CW (central west), NW,
and NE regions. Simulations were run from January 2000 to
December 2019, starting with zero firn layer depth for sites
with annual positive mass balance and with 10 m deep ice for
sites in the ablation zone.

Within SNOWPACK, the water flow in snow is solved us-
ing Richards’ equation (Wever et al., 2014), which describes
water percolation based on capillarity and hydraulic con-
ductivity. It enables the simulation of water accumulation
on microstructural transitions in the snowpack. These tran-
sitions can be formed by contrasting microstructural prop-
erties (grain size and shape), as well as high variability in
hydraulic conductivity (primarily governed by ice content)
(Webb et al., 2018). We used the geometric mean to deter-
mine hydraulic conductivity at the interface nodes between
two layers (Haverkamp and Vauclin, 1979). Using geomet-
ric mean maintains strong gradients in conductivity within
SNOWPACK, allowing for water accumulation on capillary
and hydraulic barriers (Wever et al., 2018).

A zero flux bottom boundary condition was prescribed
for temperature, and a free-drainage boundary condition was
used for liquid water flow. Other model settings were chosen
for optimal simulation of firn on ice sheets following Keenan
et al. (2021).

3 Results
3.1 Surface and buried lake detection

We detect a total of 374 buried lakes (covering a total area
of 241 km?) following the 2018 melt season (Fig. 3a, Ap-
pendix Table B1) and a total of 599 buried lakes (covering
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376 km?) following the 2019 melt season (Fig. 3b, Appendix
Table B1). In both years, buried lakes are concentrated along
the western coast in the SW, CW, and NW regions of the
GrIS. Detected buried lakes in SW Greenland have the
largest mean area of all regions (0.77 km? following the 2018
melt season, and 0.90 km?2 following the 2019 melt season)
and include the single largest buried lake detected, with an
area of 3.95km? in 2019 (Fig. B2). Buried lakes range in el-
evation from approximately 455 to 2450 ma.s.l. (Appendix
Fig. B3), with the highest buried lakes located in the SW and
SE (mean elevations of 1831 and 1710 m a.s.l., respectively)
and the lowest buried lakes located in the NE, NO, and NW
(mean elevations of 1195, 1135, and 1144 ma.s.l., respec-
tively). These results are broadly consistent with Miles et al.
(2017) and Koenig et al. (2015), who found that the majority
of buried lakes ranged in elevation from 1000 to 2000 m a.s.1.
In general, buried lakes do not appear at substantially differ-
ent elevations in 2019 than in 2018, with the exception of the
NO and NE regions. However, these exceptions may be the
result of bias due to a relatively small number of buried lakes
detected in 2018 in these regions (4 and 19 buried lakes in
the NO and NE regions, respectively).

We also find that the total number of surface lakes and their
total areal extent is much lower during the 2018 melt season
than during the 2019 melt season. Using our method to de-
tect surface lakes (NDWI > 0.5, and area > 0.05 km2), we
detect 3846 surface lakes (covering 1242 km?) in 2018 (Ap-
pendix Fig. B1, Appendix Table B2) and 6146 surface lakes
(covering 2569 km?) in 2019 (Appendix Fig. B1, Appendix
Table B2). Also similar to buried lake distribution, the mean
elevation of detected surface lakes is highest in the SW and
SE regions (mean 1365 and 1335 ma.s.1., respectively) and
lowest in the NO, NW, and NE regions (mean 718, 860, and
962 ma.s.l., respectively). In all regions for both years, the
mean elevation of detected buried lakes is higher than for de-
tected surface lakes (Appendix Fig. B3), which is consistent
with previous work (Miles et al., 2017; Lampkin et al., 2020).

On an ice-sheet-wide scale, both the total surface and
buried lake extents are much greater in 2019 than in 2018.
Regionally, however, different patterns emerge between sur-
face and buried lake distribution for the 2 years. Figure 4a
shows that the ratio of surface lake area in 2018 to 2019
is much less than 1 across all GrIS subregions, ranging
from 0.32 in NE Greenland to 0.67 in SE Greenland. The
2018 : 2019 buried lake area ratio, however, varies much
more across the six subregions of the GrIS (Fig. 4a). In
the SW and CW regions, we find approximately the same
2018:2019 buried lake area ratio (0.931 and 0.996, respec-
tively), even though surface lake extent is much less in 2018.
In contrast, in the NO and NE regions, the 2018 to 2019
buried lake area ratio is even smaller than the surface lake
area ratio (2018 : 2019 buried lake ratios of 0.133 and 0.171,
respectively). The NW and SE regions have comparable
2018 : 2019 surface and buried lake area ratios. Figure 4b—
e show detected buried lakes in NW (b, ¢) and NE (d, e)
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Figure 3. Buried lake distributions, shown in red. (a) The 2018 buried lakes with major GrIS drainage basins labelled (Rignot and Mouginot,
2012). (b) The 2019 buried lakes. The background map is from QGreenland.

Greenland for 2018 and 2019, highlighting the 2019 increase
in buried lake area in these regions.

For each buried lake, we additionally analysed select S2
optical imagery from the previous melt season for any evi-
dence of surface water (see Sect. 2.3). Figure 5a shows how
the percentage of buried lakes with evidence of liquid water
on the surface during the previous melt season varies across
the six GrIS subregions. In SW Greenland, most of the de-
tected buried lakes have some surface meltwater within their
bounds during the previous melt season (92 % in 2018 and
85 % in 2019). In contrast, very few lakes in the NW (5.9 %
in 2018 and 5.8 % in 2019) and SE (1.8 % in 2018 and 4.2 %
in 2019) have any evidence of previous summer surface melt
within their bounds. This discrepancy indicates that buried
lakes may form via different processes in different regions of
the GrIS and is something we address further in Sect. 4.3.

Some of the buried lakes in NW and SE Greenland coin-
cide with the locations of, and thus could be connected to,
firn aquifers that have been detected in these regions (Fig. 6,
Koenig et al., 2014; Forster et al., 2014; Miege et al., 2016;
Brangers et al., 2020). It makes sense that these features are
co-located because they both require the similar climatic con-
ditions of high melt and high accumulation to exist (Koenig
et al., 2014; Munneke et al., 2014; Dunmire et al., 2020).
However, firn aquifers, unlike buried lakes, are buried too
deep to be directly detected with S1 microwave imagery. The
top surface of the perennial firn aquifer in SE Greenland is
about 22 +7m below the ice surface (Miege et al., 2016)
and can only be detected from S1 images by using the tem-
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poral change in microwave backscatter as a proxy to infer the
locations of firn aquifers (Brangers et al., 2020). Although it
is unclear what relationship the buried lakes and firn aquifers
have, we suggest that the buried lakes may feed firn aquifers
by draining vertically.

3.2 Regional climate model and snow model analysis

To investigate the discrepancies between total surface and
buried lake area across the six GrlIS subregions, we anal-
ysed RACMO?2 data from 2018 and 2019 at elevations <
2500 m, comparing temperature and melt with the climato-
logical mean (Appendix Figs. B4, B5). We find no spatial
or temporal patterns associated with monthly precipitation or
surface mass balance anomalies that may explain surface and
buried lake differences, so this analysis is not included here.
Compared to 2018, 2019 is much warmer across elevations
< 2500 m in every month from June to November (Fig. B4).
During June and July 2019, high monthly mean temperatures
are present across the entire ice sheet (41.52°C anomaly
for June, +1.62 °C anomaly for July). It is likely that these
anomalously high temperatures contribute to anomalously
high melt during these months (Fig. B5, 1.51 and 1.02 stan-
dard deviations higher melt than the climatological mean
for June and July, respectively). In contrast, in 2018, June
and July have mean temperature anomalies of —0.17 and
—1.00 °C, respectively, and lower melt (0.24 and 0.33 stan-
dard deviations less than the climatological mean for June
and July, respectively). Higher air temperatures in each re-
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Figure 4. Comparison of 2018 and 2019 total surface and buried lake areas. (a) Ratio of 2018 to 2019 total detected surface (blue) and buried
(red) lake area for each major GrlS drainage basin. (b—e) S1 images from NW Greenland (b, ¢) and NE Greenland (d, e), with detected
subsurface lakes outlined in red. (b) 6 January 2019 (following the 2018 melt season). (¢) 1 January 2020 (following the 2019 melt season).

(d) 5 January 2019. (e) 6 January 2020.
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Figure 5. The impact of annual precipitation on buried lake formation processes. (a) Percentage of buried lakes that show any evidence of
meltwater on the surface (> 5 pixels with an NDWI > 0.25) during the previous melt season, for each of the six subregions. (b) Spatial
anomaly of the climatological (1958-2017) mean annual precipitation. Red dots represent buried lakes from 2018 and 2019 that never
appeared on the surface during the previous melt season. Blue dots represent detected buried lakes from 2018 and 2019 that appeared on the
surface during the previous melt season. (¢) Climatological mean annual precipitation with buried lakes plotted in CW Greenland.

gion during June and July 2019 also contribute to higher ice-
sheet-wide July 2019 subsurface temperatures (Fig. 7b). For
sites X, Y, and Z, respectively (Fig. 7a), the SNOWPACK-
derived mean subsurface temperature in the top 7 m of the
snow column is 2.06, 1.97, and 0.34 °C greater in July 2019
than in July 2018. These ice-sheet-wide climatological con-
ditions can explain the greater total surface lake area detected
in 2019 compared to 2018 in all six GrIS subregions.
However, from August to November 2019, a different pat-
tern emerges over northern Greenland, marked by anoma-
lously high temperatures and melt compared to the rest of
the continent and to 2018. In the NW, NO, and NE re-
gions collectively, the 2019 temperature anomalies for areas
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< 2500m are +1.17, +1.38, +1.96, and +2.00 °C for Au-
gust, September, October, and November, respectively. The
August 2019 melt is 2.26 standard deviations higher than the
climatological mean (compared to only 0.26 standard devia-
tions higher in August 2018). In comparison, in the CW, SW,
and SE regions, the 2019 temperature anomalies for these
same months are much less remarkable at —0.20, 4-0.26,
+0.51, and +1.60°C, and the August 2019 melt anomaly was
only 0.52 standard deviations higher than the climatological
mean. Higher air temperatures in NW, NO, and NE Green-
land from August—November 2019 lead to correspondingly
higher subsurface firn temperatures than in 2018 in these re-
gions in the SNOWPACK simulations (Fig. 7b). For exam-
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Figure 6. Firn aquifer and detected buried lake locations. (a) The 2015-2017 NW GrlIS firn aquifers from Operation Ice Bridge (OIB) (Miege,
2018) and buried lakes following the 2019 melt season. The background image is a S2 image from 1 September 2019. (b) The 2015-2017
SE GrIS firn aquifers from OIB and buried lakes following the 2019 melt season. Background image is a S2 image from 21 July 2019.

ple, at site Z in NE Greenland, the September 2018 and 2019
temperature anomalies are —2.54 and +4.04 °C, respec-
tively, and the mean September simulated subsurface temper-
ature in the top 7m of the snow column is 3.18 °C warmer
in 2019 than in 2018. In contrast, at site X in CW Green-
land, the September 2018 and 2019 temperature anomalies
are —0.71 and +0.98 °C, respectively, and the mean Septem-
ber simulated subsurface temperature in the top 7m of the
snow column is 0.80 °C colder in 2019 than in 2018. SNOW-
PACK analysis at site Y located in NW Greenland shows that
meltwater existed in the subsurface during both the 2018 and
2019 melt seasons, freezing through entirely in 2018 but last-
ing through the end of the year in 2019 (Fig. 7c).

These results suggest that for the three regions in north-
ern Greenland (NW, NO, and NE), anomalously high autumn
air temperatures lead to increased subsurface firn tempera-
tures, delaying and decreasing subsurface meltwater freeze-
through in 2019. This, combined with higher northern Green-
land melt in the late summer of 2019, may contribute to the
higher total buried lake area detected in NW, NO, and NW
Greenland in 2019 compared to elsewhere on the GrIS.

4 Discussion
4.1 Buried lake detection limitations

The number of buried lakes detected in this study is likely
an underestimation of the actual number of buried lakes that
existed across the GrIS in 2018 and 2019 for several rea-
sons. Firstly, our detection of buried lakes was dependent
on prescribed thresholds based on the microwave backscat-
ter within the buried lake bounds relative to the surround-
ing area (Appendix Fig. A2). We set these thresholds in a
conservative manner that prioritized minimizing false posi-
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tives, but as a result, our analysis likely missed some buried
lakes that do not meet our thresholds. For example, if we in-
creased the thresholds we use in this study by 5 % (which
makes the result less conservative), we saw 5.2 % and 5.0 %
increases in the total detected buried lake volume in 2018 and
2019, respectively. However, this changed the 2018 :2019
buried lake area ratio by only +0.18 %. Conversely, a 5 %
decrease in the thresholds we use in this study (which makes
the results even more conservative) resulted in 11.0 % and
5.4 % decreases in the total detected buried lake volume in
2018 and 2019, respectively. This decreased the 2018 : 2019
buried lake area ratio by 5.8 %, indicating that the difference
in backscatter between a buried lake and its surroundings was
greater in 2018 than it was in 2019. A possible explanation
for this is that the buried lakes detected in 2018 had persisted
from the 2017 melt season or before, resulting in these lakes
being buried at greater depths than the lakes that formed af-
ter the 2019 melt season. Another possible explanation is that
buried lakes contained less water in 2018 than in 2019, mak-
ing the lakes in 2018 appear less different relative to their
surrounding regions in the S1 images.

Another reason why our method may underestimate the
number of buried lakes is because we do not consider lakes
that are smaller than 0.05 km? (approximately 56 pixels), so
our analysis may have missed smaller buried lakes. Addi-
tionally, as the penetration depth of C-band microwave radar
in ice and snow is only several metres (Rignot et al., 2001),
buried lakes located at depths greater than this will not be de-
tected using our method. Finally, recent work has shown that
buried lakes can drain, and on very rare occasions even dur-
ing the winter months (Benedek and Willis, 2021); though
this process will likely only contribute a very minor source
of error.
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4.2 Buried lake formation processes

Previous studies have generally assumed that buried lakes
on the GrIS develop when a surface lake partially freezes
through and then gets buried by snowfall, insulating any re-
maining liquid water under the surface (Koenig et al., 2015;
Schroder et al., 2020). Modelling efforts have confirmed that
this process is sufficient to allow liquid water to exist under
the ice surface throughout the winter on both the Greenland
and Antarctic ice sheets (Law et al., 2020; Dunmire et al.,
2020; Lampkin et al., 2020). In SW Greenland, most of the
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buried lakes that we detected had some surface meltwater
within their bounds during the previous melt season (Fig. 5),
supporting the hypothesis that buried lakes form due to sur-
face lake freeze-over followed by insulating snowfall and
indicating that this is the dominant process through which
buried lakes form in SW Greenland. This process is illus-
trated by a series of chronological satellite images of a buried
lake detected following the 2019 melt season (Fig. 8).
However, in NW and SE Greenland, very few of the de-
tected buried lakes had any evidence of previous summer sur-
face melt within their bounds; suggesting that buried lakes in
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Figure 8. Chronological S1 (greyscale) and S2 (true colour) images of a buried lake detected in SW Greenland in the winter following the
2019 melt season. (a) S1 image from 3 January 2019 with no buried lake detected. (b) S2 image from 25 July 2019 with surface lake extent
outlined in blue and post-melt season buried lake extent outlined in red. (¢) S1 image from 1 January 2020.

these two regions tend to form without prior surface pond-
ing (Fig. 9). These results indicate that buried lakes in SE
and NW Greenland may form via a different process than
elsewhere on the GrIS. One likely alternative explanation is
that near-surface meltwater percolates downward and col-
lects in depressions on impermeable ice layers, which are
co-located with surface topological depressions (Drews et al.,
2020). These subsurface ice layers could be the result of ther-
mally controlled refreezing of downward-percolating melt-
water, providing impermeable layers for future meltwater to
collect on top of. Evidence in support of this idea is that many
of the buried lakes in the NW and SE are found to be lo-
cated directly below surface depressions (Fig. 9e, j, k). Our
SNOWPACK model simulations further support this idea.
For example, Fig. 7c shows that meltwater accumulates on
subsurface ice layers with low hydraulic conductivity. The
simulated water content reaches up to 40 %—-50 % in some
subsurface layers, indicating the formation of slush and sub-
sequent pore space depletion. Substantial energy loss is re-
quired to refreeze slush layers, and autumn snowfall slows
this refreezing process (e.g. compare autumn 2018 and 2019
in Fig. 7c). We also find that in autumn and winter, subsur-
face meltwater refreezing thickens the low-permeability ice
slabs, above which future meltwater may accumulate.

A second possible explanation for how buried lakes can
form without initial surface meltwater is via penetration and
absorption of shortwave solar radiation through the snow-
pack, which is capable of creating layers of slush and liquid
water beneath the surface (Leppiranta et al., 2013; MacAyeal
et al., 2019) without the presence of surface water. This is
found to occur particularly when the surface is formed by
pure ice. While downward percolation of meltwater is the
more likely explanation for buried lake formation without the
presence of surface meltwater in areas with a firn layer, sub-
surface penetration of solar radiation may enhance melting
in the vicinity of pre-existing buried lakes (Dunmire et al.,
2020).

While Fig. 5 indicates that the dominant buried lake for-
mation process is different in different regions of the GrlIS, it
is likely that a combination of formation mechanisms exist in
each region. Further, in some cases, it appears that a combi-
nation of formation processes even exist for individual lakes.
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For example, Fig. 10 includes a series of images of a buried
lake detected in CW Greenland. S1 and S2 imagery show that
the areal extent of the buried lake is greater than the surface
lake detected during the previous melt season. These images
therefore suggest that the formation of this buried lake re-
sulted not only from the burial of a surface lake by snowfall,
but also due subsurface melting and/or the downward perco-
lation of surface meltwater.

We hypothesize that the dominant formation mechanism
in different regions of the GrIS is driven by, in part, re-
gional differences in annual precipitation. Generally, buried
lakes that appear on the surface during the previous melt sea-
son are located in areas with relatively lower total annual
precipitation (Fig. 5b). Conversely, large concentrations of
buried lakes that never appear on the surface during the pre-
vious melt season are located in areas with relatively higher
total annual precipitation. For example, in CW Greenland
(Fig. 5¢), the 1958-2017 climatological average annual pre-
cipitation that falls over the buried lakes detected in both
2018 and 2019 is 509 mm w.e. per year for buried lakes
which never appear on the surface during the previous melt
season and 451 mm w.e. per year for buried lakes which do
appear on the surface during the previous melt season. The
difference in these two means is statistically significant at the
99 % confidence level.

The observations described above therefore suggest that
a mechanism by which annual precipitation may impact the
buried lake formation process is through the availability of
near-surface porous firn (Fig. B6). In areas with relatively
low annual precipitation, there is less near-surface porous
firn for meltwater to percolate, leading to increased surface
ponding, and potentially a greater proportion of buried lakes
that form following surface pond burial relative to other re-
gions. In contrast, in areas with relatively high precipitation,
there is more near-surface firn available to store meltwater,
which may initially pool on subsurface impermeable ice lay-
ers, leading to less surface ponding prior to buried lake de-
tection.

4.3 Climate drivers of buried lake distribution

Using a regional climate model to analyse temperature and
melt anomalies from 2018 and 2019, we show that an in-
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Figure 9. Optical and microwave images and surface elevation profiles of buried lakes in NW Greenland (a—e) and SE Greenland (f-i) in
chronological order. (a) S2 image from 1 August 2018. (b) S1 image from 6 January 2019. (¢) S2 image from 3 August 2019 with post-2019
melt season buried lakes outlined in red. (d) S2 image from 1 January 2020. (e) Surface elevation profile from Arctic DEM Mosaic (Porter
et al., 2018) over the buried lake shown in (d). (f) S2 image from 23 July 2018 with post-2018 melt season buried lakes outlined in red. (g)
S1 image from 2 January 2019. (h) S2 image from 21 July 2019 with post-2019 buried lakes outlined in red. (i) S1 image from 3 January
2020. (j) Surface elevation profile from ArcticDEM Mosaic over buried lakes C and D detected following the 2018 melt season. (k) Surface
elevation profile from ArcticDEM Mosaic over buried lakes E and F detected following the 2019 melt season.

(b)

Aug 2, 2019

Figure 10. Chronological optical and microwave images of a buried lake in CW Greenland. (a) S1 image from 2 January 2019. (b) S2 image
from 2 August 2019 with detected surface lakes outlined in blue and detected post-2019 melt season buried lakes outlined in red. (c) S1
image from 3 January 2019.

crease in buried lake area in 2019 in northern Greenland future (Leeson et al., 2015). Thus, we also expect that buried
(NW, NO, and NE regions) is likely due to a combination lakes will form further inland at higher elevations in a warm-
of anomalously high late-season melt and anomalously high ing climate, with potential implications for changing surface
near-surface autumn (i.e. August to November) air tempera- hydrology and total ice loss.

tures. Warmer late-summer and autumn air temperatures may

prevent the water in surface lakes from freezing entirely and 4.4 Buried lake implications

allow some liquid meltwater to remain buried. This analysis
suggests that increasing air temperatures, which contribute to
increased summer melt, will likely lead to an increase in the
number and area of buried lakes and therefore an increased
volume of liquid water that is stored beneath the surface dur-
ing the winter. Surface lake distribution across the GrIS has
expanded inland to higher elevations (Howat et al., 2013),
and it is expected that surface lakes will continue to form at
higher elevations as air temperatures continue to rise in the

Perennial buried lakes store meltwater that could otherwise
run off and eventually drain into the ocean. Thus, these fea-
tures act as a potential buffer against sea level rise. However,
this buffer may only be temporary given that buried lakes
have been shown to drain (Dunmire et al., 2020), even occa-
sionally during the winter (Benedek and Willis, 2021). Be-
cause buried lakes exist perennially and can drain through-
out the year, at lower elevations (< 1600 m; Poinar et al.,
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2015), drainage of buried lakes could provide an influx of
water to the bedrock at atypical times of year. However, as
only a small fraction of buried lakes drain during the winter,
the influx of meltwater to the bedrock during winter months
is likely to be minimal. Additionally, as some buried lakes
in the SE and NW regions of the GrIS are located directly
above observed firn aquifers, their potential drainage could
provide an influx of meltwater to these firn aquifers. How-
ever, as the volume of water stored in buried lakes on an ice-
sheet-wide scale is likely to be relatively small, these effects
would mainly be relevant at local scales, particularly where
large concentrations of buried lakes exist.

5 Conclusions

In this paper, we have developed a method that uses a con-
volutional neural network to detect buried lakes across the
entire GrIS following each of the 2018 and 2019 melt sea-
sons. We compared buried and surface lake spatial distribu-
tions across six GrIS subregions and used a regional climate
model to explain the spatial and temporal differences. We
find that while the total surface lake areal extent was less in
2018 than in 2019 across all six subregions, buried lake ex-
tent is roughly equal in 2018 and 2019 in the SW and CW
regions but much less in 2018 in the NO and NE regions.
These regional differences in buried lake extent between
2018 and 2019 can be explained by regional patterns of late-
summer (August) melt and autumn (September—November)
air temperatures. Anomalously high late-summer melt, cou-
pled with anomalously high autumn air temperatures in 2019
in northern Greenland likely contributed to increased buried
lake extent in this region following the 2019 melt season.
Additionally, simulations using the one-dimensional SNOW-
PACK model confirm that subsurface meltwater in buried
lakes remained unfrozen through autumn 2019.

We also examined the buried lake formation process by in-
vestigating S1 and S2 imagery prior to the detection of buried
lake features. We find that different formation processes
likely occur in different regions. In SW and CW Greenland,
buried lakes likely form when surface lakes partially freeze
over and become insulated by following snowfall. In con-
trast, in SE and NW Greenland, no evidence of surface melt
exists in optical imagery prior to the discovery of the ma-
jority of detected buried lakes; indicating that these features
form via a different process. It is possible that subsurface
penetration of shortwave radiation, and/or downward per-
colation and subsurface pooling of near-surface melt, could
be responsible for the formation of buried lakes in SE and
NW Greenland. The simulation of the firn in NW Greenland
showed liquid water accumulating on low-permeability ice
layers approximately 2 m below the surface.

https://doi.org/10.5194/tc-15-2983-2021
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Surface meltwater on the GrIS plays an important role
in both ice sheet dynamics, as lake drainage events pro-
vide an influx of meltwater to the bed which may temporar-
ily increase ice velocity and direct mass loss, as meltwater
runoff positively contributes to sea level rise. The evolution
of surface meltwater features has been thoroughly examined
in prior studies using optical satellite imagery. In contrast,
buried meltwater features are invisible in optical imagery,
and as a result, these features are more poorly understood
than their surface counterparts. Here, we provide a method
for continent-wide mapping of buried lakes and a compre-
hensive look at the drivers of their formation and distribution
across the GrIS.
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Appendix A: Additional tables/figures relating to
methods

Table A1. Comparison of model evaluation metrics between different CNN architectures.

Model name  Source Training time  Precision  Recall F1  AUC
AlexNet Krizhevsky et al. (2012) 12min 12 0.894 0967 0929 0.986
DenseNet Huang et al. (2017) 22min 28 0.893 0919 0.906 0.976
GoogLeNet  Szegedy et al. (2015) Smin42s 0918 0.856 0.886 0.972
MNASNet Tan et al. (2019) Smin 47s 0.817 0.895 0.854 0.954
MobileNet Sandler et al. (2018) Smin 52s 0937 0.856 0.895 0.956
ResNet He et al. (2016) 16 min 10s 0.857 0.947 0.900 0.979
ShuffleNet Ma et al. (2018) Smin 19s 0.889 0344 0497 0.691
VGG Simonyan and Zisserman (2015) 21 min 29s 0.892 0947 0919 0.976
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Figure A1. CNN test dataset confusion matrix. Values are normalized by the predicted conditions and thus represent the precision for each
class. For example, a value of 92.9 % for predicted shows a buried lake and actual show a buried lake, meaning that 92.9 % of the predicted
buried lakes are actually buried lakes.
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Figure A2. Thresholds used in the CNN for different buried lake shapes/sizes.
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Appendix B: Additional tables/figures relating to results

Table B1. Detected buried lake statistics.

Region  No. of detected lakes Mean lake area (kmz) Max. lake area (kmz) Total lake area (kmz) Mean elevation (m)

SW 87 0.77 3.50 67.39 1825

Ccw 89 0.71 2.51 63.58 1557

2018 NW 119 0.55 2.17 65.81 1122
NO 4 0.30 0.51 1.20 990

NE 19 0.49 1.79 9.24 1435

SE 56 0.60 2.06 33.86 1700

SW 87 0.90 393 72.36 1837

CwW 77 0.83 2.67 63.83 1654

2019 NwW 208 0.61 3.08 127.91 1156
NO 37 0.24 0.61 9.04 1154

NE 125 0.43 1.51 54.02 1159

SE 72 0.68 2.89 48.80 1718

Figure B1. Surface lake distributions, shown in blue. (a) The 2018 detected surface lakes with major GrIS drainage basins labelled (Rignot
and Mouginot, 2012). (b) The 2019 detected surface lakes. The background map is from GEE (Gorelick et al., 2017).
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Table B2. Detected surface lake statistics.

Region  No. of detected lakes = Mean lake area (kmz) Max. lake area (kmz) Total lake area (km2) Mean elevation (m)

SW 1077 0.34 3.45 367.57 1336
CwW 679 0.45 6.18 304.53 1094
2018 NW 633 0.24 2.09 154.99 791
NO 539 0.29 7.61 158.09 609
NE 705 0.29 3.45 201.72 718
SE 213 0.26 2.62 55.22 1289
SW 1524 0.44 18.36 667.79 1386
CcwW 1000 0.57 10.36 568.93 1173
2019 NwW 1037 0.34 8.42 348.40 902
NO 754 0.35 8.56 261.55 796
NE 1540 0.42 22.32 640.35 1074
SE 291 0.28 4.63 81.86 1369
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Figure B2. Box plots showing the distribution of detected buried (red) and surface (blue) lake area in each of the six GrlIS subregions. Boxes
represent the interquartile range of lake area, and whiskers represent the entire range of lake area in a given region/year.
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Figure B3. Box plots showing the distribution of detected buried (red) and surface (blue) lake elevations in each of the six GrIS subregions.
Boxes represent the interquartile range of lake elevations, and whiskers represent the entire range of lake elevation in a given region/year.

Temperature 2018 (°C) Temperature 2019 (°C)
Region Jun Jul Aug Sep Oct Nov Jun Jul Aug Sep Oct

sSw 0.494 0.173 -0.005 -0.684 0.736 0.596 -0.370 0.198

SE 0.157 0.019 -0.060 -0.324 -1.227 0.853 -0.016 0.451
CW 0.712 -0.115 -0.172  -0.407 0.298
NwW| -0.007  -1.368 1.098 -0.488

NO| -0417 -0.846 1441 -0.386 -0.074

NE| -0.261 -0.723 0.417  -0.910 1.352

Figure B4. June through November monthly temperature anomalies below 2500 m (°C) from the 1958-2017 mean climatology for each
subregion of the GrlS in 2018 and 2019.
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Figure BS. June, July, and August monthly melt anomalies below 2500 m from the 1958-2017 mean climatology for each subregion of the

GrlS in 2018 and 2019.
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Figure B6. Simulated air content profiles at sites Y and Z. Firn air content (FAC) in the top 10 m and total annual precipitation from the
RACMO 1958-2017 climatology for each site are noted in the table.
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Code availability. Code used for CNN model training and test-
ing and buried lake detection can be found at https://github.com/
drdunmire1417/Greenland_ CNN_code (Dunmire, 2021).

Data availability. CNN training, validation, and testing data along
with shapefiles for all detected buried and surface lakes are freely
available at https://doi.org/10.5281/zenodo.4813833 (Dunmire et
al., 2021). Firn aquifer data are available from the Arctic Data Cen-
ter (https://doi.org/10.18739/A2TM72225, Miege, 2018). RACMO
data are available at https://doi.org/10.1594/PANGAEA.904428
(Nogl, 2019). All other data are freely available on Google Earth
Engine at the following GEE identifier snippets — Sentinel 1:
ee.ImageCollection ("COPERNICUS/S1_GRD"), Sen-
tinel 2: ee. ImageCollection ("COPERNICUS/S2"), Land-
sat 7: ee.ImageCollection ("LANDSAT/LE07/C01/T1_

8DAY_TOA"),Landsat8:ee.ImageCollection ("LANDSAT

/LC08/C01/T1_8DAY_TOA"), Green-
land Icesheet Mapping Project DEM:
ee.Image ("OSU/GIMP/DEM"), and Arctic DEM:

ee.Image ("UMN/PGC/ArcticDEM/V3/2m_mosaic").
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