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Nonreversible Markov Chain Monte
Carlo Algorithm for Efficient
Generation of Self-Avoiding Walks

Hanqing Zhao and Marija Vucelja*

Department of Physics, University of Virginia, Charlottesville, VA, United States

We introduce an efficient nonreversible Markov chain Monte Carlo algorithm to generate
self-avoiding walks with a variable endpoint. In two dimensions, the new algorithm slightly
outperforms the two-move nonreversible Berretti-Sokal algorithm introduced by H. Hu, X.
Chen, and Y. Deng, while for three-dimensional walks, it is 3-5 times faster. The new
algorithm introduces nonreversible Markov chains that obey global balance and allow for
three types of elementary moves on the existing self-avoiding walk: shorten, extend or alter
conformation without changing the length of the walk.

Keywords: nonreversible Markov chain Monte Carlo, Markov chain, Monte Carlo, self-avoiding walk, efficient
sampling

1 INTRODUCTION

A Self-Avoiding Walk (SAW) is defined as a contiguous sequence of moves on a lattice that does not
cross itself; it does not visit the same point more than once. SAWs are fractals with fractal
dimension 4/3 in two dimensions, close to 5/3 in three dimensions, and two in dimensions
above four [2, 3]. In particular two-dimensional SAW's are conjectured to be the scaling limit
of a family of random planar curves given by the Schramm-Loewner evolution with parameter
k = 8/3 [4]. Since their introduction, SAWs have been used to model linear polymers [5-7].
They are essential for studies of polymer enumeration where scaling theory, numerical
approaches, and field theory are too hard to analyse [8, 9]. SAWs are also used in the
numerical studies of finite-scaling [10] and two-point functions [11] of Ising model and n —
vector spin model [12]. Analytical results on SAWs are scarce, and generating long SAWs is
computationally complex.

Typically one uses Monte Carlo approaches [13, 14] to generate SAWs numerically. Many
previous Markov chain Monte Carlo (MCMC) algorithms have been designed to efficiently produce
different kinds of SAWs by manipulating potential constructions that can be executed on a walk to
increase, decrease its length, or change its conformation. For example, the pivot algorithm samples
fixed-length SAWs—it alters the walk’s shape without changing its length [15]. While the Berretti-
Sokal algorithm and BFACF algorithm contain length-changing moves and can generate walks with
varying lengths [16, 17].

The above described MCMC algorithms satisfy the detailed balance condition—which states that
the weighted probabilities of transitions between states are equal. In other words, these algorithms
use reversible Markov chains. The reversibility introduces a diffusion-like behavior in the space of
states. In recent years, there has been progress in designing nonreversible Markov chains that
converge to the correct target distribution. Such chains due to “inertia” reduce the diffusive behavior,
sometimes leading to better convergence and mixing properties compared to the reversible chains
[18-25].
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FIGURE 1 | The endpoint atmospheres on a self-avoiding walk of length |

s| = 4. For this self-avoiding walk, there are three positive ending atmospheres
(red arrows) and one endpoint atmosphere, which is the last occupied edge
(black arrow), and the number of neutral endpoint atmospheres is two
(green arrows).

As for SAW, H. Hu, X. Chen, and Y. Deng modified the
Berretti-Sokal algorithm to allow for nonreversible Markov
chains [1]. This modification yields about a ten times faster
convergence than the original Berretti-Sokal algorithm in two
dimensions and is even more superior in higher dimensions. Both
the original and the modified Berretti-Sokal algorithm have two
elementary moves—to shorten or extend the SAW. Building
upon these algorithms, we add another move—to alter the
conformation of SAW and introduce a three-move
nonreversible MCMC technique to create SAWs. We discuss
the advantages of this approach and compare the two
nonreversible algorithms. The three types of moves correspond
to three types of “atmospheres”; therefore, we start below by
defining an atmosphere.

2 THE ATMOSPHERES

The algorithms creating SAW's usually manipulate different kinds
of proposed moves, often referred to as atmospheres [26-29].
Atmospheres can be described as potential constructions that can
be executed on a given walk to increase or decrease the current
length or change the conformation. When generating SAWs, the
algorithm usually performs moves on either endpoint
atmospheres or generalized atmospheres where positive and
negative atmospheres are generally defined as ways of adding
or removing a fixed number of edges to the current walk. In
contrast, neutral moves are ways of altering the walk’s shape

\ 4

negative move positive move neutral move

FIGURE 2 | Possible self-avoiding walks after executing one move on
the self-avoiding walk shown in Figure 1.

without changing its length. For instance, the pivot algorithm,
which only acts on neutral atmospheres, can be used to sample
fixed-length walks [15]. In contrast, the Berretti-Sokal algorithm
and BFACF algorithm contain length-changing atmospheric
moves and can generate walks of different lengths [16, 17].

Suppose s is the current SAW starting from the origin with
length |s| and its last vertex is v. The positive endpoint
atmospheres are the lattice edges incident with the last vertex,
which can be occupied to extend the length by one. The negative
endpoint atmosphere is just the last occupied edge since
removing it can extract the length by one. The neutral
endpoint atmospheres are edges that can be occupied by
changing the direction of the vertex v. For any SAW with a
non-zero length, the number of negative endpoint atmospheres is
one. If the SAW has zero length, the number of negative endpoint
atmospheres is set to zero, as the length can not be further
reduced.

Figure 1 shows a SAW with a length equal to four. In this
example, three unoccupied edges are incident with the last
vertex; they are shown in red on the graph, making three
positive ending atmospheres. As we see from the last
occupied edge (black arrow), there is just one negative
endpoint atmosphere. There are two neutral endpoint
atmospheres, and the corresponding edges are displayed
with green arrows.

Three types of elementary moves in the algorithm
executing the endpoint atmospheres correspond to the
three kinds of endpoint atmospheres. Here we call a
positive move the one to be performed on a positive
endpoint atmosphere, resulting in occupying one empty
edge incident with the last vertex. Similarly, a negative
move implies executing on the negative endpoint
atmosphere, that is, deleting the last occupied edge. Finally,
the neutral move is changing the direction of the last occupied
edge. The three kinds of moves’ for the SAW in Figure 1 are
illustrated in Figure 2.

3 THE BERRETTI-SOKAL ALGORITHM

The balance condition is one of the most important factors in
designing an MCMC algorithm since it ensures that the Markov
chain will converge to a target distribution. The balance condition
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for most MCMCs 1is the so-called Detailed Balance

Condition (DBC)

Pym;=Pm, Vi, jeQ, (1)

i

where Pj; is the transition probability from state j to state i, Q) is
the space of states, and 7 is the stationary distribution, see e.g.,
[21, 30]. Detailed balance is a local condition and thus easy to
implement. However, for a Markov chain to asymptotically
converge to a stationary distribution 7, all we need is a weaker
condition—the Global Balance Condition (GBC):

Y Pymj=Y Pym, VieQ, )

jeQ jeQ

where Q is a space of states. The GBC physically means that the
total probability influx at a state equals the total probability efflux
from that state [13, 20].

Note that the probability distribution of a SAW of length |s| is

7= xW 3)

where x is the weight of a unit step. This is what we want the
Markov chain target distribution to be.

One of the most famous reversible MCMC algorithms
that manipulate the endpoint atmospheres is the Berretti-Sokal
algorithm [16]. The Berretti-Sokal algorithm only considers the
positive and negative endpoint atmospheres and thus has two
elementary moves: the increasing and the decreasing move. In
this paper, we are using a Metropolis-Hastings style [31, 32]
implementation of the Berretti-Sokal algorithm. It works as
follows:

1) Suppose the current length of a SAW is given by N. With equal
probability, the algorithm chooses the increasing move or the
decreasing move.

2) If the increasing move is selected, with probability P, one of
the empty edges incident with vy, the last vertex, will be
occupied randomly when this leads to a valid SAW of N + 1
steps. Similarly, for the decreasing move, the last occupied
edge is deleted with probability P_. The two probabilities are
given by

P, = min{l,x(z - 1)}, (4)

. 1
P_= mln{l,m}, (5)

where zis the coordination number of the system, i.e., the number
of lattice points neighboring a vertex on the lattice.

Special attention is needed for the “null” walk, |s| = 0, in such
case only an increasing mode is allowed and the number of empty
edges is z, rather than z — 1. For simplicity we permanently set P,
= min{l, x (z — 1)}.

To prove that the DBC holds in the Berretti-Sokal
algorithm, let us for example consider the case where x (z -
1) < 1. From Egs. 4, 5 we conclude that the choice implies P, <
1 and P_ = 1. Thus we have x¥IP,(z — 1)7! = xI*1 = xIs*1p_|
which satisfies the DBC, given in Eq. 1. The proof is analogous
in the case x (z — 1) > 1.

Nonreversible MCMC for Self-Avoiding Walks
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FIGURE 3 | (A) Diagram of probability flows in the three-move
nonreversible Berretti-Sokal algorithm. Each rectangle specifies a SAW of
length |s|. Each realization of the algorithm is different because of the neutral
moves, allowing to alter the configuration of the walk. The top row
represents the increasing mode in which the algorithm can produce either a
positive or neutral move, while the bottom row represents the decreasing
mode where the algorithm produces either negative or neutral moves. The
circular arrow represents the execution of a neutral move, leading to a SAW
with the same length but a different shape as the last occupied edge’s
direction is changed. The “null” walk, |s| = 0, requires special attention; in this
case, we do not allow neutral and decreasing moves. (B) Example of the
incoming fluxes for SAW of length |s| = 2 in 2D on a square lattice.

4 NONREVERSIBLE BERRETTI-SOKAL
ALGORITHMS

One possible way to set up a nonreversible algorithm is to
increase the phase space by introducing replicas [1, 20, 21]
and work on the extended space with nonzero probability
fluxes. Here we follow an analogous approach. As mentioned
above, there has been a successful two-move nonreversible
Berretti-Sokal  algorithm [1]. The authors achieved an
important improvement in the speed of the algorithm. The
speedup is about tenfold in two-dimensional systems and is
even more pronounced in higher-dimensional systems. They
set up two modes in the algorithm, which we call the
increasing mode and the decreasing mode.

4.1 Three-Move Nonreversible
Berretti-Sokal Algorithm

The new algorithm has a third type of move—besides shortening
and extending the SAW, we also allow the SAW to change its
conformation. Namely, in the increasing mode, the algorithm can
perform either an increasing move or a neutral move; in this
mode, the decreasing move is not allowed. Analogously, in the
decreasing mode, the algorithm will only execute either a
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decreasing move or a neutral move. A diagram describing the
algorithm is shown in Figure 3. It works as follows:

1) In the increasing mode, with equal probability, perform either
the positive move or the neutral move. For the positive
move, the algorithm will randomly occupy one of the
empty edges incident to the last vertex with probability P,.
While for the neutral move, the algorithm will change the
direction of its last occupied edge randomly. If the chosen
move does not lead to a valid SAW, the algorithm will change
to the decreasing mode.

2) In the decreasing mode, with equal probability, perform either
the negative move or the neutral move. For the negative move,
the algorithm will delete the last occupied edge with
probability P_. For the neutral move, the algorithm will
change the direction of its last occupied edge randomly. If
the chosen move does not lead to a valid SAW, the algorithm
will change into the increasing mode.

3) When the length is 0, the algorithm will be changed into the
increasing mode, and a positive move will be performed.

Therefore, in each step, the algorithm will either execute one of
the elementary moves successfully or change to the other mode.
The global balance condition implies that the total influx
probability flow equals the efflux probability flow; that is, we have

00 + g7 + 98 =4, ()

where xM is the distribution of SAWs of length |s| and ¢ — s
describe the incoming probability fluxes, where the superscript
denotes the mode and the subscripts denote the move. The three
terms on LHS are the incoming flow of executing a + move in
mode (+), $*, the incoming flow of executing one neutral move
in mode (%), ¢(§i), and the incoming flow from switching the
mode from (¥) to (£), qﬁ(;—'). To clarify the third term in the LHS by
example: ¢*) is the incoming flux from switching from (-) mode
to the (+) mode. Let us show that global balance condition holds
for the increasing mode when x (z — 1) < 1. Proofs for the other
cases follow analogously. In this case the three fluxes are:

e The incoming flux from a positive move is

1 xls!

() = 4 s-1p -
o= P T T

, ™)
where in the second equality we used Eq. 4. The factor 1/2 is the
result of selecting either a positive move or a neutral move and the
term (z — 1)7" is from occupying one of the z — 1 empty edges
incident to the last vertex.

¢ The incoming flux from a neutral move is

|s| 1"
¢(+>_ X"z

=2y ®

where z" is the number of possible edges which will lead to a valid
SAW for the last occupied edge when changing its direction.

e The incoming flux from the decreasing mode, ¢*), since
P_ =1, as we assume that x (z — 1) < 1, the only possible reason of

Nonreversible MCMC for Self-Avoiding Walks

changing from another mode is that when the last occupied
changes it direction, it does not lead to a valid SAW, thus

o Lol 2"
90 = 2x (1 Z_1>. 9)

Summing over the incoming flows, given in Egs. 7-9
incoming-flow-from-minus, we verify that the global balance
condition, Eq. 6, holds. Note that we do not assume that a
particular SAW configuration of length |s| is achieved with the
same frequency in the increasing and the decreasing mode—it
comes out as a corollary of the global balance condition.

To test the efficiency of the new algorithm, we used the
integrated autocorrelation time 7. For a given observable O, it
is defined as

9 (10)

T= >
o

|3
Q|9

where m is the number of steps, O is the estimator of the average
O, and o” denotes a variance, c.f. [33]. Here we choose the length
of the walk, |s|, for the observable as it is a common choice for
SAWs. We tested the efficiency as a function of the linear system
size by generating SAWs in a square lattice with n X n points and
in a cubic lattice with n x n x n points. The boundary conditions
were fixed. With 7, we denote the integrated autocorrelation time
of the two-move nonreversible Berretti-Sokal algorithm (algorithm
from [1]). The comparison of the two algorithms is on Figure 4.

Note, that there are two different scenarios based on the value
of weight of a unit step x. For example, for a 2D square lattice,
whenx=0.4,P,=1,and P_< 1,whileforx=0.2,P_=1,and P, <
1. To study both scenarios present the results under initial setting
where x = 0.2 and x = 0.4 in a 2D system and correspondingly x =
0.12 and x = 0.24 in a 3D system. From Figure 4 we conclude that
the ratio of the autocorrelation times for large systems is weakly
dependent on the value of x.

In 2D, the ratio of the autocorrelation time of the new
algorithm over the previous one is always less than one, which
means that the new algorithm has a slightly better performance.
We further tested the new algorithm in a three-dimensional cubic
system. The new algorithm tends to have better performance in
large systems, and the difference is more significant than the 2D
situation. When the length of the cube is less than 20, the previous
algorithm is more efficient with less autocorrelation time.
However, as the system’s scale increases, the ratio /7
becomes less than one, and the value is between 0.2 and 0.3,
indicating that the new algorithm is 3-5 times faster in these
larger 3D systems. We have also tested our algorithm in 4D and
5D systems where no general improvements are found compared
to the two-move nonreversible Berretti-Sokal algorithm. We show
the detailed findings in Appendix. The fact that the addition of
neutral moves does not improve the efficiency in generating
SAWs in 4D and 5D, could be explained by the fact that as
dimension gets higher, it will be much more likely for the
algorithm to make a successful, positive move, which results in
less benefit from adding the neutral move.

To summarize, we have created a new nonreversible algorithm
manipulating the endpoint atmospheres to generate SAWs. By

Frontiers in Physics | www.frontiersin.org

January 2022 | Volume 9 | Article 782156


https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Zhao and Vucelja

Nonreversible MCMC for Self-Avoiding Walks

systems while it is 3 — 5 times faster in most 3D systems.
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FIGURE 4 | The ratio of integrated autocorrelation times of the three-move nonreversible Berretti-Sokal algorithm, =, and the two-move nonreversible Berretti-Sokal
algorithm, 7o, for 2D, and 3D systems as a function of the linear system size n. The three-move nonreversible Berretti-Sokal algorithm’s performance is slightly better in 2D

introducing all three kinds of endpoint atmospheres’ moves, the
new algorithm has greater flexibility than the two-move
nonreversible Berretti-Sokal algorithm, from [1]. For instance,
when occupied lengths surround the endpoint of a given SAW,
the algorithm will change into the negative mode since neither a
neutral move nor a positive move will lead to a valid SAW.
Assume that P, < 1, for an algorithm with only positive and
negative moves, it will return to the origin and start from the
beginning again. On the other hand, with a neutral move, the
SAW does not have to start from the origin again. When a neutral
move in the negative mode is not possible, the algorithm will
change into the positive mode. The addition of neutral moves
gives the algorithm greater flexibility in finding valid SAWs.

5 CONCLUSION

We have created a new nonreversible algorithm manipulating the
endpoint atmospheres to generate SAWSs. The previous two-move
nonreversible Berretti-Sokal algorithm has already improved the
efficiency greatly as its speed is ten times faster than the original
Berretti-Sokal algorithm in 2D systems and is even more superior
in higher-dimensional systems. By introducing all three kinds of
endpoint atmospheres’ moves, the three-move nonreversible
Berretti-Sokal algorithm has greater flexibility and higher
efficiency than the two-move algorithm. By comparing the
autocorrelation time, the new algorithm is slightly faster in 2D
systems and is 3-5 times faster in most 3D systems.

The three-move nonreversible Beretti-Sokal algorithm
is designed to create SAWs with a fixed beginning point

and variant ending points. There are also algorithms
manipulating general atmospheres instead of endpoint
atmospheres. Algorithms like the BFACF algorithm
can create SAWs with a fixed beginning and ending
point [17]. Meanwhile, other algorithms generating SAWSs
like the PERM, GARM, and pivot algorithm have no
nonreversible versions yet [15, 28, 34, 35]. Previous
research has improved the efficiency of PERM algorithm
without implementing the nonreversible MCMC techniques
[36]. These algorithms might serve as aspects for future
research.

Finally, here we manually found a way with three atmospheres
on how to fulfill the global balance. Looking into the future,
one might delegate this task to a neural network alike in [37].
Optimizing the transition operator with more than three
types of endpoint atmospheres might further increase the
efficacy.
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APPENDIX efficient, when compared to the two-move nonreversible Berretti-
Sokal algorithm. The detailed findings are in the Table 1.

We investigated the performance of the three-move nonreversible

Berretti-Sokal algorithm in 4D and 5D. We did not find it to be

TABLE 1 | The ratio of integrated autocorrelation times of the three-move nonreversible Berretti-Sokal algorithm, =, and the two-move nonreversible Berretti-Sokal algorithm,
70, for 4D and 5D systems as a function of the linear system size n and the SAW unit step weight x. The ratio about 1 for (x = 6/35, d = 4) and (x = 1/5, d = 5), however for
(x =3/35,d =4) and (x = 1/10, d = 5) it is above unity, which indicates that two-mode nonreversible Berretti-Sokal algorithm is more efficient there.

Dimension d = 4

System size n X = 6/35 x =3/35

25 0.714 + 0.069 2.970 + 0.356
51 1.081 + 0.050 2.216 + 0.229
75 0.994 + 0.033 2.812 + 0.658
101 0.945 + 0.028 2.349 + 0.190

Dimension d = 5

System size n x=1/5 x =1/10

21 0.920 + 0.002 4.214 + 1,108
25 0.961 + 0.001 4.451 + 0.571
31 0.992 + 0.002 4.992 + 0.696
35 0.995 + 0.002 3.261 + 0.513
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