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ABSTRACT
Point process modeling is gaining increasing attention, as point process type data are emerging in a large
variety of scienti!c applications. In this article, motivated by a neuronal spike trains study, we propose
a novel point process regression model, where both the response and the predictor can be a high-
dimensional point process. We model the predictor e"ects through the conditional intensities using a set of
basis transferring functions in a convolutional fashion. We organize the corresponding transferring coe#-
cients in the form of a three-way tensor, then impose the low-rank, sparsity, and subgroup structures on this
coe#cient tensor. These structures help reduce the dimensionality, integrate information across di"erent
individual processes, and facilitate the interpretation. We develop a highly scalable optimization algorithm
for parameter estimation. We derive the large sample error bound for the recovered coe#cient tensor, and
establish the subgroup identi!cation consistency, while allowing the dimension of the multivariate point
process to diverge. We demonstrate the e#cacy of our method through both simulations and a cross-area
neuronal spike trains analysis in a sensory cortex study.
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1. Introduction

Point process modeling is drawing increasing attention, as data
in the form of point process are emerging in a wide variety
of scienti!c and business applications. Examples include for-
est ecology (Stoyan et al. 2000), spatial epidemiology (Dig-
gle et al. 2010), social network modeling (Perry and Wolfe
2013), neuronal activity modeling (Brown, Kass, and Mitra
2004; Chen et al. 2019b), functional neuroimaging meta analysis
(Kang et al. 2011, 2014), among others. In general, a point
process is a collection of events, or points, randomly located in
some domain space, for example, a spatial domain or a time
domain. Our motivation is a neuronal spike trains analysis
in a sensory cortex study (Okun et al. 2015). A newly devel-
oped two-photon calcium imaging technique is now greatly
facilitating neuroscience studies, by enabling simultaneously
recording of the dynamic activities for a population of neurons
while maintaining individual neuron resolution (Ji, Freeman,
and Smith 2016). In our study, there are 139 and 283 neu-
rons imaged simultaneously from two areas of a rat’s brain,
the primary visual cortex area (V1) and the primary auditory
cortex area (A1). In a visual activity, it is known that some
locations of the primary visual cortex would respond to input
from auditory and other sensory areas (Liang et al. 2013).
One of the scienti!c goals of this study is to understand the
association patterns and information transmissions between
the neurons across A1 and V1, and to model potential exci-
tation or inhibition e"ects of neuron !rings between the two
areas.

In this article, we propose a new multivariate point pro-
cess regression model to address this question, where both the
response and the predictor can be a high-dimensional point

CONTACT Lexin Li lexinli@berkeley.edu Department of Biostatistics and Epidemiology, University of California, Berkeley, CA 94720.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

process. We model the predictor e"ects through the condi-
tional intensities using a set of basis transferring functions in
a convolutional fashion. We organize the corresponding trans-
ferring coe#cients in the form of a three-way tensor, then
impose the low-rank, sparsity, and subgroup structures. Both
low-rank and sparsity are commonly used low-dimensional
structures in high-dimensional data analysis, and are scien-
ti!cally plausible in neuroscience and many other applica-
tions (Zhou, Li, and Zhu 2013a; Chen, Raskutti, and Yuan
2019a; Zhang and Han 2019; Bacry et al. 2020). Subgroup is
another frequently used structure in plenty of applications, and
it corresponds to ensemble neural activities in neuroscience
(Okun et al. 2015). Together these structures e"ectively reduce
the number of free parameters, and also greatly facilitate the
model interpretation. We then develop a highly scalable alter-
nating direction method of multipliers (ADMM) algorithm for
parameter estimation. We establish the asymptotic properties
of the penalized maximum likelihood estimator while allow-
ing the dimensions of both the response and predictor pro-
cesses to diverge. We also comment that, although motivated
by a neuroscience problem, our method is equally applicable
to numerous other point process applications, for example,
the social infection network learning (Zhou, Zha, and Song
2013b).

There have been a large number of models targeting a spa-
tial point process, where its local intensity is usually assumed
to depend on some deterministic features or some location-
relevant random variables (see, e.g., Guan 2008; Guan, Jalil-
ian, and Waagepetersen 2015; Kang et al. 2014; Deng et al.
2017). We instead aim at a temporal point process, which
is usually evolutionary in nature, in that the occurrence of
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https://doi.org/10.1080/01621459.2021.1955690
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1955690&domain=pdf&date_stamp=2021-08-26
mailto:lexinli@berkeley.edu
http://www.tandfonline.com/r/JASA


2 X. TANG AND L. LI

a future event depends on the historical realizations of the
process. This leads to a di"erent set of model assumptions
and modeling techniques. Moreover, most classical inhomo-
geneous point process solutions target a univariate or bivari-
ate process along with a limited number of predictors (Diggle
et al. 2010; Waagepetersen and Guan 2009). We instead target
high-dimensional response and predictor processes, and we
allow the dimension of both processes to diverge. This has
introduced new challenges in both modeling and theoretical
analysis.

There have also been a family of models targeting a tem-
poral point process, all of which are built on a self-exciting
process called the Hawkes process (Hawkes 1971). A Hawkes
process assumes that a future event is triggered by its own
past events, and is widely used in neuronal spike trains anal-
ysis. In recent years, there have been a number of point pro-
cess models extending the Hawkes process. Our proposal is
related to but also clearly distinctive from the existing models
in multiple ways. First of all, our model extends the classi-
cal Hawkes process, by simultaneously incorporating nonlin-
ear and inhomogeneous intensities, multiple basis functions,
diverging point process dimensions, and additional structures
on the transferring coe#cients. On the other hand, our model
is more general, in that it allows a wide class of stochastic
processes to be predictors, and can be applied to the scenarios
where the Hawkes process is applicable, but not vice versa.
We give some examples in Section 2.2. Second, Zhou, Zha,
and Song (2013b) introduced low-rank and sparsity structures
in a multivariate Hawkes model. Bacry et al. (2020) stud-
ied the theoretical properties of the model, while potentially
allowing the point process dimension to diverge. Our pro-
posal employs similar low-dimensional structures and explicitly
studies the diverging dimension. However, there are numer-
ous fundamental di"erences. Zhou, Zha, and Song (2013b),
Bacry et al. (2020) both imposed the linear link function and
the stationary assumption, whereas we consider a general and
potentially nonlinear link, and do not require the process to be
stationary. In addition, Zhou, Zha, and Song (2013b) and Bacry
et al. (2020) organized the transferring coe#cients in a matrix
form and placed a low-rank structure on the coe#cient matrix,
whereas we organize the transferring coe#cients in a tensor
form and employ a low-rank tensor decomposition. Tensor
decomposition is considerably di"erent from matrix decom-
position (Kolda and Bader 2009), and naively transforming a
tensor to a matrix may lose information. More importantly,
the estimation error bound obtained by Bacry et al. (2020)
is to increase as the point process dimension diverges, and
as such the estimator is to su"er from the increasing dimen-
sion. By contrast, in Section 4.2, we show that the diverg-
ing dimension is to bene!t our penalized maximum likeli-
hood estimator, and leads to a faster convergence rate on the
asymptotic concentration. Third, Hansen et al. (2015) consid-
ered an intensity-based model for multivariate Hawkes pro-
cess with a !xed dimension, and adopted the least-square esti-
mation and !1 regularization. Cai, Zhang, and Guan (2020)
proposed a nonstationary multivariate Hawkes process model,
estimated the transferring functions using B-spline approxima-
tions along with a group !1 penalty. However, the key di"er-
ence is that Hansen et al. (2015) and Cai, Zhang, and Guan

(2020) modeled each individual point process separately, while
we model multiple processes jointly. More speci!cally, even
though they both targeted a multivariate point process, their
loss functions were completely separable. As such, they essen-
tially modeled each individual point process one at a time.
By contrast, we model multiple response point processes in
a joint fashion, in that we integrate and borrow information
across di"erent response processes. This is achieved through
both the tensor latent factors that are shared across all intensity
functions, as well as the subgrouping structure on the trans-
ferring coe#cients that encourage information sharing among
similar individual processes. Such a joint modeling strategy
essentially leads to the improved estimation bound when the
dimension of response processes increases. Finally, Bacry and
Muzy (2016) and Chen et al. (2019b) studied some multivariate
Hawkes process models using moment-based statistics, while
we focus on modeling the conditional intensity function. In
Section 2.2, we discuss in more detail why the intensity-based
approach is more suitable than the moment-based approach in
our setting.

The rest of the article is organized as follows. Section 2 intro-
duces our proposed multivariate temporal point process regres-
sion model. Section 3 develops the estimation algorithm, and
Section 4 derives the theoretical properties. Section 5 presents
the simulations, and Section 6 illustrates with a neuronal spike
trains data analysis. All proofs are relegated to the Supplemen-
tary Appendix.

2. Model

2.1. Background

We begin with a brief review of temporal point process, and we
refer to Daley and Vere-Jones (2007) for more details. Speci!-
cally, a temporal point process is a stochastic counting process
de!ned on the positive half of the real line R+, and taking
nonnegative integer values. For a univariate process X(t), let
t1, t2, . . . ∈ R+ denote the event times, under which X(A) =∑

l=1 1[tl∈A] for any A ∈ B(R+), and B(R+) denotes the
Borel σ -algebra of R+. De!ne its mean intensity function as
#(t) = limdt→0 E[dX(t)]/dt, where dX(t) = X

(
[t, t + dt)

)
,

and dt is an arbitrary small increment of time. A temporal point
process is homogeneous if its mean intensity is a constant, and
is inhomogeneous otherwise. If #(t) is also a stochastic process,
then it is a doubly stochastic process; for example, a Cox process.
A temporal point process is usually assumed to be orderly; that
is, Pr{dX(t) > 1} = o(dt), which implies that #(t)dt =
Pr{dX(t) = 1}. In addition, a point process X(t) is stationary
if, for arbitrary bounded Borel subsets A1, . . . , Ar of the real
line, the joint distribution of {X(A1 + t), . . . , X(Ar + t)} does
not depend on t. We also note that there are di"erent forms of
stationary de!nitions; see (Daley and Vere-Jones 2007, Chapter
3.2). Finally, it is straightforward to generalize the notion of a
univariate point process to a multivariate point process, that is,
X(t) =

(
X1(t), . . . , Xp(t)

)T.
Moment statistics are widely used in point process modeling,

especially for a stationary process (Guan 2008, 2011; Chen et al.
2019b). Considering a p-dimensional stationary point process
X(t), de!ne its !rst-order moment statistic, that is, the mean
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intensity, and its second-order statistic, that is, the covariance,
as,

#x
i = E{dXi(t)}/dt, i = 1, . . . , p,

Vx
ij(τ ) = E{dXi(t)dXj(t − τ )}/{dtd(t − τ )} − #x

i #
x
j

− δij(τ )#x
i , i, j = 1, . . . , p,

respectively, where δij(τ ) = 0 if i $= j, and δij(τ ) = δ(τ ) if i = j,
and δ(·) denotes the Dirac delta function satisfying that δ(x) =
0 for x $= 0 and

∫ +∞
−∞ δ(x)dx = 1. Write #x = (#x

1, . . . , #x
p)
T ∈

Rp, and Vxx(·) =
(
Vx

ij(·)
)

: R &→ Rp×p. Analogously, consider
another m-dimensional stationary point process Y(t), with the
mean intensity #y = (#

y
1, . . . , #y

m)T ∈ Rm, and the covariance
Vyy(·) =

(
Vy

ij(·)
)

: R &→ Rm×m. The cross-covariance between
Xj(t) and Yi(t) is de!ned as,

Cxy
ji (τ ) = E{dXj(t)dYi(t − τ )}/{dtd(t − τ )} − #x

j #
y
i ,

i = 1, . . . , m, j = 1, . . . , p.

Write Cxy(·) =
(
Cxy

ji (·)
)

: R &→ Rp×m, and Cyx(·) =
(
Cyx

ij (·)
)

:
R &→ Rm×p.

Conditional intensity function is another extensively used
tool for modeling both spatial and temporal point processes
with additional covariates. For our proposed multivariate point
process regression, we mainly target the conditional intensity
function, as we detail in the next section.

2.2. Multivariate Point Process Regression

We consider a temporal regression model with a p-dimensional
predictor process X(t) and an m-dimensional response process
Y(t). Letting Ht denote the σ -algebra generated by {X(t), Y(t)},
then the Ht-predictable intensity function λ

y
i (t) of the ith

response process Yi(t) is de!ned as,

λ
y
i (t)dt = Pr {dYi(t) = 1|Ht} , i = 1, . . . , m.

We assume this conditional intensity function takes the form,

λ
y
i (t) = φ




µi +
p∑

j=1

(
ωij ∗ dXj

)
(t)




 , i = 1, . . . , m, (1)

where φ(·) is a link function that is possibly nonlinear, for
example, a recti!er function φ(x) = max(0, x), or a sigmoid
function φ(x) = ex/(1 + ex), µi is the background intensity,
and ωij(·) : R+ &→ R is the transferring function, i =
1, . . . , m, j = 1, . . . , p. Write µ = (µ1, . . . , µm)T ∈ Rm, and
ω =

(
ωij(·)

)
∈ Rm×p. To account for potential evolution over

time, we further assume that the transferring function ωij(·)
models the historical information of the predictor process X(t)
in a convolutional fashion, in that,

(
ωij ∗ dXj

)
(t) =

∫ t

0
ωij())dXj(t − )). (2)

Similar formulation such as Equation (2) has been commonly
used in the temporal point process literature (see, e.g., Hawkes
1971; Zhou, Zha, and Song 2013b). We also note that, Equations

(1) and (2) together cover a fairly general class of models. We do
not require a linear link function, nor the stationary condition.
We do not enforce ωij(·) to be nonnegative, as typically in
the classical Hawkes process model, and therefore allow both
“exciting” and “inhibiting” e"ects. In addition, we allow the
predictor process X(t) to take a general form. The convolution
in Equation (2) actually works for both a stochastic predictor
process and a deterministic predictor process, corresponding to
a stochastic integral or a Stieltjes integral, respectively.

We next outline a number of examples covered under our
proposed model framework.

Example 1. Let Xj(t), j = 1, . . . , p, be a deterministic function
on [0, ∞), and Y(t) in this case is a multivariate inhomogeneous
Poisson process with the deterministic mean intensity function
λ

y
i (t), i = 1, . . . , m. In a neuronal activity study, X(t) may

represent the designed stimulus signal.

Example 2. Let Xj(t), j = 1, . . . , p, be a stochastic point process,
and Y(t) in this case is a multivariate Cox process or a doubly-
stochastic process. If the transferring function ωij(x) takes the
form such as a Dirac delta function δ(x−t), then the conditional
intensity λ

y
i (t) only depends on the value of X(t) at point t. Con-

sequently, our model can also be applied to nontemporal point
processes, for example, a multivariate spatial point process.

Example 3. Let X(t) = Y(t) be the same stochastic point
process. Then our proposed model includes the Hawkes process
as a special case, while the classical Hawkes process model only
considers self-exciting e"ects, that is, ωij(·) has to be nonneg-
ative. Moreover, it usually assumes the process is stationary,
which requires additional conditions on ωij(·), for example, the
spectral radius is smaller than one (Brémaud and Massoulié
1996). We impose neither of these constraints.

Example 4. For our motivating neuronal spike trains example,
let NV1(t), NA1(t) denote the multivariate point processes for
the neuron !ring activities on the layers V1 and A1, respectively.
If we expect that there are only directed connections between
the neurons from A1 to V1 (Liang et al. 2013), then we can set
Y(t) = NV1(t), and X(t) = NA1(t). Meanwhile, if we also
expect potential connections between the neurons within the
same layer of V1, then we can set Y(t) = NV1(t), and X(t) =
(NV1(t), NA1(t)), which takes the history of NV1(t) into account
as well. Consequently, the transferring coe#cient ωA1 of NA1(t)
in this model captures the association between NV1(t) and
NA1(t) a$er controlling the cross-connections within NV1(t)
itself.

In our temporal point process modeling, we mainly target the
conditional intensity function, instead of the moment statistics.
There are several reasons of doing so. To illustrate, we consider a
special case of our model (1), which takes a linear link function,
that is,

λ
y
i (t) = µi +

p∑

j=1

{
ωij ∗ dXj

}
(t), i = 1, . . . , m. (3)

We next characterize the !rst- and second-order statistics under
this special case.
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Proposition 1. Consider a special case of Equation (1), such
that X(t) and Y(t) satisfy the linear relation (3), and both are
stationary. Then the corresponding moment statistics are of the
form,

#y = µ +
{∫ +∞

0 ω())d)
}

#x,
Cyx(τ ) = ω(τ )Diag(#x) + ω ∗ Vxx(τ ), τ ≥ 0
Vyy(τ ) = ω ∗ Cxy(τ ), τ > 0,
Vyy(0) = ω *

{
Vxx(·) + Diag(#x)

}
* ω,

(4)

where ω ∗ Cxy(τ ) = ωij(·) ∗ Cxy
ji (τ ), and f ∗ g(t) =∫

f ())g(t − ))d) denotes the convolution of two univari-
ate functions f and g, and ω *

{
Vxx(·) + Diag(#x)

}
*

ω =
∫ +∞

0
∫ +∞

0 ω())
{

Diag(#x) δ()′ − )) + Vxx()′ −
))

}
ωT()′)d)d)′.

The equations in Equation (4) belong to a class of integral
equations for the Wiener-Hopf system with respect to ω. In
principle, one can estimate the transferring function by solving
the above equations and plugging in the estimated !rst- and
second-order statistics. However, this strategy is not suitable for
our framework, for several reasons. First, the derived integral
equation system for model (3) is more complicated than the
one for a regular Hawkes process, in that we require four inte-
gral equations involving not only the !rst- and second-order
moments, but also their cross-covariance. Second, when the
dimensions of Xt and Y t are high and diverging, the terms
Vyy(τ ), Vxx(τ ) and Cyx(τ ) would also be high-dimensional
and expanding. This would make both their sample estimation,
as well as carrying out certain operations like matrix inverse,
di#cult, sometimes even infeasible. Third, the explicit forms
of equations in Equation (4) have been derived entirely based
on the linear relation (3). There may be no explicit forms like
Equation (4) for nonlinear associations between X(t) and Y(t).
Finally, a number of moment-based estimation methods require
some form of stationary properties, which can be restrictive for
some applications in practice. For these reasons, we choose to
adopt an intensity-based modeling approach.

2.3. Low-Rank Structure

In our model, the transferring function ω in the intensity fully
captures the cross-process connection pattern, and is of the
primary interest. In the point process modeling literature, a
common strategy is to employ basis functions to characterize
the intensity (Xu, Farajtabar, and Zha 2016; Wang et al. 2016a).
Adopting this strategy, we assume ωij(t) takes the form of a lin-
ear combination of a set of basis functions, g(k)(t), k = 1, . . . , K,
in that,

ωij(t) =
K∑

k=1
βk

ij · g(k)(t), i = 1, . . . , m, j = 1, . . . , p, (5)

where each g(k)(t) is a nonnegative basis function on [0, ∞),
K is the number of basis functions, and βk

ij ’s can take arbi-
trary real values. The choice of basis functions mostly relies on
the scienti!c knowledge to account for speci!c coevolutionary
e"ects (Hansen et al. 2015). In neuronal spike trains study, com-
mon basis functions include the exponential function, g(t) =

a exp(−at), a > 0 (Zhou, Zha, and Song 2013b), the logarith-
mic decay function, g(t) = log(1 + T − t), for the process
de!ned on [0, T] (Luo et al. 2016), and a series of piecewise
constant functions, g(k)(t) = ak1(t ∈ Tk) (k = 1, . . . , K),
where {Tk}K

k=1 form a partition of [0, +∞] and {ak}K
k=1 are some

nonnegative constants (Wang et al. 2016b). One may also use
a mix of di"erent types of basis functions. We later conduct a
sensitivity analysis to investigate the choice of basis functions in
the appendix.

Given the basis expansion in Equation (5), the conditional
intensity model in Equation (1) can be rewritten as follows:

λ
y
i (t) = φ



µi +
p∑

j=1

K∑

k=1
βk

ij ·
{

g(k) ∗ dXj
}

(t)



 ,

i = 1, . . . , m. (6)

We then collect the transferring coe#cients into a three-way
tensor B ∈ Rm×p×K , with the entry βk

ij , i = 1, . . . , m, j =
1, . . . , p, k = 1, . . . , K. The conditional intensity function is now
fully characterized by the background intensity vector µ and the
transferring coe#cient tensor B.

We estimate the model through a likelihood-based approach,
where the joint log-likelihood function is of the form,

L
(
µ, B|Y(t), X(t)

)
= 1

T

m∑

i=1
Li

(
µ, B|Yi(t), X(t)

)

= 1
T

m∑

i=1

∫ T

0

[
log

{
λ

y
i
(
t; B, X(t)

)}
dYi(t)

− λ
y
i
(
t; B, X(t)

)
dt

]
. (7)

In the following discussion, we drop Y(t) and X(t) in L(µ, B)

and λ
y
i (t) for notational simplicity whenever there is no

confusion.
Next, we impose that B admits a low-rank CANDE-

COMP/PARAFAC (CP) structure, in that,

B =
R∑

r=1
νrby

r ◦ bx
r ◦ bc

r , (8)

where R is the tensor rank, by
r ∈ Rm, bx

r ∈ Rp and bc
r ∈

RK are the normalized vectors corresponding to the modes of
the response process, the predictor process, and the convolu-
tional basis functions, respectively, νr ’s are the normalization
weights, and “◦” is the outer product. For notational conve-
nience, we represent the decomposition (8) by a shorthand,
B = [[ν; By, Bx, Bc]], where By = [by

1 . . . by
R] ∈ Rm×R,

Bx = [bx
1 . . . bx

R] ∈ Rp×R, Bc = [bc
1 . . . bc

R] ∈ RK×R,
and ν = (ν1, . . . , νR)T ∈ RR. See Kolda and Bader (2009)
for a review of tensor and its decomposition. The low-rank
decomposition (8) has been widely adopted in recent years in
imaging-based tensor regressions (Zhou, Li, and Zhu 2013a; Sun
and Li 2017; Chen, Raskutti, and Yuan 2019a). In the context
of point process modeling, Zhou, Zha, and Song (2013b); Bacry
et al. (2020) also adopted a low-rank structure in a linear Hawkes
model, yet on a matrix form of their transferring coe#cients. By
contrast, we target a nonlinear, nonstationary, general temporal
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point process, and consider a low-rank structure on a coe#cient
tensor. Even though tensor is a conceptual generalization of
matrix, tensor decomposition and matrix decomposition are
considerably di"erent (Kolda and Bader 2009). Naively trans-
forming a tensor to a matrix may lose information. Moreover, we
later show in Section 4.2 that our estimator and those of Zhou,
Zha, and Song (2013b); Bacry et al. (2020) have completely
di"erent asymptotic convergence properties.

Imposing the low-rank structure like Equation (8) in our
point process regression has several advantages. First, it substan-
tially reduces the number of free parameters in the transferring
coe#cient tensor B, from mpK to R(m+p+K). In our example,
if we set Y(t) = NV1(t), and X(t) = NA1(t), the dimensions of
the response and predictor processes are m = 139 and p = 283,
respectively. If we choose K = 3 basis functions, and choose the
rank R = 4, then the number of free parameters in B reduces
from 118,011 to 1700. Second, and perhaps more importantly,
it allows us to model the multivariate point process in a joint
fashion. Existing approaches such as Hansen et al. (2015), Cai,
Zhang, and Guan (2020) modeled each response process Yi(t)
separately, since their loss function is separable with respect to
the individual intensity function λ

y
i (t), each of which depends

on a separate set of parameters β i. By contrast, our model
with Equation (8) suggests that B relies on some underlying
latent factors, By, Bx and Bc. Unlike the separate modeling
strategy, the latent factors Bx and Bc are shared by all intensity
functions λ

y
i (t)’s, and thus information across di"erent response

processes Yi(t)’s is integrated. In the context of neuronal spike
trains modeling, it implies that a particular predictor neuron in
X(t) exercises similar in%uence on multiple response neurons
in Y(t), or a particular response neuron in Y(t) enjoys similar
in%uence from multiple predictor neurons in X(t). Such an
integration leads to an improved coe#cient estimator, as we
show asymptotically in Section 4.2.

2.4. Additional Structure Pursuit: Sparsity and
Subgrouping

To better accommodate scienti!c knowledge, facilitate the inter-
pretation, and further reduce the number of free parameters, we
consider some additional structure pursuit.

The !rst structure we consider is sparsity, in that each
response process is a"ected by a subset of predictor processes.
This sparsity structure simpli!es the model interpretation, fur-
ther reduces the number of parameters, and is scienti!cally
plausible. In multivariate Hawkes process modeling, the sparsity
on transferring functions has been widely employed (Hansen
et al. 2015; Bacry et al. 2020; Cai, Zhang, and Guan 2020).
Speci!cally, we impose a group !1 penalty (Yuan and Lin 2006)
on the coe#cient tensor B,

Ps(B; τs) = τs

m∑

i=1

p∑

j=1

∥∥B[i, j, ·]
∥∥

2 , (9)

where B[i, j, ·] ∈ RK is a vector of B with the !rst two indices
!xed and the third index varying, which corresponds to the
associations between Yi(t) and Xj(t) under all basis functions, τs
is the sparsity tuning parameter, and ‖ · ‖2 denotes the !2 norm.

The second structure we consider is subgrouping. In a
neuronal spike trains study, certain subgroups of neurons are
expected to share similar patterns in neuronal !ring activi-
ties, and such clustering patterns are usually of great scienti!c
interest (Kim et al. 2011). Speci!cally, in our example, such
patterns are re%ected by the underlying clustering structure in
the transferring function ω. To capture this structure, we embed
clustering pursuit into the proposed tensor decomposition. In
principle, we can pursue clustering on the response process,
or the predictor process, or both. For our motivating example,
there is evidence of neuron clustering in the primary visual cor-
tex V1, that is, the response process (Liang et al. 2013). As such,
we introduce a subgrouping penalty on the decomposed factors
of the response process mode By, so to encourage clustering of
the response neurons. Speci!cally, we impose a pairwise fusion
penalty,

Pf (By; τf ) =
∑

i<i′
fκ

(∥∥By[i, ·] − By[i′, ·]
∥∥

2 , τf
)

, (10)

where By[i, ·] ∈ RR is the row vector of By, τf is the fusion
parameter, and the penalty function fκ(t, τf ) = τf

∫ t
0 {1 −

x/(τf κ)}+dx, with κ being a thresholding parameter (Zhang
2010). This penalty function is to help reduce the estimation
bias, as it only groups the individual predictors with similar
e"ects on the responses through a non-convex fusion penalty
(Zhu, Tang, and Qu 2019).

We also remark that, the sparsity and subgroup structures
are embedded in the low-rank CP decomposition, and the three
structures are related to each other. Meanwhile, they focus on
di"erent aspects of the transferring coe#cients. In the neuronal
spike trains example, the low-rank structure is to capture the
block-wise connection pattern between groups of neurons, the
sparsity is on the individual neuron e"ect, and the subgroup is
to identify the neurons that receive signals from the same group
of neurons from the other layer. These interrelated structures
introduce additional di#culty to parameter estimation. Next,
we develop an e#cient optimization algorithm.

3. Estimation

3.1. ADMM Optimization

We develop a highly scalable ADMM type optimization algo-
rithm (Boyd et al. 2011) to estimate the parameters in our
proposed model. Consider the realizations of the predictor and
response processes X(t) and Y(t) on a time interval [0, T]. Let
ti
1 < ti

2 < · · · < ti
ni denote the time points of the ni events of the

response process Yi(t) that are observed on [0, T], i = 1, . . . , m.
Given the set of basis functions {g(k)(·)}K

k=1, the log-likelihood
function in our model can be written as follows:

L(µ, B) = 1
T

m∑

i=1

(
−

∫ T

0
φ {µi + 〈G(t), B[i, ·, ·]〉} dt

+
ni∑

l=1
log

[
φ

{
µi + 〈G(ti

l), B[i, ·, ·]〉
}])

,

where G(t) =
(
Gj,k(t)

)
∈ Rp×K , Gj,k(t) = {g(k) ∗ dXj}(t),

B[i, ·, ·] ∈ Rp×K is a matrix from B with the !rst index !xed
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and the other two indices varying, and 〈·, ·〉 denotes the inner
product.

Incorporating the low-rank structure (8) and the two reg-
ularization structures (9) and (10), we aim at the following
optimization problem,

minµ,ν,By ,Bx ,Bc

{
− L

(
µ, [[ν; By, Bx, Bc]]

)

+τs
∑m

i=1
∑p

j=1
∥∥[[ν; By, Bx, Bc]][i, j, ·]

∥∥
2

+∑
i<i′ fκ

(∥∥By[i, ·] − By[i′, ·]
∥∥

2, τf
) }

.

(11)

The optimization in Equation (11) is challenging in sev-
eral ways. It involves a tensor decomposition embedded in a
complicated log-likelihood function with summation of inte-
grals and a possibly nonlinear link function φ. In addition,
the sparsity penalty in Equation (9) is nondi"erentiable, while
the fusion penalty in Equation (10) is nonconvex. Moreover,
Equation (10) involves the di"erences of parameters, render-
ing those parameters inseparable in optimization. To over-
come those challenges, and to achieve computational scalabil-
ity, we develop an ADMM algorithm for the optimization in
Equation (11).

Speci!cally, we introduce two sets of auxiliary variables. The
!rst set is . ∈ Rm×p×K with .[i, j, ·] = ψ ij ∈ RK that targets
the sparsity structure (9) such that ψ ij = B[i, j, ·], 1 ≤ i ≤
m, 1 ≤ j ≤ p. The second set is / ∈ Rm(m−1)/2×R that stacks
γ ii′ ∈ RR together and targets the subgroup structure (10) such
that γ ii′ = By[i, ·] − By[i′, ·], 1 ≤ i < i′ ≤ m. We then rewrite
(11) in its equivalent form,

min
µ,ν,By ,Bx ,Bc,B,. ,/

{
− L(µ, B) + τs

m∑

i=1

p∑

j=1
‖ψ ij‖2

+
∑

j<j′
fκ

(
‖γ ii′ ‖2, τf

) }

subject to B = [[ν; By, Bx, Bc]], . = B, / = DmBy,
(12)

where Dm ∈ Rm(m−1)/2×m that stacks dii′ ∈ Rm together, with
dii′ = ei − ei′ , ei ∈ Rm has one on the ith position and zero
elsewhere, 1 ≤ i < i′ ≤ m. To solve Equation (12), we minimize
the following augmented Lagrangian objective function,

−L(B, µ) + τs
∑

i,j
‖ψ ij‖2 +

∑

j<j′
fκ (‖γ ii′ ‖2, τf )

+ 〈W1, B − [[ν; By, Bx, Bc]]〉 + 〈W2, . − B〉 + 〈W3, / − DmBy〉
+ ρ

2

(∥∥B − [[ν; By, Bx, Bc]]
∥∥2

F + ‖. − B‖2
F + ‖/ − DmBy‖2

F

)
,

where W1, W2 ∈ Rm×p×K and W3 ∈ Rm(m−1)/2×m are
the corresponding Lagrangian multipliers, ρ > 0 is a !xed
augmented parameter, and ‖ · ‖F denotes the Frobenius norm.

Next, we update the blocks of parameters,
µ, B, ν, By, Bx, Bc, . , /, and the Lagrangian multipliers
W1, W2, W3 in an alternating fashion. That is,
given the estimates at the sth iteration, B(s), B̄(s) =
[[{ν}(s); {By}(s), {Bx}(s), {Bc}(s)]], .(s), /(s), W (s)

1 , W (s)
2 , W(s)

3 ,

we update:

µ(s+1), B(s+1) = arg minµ,B − L(B, µ)

+ρ
2

{∥∥∥B − B̄(s) + ρ−1W(s)
1

∥∥∥
2

F
+

∥∥∥B − .(s) + ρ−1W(s)
2

∥∥∥
2

F

}
,

(13)

B̄(s+1) = arg minν,By ,Bx ,Bc

∥∥∥∥[[ν; By, Bx, Bc]] − B(s+1)

−ρ−1W(s)
1

∥∥∥∥
2

F
+

∥∥∥/(s) − DmBy − ρ−1W(s)
3

∥∥∥
2

F
,

(14)

.(s+1) = arg min.
ρ
2

∥∥∥. − B(s+1) − ρ−1W(s)
2

∥∥∥
2

F
+τs

∑
i,j ‖ψ ij‖2,

(15)

/(s+1) = arg min/
ρ
2

∥∥∥/ − Dm(By)(s+1) − ρ−1W(s)
3

∥∥∥
2

F
+∑

j<j′ fκ(‖γ ii′ ‖2, τf ).
(16)

W (s+1)
1 = W(s)

1 + ρ
{
B(s+1) − B̄(s+1)

}
,

W (s+1)
2 = W(s)

2 + ρ
{
B(s+1) − .(s+1)

}
,

W(s+1)
3 = W(s)

3 + ρ
{

Dm(By)(s+1) − /(s+1)
}

.
(17)

We then tackle the optimization problems (13) to (16) one-by-
one.

The optimization problem in Equation (13) can be split slice-
by-slice for B[i, ·, ·], i = 1, . . . , m. That is, it can be solved with
respect to each marginal response process Yi(t) in a parallel
fashion. De!ne

L∗
i (µi, B[i, ·, ·]) = ∑ni

l=1 log
[
φ

{
µi + 〈G(ti

l), B[i, ·, ·]〉
}]

−
∫ T

0 φ {µi + 〈G(t), B[i, ·, ·]〉} dt
+ ρ

2

∥∥∥B[i, ·, ·] − B̄(s)[i, ·, ·] + ρ−1W(s)
1 [i, ·, ·]

∥∥∥
2

F
+ρ

2

∥∥∥B[i, ·, ·] − .(s)[i, ·, ·] + ρ−1W(s)
2 [i, ·, ·]

∥∥∥
2

F
.

The objective function L∗
i (µi, B[i, ·, ·]) is di"erentiable, and

with a large enough ρ, it is almost convex regardless of the
form of the link function φ. Therefore, we can minimize
L∗

i (µi, B[i, ·, ·]) e#ciently using a gradient descent type algo-
rithm. In our implementation, we employ the Newton–Raphson
algorithm, as we use the linear and the logit link functions.

The optimization problem in Equation (14) turns to
be a regularized CP decomposition with an !2 penalty.
It can be solved by an alternating block updating
algorithm (Zhou, Li, and Zhu 2013a), which updates
one block of the parameters in {By, Bx, Bc}, while
!xing the other two blocks and ν. For instance, By is
updated by minimizing

∥∥∥
{
B(s+1) + ρ−1W(s)

1

}

(1)
−

By [
(Bc)(s) 0 (Bx)(s) diag

{
ν(s)}]T

∥∥∥
2

+
∥∥∥/(s) − ρ−1W(s)

3 −

DmBy
∥∥∥

2
, with respect to By, where 0 is the Khatri-Rao product,

B(1) denotes the mode-1 matricization of the tensor B, and
diag(ν) is the diagonal matrix with ν as the diagonal elements.
Note that this is essentially a least-square optimization problem
with an !2 penalty, which has an explicit solution. The other
two blocks Bx and Bc are updated similarly. A$er updating
each block, for instance, By, we update νr by normalizing the
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Algorithm 1 The ADMM algorithm for parameter estimation.
[1] Initialize µ(0), [[ν; By, Bx, Bc]](0), B(0), .(0), /(0), W (0)

1 ,
W (0)

2 , W(0)
3 . Set ρ and κ > ρ−1.

repeat
[2] Update µ

(s+1)
i , B[i, ·, ·](s+1) via (13) with parallel com-

puting over i = 1, . . . , m.
[3] Update [[ν(s+1); {By}(s+1), {Bx}(s+1), {Bc}(s+1)]] via (14).

[4] Update .(s+1) =
{
ψ

(s+1)
ij

}
via (18) with parallel

computing over 1 ≤ i ≤ m, 1 ≤ j ≤ p.
[5] Update /(s+1) =

{
γ

(s+1)
ii′

}
via (19) with parallel com-

puting over 1 ≤ i < i′ ≤ m.
[6] Update W(s+1)

1 , W (s+1)
2 , W(s+1)

3 via (17).
until the stopping criterion is met.

corresponding vector by
r . In addition, recognizing that the

conventional cyclical alternating procedure may sometimes be
unstable, we employ the maximum block improvement strategy
similar to Chen et al. (2012), Tang, Bi, and Qu (2019) to ensure
the algorithmic convergence of the block updating iterations;
see Proposition 2. Speci!cally, instead of updating the blocks
By, Bx and Bc sequentially, we only update the block that yields
the most improvement on the target objective function at each
iteration.

The optimization problems in Equations (15) and (16) have
explicit solutions, since the corresponding objective functions
are convex with respect to ψ ij, and γ ii′ when κ > ρ−1, respec-
tively. That is,

ψ
(s+1)
ij =






0 if ‖ϑ (s+1)
ij ‖ <

√
Kτs/ρ,

{
1 −

√
Kτs/ρ

‖ϑ (s+1)
ij ‖

}
ϑ

(s+1)
ij if ‖ϑ (s+1)

ij′ ‖ ≥
√

Kτs/ρ,
(18)

γ
(s+1)
ii′ =






ζ
(s+1)
ii′ if ‖ζ (s+1)

ii′ ‖ ≥ κτf ,

κρ
κρ−1

{
1 − τf /ρ

‖ζ (s+1)

ii′ ‖

}

+
ζ

(s+1)
ii′ if ‖ζ (s+1)

ii′ ‖ < κτf ,
(19)

where ϑ
(s+1)
ij = B[i, j, ·](s+1) + ρ−1{W2[i, j, ·]}(s), ζ

(s+1)
ii′ =

(By[i, ·])(s+1) − (By[i′, ·])(s+1) + ρ−1W3[lii′ , ·](s), and lii′ =
(2m − i)(i − 1)/2 + i′ − i. We note that this computation can
be done in a parallel fashion over (i, i′), i, i′ = 1, . . . , m, and
(i, j), i = 1, . . . , m, j = 1, . . . , p.

We summarize the above optimization procedures in Algo-
rithm 1.

3.2. Initialization, Convergence, Tuning, and
Computational Complexity

We recommend to use a warm initialization, by setting the
initial values {µ(0), B(0)} as the unpenalized estimators without
imposing any low-rank or penalty structures, while setting the
other initial values at zeros. We stop the algorithm when some
stopping criterion is met, for example, when the di"erence of the
consecutive estimates is smaller than a threshold.

Algorithm 1 is guaranteed to converge to a stationary point.
This can be veri!ed by checking the conditions of Proposition 1
in Zhu, Tang, and Qu (2019).

Proposition 2. Suppose the log-likelihood function L is a Lips-
chitz function with respect to B, and the parameter space for
By, Bx and Bc is a compact set. Then the obtained estimator
from Algorithm 1 converges to a stationary point of the objective
function in Equation (11).

We select the tuning parameters as follows. The !rst is the
Lagrangian augmented parameter ρ, which can be viewed as the
learning rate of the ADMM algorithm. Our numerical results
have suggested that the !nal estimates are not overly sensitive
to the choice of ρ, so we simply set ρ = 1. The second is the
thresholding parameter κ in the fusion penalty fκ . Again, the
estimates are not sensitive to κ as long as κ > ρ−1, and we set
κ = 2. The third set of tuning parameters include the rank R
in Equation (8), and the two regularization parameters, τs in
Equation (9) and τf in Equation (10). We tune them by min-
imizing a Bayesian information criterion (BIC), −2L(µ, B) +
log(N)pe, where N = ∑m

i=1 ni is the total number of events
observed on the multivariate response process Y(t), and pe is
the e"ective number of parameters. For the tuning of R, pe =
R(m + p + K − 2), for τs, pe is the total number of nonzero
latent parameters, and for τf , pe is the total number of unique
nonzero latent parameters. A similar BIC type criterion has been
commonly adopted in low-rank tensor regressions (Zhou, Li,
and Zhu 2013a; Sun and Li 2017). Moreover, to speed up tuning,
we tune R, τs, τf in a sequential manner. That is, we !rst tune R
while setting τs = τf = 0, then tune τs given the selected R while
setting τf = 0, and !nally tune τf given the selected R and τs.
We also conduct a sensitivity analysis to investigate the choice
of rank R in the appendix.

Finally, we brie%y discuss the computational complexity of
Algorithm 1. As an example, if we use a sigmoid link function,
then the overall computational complexity can be approximated
by O

[
niter

{
mCLR(p) + CALS(mp) + mp + m(m − 1)/2

}]
, where

niter denotes the total number of ADMM iterations, CPLR(p)

denotes the computational complexity for a logistic regression
with p covariates, and CALS(mpK) denotes the computational
complexity for a three-way tensor decomposition with the size
m × p × K using the alternating least-square (ALS) algorithm.
Besides, several steps in this algorithm can be accelerated using
parallel computing. In Section 5, we report the computation
time of our simulated examples.

4. Theory

4.1. Regularity Conditions

We begin by introducing some notation. Let θ ={
µT, vec(By)T, vec(Bx)T, vec(Bc)

}T collect all latent parameters
in our model, including the background intensity µ, and
the latent factors By, Bx, Bc from the CP decomposition (8).
Without loss of generality, the normalization weight ν is omitted
to simplify the notation. Let β = β(θ) =

(
βT1 , . . . , βTm

)T,
where β i =

{
µi, vec

(
B[i, ·, ·]

)T}T, i = 1, . . . , m. Note that
the transferring coe#cient β is a function of θ , and thus we
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sometimes write it as β(θ). Let 1θ ⊂ RR(m+p+K)+m and
1β ⊂ RmpK+m denote the parameter space for θ and β ,
respectively. For a real-valued function f (t) de!ned on [0, ∞),
de!ne the norm ‖f ‖A =

{ ∫
A f 2(t)dt

}1/2, where A is a Borel
set in [0, ∞). In particular, write ‖f ‖T =

{ ∫ T
0 f 2(t)dt

}1/2 for
interval [0, T]. Moreover, let ‖ · ‖2, ‖ · ‖∞, ‖ · ‖F , and ‖ · ‖max
denote the !2 norm, the !∞ norm, the Frobenius norm, and the
maximum norm, respectively. Let πmin(·) and πmax(·) denote
the smallest and the largest eigenvalue for a symmetric matrix.

For our theoretical analysis, we consider a general likelihood-
based loss function, which encompasses our model (1) and the
two penalty functions (9) and (10),

S{β(θ)} = −L{β(θ)} + τ P{β(θ)}

= − 1
T

m∑

i=1
Li{β(θ)} + τ P(θ), (20)

where Li(·) is the log-likelihood function for the ith response
process Yi(t), while in our model it is as speci!ed in (7), i =
1, . . . , m, P(·) is a nonnegative penalty function, and τ is the
penalization parameter. Note that θ is associated with the log-
likelihood function Li(·) only through β(θ).

We next present a set of regularity conditions, where c1 to c5
are some !nite positive constants.

1. Let K(β0) ⊂ 1β denote a neighborhood of the true value
β0. For any β, β̃ ∈ K(β0) and a large enough T, λy

i (t; β) =
λ

y
i (t; β̃) almost surely on [0, T], if and only if β = β̃ .

2. For any i = 1, . . . , m, supV(A)<1 E{Yi(A)}2/V(A) < ∞,
and for any j = 1, . . . , p, supV(A)<1 E{Xj(A)}2/V(A) <

∞, where A is a Borel-set on [0, +∞), and V is the
Lebesgue measure.

3. For any β ∈ K(β0), i = 1, . . . , m,

supt∈[0,T] E
[∥∥∥∥

∂ log{λy
i (t)}

∂β i
λ

y
i (t; β0)

∥∥∥∥
2

∞

]

< ∞,

supt∈[0,T] E
[∥∥∥∥

∂2 log{λy
i (t)}

∂β i∂βTi
λ

y
i (t; β0)

∥∥∥∥
2

max

]

< ∞, and

supt∈[0,T] E
{
λ

y
i (t)2

}
< ∞.

4. For any β ∈ K(β0), i = 1, . . . , m, πmin (Ji) ≥
c1 almost surely with a large T, where Ji =
T−1 ∫ T

0 Hi(t)Hi(t)Tλy
i (t, β0

i )dt, and Hi(t) =
λ

y
i (t)−1∂λ

y
i (t)/∂β i.

5. The link function φ(x) is a Lipschitz function satisfying
that |φ(x1) − φ(x2)| ≤ c2|x1 − x2| for any x1, x2 ∈ R and
some c2.

6. The basis function g(k)(t) satis!es that
max1≤k≤K

{∫ ∞
0 g(k)(t)2dt

}1/2
< c3 for some c3.

7. The penalty function P(θ) is a nonnegative Lipschitz func-
tion in a neighborhood of the true value θ0 satisfying that
|P(θ1) − P(θ2)| ≤ c4‖θ1 − θ2‖2 for some c4.

8. Let I1, . . . , IN denote the true subgroup partition of the
index set {1, . . . , m}, in that By[i, ·] = b̄(s) for any i ∈ Is,
s = 1, . . . , N, and N is the number of subgroups. There is
a minimum gap, such that mins $=s′

∥∥b̄(s) − b̄(s′)
∥∥

2 > c5.

We make some remarks about these conditions. Condition
(C1) ensures the identi!ability of the intensity function with

respect to β , and is equivalent to (Ogata et al. 1978, assump.
B3). Condition (C2) implies a !nite mean intensity for both the
response and the predictor process, and the resulting process
is referred as a non-explosive point process (Daley and Vere-
Jones 2007). The same condition was imposed in (Ogata et al.
1978, assump. A3) and (Hansen et al. 2015, the condition of
Theorem 2). Such a condition also makes sense in neuronal
activity studies, which implies that there is an upper bound
for the average neuronal activity level or calcium concentra-
tion level over time. Condition (C3) is a standard regularity
condition, and the same condition or its equivalent forms have
been commonly adopted in the point process literature; see,
for example, (Ogata et al. 1978, cond. B4, B5) for a stationary
process, and (Rathbun and Cressie 1994, cond. C1, C4) for an
inhomogeneous process. This condition is also easy to verify
for a class of commonly used link functions, for example, a
recti!er link or a sigmoid link. Condition (C4) is placed on
the minimum eigenvalue of the information matrix. A similar
condition was considered in (Ogata et al. 1978, Assumption B6)
and (Rathbun and Cressie 1994, cond. c), and it is analogous
to the usual regularity condition placed on the design matrix
for regressions with random variables. Condition (C5) is usually
adopted in nonlinear point process models (Brémaud and Mas-
soulié 1996), and it holds for a range of commonly used link
functions. Similarly, Condition (C6) holds for numerous basis
functions, since the basis function is generally a normalized
decaying kernel. Condition (C7) holds for a variety of penalty
functions in a compact space, including the !1 and !2 penalties,
the group !1 penalty in Equation (9), and the fusion penalty in
Equation (10). Finally, Condition (C8) is a standard condition
to ensure the identi!ability of the subgroups, and has been o$en
assumed in subgroup analysis (Ma and Huang 2017; Zhu, Tang,
and Qu 2019). This condition is not required for establishing
the coe#cient estimation convergence properties, but only for
the subgroup identi!cation consistency. In summary, we feel the
above regularity conditions are relatively mild and reasonable.
They are clearly weaker than the stationary condition. The same
conditions or similar forms have been widely adopted in the
asymptotic studies of temporal point process in the literature.

4.2. Asymptotic Convergence Properties

We next derive the asymptotic properties for the penalized like-
lihood estimator from Equation (20), which covers a variety of
link and penalty functions, and does not assume the stationarity.
We allow the point process dimension to diverge, and show that
the increasing dimension is to actually bene!t the estimation,
leading to a faster convergence rate for the coe#cient estimator
and a smaller error bound for the recovered intensity function.
In the interest of space, we present some supporting lemmas and
all the proofs in the supplementary material (appendix).

Since the parameter spaces 1θ and 1β grow along with the
point process dimensions, we adopt the sieve idea and the large-
deviation approach introduced by Shen and Wong (1994) and
Shen (1998) to derive the asymptotics. Speci!cally, we de!ne a
restricted parameter space for θ ,

1̃θ =
{
θ ∈ 1θ : ‖θ‖∞ ≤ c0, P(θ) ≤ c2

θ

}
,
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where c0 is a positive constant, and cθ is another constant that
is allowed to increase at the rate of O

(√
(m + p + K)R + m

)
,

since the dimension of θ is (m + p + K)R + m that is to diverge
with m and p. Furthermore, we de!ne a metric based on the
Kullback–Leibler (KL) pseudo-distance in 1θ with respect to
the underlying true value θ0 as,

d(θ , θ0) = 1√mpE
[
L{β(θ)} − L{β(θ0)}

]1/2 .

Analogous to (Ogata et al. 1978, lem. 3), it is straightforward
to verify that d(θ , θ0) is an appropriate distance metric for any
θ ∈ 1θ . Let θ̂ = arg minθ∈1̃θ

S{β(θ)} denote the penalized
likelihood estimator for Equation (20). The next theorem shows
that θ̂ converges to the true value θ0 exponentially in probability
under the KL distance.

Theorem 1. Suppose Conditions (C1) to (C7) hold. For some
ε1 > 0, there exist !nite positive constants c̃1, c̃2, such that

Pr
{

d(θ̂ , θ0) ≥ ε1
}

≤ 7 exp
(
−c̃2Tη2

θε
2
1
)

,

where

ηθ = (mpK)1/2

{R(m + p + K) + m}1/2

[

log
{

c̃1mpK
√

R(m + p + K) + m

}]−1/2

,

and the penalty parameter τ in Equation (20) satis!es that τ ≤
O(T−1η−2

θ ).

The convergence result in Theorem 1 is established under the
KL distance, which is stronger than and usually dominates some
other distance measures, for example, the Hellinger metric.
The next corollary establishes the convergence of the recovered
transferring coe#cient B under the !2 norm. Denote B̂ =
B(θ̂), B0 = B(θ0), and d̃(B̂, B0) = (mpK)−1/2‖B̂ − B0‖F .

Corollary 1. Suppose the conditions in Theorem 1 hold. For
some ε2 > 0, there exists a !nite positive constant c̃3, such that

Pr
{

d̃(B̂, B0) ≥ ε2
}

≤ 7 exp
(
−c̃3Tη2

Bε2
2
)

,

where ηB = [(mpK)/{R(m + p + K) + m}]1/2.

A few remarks are in order. First, Theorem 1 and Corollary 1
indicate that the penalized estimator and the recovered coe#-
cient tensor achieve a convergence rate of

√
Tηθ and

√
TηB,

respectively. On one hand, since the length T of the observed
point process plays the role of sample size as in the usual random
variable based regressions, an increasing T would lead to a
faster convergence rate and a smaller error bound. On the other
hand, the diverging point process dimensions m and p are to
bene!t the estimation as well. This is achieved not because of
a stronger set of model and regularity conditions we impose;
actually as we discuss in detail earlier that our conditions are
compatible with or weaker than those in the existing literature.
But it is indeed due to our proposed low-rank model structure
(8). Speci!cally, our model substantially reduces the size of the
parameter space 1β through B(θ) with the latent parameter
θ ∈ 1θ . Consequently, it enables us to obtain a smaller metric
entropy with bracketing on the restricted parameter space 1̃θ ,

which in turn yields a tighter bound for the loss function and
a faster convergence rate. Moreover, the latent factors Bx and
Bc are commonly shared across the intensity functions of all
response processes. This enables us to use and borrow informa-
tion from the entire multivariate response process Y(t) rather
than a single response Yi(t). This result of the blessing of dimen-
sionality clearly distinguishes our method from the existing
ones. For instance, Bacry et al. (2020) studied the asymptotics
for a multivariate Hawkes process model and potentially allowed
the process dimension to diverge, but their error bound is to
increase at the rate of the logarithm of the dimension when it
diverges. Second, in our current analysis, we !x the rank R of
the tensor decomposition (8) for simplicity. However, we can
allow R to diverge along with m and p too. By Corollary 1, as
long as R grows at a limited rate of o

(
min(m, p)

)
, for example,

log(m) or log(p), the obtained estimator still enjoys a faster
convergence rate as m and p increase. Third, we note that the
theoretical properties obtained in Theorem 1 and Corollary 1
are for the global minimizer of (20). Nevertheless, Equation (20)
is a nonconvex optimization problem, and there is no guarantee
that the optimization algorithm can land at the global mini-
mizer. This is a well-known issue in almost any statistical models
involving nonconvex optimization (Zhu, Shen, and Ye 2016),
and it still remains an open question. In the recent years, there
has been some progress to tackle this problem. For instance,
Bi et al. (2018) showed that, in a tensor factorization model,
the established large deviation property of a global minimizer
can be generalized to an asymptotically good local optimizer.
However, it was obtained with the price of imposing additional
assumptions. We leave this problem as future research.

Next, we establish the subgroup structure identi!cation con-
sistency.

Theorem 2. Suppose Conditions (C1) to (C8) hold. Let B̂y

denote the estimated latent factor By from (11). Suppose τs =
o
{(

Tη2
B

)−1/2
}

, and τf = O
{(

Tη2
B

)−1/2+cf
}

for 0 < cf < 1/2.
Then,

Pr
(

B̂y[i, ·] = B̂y[i′, ·] | i, i′ ∈ Is, 1 ≤ s ≤ N
)

→ 1,
as T → ∞.

Theorem 2 shows that, as T → ∞, the true subgroup
structure can be identi!ed with the probability tending to one.
We also comment that, the number of subgroups is also allowed
to increase as m increases, as long as Condition (C8) holds.
Moreover, we may relax (C8), by allowing the minimum gap c5
to decrease at a limited rate. For instance, Theorem 2 continues
to holds if c5 → 0 and c5T1/2−cf → ∞. Finally, we comment
that, the imposed subgrouping structure encourages grouping
of similar response processes, which helps further integrate the
information across di"erent individual processes.

Finally, we remark that, even though the CP decomposition
is not unique generally, there is an easy-to-check su#cient
condition to ensure the uniqueness of the decomposition in
Equation (8) up to scaling and permutation (Kruskal 1988;
Sidiropoulos and Bro 2000). We next give such a condition.
Moreover, we note that our asymptotic convergence results do
not rely on the decomposed latent parameters, but instead the
entire transferring coe#cient tensor B.
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Proposition 3. Let R(By), R(Bx), and R(Bc) denote the col-
umn ranks of By, Bx, and Bc, respectively. Then the rank-R
decomposition in Equation (8) is unique up to scaling and
permutation if

R(By) + R(Bx) + R(Bc) ≥ 2R + 2.

If we have R ≥ 2 and the three blocks By, Bx, and Bc are of
full-rank, then the above inequality easily holds. In addition, in
our implementation, we normalize the columns of By, Bx, and
Bc to avoid possible indeterminacy in the decomposition due to
scaling.

5. Simulations

5.1. Model With Low-Rank and Sparsity Structures

We study the !nite-sample performance of our method under
di"erent predictor processes, link functions φ, point process
dimensions m, p and time length T. We !rst consider a model
and an implementation with only the low-rank and sparsity
structures. We then consider a model with an additional sub-
group structure, and an implementation with all three structures
in the next section.

We generate the data following model (6). Speci!cally, we
!rst generate the p-dimensional predictor point process X(t).
We consider two predictor processes, a homogeneous Poisson
process with the marginal intensity #x

j , and a Hawkes process
with the transferring function ωjj′(t) = ajj′e−βt and the initial
intensity #

(0)
j , where αjj′ is generated from a uniform distribu-

tion on [0.2, 0.3], β = 0.7, and j, j′ = 1, . . . , p. We consider two
intensity link functions φ, a linear link and a logit link. For the
linear link, we set the marginal intensity #x

j = 0.5 for the Pois-
son predictor process, and set the initial intensity #

(0)
j = 0.3 for

the Hawkes predictor process, j = 1, . . . , p. For the logit link, we
set #x

j = 0.2 for the Poisson process, and set #
(0)
j = 0.15 for the

Hawkes process, j = 1, . . . , p. This way, the Poisson and Hawkes
predictor processes are generated with similar levels of overall
intensities. Next, we employ a mixture of three basis functions,
g(1)(t) = exp(−5t), g(2)(t) = 0.2 1(t ≤ 0.1), and g(3)(t) =
0.05 1(t ≤ 1). The !rst basis function is an exponential decaying
kernel that is widely used in point process modeling. The other
two basis functions are piecewise indicator functions, and they
are used to capture some “short-term” e"ect and “long-term”
e"ect, respectively, that are motivated by neuronal spike trains
analysis. Next, we generate the transferring coe#cient tensor B

with a rank-3 structure, B = ∑3
r=1 νrby

r ◦ bx
r ◦ bc

r . For the linear
link, we set ν = (0.3, 0.2, 0.3)T,
by

1 =
(
(η

y
1)
T
m/2, 0Tm/2

)T
, bx

1 =
(
(ηx

1)
T
p/3, 0T3p/4

)T
,

by
2 =

(
0T5m/12, (ηy

2)
T
m/3, 0Tm/4

)T
, bx

2 =
(

0Tp/6, (ηx
2)
T
p/3, 0Tp/2

)T
,

by
3 =

(
0T3m/4, (ηy

3)
T
m/4

)T
, bx

3 =
(

0T2p/3, (ηx
3)
T
p/4, 0Tp/12

)T
,

and bc
r , η

y
r and ηx

r , r = 1, 2, 3, are all generated from a nor-
mal distribution with mean one and covariance the identity
matrix. Figure 1(a) shows the true association structure based
on the generated coe#cient B. For the logit link, we set ν =
(0.2, 0.1, 0.2)T, and generate by

r , bx
r , bc

r in the same way as for the
linear link, except that we add a negative sign to each element of
B with probability 0.5. Finally, we set the background intensity
µ = 0.01m, then generate the m-dimensional response point
process Y(t) following model (6). Given the intensity function,
each individual response process is simulated following the
thinning strategy (Ogata 1988). We set the dimension of the
response and predictor process m = p = {60, 120}, and the
observed length T = {800, 2000}. For a homogeneous process,
T plays the role of sample size, since it is proportional to the
expected number of events. For an inhomogeneous process, this
is not necessarily true, and the expected number of observed
events could vary across di"erent marginal processes.

We compare with a variation of our own method as a bench-
mark, plus two alternative solutions. The benchmark variation
only considers the low-rank structure, but no sparsity structure.
The !rst alternative solution is a standard baseline model that
simply !ts the conditional intensity functions in Equation (1)
without specifying any additional structure. The second alter-
native solution adds a group !1 penalty on the transferring
coe#cients to the baseline model for sparsity-pursuit, which is
analogous to Hansen et al. (2015). We evaluate the estimation
accuracy by the root mean square error (RMSE) of the estimated
transferring coe#cient tensor B.

Table 1 summarizes the results based on 50 data replications.
It is seen that our method with both low-rank and sparsity
structures consistently outperforms the benchmark and the two
alternative solutions, by achieving the smallest RMSE across all
settings. As the point process length T increases, all methods
improve in estimation accuracy. On the other hand, as the
numbers of response and predictor processes m and p increase,
our method continues to improve, whereas the two alternative
solutions su"er. This is largely due to that our model jointly
model all the processes together. Figure 2 shows the recovered

Figure 1. The slice of the true transferring coe!cient tensor B.
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Table 1. Estimation accuracy of B for the model in Section 5.1.

Link Predictor m = p T PP-Reg Sp-PP-Reg Lr-PP-Reg LrSp-PP-Reg

Linear Poisson 60 800 0.281 (0.019) 0.234 (0.015) 0.165 (0.012) 0.147 (0.011)
2000 0.168 (0.010) 0.149 (0.007) 0.102 (0.006) 0.094 (0.006)

120 800 0.319 (0.025) 0.263 (0.021) 0.133 (0.017) 0.117 (0.015)
2000 0.189 (0.011) 0.169 (0.009) 0.080 (0.009) 0.066 (0.009)

Hawkes 60 800 0.307 (0.045) 0.279 (0.028) 0.201 (0.027) 0.185 (0.025)
2000 0.226 (0.026) 0.197 (0.021) 0.135 (0.018) 0.125 (0.018)

120 800 0.337 (0.034) 0.289 (0.024) 0.146 (0.018) 0.129 (0.016)
2000 0.245 (0.015) 0.205 (0.010) 0.098 (0.010) 0.079 (0.010)

Logit Poisson 60 800 0.548 (0.026) 0.231 (0.015) 0.258 (0.021) 0.152 (0.012)
2000 0.518 (0.015) 0.202 (0.009) 0.221 (0.012) 0.121 (0.009)

120 800 0.844 (0.065) 0.264 (0.025) 0.240 (0.017) 0.134 (0.015)
2000 0.645 (0.017) 0.196 (0.005) 0.187 (0.004) 0.101 (0.003)

Hawkes 60 800 0.648 (0.045) 0.258 (0.028) 0.293 (0.027) 0.158 (0.025)
2000 0.583 (0.035) 0.192 (0.018) 0.201 (0.012) 0.124 (0.012)

120 800 0.983 (0.048) 0.289 (0.026) 0.285 (0.016) 0.149 (0.014)
2000 0.725 (0.026) 0.211 (0.017) 0.143 (0.016) 0.103 (0.016)

NOTES: Four methods are compared: the regular point process regression model (PP-Reg), the sparse point process regression with a group !1 penalty (Sp-PP-Reg), the
variation of our method with only low-rank structure (Lr-PP-Reg), and our proposed method with both low-rank and sparsity structures (LrSp-PP-Reg). Reported are the
average RMSE based on 50 replications, with the standard errors in the parenthesis.

transferring structure based on the estimated B with a linear
link and a Poisson predictor process. It is seen that our method
is capable of recovering the transferring structure successfully,
while the alternative solutions cannot. Compared to the bench-
mark variation, our method achieves a smaller RMSE, which
is more clear for the logit link. This demonstrates the advan-
tage of incorporating the sparsity in addition to the low-rank
structure.

5.2. Model With Additional Subgrouping Structure

We next consider a model with an additional subgrouping struc-
ture. For simplicity, we focus on the linear link φ and the Poisson
predictor process. The results are similar for other combinations
of link function and predictor process. We adopt the same
simulation setup as in Section 5.1, except that we generate the
transferring coe#cient tensor B in a di"erent way. Speci!cally,
we consider a rank-4 structure B = ∑4

r=1 νrby
r ◦ bx

r ◦ bc
r . We set

ν = (0.2, 0.2, 0.2, 0.2)T,

by
1 =

(
(η

y
11)Tp/6, 0T5p/6

)T
, bx

1 = (ηx
1)m,

by
2 =

(
0Tp/6, (ηy

21)Tp/6, 0T2p/3

)T
, bx

2 =
(
(ηx

2)
T
m/2, 0Tm/2

)T
,

by
3 =

(
0Tp/3, (ηy

31)Tp/3, 0Tp/3

)T
, bx

3 =
(

0Tm/3, (ηx
3)
T
m/3, 0Tm/3

)T
,

by
4 =

(
0T2p/3, (ηy

41)Tp/3

)T
, bx

4 =
(

0T2m/3, (ηx
4)
T
m/3

)T
,

bc
r , ηx

r are all generated from a normal distribution with mean
one and the identity covariance, and η

y
r , r = 1, 2, 3, 4, are

generated from a univariate normal distribution with mean
one and variance 0.1. Note that, unlike the coe#cient tensor
in Section 5.1, here the entries are repeated in by

r , which in
turn induces the subgrouping structure. This structure can also
be seen in Figure 1(b), which shows a slice of one generated
coe#cient tensor B. We set the dimension of the response and
predictor process m = p = {60, 120}, and the observed length
T = {1200, 2400}.

Table 2 summarizes the results based on 50 data replications,
and Figure 3 shows the recovered transferring structure. It is

again seen that our proposed method consistently outperforms
the two alternative solutions in terms of estimation accuracy.
Moreover, Table 2 includes the rand index statistic for our
proposed method, which evaluates the clustering performance.
It is seen that our method achieves a high index value in all
settings.

Finally, we report the computation time. For the simulation
example in Section 5.1 with a linear link, a Poisson predictor
process, m = p = 60 and T = 2000, the average com-
puting time was about 1.1 minutes, and the algorithm usually
converges within 30 iterations. For the example in Section 5.2
with m = p = 60 and T = 2400, the average computing
time was about 1.9 minutes, and the algorithm usually converges
within 50 iterations. All computations were done on a personal
laptop with Intel(R) Core(TM) i7-8565U CPU@1.8GHz. We
also report additional sensitivity analysis for the choice of the
basis functions and the rank in the supplementary appendix.

6. Cross-area Neuronal Spike Trains Analysis

Ensemble neural activity analysis is of central importance in
system neuroscience, which aims to understand sensory coding
and associations with motor output and cognitive functions
(Brown, Kass, and Mitra 2004; Kim et al. 2011). Some goals
of common interest include the study of single-neuron activity
with dependence on its own history, and the study of cross-
neuron correlations based on spike trains similarities within the
same area. Beyond those goals, it is also of key interest to under-
stand the communication patterns in information transmission
between neurons in di"erent brain areas through neuronal
spiking activities (Saalmann et al. 2012). A group of neurons
could be identi!ed within a brain area based on their similar
exciting or inhibitory e"ects onto another group of neurons
in a di"erent brain area. This hypothesis has been suggested
by several scienti!c studies. For instance, Liang et al. (2013)
found that there might be discrete locations within the visual
cortex area that respond to speci!c cross-modal inputs such
as auditory or tactile. That is, the neurons in the V1 area are
expected to be clustered in that they share similar cross-cortex-
area association patterns, which needs to be inferred from the
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Figure 2. Recovered transferring coe!cient tensor B for the model in Section 5.1. Four methods are compared: the regular point process regression model (PP-Reg), the
sparse point process regression with a group !1 penalty (Sp-PP-Reg), the variation of our method with only low-rank structure (Lr-PP-Reg), and our proposed method with
both low-rank and sparsity structures (LrSp-PP-Reg).

Table 2. Estimation accuracy of B for the model in Section 5.2.

m = p T PP-Reg Sp-PP-Reg Lr-PP-Reg LrSpGr-PP-Reg {Rand Index}

60 1200 0.205 (0.021) 0.182 (0.015) 0.133 (0.011) 0.092 (0.010) {0.847 (0.075)}
2400 0.161 (0.012) 0.143 (0.008) 0.104 (0.007) 0.076 (0.005) {0.893 (0.065)}

120 1200 0.222 (0.024) 0.186 (0.018) 0.114 (0.015) 0.073 (0.014) {0.878 (0.099)}
2400 0.169 (0.008) 0.147 (0.005) 0.084 (0.006) 0.059 (0.003) {0.912 (0.071)}

NOTES: Four methods are compared: the regular point process regression model (PP-Reg), the sparse point process regression with a group !1 penalty (Sp-PP-Reg), the
variation of our method with only low-rank structure (Lr-PP-Reg), and our proposed method with low-rank, sparsity and group structures (LrSpGr-PP-Reg). Reported are
the average RMSE based on 50 replications, with the standard errors in the parenthesis.
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Figure 3. Recovered transferring coe!cient tensor B for the model in Section 5.2. Four methods are compared: the regular point process regression model (PP-Reg), the
sparse point process regression with a group !1 penalty (Sp-PP-Reg), the variation of our method with only low-rank structure (Lr-PP-Reg), and our proposed method with
low-rank, sparsity and group structures (LrSpGr-PP-Reg).

associations between the observed spike trains activities. In
addition, the signal transmission takes time from one area to
another, suggesting that the cross-area neuronal connection
may account for a time-dependent convolutional e"ect rather
than a simple co-!ring. In recent years, bene!tting from the
rapid development of imaging techniques such as the calcium
imaging, we are now able to monitor a large number of neurons
simultaneously with a single-neuron resolution in a short time
period, which produces high-dimensional point process type
data of neuronal spike trains.

In our study, we simultaneously measure the neuronal spike
trains activities of 139 neurons and 283 neurons from two
sensory cortical areas, A1 and V1, in a rat brain, respectively.

We collect the data over 192 seconds under a stable stimulus.
With 50 millisecond as a unit of time, we obtain the length of
time interval of [0, 3840]. Figure 4 shows the recorded neuron
!ring events over time, and the histogram summary of the
numbers of observed !rings for individual neurons in each of
these two areas. It is seen that most neurons have their numbers
of observed !ring events under 200, whereas a subset of neurons
have the numbers below 100.

Since a primary goal is to understand the information trans-
mission from the A1 area to the V1 area, we !t the data using
our proposed multivariate temporal point process regression, by
treating the neuronal spike trains in V1 as the response point
process, and the neuronal spike trains in A1 as the predictor
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Figure 4. Neuron "rings in the V1 and A1 areas. The heatmaps (upper panels) show the neuron-wise "rings over time. The histograms (lower panels) show the number of
"rings for each neuron.

process. Since the observed !ring events are sparse, we choose a
logit link function. We select three basis functions, similarly as
in our simulation studies: g(1)(t) = exp(−t), g(2)(t) = 0.2 1(t ≤
1), and g(3)(t) = 0.05 1{t ≤ 5}, with the time intervals in
the indicator functions selected based on the existing scienti!c
!ndings that the communication process between ensemble
neurons across areas mostly happens within tens of milliseconds
(Luo et al. 2016). In addition to our proposed model, we also
!t the marginal model that takes one response process at a
time. Since some neurons have very limited number of !ring
events, the corresponding model !ttings may not converge.
Actually, for our data, we have found that about one third of
the individual response process !ttings cannot converge. To
handle this convergence issue, we add an !2 regularization to
this marginal approach, though we still refer to it as a marginal
method. Moreover, we !t the marginal model with a group !1
regularization, similarly as in our simulations.

To evaluate the model, we split the point processes into a
training set, that is, the spike trains data in the time inter-
val [0, 2000), and a testing set, that is, the data in the time
interval (2000, 3800]. We report two evaluation criteria. The
main criterion is the area under the ROC curve (AUC) based
on a binary prediction (Luo et al. 2016). That is, we bin the
continuous point process into a sequence of binary values based
on a unit of time of 50 milliseconds, with one meaning that there
is a !ring event in this time bin, and zero otherwise. We then
produce a sequence of binary predictions based on the predicted
intensity function for the testing data. The second criterion
is the deviance ‖B̂training − B̂testing‖. That is, we obtain the
estimated coe#cient tensor B from the training data and testing
data, respectively, and evaluate the di"erence between the two
in the Frobenius norm. Intuitively, if the !ring patterns have
been consistent, then this deviance measure should be small.

Table 3. Evaluation of model "tting for the cross-area neuronal spike trains analysis.

PP-Reg SpPP-Reg LrSpGr-PP-Reg

Deviance 0.388 0.256 0.185
AUC 0.537 0.579 0.682

NOTE: Three methods are compared: the regular point process regression model
(PP-Reg), the sparse point process regression with a group !1 penalty (SpPP-Reg),
and our proposed method (LrSpGr-PP-Reg).

Meanwhile, we note that, due to the non-convex nature of our
optimization problem, the obtained estimator could possibly be
a local optimum. To alleviate this issue, we recommend the usual
strategy of trying multiple random initial values. Table 3 reports
the results. It is seen that our proposed method achieves the
highest AUC value and the lowest deviance value, suggesting a
competitive performance of the proposed method compared to
the two alternatives. We also identify !ve subgroups of neurons
with our method, which requires future scienti!c validation, as
we do not have relevant subgroup information for this dataset.
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