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Abstract. We consider the thermal relaxation of a particle in a piecewise-
constant potential landscape, subject to thermal fluctuations in the overdamped
limit. We study the connection between the occurrence of the Mpemba effect,
the presence of metastable states, and phase transitions as a function of the
potential. We find that the Mpemba effect exists even in cases without metastable
states. In the considered physical system, the borders of the areas where the
effect happens correspond to either eigenvector changes of direction or to phase
transitions. Finally, we discuss the topological aspects of the strong Mpemba
effect and propose using topology to search for the Mpemba effect in a physical
system.
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1. Introduction

The interest in anomalous relaxation phenomena stems from deepening our basic knowl-
edge and understanding of the dynamics of systems out of equilibrium. Equally impor-
tant are pragmatic efforts to utilize anomalous relaxations to optimize heating and
cooling processes in metallurgy, provide better sample preparation, material design,
and develop efficient numerical samplers.

The Mpemba effect is an anomalous relaxation phenomenon in which a system start-
ing at a hot temperature cools down faster than an identical system starting at an
initially lower temperature when both are coupled to an even colder bath. The effect
was originally observed in water [1], where the proposed explanations include the effects
of the presence of dissolved gasses and solids in water that affect its cooling properties
[2], convection and evaporation [3–5], supercooling [6], and reorientation of hydrogen
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bonds [7]. Besides water, the Mpemba effect was experimentally observed in colloidal
systems [8, 9], polymers [10], magnetic alloys [11], and clathrate-hydrates [12]. It was
simulated in granular fluids [13, 14], spin glasses [15], quantum systems [16], nanotube
resonators [17], cold gasses [18], mean-field antiferromagnets [19], ferromagnets [20], sys-
tems without equipartition [21], molecular dynamics of water molecules [22], molecular
binary mixtures [23], and driven granular gasses [24]. Some of the recent theoretical
advances include the formulation of the Mpemba effect for a general system [25], the
definition of the strong Mpemba effect and its topological properties [19], the observation
that optimal heating strategy may include pre-cooling the sample [26], and the notion
that in the case of metastability, the Mpemba effect corresponds to a non-monotonic
temperature dependence of extractable work [27].

Motivated by expanding our intuition on the Mpemba effect, we search for the phe-
nomenon in the case of a Langevin particle diffusing and advecting on a potential energy
landscape in the overdamped limit. We study the Mpemba effect, or non-monotonic
thermal relaxation, as a function of parameters defining the potential landscape. We
should note that such a system was experimentally studied by Kumar and Bechhoefer
in [8]. They used optical tweezers to create a double-well potential and then watched
how a colloidal particle submerged in water relaxes to equilibrium. They were the first
to observe the strong Mpemba effect in experiment [8]. The same group, together with
Chétrite, was also the first to see the inverse Mpemba effect [9]. Here, we theoretically
consider several simple potentials and focus on the salient features when one observes
the strong Mpemba effect as a function of the potential.

An overly simplistic heuristic explanation attempt of the Mpemba effect is that
the ‘colder’ system is stuck in metastable states, compared to the identical system
starting from a ‘hotter’ temperature. The heuristic suggests that metastable states of
the right kind of geometry are necessary for the effect to happen. However, below we
show that metastable states are not required for the Mpemba effect to occur. More
concretely, in the case of a piecewise-constant potential, we analytically and numerically
find phase space regions where the Mpemba effect exists, and those include areas without
metastable states. In our model, we observe that the borders of the regions where the
effect happens correspond to eigenvector changes of direction and phase transitions.
We discuss how to look for anomalous relaxation behavior and how to exploit it in
applications.

The paper is organized as follows. In section 2, we introduce the physical model,
section 3 defines the Mpemba effect and relevant topological properties of it. In section 4,
we specify the potential and solve for the Mpemba effect. Section 4.3 contains our main
results on the strong Mpemba effect in the case of overdamped-Langevin dynamics in a
piecewise-constant potential and section 5 summarizes the paper.

2. Model

We consider a particle subject to potential Ũ(x̃), and damping γ̃, in a thermal envi-
ronment, characterized by noise Γ̃(t̃). The mean and the variance of the noise are
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〈Γ̃(t̃)〉 = 0 and 〈Γ̃(t̃)Γ̃(t̃′)〉 = 2γ̃kBT̃ bδ(t̃− t̃′), (1)

where T̃ b is the temperature of the surrounding heat bath and kB is the Boltzmann’s
constant. For damping γ̃ large compared to inertia, the motion of the particle is described
by the overdamped-Langevin equation

dx̃

dt̃
+

1

γ̃

dŨ

dx̃
=

Γ̃(t̃)

γ̃
. (2)

The evolution of a probability density p̃(x̃, t̃) of having a particle at position x̃ at time
t̃ obeys the Fokker–Planck equation

∂p̃

∂t̃
=

∂

∂x̃

[
1

γ̃

dŨ

dx̃
p̃

]
+

2kBT̃ b

2γ̃

∂2p̃

∂x̃2
, (3)

cf [28–30]. The Fokker–Planck equation arises in many situations, such as in
Brownian motion [29, 31], colloids held with optical tweezers [8], chemical reac-
tions [28, 32], fluctuations of the current on a Josephson junction, and stretching of a
polymer [33–35].

It is convenient to use the following normalized coordinate x, time t, potential U
and temperature T defined as

x ≡ 2π

L
x̃, t ≡ (2π)2

L2

kBT̃ b

γ̃
t̃, U ≡ Ũ

kBT̃ b

, T ≡ T̃

T̃b

. (4)

The normalized coordinate is in the domain x ∈ D ≡ [−π, π]. Note that the normalized

potential U and time t depend on the bath temperature T̃ b. In the new variables the
Fokker–Planck equation is

∂p

∂t
= LFp = −∂J

∂x
, (5)

where LF is the Fokker–Planck operator

LF ≡ ∂

∂x
U ′ +

∂2

∂x2
, (6)

and J(x, t) is the probability current

J(x, t) ≡ −e−U(x)[eU(x)p(x, t)]′. (7)

Here, U ′ ≡ dU/dx, and the equilibrium probability density at T b = 1 is

π(x|T = 1) =
e−U(x)/T

Z(T )

∣∣∣∣
T=1

, (8)

where Z(T ) ≡
∫
Dπ(x|T ) dx is the norm. The Fokker–Planck operator LF is not self-

adjoint, but it can be transformed into a self-adjoint operator L with the following
transformation

L = e
U(x)
2 LFe

− U(x)
2 =

∂2

∂x2
− V (x), (9)
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where

V (x) ≡ e
U(x)
2

(
∂2

∂x2
e−

U(x)
2

)
=

U ′ 2

4
− U ′′

2
, (10)

for details, see e.g. [29]. Finding the spectrum of the Fokker–Planck operator LF , reduces
to solving a Schrödinger eigenvalue problem

Lψμ = λμψμ. (11)

The eigenvalues are ordered and non-positive λ1 = 0 > λ2 � λ3 � . . . The general
solution with the initial condition p(x′, 0) is

p(x, t) =

∫
D
G(x, x′, t)p(x′, 0)dx′, (12)

where the transition probability is

G(x, x′, t) = e−
U(x)
2 + U(x′)

2

∑
μ

ψμ(x)ψ
∗
μ(x

′)e−|λμ|t, (13)

and the eigenvectors ψμ fulfil the completeness relation
∑

μψμ(x)ψ
∗
μ(x

′) = δ(x− x′). The

first eigenvector, corresponding to λ1 = 0, is ψ1(x) = e−U(x)/2/
√

Z(1). Thus, the general
solution for the probability density is

p(x, t) =
e−U(x)

Z(1)
+

∑
μ>1

aμe
− U(x)

2 ψμ(x)e
−|λμ|t, (14)

with

aμ ≡
∫
D
dx′ p(x′, 0)e

U(x′)
2 ψ∗

μ(x
′)dx′. (15)

Assuming λ2 > λ3 at times t � |λ3|−1, we have

p(x, t) ≈ e−U(x)

Z(1)
+ a2e

− U(x)
2 ψ2(x)e

−|λ2|t. (16)

3. The Mpemba effect

Let us choose for the initial condition the equilibrium distribution at temperature T ,
i.e.

p(x, 0) = π(x|T ) = e−U(x)/T

Z(T )
. (17)

In this case, the overlap coefficients aμ are

aμ(T ) = Z−1(T )

∫
D
dx′ e−U(x′)( 1

T −
1
2 )ψμ(x

′)dx′. (18)
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Notice that because of orthogonality of ψμ eigenvectors, we get aμ(1) = 0 as expected (no
cooling or heating if T = T b = 1). As T →∞, aμ becomes independent of temperature,
and plateaus to a constant. Assuming that λ2 > λ3, the Mpemba effect occurs for a2(T )
non-monotonic as a function of initial temperature T [25]. The strong Mpemba effect
occurs for a2(T ) = 0 for select T �= T b [19]. If a2(T ) = 0 for all T , then the relaxation
to equilibrium does not have that mode and one needs to look at μ > 2 for anomalous
relaxations.

3.1. Parity analysis

One way to check for the strong Mpemba effect in cooling is to check for parity,

Pdir ≡
[
−da2
dT

∣∣∣∣
T=1

a2(T = ∞)

]
, (19)

Pinv ≡ lim
ε→0+

[
da2
dT

∣∣∣∣
T=1

a2(ε)

]
, (20)

which was introduced in [19]. There is an odd number of zero crossing of a2(T ) between
T ∈ (1,∞) if Pdir > 0. From equation (15), we have

a2(∞) =
1

2π

∫
D
ψ2(x)e

U(x)
2 dx, (21)

da2
dT

∣∣∣∣
T=1

=
Z(2)

Z(1)
[〈Uψ2〉1 − 〈U〉1〈ψ2〉2] , (22)

where 〈g(x)〉T ≡
∫
Dg(x)e

− U(x)
T [Z(T )]−1 dx. Thus, the parities of the direct and inverse

strong Mpemba effect are

Pdir =

[
(〈U〉1〈ψ2〉2 − 〈Uψ2〉1)

∫
D
e

U(x)
2 ψ2(x)dx

]
, (23)

Pinv = lim
ε→0+

[
(〈Uψ2〉1 − 〈U〉1〈ψ2〉2)

×
∫
D
e

U(x)
2 − U(x)

ε ψ2(x)dx

]
. (24)

4. Piecewise-constant potential

We investigate the existence of the Mpemba effect for simple potentials to gain intuition
when the effect occurs. In the case of symmetric potentials V (x) and U(x) eigenvector
of the first excited state, ψ2, is odd. Over symmetric domains, the overlap coefficient a2,
given by equation (18), is automatically zero, and thus there is no Mpemba effect related
to this overlap coefficient. For more details, see appendix A.1. Similarly, for the case of
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the quadratic potential U(x) = kx2/2, which corresponds to the Ornstein–Ühlenbeck
process, we show in appendix A.2 that there is no Mpemba effect.

As the next case in simplicity—below, we introduce an analytically solvable case of
a piecewise-constant potential with three different regions and derive analytically and
numerically the regions in the phase space defined by the potential parameters where
the system displays the strong Mpemba effect. Section 4.3 contains our main results.

Let us choose the potential as

U(x) =

⎧⎪⎪⎨
⎪⎪⎩
U1, x ∈ [−π,−απ/2)

U0, x ∈ [−απ/2, π/2]

0, x ∈ (π/2, π],

(25)

where U 0, U 1, and α ∈ [0, 1]. Our potential has finite jumps at −απ/2 and π/2, and
it diverges to infinity at ±π. For a finite discontinuity of the potential, the probability
current must be constant to satisfy the conservation of probability. Assuming we have
a finite jump at x, the ‘jump’ conditions are

e
U(x+)

2 ψμ(x
+) = e

U(x− )
2 ψμ(x

−), (26)

e−
U(x+)

2

[
ψ′
μ(x

+) +
1

2
U ′(x+)ψμ(x

+)

]

= e−
U(x−)

2

[
ψ′
μ(x

−) +
1

2
U ′(x−)ψμ(x

−)

]
. (27)

We assume that the potential has a positive infinite value at the edges of the domain.
At the edges of the domain, the probability current must be zero, J(±π) = 0, if we are
to have a non-trivial steady state.

4.1. Bistable symmetric rectangular potential well

Let us choose U 1 = 0, α = 1, and vary U 0. The potential in this case corresponds to a
bistable symmetric rectangular well. The Fokker–Planck equation is analytically solvable
[36]. The eigenvector of the first excited state is

ψ2(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1√
π

cos[ν(π + x)], x ∈
[
−π,−π

2
)

1√
π

sin[νx], |x| � π

2
1√
π

cos[ν(π − x)], x ∈ (
π

2
, π

]
,

(28)

with ν ≡ 2
π
arctan[e−U0/2]. The relevant eigenvalues are nondegenerate: λ1 = 0, λ2 = ν2,

and λ3 = 1. The first excited state ψ2 is odd; thus, a2 = 0, as an integral of an odd
function in a symmetric domain. Therefore, there is no Mpemba effect associated with a2.
The result is consistent with the finding of Kumar and Bechhoefer, who experimentally
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Figure 1. Piecewise-constant potentialU (x) with parameters U 0, U 1, and α ∈ [0, 1].

saw that there is no Mpemba effect associated with a2 for their double-well symmetric
potential in a symmetric domain [8].

4.2. Varying the heights and the widths of a piecewise-constant potential

Let us now consider the cases of α ∈ [0, 1], and vary U 0 and U 1. The eigenfunctions are

ψμ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aμ cos[
√
λμ(x+ π)], −π � x <

−απ

2

Bμ cos[
√
λμx] + Cμ sin[

√
λμx],

−απ

2
� x � π

2

Dμ cos[
√
λμ(x− π)],

π

2
< x � π.

(29)

The zero-current boundary conditions, ψ′
μ(±π) = 0, are fulfilled by construction. The

jump conditions, equations (26) and (27), and the normalization of ψμ’s, specify the
coefficients Aμ, Bμ, Cμ and Dμ. The transcendental equation that specifies λ2 is

−eU1 cos
[√

λ2απ
2

]
+ eU0 sin

[√
λ2απ
2

]
tan

[√
λ2π

(
1− α

2

)]
eU1 cos

[√
λ2απ
2

]
− eU0 sin

[√
λ2απ
2

]
tan

[√
λ2π

(
1− α

2

)]

=
cot

[√
λ2π
2

]
− eU0 tan

[√
λ2π
2

]
eU0 + 1

. (30)

Note that the width parameter α appears only inside trigonometric functions, and thus
its contribution is bounded. For general α, λ2 cannot be found in an explicit form. Such
a form however exists in the case of α = 1, and α = 0. Below, we present analytic results
in the two cases and numerical results for arbitrary width parameter α (figure 1).
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Figure 2. The temperature of the strong Mpemba effect T SM as a function of
potential parameters U 0, U 1 and α = 1. Here, kB = 1 and T b = 1.

4.2.1. Equal widths of the left and right sections, the α = 1 case. In the case α = 1,
we have the transcendental equation gives λ2 as

λ2 =

[
2

π
tan−1

[√
2− tanh

[
U0

2

]
− tanh

[
U0−U1

2

]
2 + tanh

[
U0

2

]
+ tanh

[
U0−U1

2

]
]]2

. (31)

Plugging in ψ2 and λ2, into equation (18) we get the overlap coefficient a2

a2 =
2 sin

[
π
√
λ2
2

]
π
√
λ2

×

×

(
A2e

U0
T +

U1
2 + 2B2e

U0
2 +

U1
T +D2e

U0
T +

U1
T

)
(
e

U0
T +

U1
T + e

U0
T + 2e

U1
T

) . (32)

The jump conditions, equations (26) and (27), and the normalization of ψ2, specify
the coefficients A2, B2, C2 and D2. The zeros of the numerator of a2 define the set of
temperatures for which we have the strong Mpemba effect [19].

For particular choices of potential parameters U 0 and U 1, we get the Mpemba effect.
The strong Mpemba temperature T SM as a function of U 0, and U 1 is shown in figure 2.
The isolines of the strong Mpemba effect in the U 0U 1-plane are depicted in figure 3. In
figure 4, the green region shows the region of existence of the direct strong Mpemba
effect (cooling), and the yellow region shows the region of existence of inverse strong
Mpemba (heating). In the blue region, there is no strong Mpemba effect. We observe
the strong Mpemba effect for U 1 > U 0 and U 0 < 0, which corresponds to the absence
of metastable states. Note that we see the Mpemba effect in the absence of metastable
states—this challenges the heuristic explanation attempt described in the introduction,
cf also [37].

Below in section 4.3, we argue that the strong Mpemba effect for α = 1 happens
when the mismatch between the initial probability and the final probability in the left
region matches the mismatch between the initial and final probabilities of the right
region.

https://doi.org/10.1088/1742-5468/ac2edc 9

https://doi.org/10.1088/1742-5468/ac2edc


J.S
tat.

M
ech.

(2021)
113105

Anomalous thermal relaxation of Langevin particles in a piecewise-constant potential

Figure 3. The strong Mpemba effect is present along the isolines of a2 = 0 for the
potential heights U 1, U 0, α = 1 and initial temperature T . Here, T b = 1 and kB = 1.

Figure 4. The strong Mpemba effect for α = 1. In the green region, we have the
direct strong Mpemba effect (the parity Pdir > 1) and in the yellow region, we have
computed the inverse strong Mpemba effect (the parity Pinv > 1, where ε = 0.02).
The parities are defined in equations (19) and (20). In the blue region, there is no
strong Mpemba effect. Here, T b = 1 and kB = 1.

4.2.2. Wide left section, the α = 0 case. Above we demonstrated that the α = 1 case is
exactly solvable. Next we obtain an analytic solution for the α = 0 case. In this example,
the width of the left section is twice the width of the center section and right section.
The form of the eigenfunctions is equation (29), but the eigenvalue λ2 is different (from
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Figure 5. The strong Mpemba effect as a function of the potential parameters U 0,
U 1, and α = 0. In the green region, we have the direct strong Mpemba effect (the
parity for the direct effect is Pdir > 1; see equation (19)) and in the yellow region, we
have the inverse strong Mpemba effect (the parity for the inverse effect is Pinv > 1)
region. The parity Pinv was computed by choosing ε = 0.02 in equation (20). In the
blue region, there is no strong Mpemba effect. Here, T b = 1 and kB = 1.

the α = 1 case)

λ2 =

[
2

π
tan−1

(√
eU1−U0 − tanh

[
U0

2

]
+ 1

eU1−U0 + tanh
[
U0

2

]
+ 1

)]2

, (33)

and the domains with the strong effect are changed, respectively; see figure 5. Now we
see that the region with the strong Mpemba effect is dramatically smaller. It requires
fine-tuning the potential to demonstrate the Mpemba effect. However, unlike the α = 1
case, one now has a Mpemba effect for a barrier in the middle section (U 0 > U 1 and
U 0 > 0) and metastable states, akin in the experiment of Kumar and Bechhoefer [8].
The strong Mpemba temperature T SM as a function of U 0, and U 1 is shown in figure 6.
The isolines of the strong Mpemba effect in on the U 0U 1-plane are depicted in figure 7.

4.2.3. Varying middle section’s width, the case α ∈ (0, 1). Next, we consider what
happens if we change the width of the left and middle piecewise sections, with α ∈ (0, 1).
It is important to note that we are not solving the system perturbatively; we are solving
the whole problem for new widths, starting with the transcendental equation given by
equation (30). In the case of arbitrary α equation (30) does not have an explicit solution
for λ2, but it is solvable numerically. After the eigenvalue is obtained, the coefficients
A2B2, C2 and D2 are calculated from the jump conditions, equations (26) and (27), and
the normalization of the eigenvector. Now we can go about calculating a2 numerically
and study what happens. In the parity plots in figure 8, we see the behavior changes
immediately. This change can be understood through the symmetry breaking of the
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Figure 6. The temperature of the strong Mpemba effect T SM as a function of
potential parameters U 0, U 1, and α = 0. Here, T b = 1 and kB = 1.

Figure 7. The strong Mpemba effect is present along the isolines of a2 = 0 for the
potential parameters U 1, U 0, α = 0 and initial temperature T . Here, T b = 1 and
kB = 1.

middle section. The eigenvector for this region is, Bμ cos[
√
λμx] + Cμ sin[

√
λμx]. When

we integrate this eigenvector over a symmetric domain, as we do in the α = 1 case,
the contribution of the sin[

√
λμx] piece always vanishes. By changing α, we break this

symmetry and now sin[
√
λμx] term in the middle section, −απ/2 � x � π/2, will also

contribute to the overlap a2.

4.3. General remarks on the strong Mpemba effect for the piecewise-constant potential

4.3.1. Regions of the direct and strong Mpemba effect. Here, the direct and inverse
strong Mpemba effect regions are disjointed, see figure 8, while in general, the effects
can coexist. For example, in Glauber dynamics on the mean-field antiferromagnet on a
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Figure 8. The strong Mpemba effect as a function of potential parameters U 0, U 1,
and α ∈ [0.25, 1]. In the green region, we have the direct strong Mpemba effect
(the parity Pdir > 1) and in the yellow region, we have the inverse strong Mpemba
effect (Pinv > 1) region. There is no strong Mpemba effect in the blue region. Here,
we looked for the strong effect between initial temperatures 0.02T b � T � 200T b,
where T b = 1 and kB = 1. The parity was calculated via equations (19) and (20).

complete bipartite graph, there is a region where one has both strong Mpemba effects
[19].

Also, note that the region where we have the inverse effect in this range of parameters
seems smaller than where we have the direct effect. It results from a temperature unit
scale we have imposed on the problem by setting T b = 1. Namely, there is less ‘room’ to
create non-zero curvature between the T b and zero temperature than between T b and
infinity, which corresponds to less phase space area for the inverse strong Mpemba effect
than the direct strong Mpemba effect.

4.3.2. Ratio of the mismatch in equilibrium probabilities in the flanking regions. To
shed some intuition on when we see the strong Mpemba effect, we look at the difference
of the equilibrium probabilities for the particle to be at the left and the right region at
the bath temperature T b and the temperature of the strong Mpemba effect T SM. The
equilibrium probability of a particle being in region Di is

Πi(T ) ≡
∫
Di

π(x|T )dx, (34)
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Figure 9. Ratio of difference of equilibrium probabilities at the bath temperature,
T b, and the temperature where we have the strong Mpemba effect, T SM, for the
left region (1) and the right region (2) as a function of the gap U 0 − U 1, U 0 and
α. Here, T b = 1 and kB = 1. We notice that the ratio R is equal to 1 for α = 1. In
other cases, α ∈ [0, 1), the ratio depends on both the gap U 0 − U 1 and U 0.

where D1 = [−π,−απ/2) is the left, D0 = [−απ/2, π/2] is the middle and D2 = (π/2, π]
is the right region. The ratio of the difference in equilibrium probabilities is defined as

R ≡ Π1(Tb)− Π1(TSM)

Π2(Tb)− Π2(TSM)
. (35)

From figure 9, we notice that for left and right regions of the same width, α = 1
case, the ratio R = 1. In this case, we have the strong Mpemba effect only if there is a
difference between the initial and final probabilities in the left region, matching that of
the right region. Also, R = 1, can be used as an implicit formula for T SM.

For flanking regions of different widths, α < 1, the ratio R is less than R(α = 1) = 1
i.e., in this case, we have the strong Mpemba effect when the wider region contains less
probability mismatch than the narrower region—how much less depends on all of the
parameters of the potential, that is R(U 0 − U 1,U 0,α). Namely, we see from figure 9 that
the ratio R is a function of both the gap U 0 − U 1 and U 0. As we make the left region
wider, reduce α, the dependence on U 0 becomes weaker compared to the dependence
on the gap U 0 − U 1.

Note that in the case of the metastable Mpemba effect, described in [8, 9], the
authors see the effect for potentials that simultaneously satisfy Π1(T b) = Π1(T SM) and
Π2(T b) = Π2(T SM), which is quite different from our case. Indeed, for the piecewise-
constant potential that we are considering, metastability is not needed to have the
effect. Even more, for α = 1, we do not have the effect if we have metastability.
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4.3.3. Topological considerations. The existence of the strong Mpemba effect could be
thought of as a topological invariant [19]. Namely, it is a non-trivial intersection of the
locus of points corresponding to the equilibrium distribution at different temperatures
and the a2 = 0 hyperplane. The number of times this locus of points intersects the a2 = 0
hyperplane is the intersection number and was named the Mpemba index by the authors
of [19]. As a topological invariant, the Mpemba index can change under perturbations,
but its modulo two cannot. Our results show agreement with this assertion. In our
analysis of the piecewise-constant potential, we show that the strong Mpemba effect
cannot be removed or introduced without changing the Mpemba index modulo two,
which can only happen if, as laid out in [19]:

(a) The perturbation changes the ordering of the eigenvalues—it causes λ3 to become
larger than λ2.

(b) The perturbation causes a2(0) or a2(∞) or both to change sign. For this to occur,
the eigenvector ψ2 must change ‘direction’.

(c) There is a phase transition. For example, the ground state of the system changes.

We obtain the full spectrum of eigenvalues analytically and conclude that eigenvalues
λ2 and λ3 do not cross in our case; thus, (a) never happens. In our case, removing or
introducing the strong Mpemba effect requires that the system goes through a change
of the direction of the eigenvector (b) or through a phase transition (c), or both.

Figures 4, 5 and 8 provide simple phase diagrams. The green, yellow, and blue regions
are divided by domain walls, demarking the region of existence of the direct, the inverse
strong Mpemba effect, and the absence of both effects, respectively.

For equally wide outer sections, in the α = 1 case, one can only get a strong Mpemba
on a part U 0 < 0 half-plane where U 0 < U 1 (see figure 4). In this case, one cannot get
a strong Mpemba effect in a2 if the middle section is a barrier. Regardless of how
small one makes the middle section, i.e. U 0, it cannot be the highest potential height.
The symmetry of the problem protects this. It seems that as if one needs remove the
metastable states for the effect to occur. Likewise, choosing U 0 < 0 and crossing the
U 1 = U 0 line toward U 1 < U 0 introduces a metastable state and removes the strong
Mpemba effect. However, note that simply ‘removing’ metastable states will not intro-
duce the effect; in the region U 1 < U 0 < 0, there is no strong Mpemba effect, despite
the absence of metastable states.

In the case that the outer potential sections have different widths, the α �= 1 case,
there now exists additional domain walls, compared to the α = 1 case, where the
Mpemba index modulo two can change, see figures 5 and 8. As before, these domain
walls correspond to the eigenvector changing the direction and to changes of the ground
state.

The line between the direct and the inverse effect (between the green and yellow
regions in the phase diagrams in figures 4, 5 and 8) corresponds to two zeros of a2, one
at T > T b and the other at T = T b, merging into one at T = T b and then becoming two
distinct zeros again where one is now at T < T b and the other remains at T = T b.

To conclude, by studying how a Brownian particle diffuses on a potential energy
landscape, we see how the particle behaves vastly differently, depending on the geometry
of the potential landscape. Intuitively this is to be expected, but what is interesting is
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that there are particular initial temperatures for which the system relaxes exponentially
faster than when starting from other temperatures. By studying this phenomenon in
our piecewise-constant potential, we see that this behavior is protected by symmetries
present in our problem and is robust to perturbations. Together, these provide intuition
into the dynamical behavior of our Brownian particle. The described exotic behavior
could be considered a topological phase because the system’s behavior is topologically
protected against perturbations.

Additionally, out of the three cases that change the Mpemba index, stated in
section 4.3, the phase transitions and the crossing of eigenvalues are properties of the
potential and bath only; they do not depend on the initial conditions, while as the
eigenvector some changes of direction are significant for specific initial conditions. Thus,
one could use eigenvalue crossings and phase transitions to gauge the domains, which
might yield the Mpemba effect. Such explorations might be useful for experimental and
numerical applications.

5. Summary

We studied the occurrence of the Mpemba effect in several simple potentials. We show
that there is no Mpemba effect for symmetric potentials in symmetric domains related
to the first excited state. We further show that to find a Mpemba effect, one needs to
go beyond a quadratic potential to polynomials of higher degrees or make the diffusion
coefficient spatially dependent.

Next, we solved analytically and numerically the case of a piecewise-constant poten-
tial with variable height and variable width sections. We analyzed the existence of the
strong Mpemba effect as a function of the parameters of the potential and remarked on
the topological aspects of the strong effect. In particular, we found that in the case of
equal-width outer sections and a variable height of the sections, there seems to be no
strong Mpemba effect if the system has metastable states, i.e. the middle section cannot
be a barrier between the two wells. If the outer sections are not of equal width, this con-
dition is relaxed, and we can also have the Mpemba effect with metastable states present.
In summary, we challenge the intuition that for the strong Mpemba effect, one needs
metastable states. Instead, we demonstrate by our example that it sometimes becomes
more challenging to have a Mpemba effect if the potential contains metastable states.
The phase diagrams that we obtained manifestly show different relaxation behaviors on
every line that denote a change of the deepest well.

Moreover, in the case of equal-width outer sections we found that the strong Mpemba
effect occurs when the ratio of the mismatch between the initial and final probabilities
in the two outer sections is equal.

A particle diffusing in a potential landscape is a frequent effective description in
phenomenological theories. For an arbitrary potential, the problem is not analytically
tractable. We chose this conceptually simple situation to gain intuition on anomalous
relaxation processes and nonmonotonicity in relaxation times. We looked at a piecewise-
constant potential, where we could solve for the dynamics of the probability distribution
function exactly. We analyzed the connection between the occurrence of the strong
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Mpemba effect and the parameters of the potential. Based on topological considerations,
we have identified the domains in the phase space, formed by the potential parameters,
where one might expect to see the effect. These are areas on whose boundaries where
there is a phase change (in our case, the deepest well changes) or where the eigenvector
changes the direction significantly compared to the initial condition. In our example,
for the phase space parameters that we checked, the areas with the strong Mpemba
effect seemed to be simply connected. Studying the topology of such regions would be
an exciting future avenue of study.

Better understanding when the Mpemba effect occurs will enable us to
design auxiliary potential traps, such as with electromagnetic fields or optical lat-
tices, that could facilitate optimal cooling and heating of our system and allow better
preparation of a system in a particular state.
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Appendix A

A.1. Symmetric potentials

For symmetric potentials, V (x) = V (−x), the reflection operator, the operator that
flips ψμ(x)→ ψμ(−x), commutes with the Schrödinger operator L. Thus, each non-
degenerate eigenvector of L must also be an eigenvector of the reflection operator, which
implies that each eigenvector must be either even or odd under the reflection, see e.g.
[38]. The ground state having no nodes must be even, and the first excited state having
one node must be odd. In the case that U is symmetric and V is symmetric and the
domain is symmetric, we have that a2(T ) = 0 for all T , as an integral of an odd function
over a symmetric domain. Hence there is no Mpemba effect associated with a2 in this
case. The effect can be present at a higher order, i.e. for aμ with μ > 2 [37].

A.2. Quadratic potential

For the quadratic potential U(x) = kx2/2, the eigenvectors and eigenvalues are known.

The case corresponds to the Ornstein–Ühlenbeck process, see e.g. [28], which is described
by the following Fokker–Planck equation

∂tp(x, t) = ∂x [kxp(x, t)] +
Db

2
∂2
xp(x, t) (36)

where Db = 2kBT b is the diffusion coefficient. The left eigenfunctions ϕn and corre-
sponding eigenvalues are
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ϕn = (2n n!)
−1/2

Hn

[
x

√
k

2kBTb

]
, λn = nk, (37)

where Hn are the Hermite polynomials. The stationary solution of the Fokker–Planck
equation is

π(x|Tb) =

√
k

2πkBTb
exp

[
− kx2

2kBTb

]
, (38)

and the general solution for the probability distribution is

p(x, t) =
∑
n=0

√
k

2πkBTb

e
− kx2

2kBTbϕn(x)e
−nktAn, (39)

with overlap coefficients An ≡
∫∞
−∞ϕnp(x, 0)dx. In the case of p(x, 0) = π(x|T ) the

coefficients An can be found explicitly as

A2n(T ) =

√
(2n)!

22n
1

n!

(
T

Tb
− 1

)n

, A2n+1(T ) = 0. (40)

Note the overlap coefficients are k independent. For finite temperatures, the coefficient
A2n is zero only for T = T b. Therefore, there is no strong Mpemba effect for the Orn-
stein–Ühlenbeck process. Moreover, (T/Tb − 1)n is a monotonic function of T , thus there

is no weak Mpemba effect either for the Ornstein–Ühlenbeck process.
The absence of the Mpemba effect is expected. Namely, starting from a Gaussian

(Boltzmann distribution at temperature T ) and evolving with a Gaussian kernel to get
another Gaussian (Boltzmann distribution at temperature T b), we are allowed to vary
only the width of the Gaussian, there is no other variable to vary [39]. Thus, with
polynomial potentials and spatially uniform diffusion coefficients, to find a Mpemba
effect, we need to go beyond a quadratic potential to polynomial of higher degree or
other functions.
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