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Abstract
We introduce a notion of freeness for 𝑅𝑂-graded
equivariant generalized homology theories, considering
spaces or spectra 𝐸 such that the 𝑅-homology of 𝐸 splits
as a wedge of the 𝑅-homology of induced virtual rep-
resentation spheres. The full subcategory of these spec-
tra is closed under all of the basic equivariant oper-
ations, and this greatly simplifies computation. Many
examples of spectra and homology theories are included
along the way. We refine this to a collection of spectra
analogous to the pure and isotropic spectra considered
by Hill–Hopkins–Ravenel. For these spectra, the 𝑅𝑂-
graded Bredon homology is extremely easy to compute,
and if these spaces have additional structure, then this
can also be easily determined. In particular, the homol-
ogy of a space with this property naturally has the struc-
ture of a co-Tambara functor (and compatibly with any
additional product structure). We work this out in the
example of 𝐵𝑈ℝ and coinduced versions of this. We fin-
ish by describing a readily computable bar and twisted
bar spectra sequence, giving Bredon homology for var-
ious 𝐸∞ pushouts, and we apply this to describe the
homology of 𝐵𝐵𝑈ℝ.
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1 INTRODUCTION

Equivariant cohomology is often viewed as very difficult to compute. In full generality, this is often
true, as many computations which non-equivariantly were completed in the 1950s and 1960s are
still out of reach. Additionally, the kinds of cellular decompositions which geometrically arise are
often not adapted to easy computation, further compounding the problem. Many computations
in the literature require significant amounts of hard work, even for ordinary (Bredon) homology
(see, for example, the recent papers of Dugger on equivariant Grassmanians [5] and Hazel on
𝐶2-surfaces [11]).
In this paper, we build on a class of spectra introduced by Ferland–Lewis [6], focusing on a

certain subcategory of spaces and spectra for which essentially all of these problems go away. The
basic definition is motivated by algebra.

Definition. Let 𝑅 be an 𝐸∞-monoid in genuine 𝐺-spectra. A 𝐺-spectrum 𝐸 has 𝑅-free homology
if 𝑅 ∧ 𝐸 splits as a wedge of 𝑅-modules of the form

𝑅 ∧ (𝐺+ ∧
𝐻

𝑆𝑉),

where 𝑉 is a virtual representation of 𝐻.

These classes of spectra contain many geometrically meaningful spaces and spectra. Delight-
fully, these 𝑅-free spectra are closed under most of the usual operations in equivariant homotopy.

Theorem. If 𝑅 is an 𝐸∞-monoid in genuine 𝐺-spectra, then the category of 𝑅-free spectra is closed
under:

(1) coproducts;
(2) restriction along arbitrary homomorphisms;
(3) induction from a subgroup;
(4) the smash product; and
(5) norm maps, if 𝑅 is actually a 𝐺-𝐸∞ ring spectrum.

For Bredon homology, this gives a large class of spaces and spectra for which the cohomology is
easy to describe with almost arbitrary coefficients. Most excitingly, it means we can describe the
full coalgebra (in fact, co-Tambara functor) structure on the homology of these spaces and on the
cohomology of equivariant commutative monoid objects. Closure under norms here gives a for-
mula for the Bredon homology of coinduced spaces with various coefficients, which in turn gives
ways to understand Bredon homology and cohomology of certain Eilenberg–Mac Lane spaces.
After describing a host of examples, we restrict focus to a class of spectra for which everything is

described by the underlying homology. The slice filtration of [12] gives a version of the Postnikov
towerwhereweuse various representation spheres instead of ordinary spheres. In the nicest cases,
such as those built out of the norms of the Fujii–Landweber spectrum of Real bordism MUℝ, the
slice associated graded is a wedge of regular representation spheres smashed with computation-
ally tractible Eilenberg–Mac Lane spectra [7, 25] (see also [20]).
We consider𝐻ℤ-free spectrawhere the [induced] virtual representation spheres are only in reg-

ular representation dimensions. These assumptions allow us to reduce almost any computational
question to a question about the non-equivariant homotopy, tying things to classically studied
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objects. We demonstrate the efficiency of this by giving the full Tambara and co-Tambara func-
tor structures on the homology of 𝐵𝑈ℝ and of Map𝐶2(𝐺, 𝐵𝑈ℝ). We also describe the action of the
𝐶2-Dyer–Lashof algebra on the mod 2-homology of 𝐵𝑈ℝ.
We close with applications to the bar/Rothenberg–Steenrod and Eilenberg–Moore spectral

sequences. When the spaces in question are 𝑅-free, the 𝐸2-terms of the usual spectral sequences
have the expected form, and we use this to compute the homology of 𝐵𝐵𝑈ℝ and of the coin-
duced space Map𝐶2(𝐺, 𝐵𝐵𝑈ℝ) for all finite 𝐺. As an aside, we also mention the sign-twisted ana-
logues of these classical spectral sequences when 𝐺 = 𝐶2, giving ways to compute the homology
of the signed bar construction or the cohomology of the twisted homotopy pullback and signed
loop spaces.
Throughout the paper, our emphasis is on the conceptual understanding of the objects and on

explicit examples. We includemany examples of spaces and spectra of interest, showing how they
fit into this framework, working to demystify equivariant computations.

Conventions and notation

In all that follows, we work in ‘genuine’ 𝐺-spectra for a finite group 𝐺. Much of what we say will
actually be model agnostic; we will largely talk about results in the homotopy category. When
discussing the difference between 𝐸∞ and𝐺-𝐸∞ monoids, however, we will implicitly be working
in equivariant orthogonal or symmetric spectra, since both have well-developed notions of the
norm [10, 12].

2 𝐑𝐎-GRADEDHOMOLOGY

Many of the spaces which arise geometrically can be built not out of cells of the form ‘disk in a
[virtual] representation 𝑉’ but rather out of more general cells of the form

𝐺+ ∧
𝐻

𝐷(𝑉),

where𝑉 is a [virtual]𝐻-representation. Algebraic constructions like the normautomatically build
in this more general kind of RO-grading, considering instead objects graded on pairs consisting
of a subgroup 𝐻 and a virtual representation of 𝐻. A more coordinate free version is given by
considering Thom spectra of virtual bundles over finite 𝐺-sets; a particular model of this is the
work of Angeltveit–Bohmann [1].

Definition 2.1 [15, Definition 2.7]. If 𝑇 is a finite𝐺-set and𝑉 is an equivariant virtual bundle over
𝑇, then let 𝑀(𝑉) be the Thom spectrum of 𝑉 and

𝜋⋆(𝐸)(𝑇, 𝑉) = [𝑀(𝑉), 𝐸]𝐺.

Remark 2.2. If𝑇 is a transitive𝐺-set, then a choice of point 𝑡 ∈ 𝑇 gives an equivariant equivalence

𝑇 ≅ 𝐺∕ Stab(𝑡),
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and restriction to 𝑡 gives an equivalence of categories between Stab(𝑡)-equivariant virtual repre-
sentations and virtual equivariant vector bundles over 𝑇.

Notation 2.3. In the case 𝑇 = 𝐺∕𝐻, so 𝑉 gives a virtual 𝐻-representation 𝑉𝐻 , let

𝐸𝐻
𝑉𝐻

(𝑆0) = 𝜋⋆(𝐸)(𝑇, 𝑉).

These abelian groups assemble into a kind of Mackey functor, twisted by these bundles. This
generalizes the earlier work of Ferland–Lewis [6].

Proposition 2.4. If𝑓 ∶ 𝑆 → 𝑇 is amap of finite𝐺-sets and if𝑉 → 𝑇 is a virtual equivariant bundle,
then 𝑓 induces a transfer map

𝜋⋆(𝐸)(𝑆, 𝑓∗𝑉)
𝑇𝑓
��→ 𝜋⋆(𝐸)(𝑇, 𝑉)

and a restriction map

𝜋⋆(𝐸)(𝑇, 𝑉)
𝑅𝑓
��→ 𝜋⋆(𝐸)(𝑆, 𝑓∗𝑉).

The Weyl action here can be somewhat subtle. If 𝑉 is a representation of 𝐺, then we have a
Weyl action on

𝜋⋆(𝐸)(𝐺∕𝐻, 𝐺∕𝐻 × 𝑉).

The standard isomorphism of 𝐺-spaces over 𝐺∕𝐻

𝐺∕𝐻 × 𝑉 ≅ 𝐺 ×
𝐻

𝑖∗𝐻𝑉

give isomorphisms of vector bundles, and hence this group depends only on the𝐻-representation
𝑖∗𝐻𝑉. The Weyl action, however, depends on 𝑉 itself as a 𝐺-representation. Put another way, the
standard isomorphism given above is not Weyl-equivariant.

Example 2.5. If 𝐺 = 𝐶2 and 𝑉 = (𝜎 − ℝ), the virtual dimension zero shift of the sign represen-
tation, then the groups

𝜋⋆(𝐸)(𝐶2, 𝐶2 × (𝑉 ⊕ ℝ𝑛))

are just the ordinary homotopy groups

𝜋𝑛(𝑖∗𝑒 𝐸).

In this case, however, we have twisted theWeyl action: as a 𝐶2-module, we have an isomorphism

𝜋⋆(𝐸)(𝐶2, 𝐶2 × (𝑉 ⊕ ℝ𝑛)) ≅ 𝜋𝑛(𝑖∗𝑒 𝐸) ⊗ 𝜎ℤ,
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where 𝜎ℤ is the integral sign representation. This observation has been used by many authors in
the study of the homotopy fixed point spectral sequence for Hopkins–Miller spectra (see [17]).

Remark 2.6. TheMackey double coset formula also changes in theRO-grading: there can be signs
introduced which reflect the degree of the map on the underlying representation sphere. See, for
example, [12, Lemma 7.20].

Smashing together maps gives us the external product.

Definition 2.7. If 𝑥 ∈ 𝜋⋆(𝐸)(𝑇, 𝑉) and 𝑦 ∈ 𝜋⋆(𝐸′)(𝑆, 𝑊), then we have an external product

𝑥 ∧ 𝑦 ∈ 𝜋⋆(𝐸 ∧ 𝐸′)(𝑇 × 𝑆, 𝑉 × 𝑊)

given by the smash product of representing maps.

Since this pairing is the one arising from the pairing of homotopy classes of functions in 𝐺-
spectra, it has the usual properties.

Proposition 2.8. The external product is linear in both factors and satisfies the Frobenius relation:

𝑥 ∧ 𝑇𝑓(𝑦) = 𝑇𝐼𝑑×𝑓(𝑥 ∧ 𝑦).

The multiplication in the RO-graded context can be a little more confusing, since elements are
attached to virtual representations for different groups. To effectively compare them, the elements
must first be restricted to a maximal common subgroup. In general, we have many ways to rep-
resent this. Conceptually, the RO-graded group actually remembers more information, including
not only the elements but also the various Weyl conjugates. Thinking in this way, the RO-graded
products will not only record the product we would expect but also include any of the pairwise
products of restrictions to conjugate subgroups.
If 𝑇 = 𝑆, then we have a canonical pullback diagram

Composing the external productwith the restriction along the diagonalΔ𝑇 gives the usual product
structure on the RO(𝑇)-graded homotopy of the ‘restriction to 𝑇’ of a ring spectrum 𝑅.
If 𝑇 = 𝐺∕𝐻 and 𝑆 = 𝐺∕𝐾, with 𝐻 and 𝐾 not necessarily conjugate, then we do not have as

simple a picture. The classes 𝑥 and 𝑦 are maps

𝐺+ ∧
𝐻

𝑆𝑉 𝑥
�→ 𝐸 & 𝐺+ ∧

𝐾
𝑆𝑊 𝑦

�→ 𝐸′,

and smashing them together gives the map(
𝐺+ ∧

𝐻
𝑆𝑉

)
∧
(

𝐺+ ∧
𝐾

𝑆𝑊
) 𝑥∧𝑦

����→ 𝐸 ∧ 𝐸′.
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The source is naturally the Thom spectrum of a virtual bundle on 𝐺∕𝐻 × 𝐺∕𝐾, which can be
rewritten by the double coset formula as

𝐺∕𝐻 × 𝐺∕𝐾 ≅ 𝐺 ×
𝐻

𝑖∗𝐻𝐺∕𝐾 ≅
∐

𝐻g𝐾∈𝐻∖𝐺∕𝐾

𝐺∕(𝐻 ∩ g𝐾g−1).

The bundle over the summand associated to 𝐻g𝐾 is

𝑖∗
𝐻∩g𝐾g−1𝑉 ⊕ 𝑖∗

𝐻∩g𝐾g−1𝑐∗
g𝑊,

and the corresponding map on this summand is

𝑟𝑒𝑠𝐻
𝐻∩g𝐾g−1(𝑥) ∧ 𝑟𝑒𝑠g𝐾g−1

𝐻∩g𝐾g−1(𝑐∗
g
𝑦).

Corollary 2.9 [1]. If 𝐸 has a multiplication in the homotopy category of genuine 𝐺-spectra, then the
composition with the multiplication in 𝐸 makes 𝜋⋆(𝐸) into an RO-graded Green functor.

In fact, there is a good𝐺-symmetricmonoidal category of 𝑅⋆-modules for any equivariant com-
mutative ring spectrum 𝑅. This will be developed in forthcoming joint work with Angeltveit–
Bohmann. We will make use of this structure somewhat heavily in what follows. However, the
only cases in which we will consider it are ones for which the structure is immediate from the
definition of the objects, so there should be no confusion.
We close by summarizing the notation that will show up for the various kinds of gradings.

Notation 2.10. The wildcard ⋆ will be used for gradings by RO.
The wildcard ⋆ will be used for gradings by RO(𝐺).
The wildcard ∗ will be used for gradings by ℤ.

3 FREE 𝑹-HOMOLOGY

In this section, let 𝑅 be a fixed 𝐸∞-ring spectrum in genuine 𝐺-spectra. Equivariantly, this is
weaker than being a commutative monoid in any of the good point-set models of spectra, but
this is sufficient to have a good, symmetric monoidal category of modules over 𝑅 [3].

3.1 Free and projective

It greatly simplifies much of the notation (and of our discussion of a basis) to allow ourselves to
evaluate our homotopy Mackey functors on infinite 𝐺-sets and virtual representations on these.

Notation 3.1. If 𝑇 is a discrete 𝐺-set and 𝑉 is a virtual bundle over 𝑇, then let

𝑅⋆(𝐸)(𝑇, 𝑉) = lim
⟵

𝑅⋆(𝐸)(𝑆, 𝑖∗𝑆𝑉),

where 𝑆 ranges over all finite subsets of 𝑇.
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Since Thom spectra of disjoint unions of spaces is the coproduct of the associated Thom spectra,
we have a natural isomorphism

𝑅⋆(𝐸)(𝑇, 𝑉) ≅ [𝑀(𝑉), 𝑅 ∧ 𝐸]𝐺.

Definition 3.2. A 𝐺-spectrum 𝐸 has free 𝑅-homology or ‘is 𝑅-free’ if there is a 𝐺-set 𝑇𝐸 and a
virtual vector bundle 𝑉𝐸 over 𝑇𝐸 such that we have an equivalence of 𝑅-modules

𝑅 ∧ 𝐸 ≃ 𝑅 ∧ 𝑀(𝑉𝐸).

The full subcategory of 𝑆𝑝𝐺 spanned by the spectra with free 𝑅-homology will be denoted

𝑝𝐺
𝑅,𝑓𝑟.

It has projective 𝑅-homology if 𝑅 ∧ 𝐸 is a retract of an 𝑅-module of the form 𝑅 ∧ 𝑀(𝑉) for some
virtual vector bundle 𝑉 over a 𝐺-set. The full subcategory of 𝑆𝑝𝐺 spanned by the spectra with
projective 𝑅-homology will be denoted

𝑝𝐺
𝑅,𝑝𝑟.

Remark 3.3. The use of ‘free’ here is to bring to mind a free module. In the homotopy category of
𝑅-modules, the 𝑅-module 𝑅 ∧ (𝐺+ ∧

𝐻
𝑆𝑉) corepresents the functor

𝐸 ↦ 𝜋𝐻
𝑉 (𝐸),

on the category of 𝑅-modules, and hence maps out of it correspond to certain elements in this
RO-graded Mackey functor.

Definition 3.4. If 𝐸 has free 𝑅-homology, then a basis for the 𝑅-homology of 𝐸 is an element

𝑥⃗ ∈ 𝑅⋆(𝐸)(𝑇𝐸, 𝑉𝐸)

for a 𝐺-set 𝑇𝐸 and a virtual bundle 𝑉𝐸 over 𝑇𝐸 , such that the induced map

𝑅 ∧ 𝑀(𝑉𝐸)
𝑅∧𝑥⃗
����→ 𝑅 ∧ 𝐸

is an equivalence.

We can restate the definition of a basis using an orbit decomposition of 𝑇. A choice of points in
each orbit for 𝑇 gives an equivariant isomorphism

𝑇 ≅
∐

𝑡∈𝑇∕𝐺

𝐺∕𝐻𝑡,

and if we let 𝑉𝐸,𝑡 be the restriction of 𝑉𝐸 to the orbit 𝐺∕𝐻𝑡, then

𝑅⋆(𝐸)(𝑇, 𝑉) ≅
∏

𝑡∈𝑇∕𝐺

𝑅
𝐻𝑡
𝑉𝐸,𝑡

(𝐸).
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A basis then is a collection of elements

𝑥𝑡 ∶ 𝐺+ ∧
𝐻𝑡

𝑆𝑉𝐸,𝑡 → 𝑅 ∧ 𝐸

such that the induced map

𝑅 ∧
⎛⎜⎜⎝
⋁

𝑡∈𝑇∕𝐺

𝐺+ ∧
𝐻𝑡

𝑆𝑉𝐸,𝑡

⎞⎟⎟⎠ → 𝑅 ∧ 𝐸

is an equivalence. We will use both formulations.
Just as for vector spaces, a basis is a choice of additional datawhich aids in explicit computation.

In particular, describing product structures is greatly simplified with a basis.

Remark 3.5. Although a basis is given by specifying certain elements in certain RO-graded stems,
the freeness actually gives us a host of related elements. Consider 𝑀 = 𝑅 ∧ (𝐺+ ∧

𝐻
𝑆𝑉). The unit

map 𝑆0 → 𝑅 gives a distinguished map

𝐺+ ∧
𝐻

𝑆𝑉 → 𝑀

which gives a basis. Unpacking the adjunction, this corresponds to the 𝐻-equivariant map

𝑆𝑉 → 𝑖∗𝐻𝑅 ∧ 𝑖∗𝐻(𝐺)+ ∧
𝐻

𝑆𝑉

induced by the inclusion

𝑆𝑉 ≅ 𝐻+ ∧
𝐻

𝑆𝑉 ↪ 𝑖∗𝐻𝐺+ ∧
𝐻

𝑆𝑉.

If 𝐻 ≠ 𝐺, then there are many other summands. In particular, any element g ∈ 𝑁𝐺(𝐻) gives us a
summand

g𝐻+ ∧
𝐻

𝑆𝑉,

which is the representation sphere for the pullback of the representation𝑉 along the conjugation-
by-g automorphism of 𝐻. When 𝑉 is in the image of the restriction of a representation of 𝑁𝐺(𝐻),
this is just recording the Weyl-conjugates of our original element.

Example 3.6. For any 𝑅, a basis for 𝑅 ∧ (𝐺+ ∧ 𝑆1) is the data of an element

𝑥 ∈ 𝜋1

(⋁
|𝐺| 𝑖∗𝑒 Σ𝑅

)
≅
⨁
|𝐺| 𝜋0

(
𝑖∗𝑒 𝑅

)
such that the induced action-map

ℤ[𝐺] ⊗ 𝜋0(𝑖∗𝑒 𝑅) →
⨁
|𝐺| 𝜋0

(
𝑖∗𝑒 𝑅

)
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is an isomorphism. It also records (linearly independent) classes for all 𝛾 ∈ 𝐺:

𝛾 ⋅ 𝑥 ∈
⨁
|𝐺| 𝜋0(𝑖∗𝑒 𝑅)

(and in fact, the Mackey functor homotopy group is ↑𝐺
𝑒 𝜋0(𝑖∗𝑒 𝑅)).

It is helpful to keep in mind the example of Bredon homology with coefficients in a commu-
tative Green functor 𝑅. The Eilenberg–Mac Lane spectrum associated to a commutative Green
functor is always 𝐸∞, so we can apply this general formalism.

Example 3.7. If𝐺 = {𝑒}, then a basis for the homology of𝐸with coefficients in𝑅 = 𝑅 (an ordinary
commutative ring) is the same as a basis for the graded 𝑅-module 𝐻∗(𝐸; 𝑅).

Example 3.8. Kronholm and Hogle–May showed that if 𝑋 is a finite 𝑅𝑒𝑝(𝐶2)-complex
(meaning a 𝐶2-complex formed by attaching disks in representations along their boundaries),
then 𝑋 has free 𝐻𝔽2-homology (with no summands induced up from the trivial group)
[23], [18].

Example 3.9. May’s decomposition theorem for the [co]homology of a finite 𝐶2-CW complex
says that for any finite 𝐶2-complex 𝑋, we have a splitting

𝐻𝔽2 ∧ 𝑋 ≃ 𝐻𝔽2 ∧
(⋁

𝐶2+ ∧
𝐻

𝑆𝑉 ∨
⋁

Σ𝑘𝑖 𝑆(𝑛𝑖𝜎)+

)
where in the second sum, 𝑛𝑖 ⩾ 2 and 𝜎 is the sign representation [29]. Thus 𝐶2 spaces have free
𝐻𝔽2-homology if and only if this second sum vanishes.

Example 3.10. Hazel’s computation of the Bredon homology of 𝐶2-surfaces shows that
every connected 𝐶2-surface for which the action is not free has free 𝐻𝔽2-homology [11,
Theorem 6.6].

Example 3.11. Ricka extended the Hu–Kriz computation of the dual Steenrod algebra for 𝔽2 and
showed that 𝐻𝔽2 has free 𝐻𝔽2-homology [34], [20].

There are two important restricted cases that show up often in computations. The proof of the
following theorem is just by observation.

Theorem 3.12. Let 𝐸 be a spectrum with free 𝑅-homology.

(1) If the basis comes from virtual representations of 𝐺 exclusively, then the RO-graded homotopy is
induced up from the RO(𝐺)-graded homotopy Mackey functors.

(2) If the basis comes from trivial representations of 𝐺, then the RO-graded homotopy is induced up
from the ℤ-graded homotopy Mackey functors.

In both cases, we can extend to induced cells, provided we again only consider representations of 𝐺
and trivial representations, respectively.
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3.2 Closure properties of 𝒑𝑮
𝑹,_𝒓

The spectrum with 𝑅-free or projective homology enjoy a number of useful closure properties.

Notation 3.13. Let _r stand for either ‘fr’ or ‘pr’.

3.2.1 Closure under sums

Proposition 3.14. The adjoint pair 𝐺+ ∧
𝐻

(−) ⊣ 𝑖∗𝐻 on equivariant spectra descends to an adjoint
pair

𝐺+ ∧
𝐻

(−)∶ 𝑝𝐻
𝑖∗𝐻𝑅,_𝑟

⇄ 𝑝𝐺
𝑅,_𝑟 ∶ 𝑖∗𝐻.

A basis for one gives the other via restriction or induction.

Proof. Since these are full subcategories, and since retracts are preserved by any functor, it suffices
to show that restriction and induction preserve 𝑅-free spectra. For restriction, we just use the
restriction of the Thom spectrum. For induction, we note the equivalence:

𝐺+ ∧
𝐻

𝑀(𝑉) ≃ 𝑀(𝐺 ×
𝐻

𝑉),

where 𝐺 ×
𝐻

𝑉 is the induced bundle over 𝐺 ×
𝐻

𝑇. □

Proposition 3.15. The category 𝑝𝐺
𝑅,_𝑟 is closed under arbitrary coproducts. A basis for the wedge

is the sum of the bases.

Proof. The smash product distributes over wedges, and the wedge of Thom spectra of virtual
bundles over 𝐺-sets is again a Thom spectrum of a virtual bundle over a 𝐺-set. □

3.2.2 Closure under base-change

The notions of free and projectives also work well with base-change.

Proposition 3.16. Amap 𝑓 ∶ 𝑅 → 𝑅′ of 𝐸∞ ring spectra induces a map

𝑓∗ ∶ 𝑝𝐺
𝑅,_𝑟 → 𝑝𝐺

𝑅′,_𝑟
.

A basis 𝑥⃗ for 𝐸 over 𝑅 gives a basis 𝑓∗(𝑥⃗) be composing with 𝑓.

Proof. This follows from base-changing the equivalence 𝑅 ∧ 𝐸 ≃ 𝑅 ∧ 𝑀(𝑉𝐸) along the map
𝑅 → 𝑅′. □
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3.2.3 Closure under products

The categories of frees and projectives are also closed under the [twisted] smash products on 𝐺-
spectra, being closed under the norms which 𝑅 has.

Proposition 3.17. The category 𝑝𝐺
𝑅,_𝑟 is a symmetric monoidal subcategory of 𝑝𝐺 for the smash

product. A basis for 𝐸 and 𝐸′ gives a basis for 𝐸 ∧ 𝐸′ by boxing them together.

Proof. Again, it suffices to show this for free spectra. If 𝑉 and 𝑉′ are virtual vector bundles on 𝑇
and 𝑇′, respectively, then we have a natural equivalence

𝑀(𝑉) ∧ 𝑀(𝑉′) ≃ 𝑀(𝑉 × 𝑉′),

where the latter is just the Thom spectrum of product of 𝑉 and 𝑉′ over 𝑇 × 𝑇′. The result follows
from recalling that the functor 𝑅 ∧ (−) is a strong symmetric monoidal functor from 𝐺-spectra to
𝑅-modules. □

This gives us a kind of weak Künneth theorem.

Theorem 3.18. If 𝐸 ∈ 𝑝𝐺
𝑅,_𝑟, then for any 𝑅-module𝑀, then𝑀 ∧ 𝐸 is a summand of𝑀 ∧ 𝑀(𝑉𝐸)

for some virtual vector bundle 𝑉𝐸 , and hence the multiplication gives a natural isomorphism

𝑅⋆(𝐸)□
𝑅⋆

𝜋⋆(𝑀) → 𝜋⋆(𝐸 ∧ 𝑀).

Proof. Again, it suffice to show for 𝐸 𝑅-free. By assumption, there is a splitting of 𝑅-modules

𝑅 ∧ 𝑀(𝑉𝐸) ≃ 𝑅 ∧ 𝐸.

This gives an equivalence of 𝑅-modules

𝐸 ∧ 𝑀 ≃ (𝑅 ∧ 𝐸) ∧
𝑅

𝑀 ≃ (𝑅 ∧ 𝑀(𝑉𝐸)) ∧
𝑅

𝑀 ≃ 𝑀(𝑉𝐸) ∧ 𝑀.

Since the smash product distributes over the wedge, the latter spectrum is a wedge of 𝑅-modules
of the form

(𝐺+ ∧
𝐻

𝑆𝑉) ∧ 𝑀.

The result follows by the definition of the representables. □

If the basis is via representations of𝐺 or trivial representations, then this recovers the Künneth
theorem of Lewis–Mandell [26].

Corollary 3.19. Let 𝐸 be in 𝑝𝐺
𝑅,_𝑟 and let 𝑀 be an 𝑅-module.
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(1) If a basis for 𝐸 can be chosen such that only virtual representations of 𝐺 are used, then we have
an isomorphism

𝜋⋆(𝐸 ∧ 𝑀) ≅ 𝑅⋆(𝐸)□
𝑅⋆

𝜋⋆(𝑀).

(2) If a basis for 𝐸 can be chosen such that only trivial representation of𝐺 are used, then we have an
isomorphism

𝜋∗(𝐸 ∧ 𝑀) ≅ 𝑅∗(𝐸)□
𝑅∗

𝜋∗(𝑀).

In the special case that themodule𝑀 is in fact𝑅 ∧ 𝐸′ for some𝑅-free or projective𝐸′, this shows
that the functor of RO-graded 𝑅-homology Mackey functors is strong symmetric monoidal.

Corollary 3.20. If 𝐸, 𝐸′ ∈ 𝑝𝐺
𝑅,_𝑟, then the multiplication gives a natural isomorphism

𝑅⋆(𝐸 ∧ 𝐸′) ≅ 𝑅⋆(𝐸)□
𝑅⋆

𝑅⋆(𝐸′).

3.2.4 Closure under norms

For the norms, we recall some properties of the norm and these relatively simple Thom spectra.

Notation 3.21. If 𝑇 is an 𝐻-set and 𝑉 → 𝑇 is a virtual vector bundle, then let

Map𝐻(𝐺, 𝑉) → Map𝐻(𝐺, 𝑇)

be the coinduced vector bundle over Map𝐻(𝐺, 𝑇).

Proposition 3.22. For any virtual vector bundle 𝑉, we have

𝑀
(
Map𝐻(𝐺, 𝑉)

)
≃ 𝑁𝐺

𝐻𝑀(𝑉).

Proof. All of the functors considered commute with filtered colimits, so it suffices to consider
the case that 𝑇 is finite. This is then the distributive law for norms, together with the observation
that if 𝑇 = 𝐻∕𝐾, then 𝑀(𝑉) = 𝐻+ ∧

𝐾
𝑆𝑉 , allows us to further reduce to the case that 𝑇 = 𝐻∕𝐻. A

vector bundle over this is just a virtual𝐻-representation, the Thom spectrumofwhich is the corre-
sponding representation sphere. The coinduced space in this case is 𝐺∕𝐺, and the representation
is ↑𝐺

𝐻 𝑉. We now compute

𝑀
(
Map𝐻(𝐺, 𝑉)

)
= 𝑆↑𝐺

𝐻𝑉 ≃ 𝑁𝐺
𝐻𝑆𝑉 ≅ 𝑁𝐺

𝐻𝑀(𝑉). □

The norm is also a strong symmetric monoidal functor, and hence it induces a map

𝑁𝐺
𝐻 ∶ 𝑅 − 𝑜𝑑 → 𝑁𝐺

𝐻𝑅 − 𝑜𝑑.
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Proposition 3.23. The norm induces a functor

𝑁𝐺
𝐻 ∶ 𝑝𝐻

𝑅,_𝑟 → 𝑝𝐺
𝑁𝐺

𝐻𝑅,_𝑟
.

Proof. It suffices to show this for 𝐸 having free 𝑅-homology. In this case, we simply apply the
norm to the equivalence

𝑅 ∧ 𝐸 ≃ 𝑅 ∧ 𝑀(𝑉𝐸)

for some virtual vector bundle 𝑉𝐸 and use Proposition 3.17. □

If 𝑅 is an 𝐸∞ ring spectrum that has an 𝐸∞-map

𝑁𝐺
𝐻𝑖∗𝐻𝑅 → 𝑅,

then we have a relative norm map on 𝑅-modules given by

𝑀 ↦ 𝑅 ∧
𝑁𝐺

𝐻𝑖∗𝐻𝑅
𝑁𝐺

𝐻𝑀.

The usual case is when 𝑅 is an equivariant commutative ring spectrum (that is, a 𝐺-𝐸∞ ring spec-
trum), but this has also been worked out for algebras over linear isometries operads [3].

Proposition 3.24. Let 𝑅 be an 𝐸∞ ring spectrum that has an 𝐸∞-map

𝑁𝐺
𝐻𝑖∗𝐻𝑅 → 𝑅,

then 𝑁𝐺
𝐻 induces a functor

𝑝𝐻
𝑖∗𝐻𝑅,_𝑟

→ 𝑝𝐺
𝑅,_𝑟.

The norm of a basis for 𝐸 gives one for the norm.

Example 3.25. Since

MU ∧ MU ≃ MU ∧𝐵𝑈+ ≃ MU[𝑏1, … ],

where |𝑏𝑖| = 2𝑖, the spectrum MU and the space 𝐵𝑈 have free MU-homology. This implies that
the same is true for the norms: 𝑁𝐺

𝑒 MU and 𝑁𝐺
𝑒 Σ∞

+ 𝐵𝑈 have free 𝑁𝐺
𝑒 MU-homology.

We have identical statements for ℂ𝑃𝑛 for all 𝑛 ⩽ ∞ and the spaces 𝐵𝑈(𝑛).

Using the orientations given by the norm of MU, we produce a host of other interesting exam-
ples.

Example 3.26. Let 𝑅 be an 𝐸∞ 𝐺-spectrum that admits an 𝐸∞ norm map

𝑁𝐺
𝑒 𝑖∗𝑒 𝑅 → 𝑅,
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and assume that 𝑖∗𝑒 𝑅 can be given a commutative complex orientation. Then for any spectrum 𝐸
such that MU∗ 𝐸 is a free MU∗-module, 𝑁𝐺

𝑒 (𝐸) has free 𝑅-homology.
The identitymapMU → 𝑖∗𝑒 MU𝐺 and the Connor–FloydmapMU → 𝐾𝑈 give examples of com-

mutative complex orientations, which shows that the spaces and spectra considered in Exam-
ple 3.25 have free MU𝐺 and 𝐾𝑈𝐺-homology.

Example 3.27. If 𝐸 is any finite type, bounded below spectrumwith free integral homology, then
𝑁𝐺

𝑒 𝐸 has free 𝐾𝑈𝐺 and MU𝐺 homology.

In the Bredon case, if 𝑅 has the structure of a Tambara functor [39], then Ullman has shown
that 𝐻𝑅 has the structure of a 𝐺-𝐸∞ ring spectrum [40]. This gives us many examples for Bredon
homology. In particular, the absolute norms (that is, the norms from the trivial group) of an ordi-
nary commutative ring are always Tambara functors. Generalizing the 𝐶2-equivariant examples
of [13], we get that absolute norms are free for a large number of Green functors.

Example 3.28. Let 𝑘 be a field and let 𝑅 be a Green functor under 𝑁𝐺
𝑒 𝑘. Then for any spectrum

𝐸, 𝑁𝐺
𝑒 𝐸 has free 𝐻𝑅-homology.

The more general integral story also follows.

Example 3.29. If 𝐸 is an ordinary, non-equivariant spectrum such that 𝐻∗(𝐸; ℤ) is free, then
𝑁𝐺

𝑒 𝐸 has free 𝐴-homology. Since 𝐻𝑀 is an 𝐻𝐴-module for any Mackey functor 𝑀, 𝑁𝐺
𝑒 𝐸 has free

𝑀-homology for any 𝑀.

There is a norm in 𝑅-homology, specified by the norms in Mackey functors (or equivalently in
spectra), and the following holds by definition.

Corollary 3.30. If 𝐸 is an𝐻-spectrum that has free 𝑖∗𝐻𝑅-homology, then we have a natural isomor-
phism

𝑅⋆(𝑁𝐺
𝐻𝐸) ≅ 𝑁𝐺

𝐻

(
𝑖∗𝐻𝑅⋆(𝐸)

)
.

Notation 3.31. In any context where it is defined, let 𝑁𝐺∕𝐻 be the composite 𝑁𝐺
𝐻𝑖∗𝐻 .

With this notation, if 𝐸 is a 𝐺-spectrum with free 𝑅-homology, then we have a natural isomor-
phism

𝑅⋆(𝑁𝐺∕𝐻𝐸) ≅ 𝑁𝐺∕𝐻𝑅⋆𝐸.

As a specific example, this gives us the equivariant homology of the topological Singer con-
struction [28].

Example 3.32. Let 𝑘 = 𝔽𝑝, let 𝐺 = 𝐶𝑝, and let 𝔽𝑝 be the constant Green functor 𝔽𝑝. This is a
Tambara functor, so for any spectrum 𝐸, we have a natural isomorphism

𝐻
(

𝑁
𝐶𝑝
𝑒 (𝐸); 𝔽𝑝

)
≅ 𝑁

𝐶𝑝
𝑒

(
𝐻∗(𝐸; 𝔽𝑝)

)
.

In particular, for 𝑝 = 2, the 𝔽2-Bredon homology of 𝑁
𝐶2
𝑒 𝐻𝔽2 is free.
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Unpacking this a little more, a basis is given by orbits [𝑓] in the monomial basis in

(
𝔽𝑝[𝜉1, … ] ⊗ 𝐸(𝜏0, … )

)⊗𝑝
/

𝐶𝑝,

where the group 𝐶𝑝 acts on this by permuting the tensor factors. Every monic monomial 𝑓 has
a stabilizer subgroup 𝐻𝑓 . This is the subgroup associated to the orbit [𝑓] as a basis vector. The
degree of 𝑓 is given by

||𝑓|| =
|𝑓||𝐻𝑓|𝜌𝐻𝑓

,

where |𝑓| is the ordinary, underlying degree induced by the degrees in the dual Steenrod algebra.
These freeness results can also give us interesting information about non-free spectra. Snaith

showed that we have an equivalence of 𝐸∞ ring spectra

𝐾𝑈 ≃ Σ∞
+ ℂ𝑃∞[𝛽−1],

where 𝛽 is the map on Σ∞
+ ℂ𝑃∞ induced by the inclusion ℂ𝑃1 ↪ ℂ𝑃∞ [38].

The norm functor commutes with filtered colimits, so this gives us an equivariant version of
Snaith’s theorem.

Theorem 3.33. For any finite group 𝐺, we have an equivalence of 𝐺-𝐸∞ ring spectra

𝑁𝐺
𝑒 𝐾𝑈 ≃ Σ∞

+ Map(𝐺, ℂ𝑃∞)[𝑁(𝛽)−1],

where

𝑁(𝛽)∶ 𝑆2𝜌𝐺 → Σ∞
+ Map(𝐺, ℂ𝑃∞)

is induced by the norm.

Corollary 3.34. Let𝑅 be a𝐺-𝐸∞ ring spectrum such thatℂ𝑃∞ has free 𝑖∗𝑒 𝑅-homology. Thenwe have
an isomorphism

𝑅⋆𝑁𝐺
𝑒 𝐾𝑈 ≃ lim

⟶
Σ−2𝑛𝜌𝐺 𝑁𝐺

𝑒

(
𝑖∗𝑒 𝑅∗(ℂ𝑃∞)

)
.

In particular, this is always a flat 𝑅⋆-module.

Proof. Both the norm and 𝑅-homology commute with direct limits. This follows from the homol-
ogy of the coinduction. □

Example 3.35. Because 𝐻𝐴 is a 𝐺-𝐸∞-commutative ring spectrum and ℂ𝑃∞ has free 𝐻ℤ-
homology, we have

𝐻⋆

(
Map(𝐺, ℂ𝑃∞); 𝐴

)
≅ 𝑁𝐺

𝑒 𝐻∗(ℂ𝑃∞; ℤ) ≅ 𝑁𝐺
𝑒 (Γ(𝑥)),
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where |𝑥| = 2. The Bott element we invert is the norm of 𝑥, and we deduce

𝐻⋆𝑁𝐺
𝑒 𝐾𝑈 ≃ 𝑁𝐺

𝑒 ℚ[𝑥±1].

Since 𝐾𝑈𝐺 is a 𝑁𝐺
𝑒 𝐾𝑈-algebra, we also deduce that 𝐻𝐴 ∧ 𝐾𝑈𝐺 is rational.

Remark 3.36. The norms of the divided power algebra are curious Tambara functors, though the
structure can be worked out from the basic properties of the norms. We spell this out for 𝐶𝑝.
Just as with the discussion of the topological Singer construction in Example 3.32, a basis is

given by orbits of monic monomials in the tensor power Γ(𝑥)⊗𝑝, where 𝐶𝑝 again acts by permu-
tation. The stabilizer of a monic monomial again gives us the appropriate way to determine the
degrees: most monomials are stabilized by {𝑒} and hence correspond to a free summand, while
monomials of the form 𝑓⊗𝑝 correspond to a summand 𝑆|𝑓|𝜌𝑝 . These are the norms of classes
𝑓 ⊗ 1⊗(𝑝−1).
Let 𝛾𝑖(𝑥) be the 𝑖th divided power of 𝑥. Then we have the divided power relations

𝛾𝑖𝑥 ⋅ 𝛾𝑗𝑥 =

(
𝑖 + 𝑗

𝑖

)
𝛾𝑖+𝑗𝑥.

Since the norm is multiplicative, this gives relations

𝑁(𝛾𝑖𝑥) ⋅ 𝑁(𝛾𝑗𝑥) = 𝑁

(
𝑖 + 𝑗

𝑖

)
𝑁(𝛾𝑖+𝑗𝑥).

The norms of integers can be computed back in the Burnside Mackey functor, where we find

𝑁
𝐶𝑝
𝑒 (𝑛) = 𝑛 +

𝑛𝑝 − 𝑛
𝑝

[𝐶𝑝],

and this gives us the actual relation:

𝑁(𝛾𝑖𝑥) ⋅ 𝑁(𝛾𝑗𝑥) =

(
𝑖 + 𝑗

𝑖

)
𝑁(𝛾𝑖+𝑗𝑥) +

((𝑖+𝑗
𝑖

)𝑝
−
(𝑖+𝑗

𝑖

))
𝑝

𝑡𝑟
𝐶𝑝
𝑒

(
𝛾𝑖+𝑗(𝑥)⊗𝑝).

3.2.5 Closure under duals

We also have a weak Universal Coefficients Theorem, provided our spectrum is small.

Definition 3.37. Let 𝐸 ∈ 𝑝𝐺
𝑅,_𝑟, and let 𝑉𝐸 be the associated virtual bundle such that 𝑅 ∧ 𝐸 ≃

𝑅 ∧ 𝑀(𝑉𝐸). We say 𝐸 is finite type if for each 𝑘 ⩽ 𝑗 ∈ ℤ, only finitely many orbits of 𝑇𝐸 contribute
to 𝜋𝓁(𝑅 ∧ 𝑀(𝑉𝐸)) for 𝑘 ⩽ 𝓁 ⩽ 𝑗.

Clearly, if the set 𝑇𝐸 can be chosen to be finite, then it is finite type. Thismore general condition
is analogous to only having finitely many cells in each degree.

Theorem 3.38. If 𝐸 ∈ 𝑝𝐺
𝑅,_𝑟 is a finite complex, then 𝐷(𝑋) is also in 𝑝𝐺

𝑅,_𝑟 .
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More generally, if 𝐸 ∈ 𝑝𝐺
𝑅,_𝑟 is finite type, then for any 𝑅-module𝑀, we have a weak equivalence

of 𝑅-modules

𝐹(𝐸, 𝑀) ≃ 𝑀 ∧ 𝑀(−𝑉𝐸).

We have a universal coefficients isomorphism that computes the 𝑀-cohomology of 𝐸 out of the
𝑅-homology of 𝐸:

𝑀−⋆(𝐸) ≅ Hom𝑅⋆

(
𝑅⋆(𝐸), 𝑀⋆

)
.

Proof. If 𝐸 is a finite complex, then

𝐷(𝐸) ∧ 𝑅 ≃ 𝐹(𝐸, 𝑅),

and the first will follow from the second.
Since 𝑀 is an 𝑅-module, we have an equivalence

𝐹(𝐸, 𝑀) ≃ 𝐹𝑅(𝑅 ∧ 𝐸, 𝑀).

A basis for the 𝑅-homology of 𝐸 gives an equivalence

𝐹𝑅(𝑅 ∧ 𝐸, 𝑀) ≃ 𝐹𝑅(𝑅 ∧ 𝑀(𝑉𝐸), 𝑀),

and this is equivalent to 𝐹(𝑀(𝑉𝐸), 𝑀). Since maps out of a wedge is the product, we first check
the case of an orbit. The result is then the classical Wirthmüller isomorphism:

𝐹
(

𝐺+ ∧
𝐻

𝑆𝑉, 𝑀
)

≃ 𝐺+ ∧
𝐻

𝑆−𝑉 ∧ 𝑀.

Finally, the finite type condition ensures that the natural map from the wedge to the product is in
fact an equivalence.
The second part follows from this by taking homotopy and observing the result for orbits. □

A surprising final feature of the universal coefficients theorem is that we can also describe the
cohomology of the norms of 𝑅-free spectra.

Proposition 3.39. Let 𝑅 be an 𝐸∞ ring spectrum that has an 𝐸∞-map

𝑁𝐺
𝐻𝑖∗𝐻𝑅 → 𝑅.

If an𝐻-spectrum𝐸 has free 𝑖∗𝐻𝑅-homology with a finite basis, then the function spectrum𝐹(𝑁𝐺
𝐻𝐸, 𝑅)

is equivalent to a free 𝑅-module, and the basis is the dual to the one for 𝑁𝐺
𝐻𝐸.

In particular, analyzing the Thom spectrum for the functional dual, we have that for 𝐸 as in
the proposition, the 𝑅-cohomology of 𝑁𝐺

𝐻𝐸 can be described as the norm of the 𝑖∗𝐻𝑅-cohomology
of 𝐸.
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3.2.6 Pullbacks

Finally, freeness and projectivity is also preserved by restricting along quotient maps (also called
‘pulling back’).

Notation 3.40. If 𝑁 is a normal subgroup of 𝐺 and 𝑞 ∶ 𝐺 → 𝑄 = 𝐺∕𝑁, then let

𝑞∗ ∶ 𝑝𝑄 → 𝑝𝐺

be the inclusion of 𝑄-spectra into 𝐺-spectra.

Proposition 3.41. The functor 𝑞∗ induces a functor

𝑞∗ ∶ 𝑝𝑄
𝑅,_𝑟 → 𝑝𝐺

𝑞∗𝑅,_𝑟.

If 𝐸 ∈ 𝑝𝑄 has a basis for 𝑅, then 𝑞∗𝐸 has a basis for 𝑞∗𝑅.

Proof. Again, it suffices to check on the full subcategory of 𝑅-free spectra, and since 𝑞∗ is strong
symmetric monoidal, it suffices to show on the associated Thom spectra. By construction,

𝑞∗𝑀(𝑉𝐸) ≃ 𝑀(𝑞∗𝑉𝐸),

where 𝑞∗𝑉𝐸 is just 𝑉𝐸 viewed as a 𝐺-virtual bundle. □

Remark 3.42. The fixed points functors do not preserve projective objects, as the tom Dieck split-
ting shows. However, the canonical map

𝑞∗(𝑅𝐺) → 𝑅

gives us a map

𝑞∗ ∶ 𝑝𝑅𝐺,_𝑟 → 𝑝𝐺
𝑅,_𝑟.

This gives another proof of a basic construction in Bredon homology.

Example 3.43. If 𝐸 is an ordinary, non-equivariant spectrum such that 𝐻∗(𝐸; ℤ) is free in each
degree, then 𝑞∗𝐸 has free Bredon homology for any coefficients:

𝐻∗(𝑞∗𝐸; 𝑀) ≅ 𝐻∗(𝐸; ℤ) ⊗ 𝑀.

For any 𝐺,

𝜋0𝑞∗𝐻ℤ = 𝐴,

and the negative homotopy groups are all zero. The zeroth Postnikov section then gives us an
𝐸∞-map

𝑞∗𝐻ℤ → 𝐻𝐴.

The result then follows from Proposition 3.41, Proposition 3.16, and Theorem 3.18.
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Example 3.44. If 𝐸 is an ordinary, non-equivariant spectrum such that 𝐻∗(𝐸; 𝔽𝑝) is free in each
degree, then for any 𝐺 and for any Green functor 𝑅 in which 𝑝 ⋅ 1 = 0 ∈ 𝑅(𝐺∕𝐺), 𝑞∗𝐸 has free
𝑅-homology. This is because the pullback of 𝐻𝔽𝑝 has 𝜋0 = 𝐴∕𝑝, the initial example of such a
Green functor.
In particular, for any 𝐺 and for any 𝑅 of this form, this applies to

𝐸 = Σ∞𝐾(𝔽𝑝, 𝑚),

the pullback of which is the suspension spectrum of the Eilenberg–Mac Lane space for the con-
stant coefficient system 𝔽𝑝.

Both of these examples are also free with bases in integer stems. In particular, this functorially
describes the RO-graded homology, by Theorem 3.12.

3.3 Freeness and spaces

The author’s primary interest in these freeness results comes from the connection between the
[twisted] smash products in spectra and [twisted] Cartesian products in spaces.

Proposition 3.45. If 𝑋 is an 𝐻-space, then we have a natural equivalence

𝑁𝐺
𝐻Σ∞

+ 𝑋 ≃ Σ∞
+ Map𝐻(𝐺, 𝑋).

If 𝑋 and 𝑌 are 𝐺-spaces, then

Σ∞
+ (𝑋 × 𝑌) ≃ Σ∞

+ 𝑋 ∧ Σ∞
+ 𝑌.

We can assemble all of our results so far into a summary theorem.

Theorem 3.46. Let 𝑋 be an 𝐾-space such that 𝑋 has free 𝑖∗𝐾𝑅-homology. Then we have a natural
isomorphism

𝑁𝐺
𝐾𝑅⋆(𝑋) ≅ 𝑅⋆

(
Map𝐻(𝐺, 𝑋)

)
,

and moreover, this is free on the basis 𝑁𝐺
𝐻𝑥⃗, where 𝑥⃗ is a basis for the homology of 𝑋.

If 𝑋 and 𝑌 are 𝐺-spaces that have 𝑅-free homology, then

𝑅⋆(𝑋 × 𝑌) ≅ 𝑅⋆(𝑋)□
𝑅⋆

𝑅⋆(𝑌),

with a basis given by the product of the bases.

Example 3.47. In general, coinduction preserves Eilenberg–Mac Lane spaces: if 𝑀 is an 𝐻-
Mackey functor, then we have an equivalence

Map𝐻(𝐺, 𝐾(𝑀, 𝑛)
)

≃ 𝐾
(

↑⏐⏐⏐
𝐺
𝐻𝑀, 𝑛

)
.
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(More generally, the 𝐺-space Map𝐻(𝐺, 𝐾(𝑀, 𝑉)) represents the functor

𝑋 ↦ 𝐻𝑉(𝑖∗𝐻𝑋; 𝑀),

so these are all kinds of Eilenberg–Mac Lane spaces.)
When𝐻 = {𝑒}, this allows us to determine the homology of Eilenberg–Mac Lane space attached

to any inducedMackey functor with coefficients in a𝑁𝐺
𝑒 𝑘-algebra, for 𝑘 a field. As an application,

we have

𝐻⋆

(
𝐾
(

↑⏐⏐⏐
𝐶𝑝
𝑒 𝔽𝑝, 𝑛

)
; 𝔽𝑝

)
≅ 𝑁

𝐶𝑝
𝑒

(
𝐻∗

(
𝐾(𝔽𝑝, 𝑛); 𝔽𝑝

))
,

and the latter was determined by Cartan and Serre [4], [36].

This is closely connected to some additional structure that is often difficult to access. Equivari-
ant spaces are canonically 𝐺-cocommutative comonoids. In addition to the coproduct

𝑋 → 𝑋 × 𝑋,

they have conorm maps

𝑋
Δ𝐺∕𝐻

�����→ Map(𝐺∕𝐻, 𝑋) ≅ Map𝐻(𝐺, 𝑋).

The contravariant Yoneda functor gives for any 𝑋 a functor

よ𝑋 ∶ Map(−, 𝑋)∶ ( 𝑖𝑛𝐺)𝑜𝑝 →  𝑜𝑝𝐺,

and on passage to fixed points, these conormmaps are exactly giving the usual coefficient system
of fixed points for any 𝐺-space.

Definition 3.48. If 𝑓 ∶ 𝑆 → 𝑇 is a map of finite 𝐺-sets, then let

𝜓𝑓 ∶ 𝑅⋆(Map(𝑇, 𝑋)) → 𝑅⋆(Map(𝑆, 𝑋))

be the ‘conorm’ map associated to 𝑓. When 𝑓 = ∇𝑆 ∶ 𝑆 ⨿ 𝑆 → 𝑆 is the fold map, we call this
the ‘coproduct’.

In general, this is difficult to work with, since we need not have a good [twisted] Künneth
theorem. In the case we are considering, however, we do!

Theorem 3.49. Let 𝑅 be an equivariant commutative ring spectrum, and let 𝑋 be a space that has
free 𝑅-homology. Then 𝑅⋆(𝑋) has a comultiplication map

𝑅⋆(𝑋) → 𝑅⋆(𝑋)□
𝑅⋆

𝑅⋆(𝑋)

making it a ‘co-Green functor’. Moreover, we have for any map of finite 𝐺-sets 𝑓 ∶ 𝑆 → 𝑇 a conorm
map

𝑁𝑇𝑅⋆(𝑋) → 𝑁𝑆𝑅⋆(𝑋)

which is a map of co-Green functors.
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Proof. Since 𝑋 has 𝑅-free homology, so do all of its restrictions, and hence so do all of the spaces
Map(𝑇, 𝑋) for any finite𝐺-set 𝑇. The comultiplication and conormmaps then follow immediately
from our earlier analysis of the homology of the spaces involved.
That the conormmaps aremaps of coGreen functors follows fromnaturality: for any𝑓 ∶ 𝑆 → 𝑇,

we have a commutative diagram

Functoriality then shows that the conorm associated to 𝑓 is a map of co-Green functors. □

Remark 3.50. If a basis for 𝑅⋆(𝑋) is in integer stems, then the co-Green structure is simply base-
changed from the integral one. The conorms essentially never are, due to the degree scaling
aspects of the norm.

Rephrased, a space with free 𝑅-homology gives a strong 𝐺-symmetric monoidal functor

𝑒𝑡𝐺,𝑜𝑝 → 𝑅⋆ − 𝑜𝑑,

where the 𝐺-symmetric monoidal structure on 𝑒𝑡𝐺,𝑜𝑝 is the dual to the co-Cartesian one. This
is the definition of a 𝐺 co-commutative comonoid. Since a Tambara functor is a 𝐺-commutative
monoid by work of Mazur and Hoyer [16, 19], this gives 𝑅⋆(𝑋) naturally the structure of a co-
Tambara functor. Via the Universal Coefficients theorem for 𝑅-free spaces, this structure is dual
to the structure which gives rise to the Tambara functor structure on the 𝑅-cohomology of a 𝐺-
space.

Remark 3.51. The usual formulation of a Tambara functor describes norm maps 𝑛𝐾
𝐻 ∶ 𝑅(𝐺∕𝐻) →

𝑅(𝐺∕𝐾)with satisfy certain axioms relating them to the additive Mackey functor structure. These
connect, via work of Mazur and Hoyer ([16], [19]) to 𝐺-commutative monoids in Mackey functors
via canonical maps of sets

𝑅(𝐺∕𝐻) ≅ 𝑖∗𝐾𝑅(𝐾∕𝐻) → (𝑁𝐾∕𝐻𝑖∗𝐾𝑅)(𝐾∕𝐾).

The maps go the wrong way to be able to interpret a co-Tambara functor easily in the more tradi-
tional way: there is no clear way to extract a map

𝑅(𝐺∕𝐾) → 𝑅(𝐺∕𝐻)

from the data:
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3.4 Hopf algebroids and comodule Tambara functors

There are many examples of spectra for which we have various kinds of comultiplications. These
are ubiquitous among spectra which have free homology over themselves. This was shown and
used by Hu–Kriz for a stricter notion of free; it works very generally.

Proposition 3.52 [20]. If 𝑅 is an 𝐸∞ ring spectrum such that has free 𝑅-homology, then the pair

(𝑅⋆, 𝑅⋆𝑅)

forms a Hopf algebroid, and moreover, the 𝑅-homology of any space or spectrum is a comodule
over this.

Proof. Since 𝑅 has free 𝑅-homology, we can apply the weak Künneth theorem to deduce a natural
isomorphism for any 𝐸

𝜋⋆(𝑅 ∧ 𝑅 ∧ 𝐸) ≅ (𝑅⋆𝑅)□
𝑅⋆

𝑅⋆(𝐸).

Applying this to the case 𝐸 = 𝑅 and considering the unit map in the middle copy of 𝑅, we have
the comultiplication. Applying this to a general 𝐸 and again considering the unit on the rightmost
copy of 𝑅 give the coaction. □

It is important to note here that there are no hypotheses places on 𝐸: the 𝑅-homology of
any 𝐸 inherits this structure. When 𝐸 itself has more structure, then we can say even more
about the coaction map. Classically, if 𝐸 is a ring object in the homotopy category, then the 𝑅-
homology of 𝐸 is a comodule algebra, since the unit map is a map of ring spectra. When 𝐸
is a 𝐺-commutative monoid in the homotopy category, then we have the analogous Tambara
case.

Theorem 3.53. Let 𝑅 be a 𝐺-𝐸∞ ring spectrum which has free 𝑅-homology and let 𝐸 be a 𝐺-
commutative monoid in the homotopy category. Then 𝑅⋆𝐸 is an RO-graded Tambara functor and
the coaction map

𝑅⋆𝐸 → 𝑅⋆𝑅□
𝑅⋆

𝑅⋆𝐸

is a map of RO-graded Tambara functors.

Proof. By assumption, 𝑅 ∧ 𝐸 is a 𝐺-commutative monoid in the homotopy category, and so is
𝑅 ∧ 𝑅 ∧ 𝐸. The coaction map is the map induced by the unit in the middle, and this is a map of
𝐺-commutative monoids:

𝑅 ∧ 𝐸 ≅ 𝑅 ∧ 𝑆0 ∧ 𝐸 → 𝑅 ∧ 𝑅 ∧ 𝐸.

The result follows from [1]. □
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When 𝐸 also has free 𝑅-homology, we can use an external version of the norm, making some
of the structure more transparent. To avoid clutter, we restrict exposition to the norms from sub-
groups to 𝐺. The more general ones follow from considering instead various restrictions to sub-
groups.

Proposition 3.54. Let 𝑅 be a 𝐺-𝐸∞ ring spectrum which has free 𝑅-homology and let 𝐸 be a 𝐺-
commutative monoid in the homotopy category that has free 𝑅-homology. Then for any subgroup 𝐾,
we have a commutative diagram of commutative Green functors

As an application of this structure, we can look at the coaction on the homology of the topolog-
ical Singer construction at the prime 2.

Example 3.55. If 𝑅 is a 𝐶2-𝐸∞ ring spectrum that has free 𝔽2-homology, then 𝐻⋆(𝑅; 𝔽2) is a
comodule Tambara functor over the equivariant dual Steenrod algebra: the comodule structure
map is a map of Green functors and commutes with the norms:

This means in particular that the coaction on the spectrum 𝑁
𝐶2
𝑒 𝐻𝔽2 is completely determined by

the coaction on 𝐻𝔽2, allowing us to analyze the homotopy groups of this spectrum by a Hu–Kriz
style Adams spectral sequence [20].

4 AN EVEN NICER CLASS OF SPECTRA

4.1 Homological purity

We single out a class of spectra for which computations are strikingly simple, being completely
determined by the homology of the underlying spectrum.

Definition 4.1. A regular slice sphere is a 𝐺-spectrum of the form

𝐺+ ∧
𝐻

𝑆𝑘𝜌𝐻 ,

for some integer 𝑘. The dimension of such a regular slice sphere is 𝑘|𝐻|.
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In [12], a spectrum 𝐸 was called ‘pure’ if the slice associated graded of 𝐸 is a wedge of regular
slice spheres smashed with 𝐻ℤ. We build on that here.

Definition 4.2. A 𝐺-spectrum 𝐸 is homologically pure if there is:

(1) a set 𝐸 ;
(2) a function 𝑖 ↦ 𝑘𝑖 assigning to elements of 𝐸 an integer; and
(3) a function 𝑖 ↦ 𝐻𝑖 assigning to elements of 𝐸 a subgroup of 𝐺;

such that we have an equivalence of 𝐻ℤ-modules

𝐻ℤ ∧ 𝐸 ≃ 𝐻ℤ ∧
⋁
𝑖∈𝐸

𝐺+ ∧
𝐻𝑖

𝑆𝑘𝑖𝜌𝐻𝑖 .

A homologically pure 𝐺-spectrum 𝐸 is isotropic if there are no summands with a trivial stabi-
lizer.

Remark 4.3. A slightly restricted formof this definitionwas independently given by Pitsch–Ricka–
Scherer in their analysis of conjugation spaces [31]. The choice name and reason for the name are
the same as the one here: analogy with [12].

In fact, we can work more generally, using arbitrary zero-slices. Any zero-slice is of the form
𝐻𝑀 for some Mackey functor in which all restriction maps along surjective maps are injections
[12, Proposition 4.50], and the map 𝜋0 induces an equivalence between zero-slices and the full
subcategory of Mackey functors of this form.

Notation 4.4. We say that a Mackey functor 𝑀 is a zero-slice if 𝐻𝑀 is zero-slice.

Since the zero-slice of the zero sphere is 𝐻ℤ, any zero-slice is a module over 𝐻ℤ. This shows
that we could have instead used arbitrary zero-slices.

Proposition 4.5. A𝐺-spectrum𝐸 is homologically pure if and only if for every zero-slice𝑀, we have
an equivalence of ℤ-modules

𝐻𝑀 ∧ 𝐸 ≃ 𝐻𝑀 ∧
⋁
𝑖∈𝐸

𝐺+ ∧
𝐻𝑖

𝑆𝑘𝑖𝜌𝐻𝑖 .

Notation 4.6. If we have a decomposition like that of homological purity or isotropic homological
purity only for particular Green zero-slices 𝑅, then we will say that 𝐸 has [isotropic] homological
purity for 𝑅.

The regular representations are closed under restrictions, conjugations, and inductions. This
gives the following.

Proposition 4.7. If 𝐸 is a homologically pure 𝐻-spectrum, then

(1) 𝐺+ ∧
𝐻

𝐸 is homologically pure;
(2) if 𝐾 ⊂ 𝐻, then 𝑖∗𝐾𝐸 is homologically pure; and
(3) 𝑁𝐺

𝐻𝐸 is homologically pure.
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4.1.1 Homology

Themain benefit of this definition is from the defining property of zero-slices: all restrictionmaps
are injections, and hence statements can usually be checked at the level of underlying homology.

Notation 4.8. Given an indexing set 𝐸 for a homologically pure 𝐸, for each integer 𝑛, let

𝑛
𝐸 =

{
𝑖 ∈ 𝐸 ∣ 𝑘𝑖|𝐻𝑖| = 𝑛

}
.

Proposition 4.9. Let 𝐸 be homologically pure and let 𝑀 be a zero-slice. For any subgroup 𝐾 and
for any integer 𝑘, we have

𝐻𝑘𝜌𝐾
(𝐸; 𝑀) ≅

⨁
𝑗∈

𝑘|𝐾|
𝐸

𝑖∗𝐾𝑀𝑖∗𝐾𝐺∕𝐻𝑗
.

We also have

𝐻𝑘𝜌𝐾−1(𝐸; 𝑀) ≅
⨁

𝑗∈
(𝑘|𝐾|−1)
𝐸

⨁
g∈𝐾∖𝐺∕𝐻𝑗

𝐾∩g𝐻𝑗g
−1={𝑒}

𝑖∗𝐾𝑀𝐾.

In particular, all restriction maps are injections.

Proof. By assumption,𝐻𝑀 ∧ 𝐸 is a wedge of induced up regular representation spheres smashed
with 𝐻𝑀, and hence a wedge of slices. We therefore have

𝜋𝑘𝜌𝐾

(
𝑖∗𝐾(𝐻𝑀 ∧ 𝐸)

)
≅

⨁
𝑗∈

𝑘|𝐾|
𝐸

[
𝑆𝑘𝜌𝐾 , 𝑖∗𝐾(𝐺+ ∧

𝐻𝑗

𝑆
𝑘𝑗𝜌𝐻𝑗 ∧ 𝐻𝑀)

]

≅
⨁

𝑗∈
𝑘|𝐾|
𝐸

[
𝑆0, 𝑖∗𝐾(𝐺∕𝐻𝑗+ ∧ 𝐻𝑀)

]
The result follows by the definition of 𝑖∗𝐾𝑀𝑖∗𝐾𝐺∕𝐻𝑗

.
For the case of (𝑘𝜌𝐾 − 1), the argument is identical until the last step. Here, we have a direct

sum ⨁
𝜋−1

(
𝑆−𝑘𝜌𝐾 ∧ 𝑖∗𝐾(𝐺+ ∧

𝐻𝑗

𝑆
𝑘𝑗𝜌𝐻𝑗 ∧ 𝐻𝑀)

)
The double coset decomposition of 𝐺 as a (𝐾, 𝐻𝑗)-biset allows us to rewrite each summand:

𝜋−1

(
𝑆−𝑘𝜌𝐾 ∧ 𝑖∗𝐾(𝐺+ ∧

𝐻𝑗

𝑆
𝑘𝑗𝜌𝐻𝑗 ∧ 𝐻𝑀)

)
≅

⨁
g∈𝐾∖𝐺∕𝐻𝑗

↑⏐⏐⏐
𝐾
(𝐾∩g𝐻𝑗g

−1)𝜋−1

(
𝑆

(𝑛−𝑚)𝜌(𝐾∩g𝐻𝑗g
−1) ∧ 𝐻𝑀

)
,
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where

𝑛 = 𝑘𝑗[𝐻𝑗 ∶ 𝐻𝑗 ∩ g−1𝐾g] and 𝑚 = 𝑘[𝐾 ∶ 𝐾 ∩ g𝐻𝑗g
−1].

The only regular representation sphere that has a non-trivial homology in degree −1 is the one
for the trivial group in degree −1, which gives the second part. □

Corollary 4.10. If 𝐺 = 𝐶𝑝𝑛 and 𝐸 is homologically pure and isotropic, then the homology groups
in dimensions of the form (𝑖𝜌𝐻 − 1) vanish.

Definition 4.11. A homologically pure 𝐺-spectrum 𝐸 is generalized isotropic if there is no pair

𝑖 ∈ 𝑛
𝐸 and 𝑗 ∈ 𝑛−1

𝐸

such that 𝐺∕𝐻𝑖 × 𝐺∕𝐻𝑗 contains a free summand.

This generalized isotropic condition allows us to have other ways to check homological purity.

Theorem 4.12. Let𝐸 be a𝐺 spectrum that admits a filtration such that g𝑟(𝐸) is homologically pure
and generalized isotropic. Then 𝐸 is homologically pure and generalized isotropic.

Proof. The filtration on 𝐸 gives a spectral sequence with 𝐸1-term

𝜋⋆

(
g𝑟(𝐸) ∧ 𝐻ℤ

)
≅ 𝐻⋆

(
g𝑟(𝐸); ℤ

)
.

By assumption, this is a free 𝐻ℤ⋆-module, and the generators are in dimensions 𝑘𝑖𝜌𝐻𝑖
for 𝑖 ∈

g𝑟(𝐸). The generalized isotropic condition guarantees that these classes are permanent cycles,
since there are no possible targets for the differentials on the generators by Proposition 4.9. Thus
𝐸1 = 𝐸∞, and since this is a free module, there are no possible extensions. □

The same proof applies more generally to deduce 𝑅-freeness for pure and isotropic 𝑅. More
generally, we also deduce nice properties for the 𝑅-homology of a homologically pure 𝐸 for any 𝑅
which is pure, provided we have the same kind of generalized isotropy.

Definition 4.13. A 𝐺-spectrum 𝑅 is weakly pure if for each 𝑛 ∈ ℤ, there is a set 𝑛 and for each
𝑖 ∈ 𝑛, a subgroup 𝐻𝑖 and a zero-slice 𝑀𝑖 for 𝐻𝑖 such that the regular 𝑛-slice of 𝑅 is

𝑃𝑛
𝑛𝑅 ≃

⋁
𝑖∈𝑛

𝐺+ ∧
𝐻𝑖

(
𝑆

𝑛|𝐻|𝜌𝐻
∧ 𝐻𝑀𝑖

)
.

Remark 4.14. If a 𝐺-spectrum 𝑅 is weakly pure, then the regular slice filtration of 𝑅 is the same
as the classical slice filtration of 𝑅. This is because for each 𝑛, the fiber of 𝑃𝑛𝑅 → 𝑃𝑛−1𝑅 is also a
classical 𝑛-slice. By [12, Proposition 4.45], this must be the classical slice tower.

Theorem 4.15. Let 𝑅 be a weakly pure 𝐺-ring spectrum that is slice 0-connective, and let 𝐸 be a
homologically pure spectrum such that 𝑛

𝐸 is empty for 𝑛 sufficiently negative.
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If for each 𝑗 ∈ 𝑛
𝐸 , there is no 𝑘 ∈ ℤ, 𝑖𝐸 ∈ 𝑛−1−𝑘

𝐸 , and 𝑖𝑅 ∈ 𝑘 such that

𝐺∕𝐻𝑗 × 𝐺∕𝐻𝑖𝐸
× 𝐺∕𝐻𝑖𝑅

contains a trivial summand, then

𝑅⋆𝐸 ≅
⨁
𝑗∈𝐸

𝑅⋆

(
𝐺+ ∧

𝐻𝑗

𝑆
𝑘𝑗𝜌𝐻𝑗

)
.

Proof. The slice filtration of 𝑅 gives a filtration on 𝐸 ∧ 𝑅 with associated graded

⋁
𝑛∈ℤ

(⋁
𝑖∈𝑛

𝐺+ ∧
𝐻𝑖

𝑆
𝑛|𝐻𝑖|𝜌𝐻𝑖 ∧ 𝐻𝑀𝑛,𝑖

)
∧ 𝐸.

Since 𝐸 is homologically pure, this is equivalent to

⋁
𝑗∈𝐸

⋁
𝑛∈ℤ

(⋁
𝑖∈𝑛

𝐺+ ∧
𝐻𝑖

𝑆
𝑛|𝐻𝑖|𝜌𝐻𝑖 ∧ 𝐻𝑀𝑛,𝑖 ∧ 𝐺+ ∧

𝐻𝑗

𝑆
𝑘𝑗𝜌𝐻𝑗

)
.

The 𝐸2-term of the associated spectral sequence is

𝐸2(𝑅 ∧ 𝐸) ≅ 𝐸2(𝑅)□
𝐻⋆

𝐻⋆(𝐸; ℤ),

which is a free module over the 𝐸2-term for 𝑅 with a basis given by a basis for the homology of
𝐸. Our assumption on the lack of free summands guarantees that there are no possible targets for
differentials on the basis elements, since the corresponding group of possible targets vanishes.
This gives us a map of 𝑅-modules:

𝑅 ∧
⋁

𝑗∈𝐸

𝐺+ ∧
𝐻𝑗

𝑆
𝑘𝑗𝜌𝐻𝑗 → 𝑅 ∧ 𝐸.

By construction, this induces a map of filtered spectra, and hence a map of spectral sequences.
This map is an isomorphism on 𝐸2, which implies that the map is a weak equivalence, since our
assumptions on 𝑅 and 𝐸 guarantee that slice spectral sequence converges strongly. □

4.1.2 Cohomology

We can make similar statements about the cohomology.

Proposition 4.16. If 𝐸 is homologically pure and |𝑛
𝐸| < ∞ for all 𝑛, then for any zero-slice 𝑀, we

have an equivalence of 𝐻ℤ-modules

𝐹(𝐸, 𝐻𝑀) ≃ 𝐻𝑀 ∧
⋁
𝑖∈𝐸

𝐺+ ∧
𝐻𝑖

𝑆−𝑘𝑖𝜌𝐻𝑖 .
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Proof. Since zero-slices are 𝐻ℤ-modules, we have an equivalence of 𝐻ℤ-modules

𝐹(𝐸, 𝐻𝑀) ≃ 𝐹𝐻ℤ(𝐻ℤ ∧ 𝐸, 𝐻𝑀).

The homological purity of 𝐸 gives an equivalence of 𝐻ℤ-modules

𝐻ℤ ∧ 𝐸 ≃ 𝐻ℤ ∧
⋁
𝑖∈𝐸

𝐺+ ∧
𝐻𝑖

𝑆𝑘𝑖𝜌𝐻𝑖 ,

and hence we have

𝐹(𝐸, 𝐻𝑀) ≃
∏

𝑛

∏
𝑖∈𝑛

𝐸

𝐺+ ∧
𝐻𝑖

𝑆−𝑘𝑖𝜌𝐻𝑖 ∧ 𝐻𝑀.

Since 𝑛
𝐸 is finite, the inner most products are the same as wedges. Since for all integers 𝑘 and

subgroups 𝐻, the homotopy Mackey functors of

𝐺+ ∧
𝐻

𝑆−𝑘𝜌𝐻 ∧ 𝐻𝑀

are zero outside of a finite range (depending only on 𝑘 and 𝐻), the outer most product is also
equivalent to the wedge. □

Example 4.17. An theorem of Pitsch–Ricka–Schrerer shows that any conjugation space of
Hausman–Holm–Puppe [9] are mod 2 homologically pure and isotropic [31]. This gives a large
class of examples.

4.2 Consequences in computations

The condition of homological purity gives surprising computational control.

4.2.1 Green functor structure

Theorem 4.18. Let 𝐸 be a homologically pure spectrum, and assume that 𝐸 comes equipped with
a [commutative, associative] multiplication in the homotopy category. Then for any commutative
Green functor 𝑅 which is a zero-slice, the multiplication on

𝐻⋆(𝐸; 𝑅)

is completely determined by the restrictions to

𝐻∗(𝑖∗𝑒 𝐸; 𝑅(𝐺)).

Proof. The homological purity of 𝐸 guarantees that the homology and cohomology are free mod-
ules over the RO-graded homology of a point. In particular, the ring structure is completely deter-
mined by the products of basis vectors. These occur in dimensions of the form 𝑘𝜌𝐻 for various 𝑘
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and𝐻. If 𝑥 ∈ 𝐻𝑘𝜌𝐻
(𝐸; ℤ) and 𝑦 ∈ 𝐻𝓁𝜌𝐽

(𝐸; ℤ), then the product of 𝑥 and 𝑦 is represented by amap
out of

(𝐺+ ∧
𝐻

𝑆𝑘𝜌𝐻 ) ∧ (𝐺+ ∧
𝐽

𝑆𝓁𝜌𝐽 ).

This is a wedge of spaces of the form

𝐺+ ∧
𝐾

𝑆𝑚𝜌𝐾 ,

where 𝐾 ranges over all subgroups of the form 𝐻 ∩ g𝐽g−1 and where

𝑚𝜌𝐾 = 𝑖∗𝐾(𝑘𝜌𝐻) + 𝑖∗𝐾𝑐∗
g
(𝓁𝜌𝐽).

In particular, this is awedge of regular slice spheres, again, and hence the product takes values in a
zero-slice by Proposition 4.9. Since all restriction maps are injections here, the result follows. □

Corollary 4.19. If 𝐸 is a homologically pure spectrum, then the RO-graded ring structure on the
cohomology of 𝐸 with coefficients in any commutative Green zero-slice is functorially determined by
the underlying cohomology ring.

4.2.2 Tambara functor structure

If, moreover, 𝐸 is a 𝐺-𝐸∞-ring spectrum, then we also have good control over norms.

Theorem 4.20. If𝐸 is a𝐺-commutativemonoid in the homotopy category and if𝐸 is homologically
pure, then for any Tambara zero-slice 𝑅, we have that the norms in

𝐻⋆(𝐸; 𝑅)

are determined by the formula

𝑖∗𝑒 𝑁𝐺
𝐻(𝑥) =

∏
𝛾∈𝐺∕𝐻

𝛾(𝑖∗𝑒 𝑥).

Proof. The proof is the same as for the products. Here we use that the collection of regular repre-
sentations is a sub-semi-Mackey functor of the representation ring. □

Remark 4.21. Tambara functors which are also zero-slices were independently studied by
Nakaoka, who called these ‘MRC’ Tambara functors, in his study of localizations of Tambara func-
tors [30].

4.2.3 CoTambara structure

Again, all of the desired structure can be read out of the underlying homology. The conormmaps
are detected as twisted coproducts. The proofs are identical.
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Theorem 4.22. Let 𝐸 be a homologically pure spectrum, and assume that 𝐸 comes equipped with a
[cocommutative, coassociative] comultiplication in the homotopy category. Then for any commuta-
tive Green functor 𝑅 which is a zero-slice, the comultiplication on

𝐻⋆(𝐸; 𝑅)

is completely determined by

𝐻∗

(
𝑖∗𝑒 𝐸; 𝑅(𝐺)

)
.

Theorem 4.23. If 𝐸 is a 𝐺-co-commutative comonoid in the homotopy category and if 𝐸 is homo-
logically pure, then for any Tambara zero-slice 𝑅, we have that the conorms in

𝐻⋆(𝐸; 𝑅)

are determined by the formula

𝑖∗𝑒 𝑁𝐺
𝐻(𝑥) =

⎛⎜⎜⎝
⎛⎜⎜⎝
⨂

𝛾∈𝐺∕𝐻

𝛾
⎞⎟⎟⎠◦𝜓

⎞⎟⎟⎠(𝑖∗𝑒 𝑥).

4.2.4 Dyer–Lashof operations

Finally, we restrict to 𝐶2. None of the arguments here are that specific to 𝐶2; the only issue is in
defining the appropriate Dyer–Lashof operations. For groups which contain 𝐶2, norm arguments
provide analogous classes, but the author has no idea in general. We recall Wilson’s RO(𝐶2)-
graded stable operations.

Theorem 4.24 [2, §3], [41]. For each 𝑖 ⩾ 0 and for each 𝜖 = 0, 1, we have Dyer–Lashof operations

𝑄𝑖𝜌2−𝜖 ∶ 𝐻⋆(−; 𝔽2) → 𝐻⋆+𝑖𝜌2−𝜖(−; 𝔽2).

When ⋆ = 𝑖𝜌2, 𝑄𝑖𝜌2 is the square.

In this case, homological purity says that the underlying structure describes everything.

Theorem 4.25. If 𝐸 is a homologically pure 𝐶2-𝐸∞-ring spectrum, then we have

𝑄𝑖𝜌2−𝜖 ∶ 𝐻⋆(𝐸; 𝔽2) → 𝐻⋆+𝑖𝜌2−𝜖(𝐸; 𝔽2)

is determined by the restrictions 𝑖∗𝑒 𝑄𝑖𝜌2−𝜖. The odd operations 𝑄𝑖𝜌2−1 can only land in cells induced
from the trivial group.

Proof. This again follows immediately from the assumption of homological purity. □
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4.3 Example: the homology of ℂ𝑷∞ and of 𝑩𝑼ℝ

4.3.1 The 𝐶2-𝐸∞ space ℂ𝑃∞

The standard cell structure for ℂ𝑃∞ has a unique cell in dimension 𝑘𝜌2 for all 𝑘 ⩾ 0 and no other
cells. In particular, it is homologically pure and isotropic, with a basis given by all

𝑏̄𝑛 ∈ 𝐻𝑛𝜌2
(ℂ𝑃∞; ℤ)

corresponding to the top cell ofℂ𝑃𝑛. The ring and coring structure then follows immediately from
the underlying case.

Proposition 4.26. As a Green Hopf algebra, the homology ofℂ𝑃∞ with coefficients inℤ is a divided
power algebra on the primitive class 𝑏̄1.

The norm (and conorm) maps are also determined by the underlying condition. Here we
have

𝑖∗𝐶2

(
𝑁

𝐶2
𝑒 𝑏𝑛

)
= −𝑏2

𝑛 = −

(
2𝑛
𝑛

)
𝑏2𝑛.

Proposition 4.27. The norms are given by

𝑁
𝐶2
𝑒 𝑏𝑛 = −

(
2𝑛
𝑛

)
𝑏̄2𝑛.

The conorms are dual to the (negative) squaring operation.

4.3.2 The homology of 𝐵𝑈ℝ

We begin with the computation of the homology of 𝐵𝑈ℝ with coefficients in ℤ. We give a slightly
different proof than that of [21] and [32], using instead our formulae above. This line of argument
was undoubtedly known by Araki and Landweber.

Theorem 4.28. There are classes

𝑎̄𝑖 ∈ 𝐻𝑖𝜌2
(𝐵𝑈ℝ; ℤ)

such that the induced map on 𝐴∞-rings

𝐻ℤ ∧
⋀
𝑖⩾1

𝕊0[𝑎̄𝑖] = 𝐻ℤ ∧ 𝕊0[𝑎̄1, 𝑎̄2, … ] → 𝐻ℤ ∧ 𝐵𝑈ℝ

is an equivalence of 𝐶2-equivariant associative algebras, and hence the 𝐶2-space 𝐵𝑈ℝ is homologi-
cally pure and isotropic.
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Proof. Araki lifted the classical, non-equivariant description of MU∗ MU, showing

MUℝ ∧ MUℝ ≃ MUℝ[𝑎̄1, … ],

and in particular, this is free with a basis in regular representation dimensions. The Thom iso-
morphism shows

MUℝ ∧𝐵𝑈ℝ+ ≃ MUℝ ∧ MUℝ

as 𝐶2-𝐸∞ rings. Since𝐻ℤ is a commutative ring spectrum underMUℝ, the result follows by base-
change. □

Remark 4.29. The classical Schubert cell analysis works equally well here, and the underlying
argument is essential the same as that of [9].

Corollary 4.30. For any finite group 𝐺 which contains 𝐶2, the coinduced 𝐺-space Map𝐶2(𝐺, 𝐵𝑈ℝ)
is homologically pure and isotropic with basis given by the norm of the monomial basis.

Notation 4.31. Let

ℤ⋆ = 𝜋⋆𝐻ℤ.

Corollary 4.32. We have an isomorphism of RO(𝐶2)-graded Green functors

𝐻⋆(𝐵𝑈ℝ; ℤ) ≅ ℤ⋆[𝑎̄1, … ],

where |𝑎̄𝑖| = 𝑖𝜌2.

We can also deduce the norms, coproducts, and conorms.

Proposition 4.33. The norms are given by

𝑁
𝐶2
𝑒 (𝑎𝑖) = (−1)𝑖𝑎̄2

𝑖 .

Finally, the co-Tambara structure is lifting the usual dual polynomial structure. Since the space
𝐵𝑈ℝ is finite type, we can equivalently describe the cohomology ring and the norms there.

Proposition 4.34 [21]. The cohomology ring of 𝐵𝑈ℝ is

𝐻⋆(𝐵𝑈ℝ; ℤ) ≅ ℤ⋆[𝑐1, … ].

Moreover, the inclusions of equivariant maximal tori into the𝑈ℝ(𝑛) identify these Chern classes with
the usual symmetric functions in the Chern roots.

Proof. Only the second part requires proof, since 𝐵𝑈ℝ is homologically pure, isotropic, and of
finite type. The same is true for the space (ℂ𝑃∞)×𝑛. The inducedmap on cohomology is the deter-
mined by the underlying homology, and we reduce to the classical case. □
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Proposition 4.35. The norms of the Chern classes are also the squares:

𝑁
𝐶2
𝑒 (𝑐𝑖) = (−1)𝑖𝑐2

𝑖 .

Finally, using Theorem 4.25, we deduce the action of Wilson’s Dyer–Lashof operations.

Theorem 4.36. The Dyer–Lashof operations 𝑄𝑖𝜌2 on 𝐻⋆(𝐵𝑈ℝ; 𝔽2) act as

𝑄𝑖𝜌2(𝑎̄𝑗) =

(
𝑛

𝑟 − 𝑛 − 1

)
𝑎̄𝑖+𝑗 mod decomposables.

The Dyer–Lashof operations 𝑄𝑖𝜌2−1 are identically zero.

Proof. Theorem 4.25 implies that these operations are completely determined by the underlying
action. The ordinary Dyer–Lashof action on the homology of 𝐵𝑈 was determined by Kochman
[22, 24]. □

As an aside, this also gives the Dyer–Lashof action on the space 𝐵𝑂 by applying geometric fixed
points.

Corollary 4.37 [22, Theorem 36]. In

𝐻⋆(𝐵𝑂; 𝔽2) ≅ 𝔽2[𝑒1, … ],

we have for all 𝑟 ⩾ 0 and 𝑛 ⩾ 1,

𝑄𝑟(𝑒𝑛) =

(
𝑛

𝑟 − 𝑛 − 1

)
𝑒𝑛+𝑟 mod decomposables.

5 BAR AND TWISTED BAR SPECTRAL SEQUENCES

For 𝑅-free spectra, we have readily computable equivariant versions of the classical Rothenberg–
Steenrod and Eilenberg–Moore spectral sequences. For 𝐺 = 𝐶2, we also have twisted versions of
these where the group acts also on the homotopy pullback diagram. We explain how these work
here, giving an example for the bar spectral sequence.

5.1 Bar and Rothenberg–Steenrod

Let 𝐴 be an associative monoid in 𝐺-spaces. Let 𝑋 be a right 𝐴-space and let 𝑌 be a left 𝐴-space.
In this case, the derived balanced product can be computed via the bar construction:

𝑋 ⊗
𝐴

𝑌 = 𝐵(𝑋, 𝐴, 𝑌),

where 𝐵(𝑋, 𝐴, 𝑌) is the geometric realization of the simplicial complex

𝑘 ↦ 𝐵𝑘(𝑋, 𝐴, 𝑌) = 𝑋 × 𝐴×𝑘 × 𝑌,

and where as usual, the structure maps are the actions or product in 𝐴.
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Remark 5.1. Although the space underlying the (non-derived) version of𝑋 ⊗
𝐴

𝑌 is just the ordinary

𝑋 ×
𝐴

𝑌, we use the tensor product notation to stress the connection with the algebraic case and to
distinguish from later pullback constructions.

If 𝐴 and either 𝑋 or 𝑌 are 𝑅-free, then we have a bar spectral sequence computing the 𝑅-
homology of 𝑋 ⊗

𝐴
𝑌.

Theorem 5.2. If𝐴 and either𝑋 or 𝑌 are 𝑅-free, then we have an Adams-graded spectral sequence

𝐸
𝑠,⋆

2 = Tor
𝑅⋆(𝐴)

−𝑠

(
𝑅⋆(𝑋), 𝑅⋆(𝑌)

)
⇒ 𝑅⋆−𝑠(𝑋 ⊗

𝐴
𝑌).

Proof. Our assumptions guarantee that for each 𝑘, the 𝑅-homology of 𝐵𝑘(𝑋, 𝐴, 𝑌) is given by

𝑅⋆(𝐵𝑘(𝑋, 𝐴, 𝑌)) ≅ 𝑅⋆(𝑋)□
𝑅⋆

𝑅⋆(𝐴)□𝑘□
𝑅⋆

𝑅⋆(𝑌),

and the maps are the standard resolution computing Tor. □

Remark 5.3. If a basis for𝐴 and either 𝑋 or 𝑌 can be chosen to be in RO(𝐺), then Lewis–Mandell
give anRO(𝐺)-graded version of theKünneth spectral sequencewhich gives the exact same result.
This is because our bar complex becomes the relative smash product upon taking Σ∞

+ . The result-
ing spectral sequence is the same [26], since it is built the same way.

Applying cohomology instead to the bar construction when 𝑋 = 𝑌 =∗ gives the
Rothenberg–Steenrod spectral sequence [35]. Our assumptions allow this to be determined as
well.

Theorem 5.4. If 𝐴 is 𝑅-free and 𝐴 is finite type, then we have a spectral sequence

𝐸
∗,⋆

2 = Ext𝑠
𝑅⋆(𝐴)

(
𝑅⋆, 𝑅⋆) ⇒ 𝑅⋆−𝑠(𝐵𝐴).

Example: 𝐵𝐵𝑈ℝ

Since 𝐵𝑈ℝ is 𝐻ℤ-free, we can run the bar spectral sequence to compute the homology of 𝐵𝐵𝑈ℝ.

Proposition 5.5 [26]. There is an Adams-style spectral sequence with

𝐸2
𝑠,⋆ = Tor−𝑠

𝐻⋆𝐵𝑈ℝ
(ℤ⋆, ℤ⋆) ≅ 𝐸ℤ⋆

(𝑦̄1, … ) ⇒ 𝐻⋆−𝑠

(
𝐵𝐵𝑈ℝ; ℤ

)
,

where 𝑦̄𝑖 is the element in Tor1 represented by 𝑎̄𝑖 and has bidegree (−1, 𝑖𝜌2).

Since all of the algebra generators are in filtration (−1), this spectral sequence collapses at 𝐸2.
This is a free ℤ⋆-module, hence there are no additive extensions. There are, however, multiplica-
tive extensions.
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Theorem 5.6. As an RO(𝐶2)-graded Green functor,

𝐻⋆(𝐵𝐵𝑈ℝ; ℤ) ≅ ℤ⋆[𝑦̄1, 𝑦̄2, … ]∕(𝑦̄2
𝑖 − 𝑎𝜎𝑦̄2𝑖+1),

where 𝑦̄𝑖 is a fixed element of degree 𝑖𝜌2 + 1.

Proof. The Dyer–Lashof operations commute with the homology suspension, and since this fac-
tors through the indecomposables, our earlier analysis gives on-the-nose identifications of the
Dyer–Lashof actions.
Wilson has shown that for a class in degree (𝑛𝜌2 + 1), the square is stable and can be written

as

(−)2 = 𝑎𝜎𝑄(𝑛+1)𝜌2 + 𝑢𝜎𝑄(𝑛+1)𝜌2−1.

In particular, the squares are given by

𝑦̄2
𝑛 = 𝑎𝜎𝑄(𝑛+1)𝜌2 𝑦̄𝑛 = 𝑎𝜎

[
𝑄(𝑛+1)𝜌2 𝑎̄𝑛

]
= 𝑎𝜎[𝑎̄2𝑛+1] = 𝑎𝜎𝑦̄2𝑛+1. □

Remark 5.7. The geometric fixed points of this are again polynomial, and we recover the result of
Kochman on the homology of 𝐵𝐵𝑂 [22].

Remark 5.8. The 𝐶2-space 𝐵𝑈ℝ is 𝐶2-𝐸∞, so it makes sense to ask about norm maps here. The
situation is more complicated. In fact, the Tor term itself has a somewhat confusing relationship
with the norms, since there is no reason for the homology suspension to set them equal to 0. Put
another way, the usual argument shows that homology suspension factors through the ordinary
module of Kähler differentials, but it will not necessarily factor through the module of genuine
Kähler differentials of [14].

Since the homology of 𝐵𝐵𝑈ℝ is free, we also get the homology of the coinduced 𝐵𝐵𝑈ℝ.

Theorem 5.9. For any finite group𝐺 and inclusion𝐶2 ⊂ 𝐺, we have an isomorphism ofRO-graded
Tambara functors

𝐻⋆

(
Map𝐶2(𝐺, 𝐵𝐵𝑈ℝ); ℤ

)
≅ 𝑁𝐺

𝐶2

(
𝐻⋆(𝐵𝐵𝑈ℝ; ℤ)

)
.

5.2 Twisted bar spectral sequence

In𝐶2-equivariant homotopy, we have an additional version of the𝐸1-operad: the𝐸𝜎-operad. Alge-
bras for this have no multiplication on their fixed points, but they do have a transfer map and an
underlying multiplication. A summary can be found in [13].
If 𝐴 is an 𝐸𝜎-algebra, then we can form a kind of balanced tensor product
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where 𝐶2 acts on the whole diagram by swapping the two copies of 𝑋. This amounts to the data
of a space 𝑋 acted on by the associative monoid 𝑖∗𝑒 𝐴. The 𝐸𝜎-structure on𝐴 means that the group
action gives an isomorphism 𝑖∗𝑒 𝐴 ≅ 𝑖∗𝑒 𝐴𝑜𝑝, and hence the action on𝑋 also canonically gives a right
action. The twisted balanced product swaps the two factors of𝑋 and also then necessarily changes
these left and right actions.

Definition 5.10. If 𝐴 is an 𝐸𝜎-algebra and 𝑋 is an 𝑖∗𝑒 𝐴-module, then let

𝐵𝜎(𝐴; 𝑋) = 𝐵(𝐴, Map(𝐶2, 𝐴), Map(𝐶2, 𝑋)),

where the action of Map(𝐶2, 𝐴) on 𝐴 is via the 𝐸𝜎-structure.

Perhaps the most interest case is when 𝑋 is a point. In this case, work of Hahn–Shi and of Liu
show that in this case 𝐵𝜎 is the appropriate ‘signed de-looping’, providing a classifying space for
𝐸𝜎-algebras [8, 27].

Theorem 5.11. If 𝐴 has 𝑅-free homology, then we have a spectral sequence which Adams indexed
has the form

𝐸
𝑠,⋆

2 = Tor
𝑁

𝐶2
𝑒 (𝑖∗𝑒 𝑅∗(𝑖∗𝑒 𝐴))

−𝑠

(
𝑅⋆(Map(𝐶2, 𝑋)), 𝑅⋆(𝐴)

)
⇒ 𝑅⋆−𝑠(𝐵

𝜎(𝐴; 𝑋)).

If 𝑋 also has 𝑅-free homology, then the action of 𝑁
𝐶2
𝑒 (𝑖∗𝑒 𝑅∗(𝑖∗𝑒 𝐴)) on

𝑅⋆(Map(𝐶2, 𝑋)) ≅ 𝑁
𝐶2
𝑒

(
𝑖∗𝑒 𝑅∗(𝑋)

)
is the one induced by functoriality.

5.3 Eilenberg–Moore

Following Rector, we build a geometric model of the Eilenberg–Moore spectral sequence [33, 37].
Just as non-equivariantly, any 𝐺-space is a coalgebra with comultiplication given by the diagonal
map, and 𝐺-space 𝑋 together with a map to a 𝐺-space 𝐵 can be viewed as a 𝐵-comodule (and in
fact, we have muchmore structure equivariantly coming from the twisted diagonals). This allows
us to form the cosimplicial cobar complex as a model for the homotopy pullback.
If 𝑋 → 𝐵 and 𝐵 ← 𝑌 are maps of 𝐺-spaces, then a model for the homotopy pullback is given

by

𝑋 ×
𝐵

ℎ 𝑌 ≃ 𝑐𝑜𝐵(𝑋, 𝐵, 𝑌),

where 𝑐𝑜𝐵(𝑋, 𝐵, 𝑌) is the totalization of the cosimplicial complex

𝑘 ↦ 𝑋 × 𝐵×𝑘 × 𝑌,

and where the structure maps are the diagonal of 𝐵 or the respective coaction maps. If 𝐵 and
either𝑋 or𝑌 are 𝑅-free and finite type, then we have a spectral sequence computing cohomology.
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In general, convergence of this spectral sequence is very delicate, just as classically. For this reason,
we state the result only for Bredon homology with coefficients in a Green functor.

Theorem 5.12. If 𝐵 and either 𝑋 or 𝑌 has 𝑅-free homology, then we have a spectral sequence

𝐸2 = Tor
𝐻⋆(𝐵;𝑅)
−𝑠

(
𝐻⋆(𝑋; 𝑅), 𝐻⋆(𝑌; 𝑅)

)
⇒ 𝐻⋆+𝑠(𝑋 ×

𝐵

ℎ 𝑌; 𝑅).

5.4 Twisted Eilenberg–Moore

Dual to the twisted pushout, we have a twisted homotopy pullback.

Definition 5.13. If 𝑓 ∶ 𝑋 → 𝑖∗𝑒 𝐵, then let 𝑋
ò
×
𝐵

𝑋 be the defined by the homotopy pullback

This ismodeling a pullback diagramwhere now the group acts by swapping the two sides again.
The homotopy pullback gives a version of the ordinary homotopy pullback where we replace the
ordinary interval with the balanced interval [−1, 1] in the sign representation.

Remark 5.14. If 𝑋 is a point, then this gives us the space of signed loops into 𝐵.

This pullback gives a cobar complex and hence an Eilenberg–Moore spectral sequence via The-
orem 5.12.

Theorem 5.15. If 𝐵 has 𝑅-free homology, and if 𝑅 is a Tambara functor, then we have a spectral
sequence

𝐸2 = Tor
𝑁

𝐶2
𝑒 𝐻∗(𝑖∗𝑒 𝐵;𝑅(𝐶2))

−𝑠

(
𝐻⋆(Map(𝐶2, 𝑋); 𝑅

)
, 𝐻⋆(𝐵; 𝑅)

)
⇒ 𝐻⋆+𝑠

(
𝑋
ò
×
𝐵

𝑋; 𝑅

)
.

Moreover, if 𝑋 also has 𝑅-free homology, then the action on

𝐻⋆(Map(𝐶2, 𝑋); 𝑅
)

≅ 𝑁
𝐶2
𝑒 𝐻∗(𝑋; 𝑅(𝐶2))

is induced by the non-equivariant one.

We believe that these spectral sequences will be useful in computing the cohomology of equiv-
ariant Eilenberg–Mac Lane spaces.
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