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1 | INTRODUCTION

Equivariant cohomology is often viewed as very difficult to compute. In full generality, this is often
true, as many computations which non-equivariantly were completed in the 1950s and 1960s are
still out of reach. Additionally, the kinds of cellular decompositions which geometrically arise are
often not adapted to easy computation, further compounding the problem. Many computations
in the literature require significant amounts of hard work, even for ordinary (Bredon) homology
(see, for example, the recent papers of Dugger on equivariant Grassmanians [5] and Hazel on
C,-surfaces [11]).

In this paper, we build on a class of spectra introduced by Ferland-Lewis [6], focusing on a
certain subcategory of spaces and spectra for which essentially all of these problems go away. The
basic definition is motivated by algebra.

Definition. Let R be an E_ -monoid in genuine G-spectra. A G-spectrum E has R-free homology
if R A E splits as a wedge of R-modules of the form

v
RA(G, ﬁ SY),
where V is a virtual representation of H.

These classes of spectra contain many geometrically meaningful spaces and spectra. Delight-
fully, these R-free spectra are closed under most of the usual operations in equivariant homotopy.

Theorem. IfR is an E_ -monoid in genuine G-spectra, then the category of R-free spectra is closed
under:

(1) coproducts;

(2) restriction along arbitrary homomorphisms;

(3) induction from a subgroup;

(4) the smash product; and

(5) norm maps, if R is actually a G-E ., ring spectrum.

For Bredon homology, this gives a large class of spaces and spectra for which the cohomology is
easy to describe with almost arbitrary coefficients. Most excitingly, it means we can describe the
full coalgebra (in fact, co-Tambara functor) structure on the homology of these spaces and on the
cohomology of equivariant commutative monoid objects. Closure under norms here gives a for-
mula for the Bredon homology of coinduced spaces with various coefficients, which in turn gives
ways to understand Bredon homology and cohomology of certain Eilenberg-Mac Lane spaces.

After describing a host of examples, we restrict focus to a class of spectra for which everything is
described by the underlying homology. The slice filtration of [12] gives a version of the Postnikov
tower where we use various representation spheres instead of ordinary spheres. In the nicest cases,
such as those built out of the norms of the Fujii-Landweber spectrum of Real bordism MUy, the
slice associated graded is a wedge of regular representation spheres smashed with computation-
ally tractible Eilenberg-Mac Lane spectra [7, 25] (see also [20]).

We consider HZ-free spectra where the [induced] virtual representation spheres are only in reg-
ular representation dimensions. These assumptions allow us to reduce almost any computational
question to a question about the non-equivariant homotopy, tying things to classically studied
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objects. We demonstrate the efficiency of this by giving the full Tambara and co-Tambara func-
tor structures on the homology of BU, and of Map®2(G, BU},). We also describe the action of the
C,-Dyer-Lashof algebra on the mod 2-homology of BU},.

We close with applications to the bar/Rothenberg-Steenrod and Eilenberg-Moore spectral
sequences. When the spaces in question are R-free, the E,-terms of the usual spectral sequences
have the expected form, and we use this to compute the homology of BBU and of the coin-
duced space Map“2(G, BBU},) for all finite G. As an aside, we also mention the sign-twisted ana-
logues of these classical spectral sequences when G = C,, giving ways to compute the homology
of the signed bar construction or the cohomology of the twisted homotopy pullback and signed
loop spaces.

Throughout the paper, our emphasis is on the conceptual understanding of the objects and on
explicit examples. We include many examples of spaces and spectra of interest, showing how they
fit into this framework, working to demystify equivariant computations.

Conventions and notation

In all that follows, we work in ‘genuine’ G-spectra for a finite group G. Much of what we say will
actually be model agnostic; we will largely talk about results in the homotopy category. When
discussing the difference between E, and G-E_, monoids, however, we will implicitly be working
in equivariant orthogonal or symmetric spectra, since both have well-developed notions of the
norm [10, 12].

2 | RO-GRADED HOMOLOGY

Many of the spaces which arise geometrically can be built not out of cells of the form ‘disk in a
[virtual] representation V’ but rather out of more general cells of the form

G, ﬁ D(V),

where V is a [virtual] H-representation. Algebraic constructions like the norm automatically build
in this more general kind of RO-grading, considering instead objects graded on pairs consisting
of a subgroup H and a virtual representation of H. A more coordinate free version is given by
considering Thom spectra of virtual bundles over finite G-sets; a particular model of this is the
work of Angeltveit-Bohmann [1].

Definition 2.1 [15, Definition 2.7]. If T is a finite G-set and V is an equivariant virtual bundle over
T, then let M(V') be the Thom spectrum of V' and

G
Remark2.2. If T is a transitive G-set, then a choice of point ¢ € T gives an equivariant equivalence

T = G/ Stab(t),
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and restriction to ¢ gives an equivalence of categories between Stab(¢)-equivariant virtual repre-
sentations and virtual equivariant vector bundles over T.

Notation 2.3. In the case T = G/H, so V gives a virtual H-representation V, let
Ey (8°) = m, (EXT,V).

These abelian groups assemble into a kind of Mackey functor, twisted by these bundles. This
generalizes the earlier work of Ferland-Lewis [6].

Proposition 2.4. If f : S — T isa map of finite G-sets and if V — T is a virtual equivariant bundle,
then f induces a transfer map

T,
7 (EXS. f*V) —> m (E)T.V)

and a restriction map

R
7, (EXT, V) —> 7, (EXS. f*V).

The Weyl action here can be somewhat subtle. If V is a representation of G, then we have a
Weyl action on

7 (E)XG/H,G/H X V).
The standard isomorphism of G-spaces over G/H
G/HXV =G X iV
give isomorphisms of vector bundles, and hence this group depends only on the H-representation
i;;V. The Weyl action, however, depends on V itself as a G-representation. Put another way, the

standard isomorphism given above is not Weyl-equivariant.

Example 2.5. If G = C, and V = (o — R), the virtual dimension zero shift of the sign represen-
tation, then the groups

T (E)Cy, Co X (V & R™))
are just the ordinary homotopy groups
7, (i) E).
In this case, however, we have twisted the Weyl action: as a C,-module, we have an isomorphism

ﬂi(E)(Cz, C,x(VOR") x2r,(i E)®0,,
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where o, is the integral sign representation. This observation has been used by many authors in
the study of the homotopy fixed point spectral sequence for Hopkins-Miller spectra (see [17]).

Remark 2.6. The Mackey double coset formula also changes in the RO-grading: there can be signs
introduced which reflect the degree of the map on the underlying representation sphere. See, for
example, [12, Lemma 7.20].

Smashing together maps gives us the external product.
Definition 2.7. If x € ﬂ'i(E)(T, V)andy € ﬂt(E, )(S, W), then we have an external product
XAy E ni(E/\E’)(TxS,VxW)
given by the smash product of representing maps.

Since this pairing is the one arising from the pairing of homotopy classes of functions in G-
spectra, it has the usual properties.

Proposition 2.8. The external product is linear in both factors and satisfies the Frobenius relation:

XAT () = Trgup(x AY).

The multiplication in the RO-graded context can be a little more confusing, since elements are
attached to virtual representations for different groups. To effectively compare them, the elements
must first be restricted to a maximal common subgroup. In general, we have many ways to rep-
resent this. Conceptually, the RO-graded group actually remembers more information, including
not only the elements but also the various Weyl conjugates. Thinking in this way, the RO-graded
products will not only record the product we would expect but also include any of the pairwise
products of restrictions to conjugate subgroups.

If T = S, then we have a canonical pullback diagram

VeWwW — VXW

! |

Composing the external product with the restriction along the diagonal A; gives the usual product
structure on the RO(T)-graded homotopy of the ‘restriction to T’ of a ring spectrum R.

If T=G/H and S = G/K, with H and K not necessarily conjugate, then we do not have as
simple a picture. The classes x and y are maps

and smashing them together gives the map

(Gops") A (G ps™) == EAE.
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The source is naturally the Thom spectrum of a virtual bundle on G/H X G/K, which can be
rewritten by the double coset formula as

~ ok ~ —1
G/HXG/K =G Xi;,G/K = [T oc/@Engkg™.
HgKeH\G/K

The bundle over the summand associated to H gK is

"Hr\gKg‘1 Ve lHﬂgKg_lc!JW’

and the corresponding map on this summand is

-1
rest  (x) Ares’t?

sk
HngKg HﬂgKg_l(ng).

Corollary 2.9 [1]. If E has a multiplication in the homotopy category of genuine G-spectra, then the
composition with the multiplication in E makes 7t (E) into an RO-graded Green functor.

In fact, there is a good G-symmetric monoidal category of R, -modules for any equivariant com-
mutative ring spectrum R. This will be developed in forthcoming joint work with Angeltveit—
Bohmann. We will make use of this structure somewhat heavily in what follows. However, the
only cases in which we will consider it are ones for which the structure is immediate from the
definition of the objects, so there should be no confusion.

We close by summarizing the notation that will show up for the various kinds of gradings.

Notation 2.10. The wildcard x will be used for gradings by RO.

The wildcard * will be used for gradings by RO(G).

The wildcard = will be used for gradings by Z.
3 | FREE R-HOMOLOGY
In this section, let R be a fixed E -ring spectrum in genuine G-spectra. Equivariantly, this is
weaker than being a commutative monoid in any of the good point-set models of spectra, but
this is sufficient to have a good, symmetric monoidal category of modules over R [3].

3.1 | Free and projective

It greatly simplifies much of the notation (and of our discussion of a basis) to allow ourselves to
evaluate our homotopy Mackey functors on infinite G-sets and virtual representations on these.

Notation 3.1. If T is a discrete G-set and V is a virtual bundle over T, then let
R (EXT,V) =1lmR,(E)XS, i;V),

where S ranges over all finite subsets of T'.
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Since Thom spectra of disjoint unions of spaces is the coproduct of the associated Thom spectra,
we have a natural isomorphism

R, (EXT,V) = [M(V),R A El°.

Definition 3.2. A G-spectrum E has free R-homology or ‘is R-free’ if there is a G-set T and a
virtual vector bundle Vj; over T such that we have an equivalence of R-modules

RAE~RAMVy).
The full subcategory of Sp® spanned by the spectra with free R-homology will be denoted
S pg, e

It has projective R-homology if R A E is a retract of an R-module of the form R A M (V) for some
virtual vector bundle V over a G-set. The full subcategory of Sp® spanned by the spectra with
projective R-homology will be denoted

G
SpR,pr.

Remark 3.3. The use of ‘free’ here is to bring to mind a free module. In the homotopy category of
R-modules, the R-module R A (G, ﬁ SV corepresents the functor

E v my (E),

on the category of R-modules, and hence maps out of it correspond to certain elements in this
RO-graded Mackey functor.

Definition 3.4. If E has free R-homology, then a basis for the R-homology of E is an element
Xe R, (E)Tg, Vi)
for a G-set T; and a virtual bundle Vj; over Ty, such that the induced map
RAM(VE) ﬁ RAE

is an equivalence.

We can restate the definition of a basis using an orbit decomposition of T. A choice of points in
each orbit for T gives an equivariant isomorphism

= [] ¢/H,

teT /G

and if we let V; , be the restriction of Vi, to the orbit G/H,, then

R(EXT, V)= ] Ry (B).
teT /G '
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A basis then is a collection of elements

X, Gy AS"Et > RAE
Ht

such that the induced map

RA G, ASVE:| > RAE
V G psT = RA
teT /G

is an equivalence. We will use both formulations.
Just as for vector spaces, a basis is a choice of additional data which aids in explicit computation.

In particular, describing product structures is greatly simplified with a basis.

Remark 3.5. Although a basis is given by specifying certain elements in certain RO-graded stems,
the freeness actually gives us a host of related elements. Consider M = R A (G, 1/1\ SY). The unit

map S° — R gives a distinguished map
G, AS" =M
H

which gives a basis. Unpacking the adjunction, this corresponds to the H-equivariant map

S” > IR A (G, A sV
induced by the inclusion

V ~ |4 P |4

S =H+,{,\S L>1HG+§S .

If H # G, then there are many other summands. In particular, any element g € N;(H) gives us a
summand

v
gH+£I\S ,

which is the representation sphere for the pullback of the representation V along the conjugation-
by-g automorphism of H. When V is in the image of the restriction of a representation of N;(H),
this is just recording the Weyl-conjugates of our original element.

Example 3.6. For any R, a basis for R A (G, A S!) is the data of an element
X € 71'1(\/ i:ZR) = @n’o(i:R)
Gl 1G]

such that the induced action-map

7[G] @ mo(i;R) » @ 7o (i;R)
I
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is an isomorphism. It also records (linearly independent) classes for all y € G:

y-XxX€E @ﬂ'o(i:R)

1G]
(and in fact, the Mackey functor homotopy group is Tf 7o(i;R)).

It is helpful to keep in mind the example of Bredon homology with coefficients in a commu-
tative Green functor R. The Eilenberg-Mac Lane spectrum associated to a commutative Green
functor is always E,, so we can apply this general formalism.

Example 3.7. If G = {e}, then a basis for the homology of E with coefficientsin R = R (an ordinary
commutative ring) is the same as a basis for the graded R-module H,(E; R).

Example 3.8. Kronholm and Hogle-May showed that if X is a finite Rep(C,)-complex
(meaning a C,-complex formed by attaching disks in representations along their boundaries),
then X has free HF,-homology (with no summands induced up from the trivial group)
[23], [18].

Example 3.9. May’s decomposition theorem for the [colhomology of a finite C,-CW complex
says that for any finite C,-complex X, we have a splitting

HF, AX ~ HF, A <\/ Cop AS"V \/ZkiS(nia)+>

where in the second sum, n; > 2 and o is the sign representation [29]. Thus C, spaces have free
HEF,-homology if and only if this second sum vanishes.

Example 3.10. Hazel’s computation of the Bredon homology of C,-surfaces shows that
every connected C,-surface for which the action is not free has free HF,-homology [11,
Theorem 6.6].

Example 3.11. Ricka extended the Hu-Kriz computation of the dual Steenrod algebra for F, and
showed that HF, has free HF,-homology [34], [20].

There are two important restricted cases that show up often in computations. The proof of the
following theorem is just by observation.

Theorem 3.12. Let E be a spectrum with free R-homology.

(1) Ifthe basis comes from virtual representations of G exclusively, then the RO-graded homotopy is
induced up from the RO(G)-graded homotopy Mackey functors.

(2) Ifthe basis comes from trivial representations of G, then the RO-graded homotopy is induced up
from the Z-graded homotopy Mackey functors.

In both cases, we can extend to induced cells, provided we again only consider representations of G
and trivial representations, respectively.
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3.2 | Closure properties of S pg .
The spectrum with R-free or projective homology enjoy a number of useful closure properties.

Notation 3.13. Let _r stand for either “fr’ or ‘pr’.

3.2.1 | Closure under sums

Proposition 3.14. The adjoint pair G, I/} (=) - i7; on equivariant spectra descends to an adjoint

pair
. H G . %
G, ﬁ (=): Spi?[R,J 2 Spg i

A basis for one gives the other via restriction or induction.
Proof. Since these are full subcategories, and since retracts are preserved by any functor, it suffices
to show that restriction and induction preserve R-free spectra. For restriction, we just use the
restriction of the Thom spectrum. For induction, we note the equivalence:

G, AMV)~M(GXV),

LAMYV) = MG X V)

where G ﬁ V is the induced bundle over G ﬁ T. O

Proposition 3.15. The category S pg . is closed under arbitrary coproducts. A basis for the wedge
is the sum of the bases. -

Proof. The smash product distributes over wedges, and the wedge of Thom spectra of virtual
bundles over G-sets is again a Thom spectrum of a virtual bundle over a G-set. I
3.2.2 | Closure under base-change
The notions of free and projectives also work well with base-change.
Proposition 3.16. Amap f : R — R’ of E, ring spectra induces a map

et Spg’_r - Spg,,ir.
A basis X for E over R gives a basis f,(X) be composing with f.

Proof. This follows from base-changing the equivalence R A E ~ R A M(V) along the map
R—-R. O
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3.2.3 | Closure under products

The categories of frees and projectives are also closed under the [twisted] smash products on G-
spectra, being closed under the norms which R has.

Proposition 3.17. The category S pg . is a symmetric monoidal subcategory of S pC for the smash
product. A basis for E and E' gives a basis for E A E' by boxing them together.

Proof. Again, it suffices to show this for free spectra. If V and V' are virtual vector bundles on T
and T’, respectively, then we have a natural equivalence

MWV)YAMV') ~ MV x V"),
where the latter is just the Thom spectrum of product of V and V' over T X T'. The result follows
from recalling that the functor R A (—) is a strong symmetric monoidal functor from G-spectra to
R-modules. O

This gives us a kind of weak Kiinneth theorem.

Theorem 3.18. IfE € Spg ,» then for any R-module M, then M A E is a summand of M A M(V )
for somevirtual vector bundle Vi, and hence the multiplication gives a natural isomorphism

RI(E)RDQ(M) - 7, (EAM).

Proof. Again, it suffice to show for E R-free. By assumption, there is a splitting of R-modules
RAM(VE)~RAE.
This gives an equivalence of R-modules

E/\M:(R/\E){Q\M:(R/\M(VE))QMzM(VE)/\M.

Since the smash product distributes over the wedge, the latter spectrum is a wedge of R-modules
of the form

Gy A SYYAM.
The result follows by the definition of the representables. O

If the basis is via representations of G or trivial representations, then this recovers the Kiinneth
theorem of Lewis—-Mandell [26].

Corollary 3.19. LetE bein S pg . and let M be an R-module.
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(1) Ifa basis for E can be chosen such that only virtual representations of G are used, then we have
an isomorphism

n (EAM) B*(E)II;IE*(M)-

(2) Ifabasis for E can be chosen such that only trivial representation of G are used, then we have an
isomorphism

7 (EAM) = E*(E)EE*(M).

In the special case that the module M isin fact R A E’ for some R-free or projective E’, this shows
that the functor of RO-graded R-homology Mackey functors is strong symmetric monoidal.

Corollary 3.20. IfE,E' € S pg ,» then the multiplication gives a natural isomorphism

R (ENE') = Ri(E)IlejRi(E/).

3.2.4 | Closure under norms
For the norms, we recall some properties of the norm and these relatively simple Thom spectra.
Notation 3.21. If T is an H-set and V — T is a virtual vector bundle, then let
Map(G, V) — Map™(G, T)

be the coinduced vector bundle over Map™(G, T).
Proposition 3.22. For any virtual vector bundle V, we have

M (Map™(G,V)) =~ NEM(V).
Proof. All of the functors considered commute with filtered colimits, so it suffices to consider

the case that T is finite. This is then the distributive law for norms, together with the observation
thatif T = H/K, then M(V) = H,, ﬁ SV, allows us to further reduce to the case that T = H/H. A

vector bundle over this is just a virtual H-representation, the Thom spectrum of which is the corre-
sponding representation sphere. The coinduced space in this case is G/G, and the representation
is 1 V. We now compute

M(Map'(G,v)) =S4V ~ NOS¥ = NOM(V). O
The norm is also a strong symmetric monoidal functor, and hence it induces a map

N%: R— Mod - N%R — Mod.
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Proposition 3.23. The norm induces a functor
N§ @ Spy . — Sp¢

G .
NHR,_r

Proof. 1t suffices to show this for E having free R-homology. In this case, we simply apply the
norm to the equivalence

RAE~RAMVy)
for some virtual vector bundle V; and use Proposition 3.17. O
If R is an E, ring spectrum that has an E_-map
NYi*R - R,
then we have a relative norm map on R-modules given by

M~R A NSM.

G ;%
NyigR

The usual case is when R is an equivariant commutative ring spectrum (that is, a G-E, ring spec-
trum), but this has also been worked out for algebras over linear isometries operads [3].

Proposition 3.24. Let R be an E, ring spectrum that has an E -map
G

NSi*R — R,
then Ng induces a functor

H G

Spi;‘IRJ =~ SPg_-
The norm of a basis for E gives one for the norm.
Example 3.25. Since
MUAMU ~ MUABU, ~MU[by,...],

where |b;| = 2i, the spectrum MU and the space BU have free MU-homology. This implies that
the same is true for the norms: N¢ MU and NU£°BU have free N7 MU-homology.

We have identical statements for CP" for all n < oo and the spaces BU(n).

Using the orientations given by the norm of MU, we produce a host of other interesting exam-
ples.

Example 3.26. Let R be an E_, G-spectrum that admits an E_ norm map

G
NCi*R - R,
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and assume that iR can be given a commutative complex orientation. Then for any spectrum E
such that MU, E is a free MU -module, NeG (E) has free R-homology.

The identity map MU — i7 MU and the Connor-Floyd map MU — KU give examples of com-
mutative complex orientations, which shows that the spaces and spectra considered in Exam-
ple 3.25 have free MU; and KU ;-homology.

Example 3.27. If E is any finite type, bounded below spectrum with free integral homology, then
NUE has free KU; and MU; homology.

In the Bredon case, if R has the structure of a Tambara functor [39], then Ullman has shown
that HR has the structure of a G-E, ring spectrum [40]. This gives us many examples for Bredon
homology. In particular, the absolute norms (that is, the norms from the trivial group) of an ordi-
nary commutative ring are always Tambara functors. Generalizing the C,-equivariant examples
of [13], we get that absolute norms are free for a large number of Green functors.

Example 3.28. Let k be a field and let R be a Green functor under ka. Then for any spectrum
E, NUE has free HR-homology.

The more general integral story also follows.

Example 3.29. If E is an ordinary, non-equivariant spectrum such that H,(E; Z) is free, then
NUE has free A-homology. Since HM is an HA-module for any Mackey functor M, NUE has free
M-homology for any M.

There is a norm in R-homology, specified by the norms in Mackey functors (or equivalently in
spectra), and the following holds by definition.

Corollary 3.30. IfE is an H-spectrum that has free i;,R-homology, then we have a natural isomor-
phism

R,(NSE) = NS (il”fIR*(E)>.
Notation 3.31. In any context where it is defined, let NY/# be the composite N i.

With this notation, if E is a G-spectrum with free R-homology, then we have a natural isomor-
phism

R, (N“/ME) = N9/HR,E.

As a specific example, this gives us the equivariant homology of the topological Singer con-
struction [28].

Example 3.32. Letk =F,, let G =C,, and let E, be the constant Green functor F,. This is a
Tambara functor, so for any spectrum E, we have a natural isomorphism

H(NJ(BXE, ) 2 Ny (HL(E;F ).

In particular, for p = 2, the F,-Bredon homology of N ec *HF, is free.
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Unpacking this a little more, a basis is given by orbits [ f] in the monomial basis in

(F, €1, .- 1® E(z,,..))*" [ C,,,

where the group C), acts on this by permuting the tensor factors. Every monic monomial f has
a stabilizer subgroup H . This is the subgroup associated to the orbit [f] as a basis vector. The
degree of f is given by

If]
Al = ——pmu,

|H |71
where | f| is the ordinary, underlying degree induced by the degrees in the dual Steenrod algebra.

These freeness results can also give us interesting information about non-free spectra. Snaith
showed that we have an equivalence of E, ring spectra

o -1
KU ~ 3%CP®[7],
where § is the map on Z°CP* induced by the inclusion CP' < CP* [38].
The norm functor commutes with filtered colimits, so this gives us an equivariant version of
Snaith’s theorem.

Theorem 3.33. For any finite group G, we have an equivalence of G-E, ring spectra

NYPKU ~ £ Map(G, CP®)[N(B) ],
where

N(B): S*¢ — £ Map(G, CP*)
is induced by the norm.

Corollary 3.34. Let R be a G-E, ring spectrum such that CP* has free i R-homology. Then we have
an isomorphism

R,NJKU = lim 272"P6 N (iR, (CP™)).
In particular, this is always a flat R, -module.

Proof. Both the norm and R-homology commute with direct limits. This follows from the homol-
ogy of the coinduction. O

Example 3.35. Because HA is a G-E_-commutative ring spectrum and CP* has free HZ-
homology, we have

H, (Map(G,CP®);A) = NYH,(CP*;Z) = N%(I'(x)),
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where |x| = 2. The Bott element we invert is the norm of x, and we deduce
H,NPKU ~ N%q[x*].
Since KU, is a NCKU-algebra, we also deduce that HA A KUy is rational.

Remark 3.36. The norms of the divided power algebra are curious Tambara functors, though the
structure can be worked out from the basic properties of the norms. We spell this out for C),.

Just as with the discussion of the topological Singer construction in Example 3.32, a basis is
given by orbits of monic monomials in the tensor power I'(x)®?, where C » again acts by permu-
tation. The stabilizer of a monic monomial again gives us the appropriate way to determine the
degrees: most monomials are stabilized by {e} and hence correspond to a free summand, while
monomials of the form f®P correspond to a summand S/1°». These are the norms of classes
f® 19(p-1)

Let y;(x) be the ith divided power of x. Then we have the divided power relations

i+
Vix'ij=< i >7i+jx-

Since the norm is multiplicative, this gives relations

N(x) - N(yjx) = N(i + >N(yi+ )

The norms of integers can be computed back in the Burnside Mackey functor, where we find

C b _
Nep(n)=n+n n

[Cp]’

and this gives us the actual relation:

i+j\P _ i+j)
i i

Nx) - N(yjx) = (i I )N(yiﬂ-x) + ( tre? (71, (0%P).

p

3.2.5 | Closure under duals

We also have a weak Universal Coefficients Theorem, provided our spectrum is small.
Definition 3.37. Let E € S pg " and let V;; be the associated virtual bundle such that RA E =~
R AM(Vy). We say E is finite type if for each k < j € Z, only finitely many orbits of Tj; contribute
tor (RAM(Vg)) fork <7 <.

Clearly, if the set T'; can be chosen to be finite, then it is finite type. This more general condition
is analogous to only having finitely many cells in each degree.

Theorem 3.38. IfE € Spg . is a finite complex, then D(X) is also in Spg -
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More generally, ifE € S pg . is finite type, then for any R-module M, we have a weak equivalence
of R-modules -

F(E,M) ~ M AM(=Vp).

We have a universal coefficients isomorphism that computes the M-cohomology of E out of the
R-homology of E:

M~%(E) ~ HomR*<R*(E),M*).
Proof. If E is a finite complex, then
D(E) AR = F(E,R),

and the first will follow from the second.
Since M is an R-module, we have an equivalence

F(E,M) ~Fr(RAE,M).
A basis for the R-homology of E gives an equivalence
Fp(RAE,M) =~ Fy(R AM(V), M),

and this is equivalent to F(M(V ), M). Since maps out of a wedge is the product, we first check
the case of an orbit. The result is then the classical Wirthmiiller isomorphism:

F(G. p SV,M) ~G, ASTV AM.

H H
Finally, the finite type condition ensures that the natural map from the wedge to the product is in
fact an equivalence.

The second part follows from this by taking homotopy and observing the result for orbits. []

A surprising final feature of the universal coefficients theorem is that we can also describe the
cohomology of the norms of R-free spectra.

Proposition 3.39. Let R be an E, ring spectrum that has an E -map
G %
N Hl;IR - R.

Ifan H-spectrum E has free i;, R-homology with a finite basis, then the function spectrum F(NfIE, R)
is equivalent to a free R-module, and the basis is the dual to the one for NfIE.

In particular, analyzing the Thom spectrum for the functional dual, we have that for E as in
the proposition, the R-cohomology of NgE can be described as the norm of the i7, R-cohomology
of E.
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3.2.6 | Pullbacks

Finally, freeness and projectivity is also preserved by restricting along quotient maps (also called
‘pulling back’).

Notation 3.40. If N is a normal subgroup of Gandgq: G - Q = G/N, then let
q*: Sp? - Sp°
be the inclusion of Q-spectra into G-spectra.

Proposition 3.41. The functor q* induces a functor

G

= Q
q*: Spp_, = SPjig

IfE € Sp€ has a basis for R, then q*E has a basis for g*R.

Proof. Again, it suffices to check on the full subcategory of R-free spectra, and since g* is strong
symmetric monoidal, it suffices to show on the associated Thom spectra. By construction,

q"M(Vp) = M(q"Vp),
where q* V', is just V; viewed as a G-virtual bundle. O

Remark 3.42. The fixed points functors do not preserve projective objects, as the tom Dieck split-
ting shows. However, the canonical map

q'(R% = R
gives us a map
q*: Spro_, = Sp§ .-

This gives another proof of a basic construction in Bredon homology.

Example 3.43. If E is an ordinary, non-equivariant spectrum such that H (E; Z) is free in each
degree, then g*E has free Bredon homology for any coefficients:

H.(q"E;M) = H,(E;Z) @ M.
For any G,
myq*HZ = A,

and the negative homotopy groups are all zero. The zeroth Postnikov section then gives us an
E_-map

q*HZ — HA.

The result then follows from Proposition 3.41, Proposition 3.16, and Theorem 3.18.
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Example 3.44. If E is an ordinary, non-equivariant spectrum such that H,(E; F,) is free in each
degree, then for any G and for any Green functor R in which p-1 =0 € R(G/G), ¢*E has free
R-homology. This is because the pullback of HF, has 7, = A/p, the initial example of such a
Green functor.

In particular, for any G and for any R of this form, this applies to

E = 3*K(F ,, m),

the pullback of which is the suspension spectrum of the Eilenberg-Mac Lane space for the con-
stant coefficient system F >

Both of these examples are also free with bases in integer stems. In particular, this functorially
describes the RO-graded homology, by Theorem 3.12.
3.3 | Freeness and spaces

The author’s primary interest in these freeness results comes from the connection between the
[twisted] smash products in spectra and [twisted] Cartesian products in spaces.

Proposition 3.45. If X is an H-space, then we have a natural equivalence
N;ZPX ~ 2 Map'(G, X).
IfX and Y are G-spaces, then
IR(X XY) = ZPX ATPY.
‘We can assemble all of our results so far into a summary theorem.

Theorem 3.46. Let X be an K-space such that X has free iy R-homology. Then we have a natural
isomorphism

NYR,(X) = R, (Map™(G, X)),

and moreover, this is free on the basis Ng)_c’, where X is a basis for the homology of X.
If X and Y are G-spaces that have R-free homology, then

R, (X xY) = R, (X)OIR, (Y),
* LA

with a basis given by the product of the bases.

Example 3.47. In general, coinduction preserves Eilenberg-Mac Lane spaces: if M is an H-
Mackey functor, then we have an equivalence

Map'! (G, KM, m) = K(15M,n).
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(More generally, the G-space Map™(G, K(M, V)) represents the functor
X~ H"(i5X; M),

so these are all kinds of Eilenberg-Mac Lane spaces.)

When H = {e}, this allows us to determine the homology of Eilenberg-Mac Lane space attached
to any induced Mackey functor with coefficients in a NeGk-algebra, for k a field. As an application,
we have

({156 i) N K5,

and the latter was determined by Cartan and Serre [4], [36].

This is closely connected to some additional structure that is often difficult to access. Equivari-
ant spaces are canonically G-cocommutative comonoids. In addition to the coproduct

X ->XXX,

they have conorm maps

AG/H

X —— Map(G/H,X) = Map'(G, X).
The contravariant Yoneda functor gives for any X a functor
Xy : Map(—X): (Fin®)°P = Top®,

and on passage to fixed points, these conorm maps are exactly giving the usual coefficient system
of fixed points for any G-space.

Definition 3.48. If f : S — T is a map of finite G-sets, then let
Pyt Ri(Map(T,X)) - Ri(Map(S,X))

be the ‘conorm’ map associated to f. When f =Vgs: SIS — S is the fold map, we call this
the ‘coproduct’.

In general, this is difficult to work with, since we need not have a good [twisted] Kiinneth
theorem. In the case we are considering, however, we do!

Theorem 3.49. Let R be an equivariant commutative ring spectrum, and let X be a space that has
free R-homology. Then R, (X) has a comultiplication map

R, (X) = R, ()IR,(0)

making it a ‘co-Green functor. Moreover, we have for any map of finite G-sets f : S — T a conorm
map

NTRi(X) N NSRI(X)

which is a map of co-Green functors.
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Proof. Since X has R-free homology, so do all of its restrictions, and hence so do all of the spaces
Map(T, X) for any finite G-set T. The comultiplication and conorm maps then follow immediately
from our earlier analysis of the homology of the spaces involved.

That the conorm maps are maps of coGreen functors follows from naturality: forany f : S - T,
we have a commutative diagram

SUS —Y3 §

ol

TUT — T.

Functoriality then shows that the conorm associated to f is a map of co-Green functors. O

Remark 3.50. If a basis for R, (X) is in integer stems, then the co-Green structure is simply base-
changed from the integral one. The conorms essentially never are, due to the degree scaling
aspects of the norm.

Rephrased, a space with free R-homology gives a strong G-symmetric monoidal functor
Set®°P - R, — Mod,

where the G-symmetric monoidal structure on Set®-°P is the dual to the co-Cartesian one. This
is the definition of a G co-commutative comonoid. Since a Tambara functor is a G-commutative
monoid by work of Mazur and Hoyer [16, 19], this gives R, (X) naturally the structure of a co-
Tambara functor. Via the Universal Coefficients theorem for R-free spaces, this structure is dual
to the structure which gives rise to the Tambara functor structure on the R-cohomology of a G-
space.

Remark 3.51. The usual formulation of a Tambara functor describes norm maps ng : R(G/H) -
R(G /K) with satisfy certain axioms relating them to the additive Mackey functor structure. These

connect, via work of Mazur and Hoyer ([16], [19]) to G-commutative monoids in Mackey functors
via canonical maps of sets

R(G/H) = i R(K/H) — (N*/Hi% R)YK /K).

The maps go the wrong way to be able to interpret a co-Tambara functor easily in the more tradi-
tional way: there is no clear way to extract a map

R(G/K) — R(G/H)

from the data:

(RK/K) —5 (NEiR)(K/K)

r

i*R(K/H).
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3.4 | Hopfalgebroids and comodule Tambara functors

There are many examples of spectra for which we have various kinds of comultiplications. These
are ubiquitous among spectra which have free homology over themselves. This was shown and
used by Hu-Kriz for a stricter notion of free; it works very generally.

Proposition 3.52 [20]. If R is an E, ring spectrum such that has free R-homology, then the pair
(R, Ry R)

forms a Hopf algebroid, and moreover, the R-homology of any space or spectrum is a comodule
over this.

Proof. Since R has free R-homology, we can apply the weak Kiinneth theorem to deduce a natural
isomorphism for any E

7. (RARAE) = (RiR)ILjR*(E).

Applying this to the case E = R and considering the unit map in the middle copy of R, we have
the comultiplication. Applying this to a general E and again considering the unit on the rightmost
copy of R give the coaction. O

It is important to note here that there are no hypotheses places on E: the R-homology of
any E inherits this structure. When E itself has more structure, then we can say even more
about the coaction map. Classically, if E is a ring object in the homotopy category, then the R-
homology of E is a comodule algebra, since the unit map is a map of ring spectra. When E
is a G-commutative monoid in the homotopy category, then we have the analogous Tambara
case.

Theorem 3.53. Let R be a G-E, ring spectrum which has free R-homology and let E be a G-
commutative monoid in the homotopy category. Then R, E is an RO-graded Tambara functor and
the coaction map

R,E — R,ROOR,E
x L

is a map of RO-graded Tambara functors.

Proof. By assumption, R A E is a G-commutative monoid in the homotopy category, and so is
R AR A E. The coaction map is the map induced by the unit in the middle, and this is a map of
G-commutative monoids:

RAE=RAS°AE > RARAE.

The result follows from [1]. O



FREENESS AND EQUIVARIANT STABLE HOMOTOPY | 381

When E also has free R-homology, we can use an external version of the norm, making some
of the structure more transparent. To avoid clutter, we restrict exposition to the norms from sub-
groups to G. The more general ones follow from considering instead various restrictions to sub-
groups.

Proposition 3.54. Let R be a G-E, ring spectrum which has free R-homology and let E be a G-

commutative monoid in the homotopy category that has free R-homology. Then for any subgroup K,
we have a commutative diagram of commutative Green functors

G/K
NO/KR,(E) % NO/KR,R)INO/K(R,E)
" LRI -

| P

R,E ————— R,RCI(R,E).
* 3Ry

As an application of this structure, we can look at the coaction on the homology of the topolog-
ical Singer construction at the prime 2.

Example 3.55. If R is a C,-E, ring spectrum that has free F,-homology, then H,(R;F,) is a

comodule Tambara functor over the equivariant dual Steenrod algebra: the comodule structure
map is a map of Green functors and commutes with the norms:

Crpr ros N2, c, Crypr ros
N H,(ifR;F,) — (N, A*)ENQ H,(i’R;F,)

| o

H(R:E)) ———> AL, RE,).

This means in particular that the coaction on the spectrum N, f 2HF, is completely determined by
the coaction on HF,, allowing us to analyze the homotopy groups of this spectrum by a Hu-Kriz
style Adams spectral sequence [20].

4 | AN EVEN NICER CLASS OF SPECTRA
4.1 | Homological purity

We single out a class of spectra for which computations are strikingly simple, being completely
determined by the homology of the underlying spectrum.

Definition 4.1. A regular slice sphere is a G-spectrum of the form
k
G, A SkPH,

for some integer k. The dimension of such a regular slice sphere is k|H]|.
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In [12], a spectrum E was called ‘pure’ if the slice associated graded of E is a wedge of regular
slice spheres smashed with HZ. We build on that here.

Definition 4.2. A G-spectrum E is homologically pure if there is:

(1) asetIg;
(2) afunctioni — k; assigning to elements of I an integer; and
(3) afunctioni — H; assigning to elements of I, a subgroup of G;

such that we have an equivalence of HZ-modules

HZAE=~HZA \/ G+I§\Skpri.

iely !

A homologically pure G-spectrum E is isotropic if there are no summands with a trivial stabi-
lizer.

Remark 4.3. A slightly restricted form of this definition was independently given by Pitsch-Ricka-
Scherer in their analysis of conjugation spaces [31]. The choice name and reason for the name are
the same as the one here: analogy with [12].

In fact, we can work more generally, using arbitrary zero-slices. Any zero-slice is of the form
HM for some Mackey functor in which all restriction maps along surjective maps are injections
[12, Proposition 4.50], and the map 7, induces an equivalence between zero-slices and the full
subcategory of Mackey functors of this form.

Notation 4.4. We say that a Mackey functor M is a zero-slice if HM is zero-slice.

Since the zero-slice of the zero sphere is HZ, any zero-slice is a module over HZ. This shows
that we could have instead used arbitrary zero-slices.

Proposition 4.5. A G-spectrum E is homologically pure if and only if for every zero-slice M, we have
an equivalence of Z-modules

HMAE ~HMA \/ G+}/I\s"iPHz.

iely !

Notation 4.6. If we have a decomposition like that of homological purity or isotropic homological
purity only for particular Green zero-slices R, then we will say that E has [isotropic] homological
purity for R.

The regular representations are closed under restrictions, conjugations, and inductions. This
gives the following.

Proposition 4.7. IfE is a homologically pure H-spectrum, then

@ G, ﬁ E is homologically pure;

(2) ifK C H, then i E is homologically pure; and
3) NgE is homologically pure.
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411 | Homology

The main benefit of this definition is from the defining property of zero-slices: all restriction maps
are injections, and hence statements can usually be checked at the level of underlying homology.

Notation 4.8. Given an indexing set I; for a homologically pure E, for each integer n, let

Proposition 4.9. Let E be homologically pure and let M be a zero-slice. For any subgroup K and
for any integer k, we have

H, EM = @ M
jekK

We also have

. ~ i

Hy M) = @ @ ixkMy.
jer kI 9eK\G/H,

KngHjg~1={e}

In particular, all restriction maps are injections.

Proof. By assumption, HM A E is a wedge of induced up regular representation spheres smashed
with HM, and hence a wedge of slices. We therefore have

i ~ k - kipy.
kaK(l;;(HI\_/I/\E)) = @ [S PK,IE(G+£S iPHji A HM)

. kIK|
jer,

= @ [s%ix(G/H;, AHM)|

. _k|K|
JEL,

The result follows by the definition of iz M. . JH
K J

For the case of (kpx — 1), the argument is identical until the last step. Here, we have a direct
sum

D=z, <S—ka NG p S A HA_@)
J
The double coset decomposition of G as a (K, H j )-biset allows us to rewrite each summand:
—k .4 Kipm.
g_1<S PK /\l;;(G_i_I_/I\jS I /\HM))

~ K (n_m)P(K gHig™1)
= @ T(Kngng_l)E—l (S ek /\HM)’
gEK\G/Hj
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where
n=kjH; : Hng 'Kglandm =k[K : KngH;g™'].

The only regular representation sphere that has a non-trivial homology in degree —1 is the one
for the trivial group in degree —1, which gives the second part. O

Corollary 4.10. IfG = C,» and E is homologically pure and isotropic, then the homology groups
in dimensions of the form (ip;; — 1) vanish.

Definition 4.11. A homologically pure G-spectrum E is generalized isotropic if there is no pair
ielfandje1}!
such that G/H; X G/H; contains a free summand.
This generalized isotropic condition allows us to have other ways to check homological purity.

Theorem 4.12. Let E be a G spectrum that admits a filtration such that gr(E) is homologically pure
and generalized isotropic. Then E is homologically pure and generalized isotropic.

Proof. The filtration on E gives a spectral sequence with E,-term
ﬂi(gr(E) A HZ) = Ht(gr(E);Z),

By assumption, this is a free HZ, -module, and the generators are in dimensions k;pop; for i €
1,,(r)- The generalized isotropic condition guarantees that these classes are permanent cycles,
since there are no possible targets for the differentials on the generators by Proposition 4.9. Thus
E, = E_,, and since this is a free module, there are no possible extensions. O

The same proof applies more generally to deduce R-freeness for pure and isotropic R. More
generally, we also deduce nice properties for the R-homology of a homologically pure E for any R
which is pure, provided we have the same kind of generalized isotropy.

Definition 4.13. A G-spectrum R is weakly pure if for each n € Z, there is a set 7,, and for each
i € T,,, asubgroup H; and a zero-slice M, for H; such that the regular n-slice of R is

n
PlR=\/ G, A <S|H|pH AHMi>.
i€1, i

Remark 4.14. If a G-spectrum R is weakly pure, then the regular slice filtration of R is the same
as the classical slice filtration of R. This is because for each n, the fiber of P"R — P""!R is also a
classical n-slice. By [12, Proposition 4.45], this must be the classical slice tower.

Theorem 4.15. Let R be a weakly pure G-ring spectrum that is slice 0-connective, and let E be a
homologically pure spectrum such that T}, is empty for n sufficiently negative.
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Ifforeach j € I, thereisnok € Z, iy € Ig_l_k, and iy € I such that
G/Hj X G/HiE X G/HiR

contains a trivial summand, then

R,E= P R1<G+ A s"fPHJ').
J

JEIE

Proof. The slice filtration of R gives a filtration on E A R with associated graded

n
\/ <\/ G, A ST /\HMnl.> AE.
H —n,
nez \iel, !

Since E is homologically pure, this is equivalent to

vV

n
—pon, Kipp.
\/ G ASHITUAHM,  AG, AS JPHJ>.
jel nez H; H;

i€,
The E,-term of the associated spectral sequence is

E;RAE) 2 Ex(R)IH, (B: 2),

which is a free module over the E,-term for R with a basis given by a basis for the homology of

E. Our assumption on the lack of free summands guarantees that there are no possible targets for

differentials on the basis elements, since the corresponding group of possible targets vanishes.
This gives us a map of R-modules:

RA\/ G, p S"IPH L R AE.

JEIE J
By construction, this induces a map of filtered spectra, and hence a map of spectral sequences.

This map is an isomorphism on E,, which implies that the map is a weak equivalence, since our
assumptions on R and E guarantee that slice spectral sequence converges strongly. O

4.1.2 | Cohomology

We can make similar statements about the cohomology.

Proposition 4.16. If E is homologically pure and |1| < oo for all n, then for any zero-slice M, we
have an equivalence of HZ-modules

F(E,HM) ~HM A \/ G, A skien;,

ielp !
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Proof. Since zero-slices are HZ-modules, we have an equivalence of HZ-modules
F(E,HM) ~ F;;,(HZ A E,HM).
The homological purity of E gives an equivalence of HZ-modules

~ kipp.
HZ/\E_Hz/\i;/ Gy pp ST
E

and hence we have

FE,HM) ~ [T [] ¢+ A S~kiPH; A HM.

n i€ty

Since I} is finite, the inner most products are the same as wedges. Since for all integers k and
subgroups H, the homotopy Mackey functors of

Gy S~ken A HM

are zero outside of a finite range (depending only on k and H), the outer most product is also
equivalent to the wedge. O

Example 4.17. An theorem of Pitsch-Ricka-Schrerer shows that any conjugation space of
Hausman-Holm-Puppe [9] are mod 2 homologically pure and isotropic [31]. This gives a large
class of examples.

4.2 | Consequences in computations

The condition of homological purity gives surprising computational control.

4.2.1 | Green functor structure
Theorem 4.18. Let E be a homologically pure spectrum, and assume that E comes equipped with
a [commutative, associative] multiplication in the homotopy category. Then for any commutative
Green functor R which is a zero-slice, the multiplication on
H,(E;R)

is completely determined by the restrictions to

H,(i;E;R(G)).
Proof. The homological purity of E guarantees that the homology and cohomology are free mod-

ules over the RO-graded homology of a point. In particular, the ring structure is completely deter-
mined by the products of basis vectors. These occur in dimensions of the form kp;; for various k
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andH.Ifx € H;, p”(E; Z)andy € H, o1 (E; 2), then the product of x and y is represented by a map
out of

(G, A SkPHY A (G, A NE)
This is a wedge of spaces of the form
G, A S™MPK,
where K ranges over all subgroups of the form H n gJg~! and where

mpy = ip(kpy) + iZCz(fPJ)-

In particular, this is a wedge of regular slice spheres, again, and hence the product takes values in a
zero-slice by Proposition 4.9. Since all restriction maps are injections here, the result follows. []

Corollary 4.19. IfE is a homologically pure spectrum, then the RO-graded ring structure on the
cohomology of E with coefficients in any commutative Green zero-slice is functorially determined by
the underlying cohomology ring.

4.2.2 | Tambara functor structure
If, moreover, E is a G-E,-ring spectrum, then we also have good control over norms.

Theorem 4.20. IfE is a G-commutative monoid in the homotopy category and if E is homologically
pure, then for any Tambara zero-slice R, we have that the norms in

H,(E;R)
are determined by the formula

NG = ] r@x.

yeG/H

Proof. The proof is the same as for the products. Here we use that the collection of regular repre-
sentations is a sub-semi-Mackey functor of the representation ring. O

Remark 4.21. Tambara functors which are also zero-slices were independently studied by
Nakaoka, who called these ‘MRC’ Tambara functors, in his study of localizations of Tambara func-
tors [30].

4.2.3 | CoTambara structure

Again, all of the desired structure can be read out of the underlying homology. The conorm maps
are detected as twisted coproducts. The proofs are identical.
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Theorem 4.22. Let E be a homologically pure spectrum, and assume that E comes equipped with a
[cocommutative, coassociative] comultiplication in the homotopy category. Then for any commuta-
tive Green functor R which is a zero-slice, the comultiplication on

H, (E:R)
is completely determined by

H,(i*E;R(G)).

Theorem 4.23. IfE is a G-co-commutative comonoid in the homotopy category and if E is homo-
logically pure, then for any Tambara zero-slice R, we have that the conorms in

H,(E;R)
are determined by the formula
NG = @ 7 [ew [dx).
yeG/H

4.2.4 | Dyer-Lashof operations
Finally, we restrict to C,. None of the arguments here are that specific to C,; the only issue is in
defining the appropriate Dyer-Lashof operations. For groups which contain C,, norm arguments
provide analogous classes, but the author has no idea in general. We recall Wilson’s RO(C,)-
graded stable operations.
Theorem 4.24 [2, §3], [41]. For each i > 0 and for each € = 0, 1, we have Dyer-Lashof operations

Q27 H (= F,) — Hyvip,—(=3Ey)-
When * = ip,, Q' is the square.

In this case, homological purity says that the underlying structure describes everything.

Theorem 4.25. If E is a homologically pure C,-E ., -ring spectrum, then we have

QP H,(E;F,) » H,yip o (B;F)

is determined by the restrictions i;"QiPTs. The odd operations Q'*>~! can only land in cells induced
from the trivial group.

Proof. This again follows immediately from the assumption of homological purity. O
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4.3 | Example: the homology of CP* and of BU,
431 | TheC,-E_ space CP*®

The standard cell structure for CP* has a unique cell in dimension kp, for all k > 0 and no other
cells. In particular, it is homologically pure and isotropic, with a basis given by all

b, € H,,,(CP*;2)

corresponding to the top cell of CP". The ring and coring structure then follows immediately from
the underlying case.

Proposition 4.26. As a Green Hopf algebra, the homology of CP* with coefficients in Z is a divided
power algebra on the primitive class b;.

The norm (and conorm) maps are also determined by the underlying condition. Here we
have

i C 2n
it <N82bn> = b2 = —( ! >b2n.

Proposition 4.27. The norms are given by
NS2p, = — <2:> b,,,.

The conorms are dual to the (negative) squaring operation.

432 | The homology of BU

We begin with the computation of the homology of BU}, with coefficients in Z. We give a slightly
different proof than that of [21] and [32], using instead our formulae above. This line of argument
was undoubtedly known by Araki and Landweber.

Theorem 4.28. There are classes
a; € Hl-pz(BUR;Z)
such that the induced map on A, -rings

Hz A \S°[a;] = HZ AS°[@,,,,...] > HZ ABUy

i>1

is an equivalence of C,-equivariant associative algebras, and hence the C,-space BUy, is homologi-
cally pure and isotropic.
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Proof. Araki lifted the classical, non-equivariant description of MU, MU, showing
MU, AMU, ~ MUg[a,, ... ],

and in particular, this is free with a basis in regular representation dimensions. The Thom iso-
morphism shows

MUy ABUg, ~ MUy AMUj

as C,-E, rings. Since HZ is a commutative ring spectrum under MUy, the result follows by base-
change. [

Remark 4.29. The classical Schubert cell analysis works equally well here, and the underlying
argument is essential the same as that of [9].

Corollary 4.30. For any finite group G which contains C,, the coinduced G-space Map“2(G, BU})
is homologically pure and isotropic with basis given by the norm of the monomial basis.

Notation 4.31. Let
Z, =rn HZ.

Lyt E

Corollary 4.32. We have an isomorphism of RO(C,)-graded Green functors
H, (BUy;2) = Zt[al’ w1

where |@;| = ip,.
‘We can also deduce the norms, coproducts, and conorms.
Proposition 4.33. The norms are given by
N(a) = (-1)a>.

Finally, the co-Tambara structure is lifting the usual dual polynomial structure. Since the space
BUy, is finite type, we can equivalently describe the cohomology ring and the norms there.

Proposition 4.34 [21]. The cohomology ring of BUy, is

HX(BUg;2) = Z [Cy, ... ].
Moreover, the inclusions of equivariant maximal tori into the Uy (n) identify these Chern classes with
the usual symmetric functions in the Chern roots.

Proof. Only the second part requires proof, since BUR is homologically pure, isotropic, and of
finite type. The same is true for the space (CP*)*". The induced map on cohomology is the deter-
mined by the underlying homology, and we reduce to the classical case. O
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Proposition 4.35. The norms of the Chern classes are also the squares:

c i
N.*(¢;) = (—l)lcl.z.
Finally, using Theorem 4.25, we deduce the action of Wilson’s Dyer-Lashof operations.

Theorem 4.36. The Dyer-Lashof operations Q'F2 on H, (BUp; F,)actas

n
r—-n—1

Qi'oz(aj) = (

> a;j mod decomposables.

The Dyer-Lashof operations QP21 are identically zero.

Proof. Theorem 4.25 implies that these operations are completely determined by the underlying
action. The ordinary Dyer-Lashof action on the homology of BU was determined by Kochman

[22, 24]. O

As an aside, this also gives the Dyer-Lashof action on the space BO by applying geometric fixed
points.

Corollary 4.37 [22, Theorem 36]. In
H,(BO;F,) = F,le;, ... ],

we have forallr > 0andn > 1,

n
r—n—1

Q'(e,) = (

>en +r mod decomposables.

5 | BAR AND TWISTED BAR SPECTRAL SEQUENCES

For R-free spectra, we have readily computable equivariant versions of the classical Rothenberg-
Steenrod and Eilenberg-Moore spectral sequences. For G = C,, we also have twisted versions of
these where the group acts also on the homotopy pullback diagram. We explain how these work
here, giving an example for the bar spectral sequence.

5.1 | Bar and Rothenberg-Steenrod

Let A be an associative monoid in G-spaces. Let X be a right A-space and let Y be a left A-space.
In this case, the derived balanced product can be computed via the bar construction:

X®Y =B(X,A,Y),
A
where B(X, A,Y) is the geometric realization of the simplicial complex
k= B (X,A,Y)=Xx A xY,

and where as usual, the structure maps are the actions or product in A.
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Remark5.1. Although the space underlying the (non-derived) version of X ® Y is just the ordinary
A
X ﬁ Y, we use the tensor product notation to stress the connection with the algebraic case and to

distinguish from later pullback constructions.

If A and either X or Y are R-free, then we have a bar spectral sequence computing the R-
homology of X ® Y.
A

Theorem 5.2. If A and either X or Y are R-free, then we have an Adams-graded spectral sequence

S, % R*(A)
B = Tor * <R1(X),R1(Y)> >R, (X @),

Proof. Our assumptions guarantee that for each k, the R-homology of B, (X, A,Y) is given by

R, (By(X,A,Y)) = Ri(X)RDRi(A)D" R, (Y),

and the maps are the standard resolution computing Tor. O
Remark 5.3. If a basis for A and either X or Y can be chosen to be in RO(G), then Lewis—Mandell
give an RO(G)-graded version of the Kiinneth spectral sequence which gives the exact same result.
This is because our bar complex becomes the relative smash product upon taking ££°. The result-
ing spectral sequence is the same [26], since it is built the same way.

Applying cohomology instead to the bar construction when X =Y =« gives the

Rothenberg-Steenrod spectral sequence [35]. Our assumptions allow this to be determined as
well.

Theorem 5.4. If A is R-free and A is finite type, then we have a spectral sequence

E)* = Bxt, (R:R%) = RES(BA).

2 RX(A)

Example: BBU,
Since BU}, is HZ-free, we can run the bar spectral sequence to compute the homology of BBU.
Proposition 5.5 [26]. There is an Adams-style spectral sequence with

2 —S ~ 5 .
B = EH; BUR@:’ Zz) o Ezi(yl, w)=> H, g (BBUy; Z),

where ; is the element in Tor! represented by a; and has bidegree (—1,ip,).

Since all of the algebra generators are in filtration (—1), this spectral sequence collapses at E,.
Thisis a free Z *-module, hence there are no additive extensions. There are, however, multiplica-
tive extensions.
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Theorem 5.6. As an RO(C,)-graded Green functor,
H,(BBUy:2) = Z,[51. 95,1/} = a53141):

where ; is a fixed element of degree ip, + 1.

Proof. The Dyer-Lashof operations commute with the homology suspension, and since this fac-
tors through the indecomposables, our earlier analysis gives on-the-nose identifications of the
Dyer-Lashof actions.

Wilson has shown that for a class in degree (np, + 1), the square is stable and can be written
as

(_)2 — aaQ(nH)Pz + qu(nH)Pz—l.

In particular, the squares are given by
}7}% = aO_Q(n+1)p2}—)n =ds [Q<n+1)p2an] = aa[d2n+1] = AsVon41- O

Remark 5.7. The geometric fixed points of this are again polynomial, and we recover the result of
Kochman on the homology of BBO [22].

Remark 5.8. The C,-space BUy, is C,-E,, so it makes sense to ask about norm maps here. The
situation is more complicated. In fact, the Tor term itself has a somewhat confusing relationship
with the norms, since there is no reason for the homology suspension to set them equal to 0. Put
another way, the usual argument shows that homology suspension factors through the ordinary
module of Kéhler differentials, but it will not necessarily factor through the module of genuine
Kihler differentials of [14].

Since the homology of BBUY, is free, we also get the homology of the coinduced BBUy,.

Theorem 5.9. For any finite group G and inclusion C, C G, we have an isomorphism of RO-graded
Tambara functors

H, (Map®(G, BBUR); Z) = N, (Hi(BBUR; z)).

5.2 | Twisted bar spectral sequence

In C,-equivariant homotopy, we have an additional version of the E; -operad: the E_-operad. Alge-
bras for this have no multiplication on their fixed points, but they do have a transfer map and an
underlying multiplication. A summary can be found in [13].

If A is an E_-algebra, then we can form a kind of balanced tensor product

A—3X

4

X —>XQ®X,
A
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where C, acts on the whole diagram by swapping the two copies of X. This amounts to the data
of a space X acted on by the associative monoid i; A. The E,-structure on A means that the group
action gives an isomorphism i A = i; A°P, and hence the action on X also canonically gives a right
action. The twisted balanced product swaps the two factors of X and also then necessarily changes
these left and right actions.

Definition 5.10. If A is an E-algebra and X is an i; A-module, then let
BA(A;X) = B(A,Map(C,, A), Map(C5, X)),
where the action of Map(C,, A) on A is via the E-structure.
Perhaps the most interest case is when X is a point. In this case, work of Hahn-Shi and of Liu
show that in this case B is the appropriate ‘signed de-looping’, providing a classifying space for

E_-algebras [8, 27].

Theorem 5.11. If A has R-free homology, then we have a spectral sequence which Adams indexed
has the form

Ch s ok
S.% N, 2(i2R. (X A))
E,~ =Tor_; ( (

R, (Map(Cy, X)), Ry (4) ) = Ry _y(BUA; X)),

IfX also has R-free homology, then the action of Necz(i:R*(ijA)) on
R, (Map(Cy, X)) = N;* (iR, (X))

is the one induced by functoriality.

5.3 | Eilenberg-Moore

Following Rector, we build a geometric model of the Eilenberg-Moore spectral sequence [33, 37].
Just as non-equivariantly, any G-space is a coalgebra with comultiplication given by the diagonal
map, and G-space X together with a map to a G-space B can be viewed as a B-comodule (and in
fact, we have much more structure equivariantly coming from the twisted diagonals). This allows
us to form the cosimplicial cobar complex as a model for the homotopy pullback.

If X — B and B < Y are maps of G-spaces, then a model for the homotopy pullback is given

by
X éh Y ~ coB(X,B,Y),
where coB(X, B,Y) is the totalization of the cosimplicial complex
k> XxB*xy,

and where the structure maps are the diagonal of B or the respective coaction maps. If B and
either X or Y are R-free and finite type, then we have a spectral sequence computing cohomology.
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In general, convergence of this spectral sequence is very delicate, just as classically. For this reason,
we state the result only for Bredon homology with coefficients in a Green functor.

Theorem 5.12. If B and either X or Y has R-free homology, then we have a spectral sequence

HX(BR)
—S

E, = Tor (HX(X;R), HX(Y;R)) = HX"(X >‘§h Y;R).

5.4 | Twisted Eilenberg-Moore

Dual to the twisted pushout, we have a twisted homotopy pullback.

Definition 5.13. If f : X — i’ B, then let X >'§ X be the defined by the homotopy pullback

XXX — Map(C,, X)

l lMap(CZ,n

B T} Map(C,, B).

This is modeling a pullback diagram where now the group acts by swapping the two sides again.
The homotopy pullback gives a version of the ordinary homotopy pullback where we replace the
ordinary interval with the balanced interval [—1, 1] in the sign representation.

Remark 5.14. If X is a point, then this gives us the space of signed loops into B.

This pullback gives a cobar complex and hence an Eilenberg-Moore spectral sequence via The-
orem 5.12.

Theorem 5.15. If B has R-free homology, and if R is a Tambara functor, then we have a spectral
sequence

Ne2H* (i BiR(C,))

E, = Tor_ (HX(Map(C,,X);R), H=(B;R)) = HX"® <X gX;l_€>.

Moreover, if X also has R-free homology, then the action on
H(Map(C,, X); R) = N¢*H*(X; R(C,))
is induced by the non-equivariant one.

We believe that these spectral sequences will be useful in computing the cohomology of equiv-
ariant Eilenberg-Mac Lane spaces.

ACKNOWLEDGEMENT
The author was supported by NSF Grant DMS-1811189.



396 | HILL

JOURNAL INFORMATION

The Journal of Topology is wholly owned and managed by the London Mathematical Society,
a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the form
of research grants, conference grants, prizes, initiatives for early career researchers and the
promotion of mathematics.

REFERENCES

1.

V. Angeltveit and A. M. Bohmann, Graded Tambara functors, J. Pure Appl. Algebra 222 (2018), no. 12, 4126-
4150.

M. Behrens and D. Wilson, A C,-equivariant analog of Mahowald’s Thom spectrum theorem, Proc. Amer. Math.
Soc. 146 (2018), no. 11, 5003-5012.

A.J. Blumberg and M. A. Hill, G-symmetric monoidal categories of modules over equivariant commutative ring
spectra, Tunis. J. Math. 2 (2020), no. 2, 237-286.

4. H. Cartan, Sur les groupes d’Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. USA 40 (1954), 704-707.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28

D. Dugger, Bigraded cohomology of Z /2-equivariant Grassmannians, Geom. Topol. 19 (2015), no. 1, 113-170.

. K. K. Ferland and L. G. Lewis, Jr, The RO(G)-graded equivariant ordinary homology of G-cell complexes with

even-dimensional cells for G = 7/ p, Mem. Amer. Math. Soc. 167 (2004), no. 794, viii+129.

M. Fujii, Cobordism theory with reality, Math. J. Okayama Univ. 18 (1975/76), no. 2, 171-188.

J. Hahn and X. D. Shi, Real orientations of Lubin-Tate spectra, Invent. Math. 221 (2020), no. 3, 731-776.

J.-C. Hausmann, T. Holm, and V. Puppe, Conjugation spaces, Algebr. Geom. Topol. 5 (2005), 923-964.

M. Hausmann, G-symmetric spectra, semistability and the multiplicative norm, J. Pure Appl. Algebra 221 (2017),
no. 10, 2582-2632.

C. Hazel, The RO(C,)-graded cohomology of C,-surfaces in Z /2-coefficients, Math. Z. 297 (2021), no. 1-2, 961
996.

M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of
Math. (2) 184 (2016), no. 1, 1-262.

M. A. Hill, On the algebras over equivariant little disks, J. Pure Appl. Algebra 226 (2022), no. 10, 107052.

M. A. Hill, On the André-Quillen homology of Tambara functors, J. Algebra 489 (2017), 115-137.

M. A. Hill, M. J. Hopkins, and D. C. Ravenel, The slice spectral sequence for the C, analog of real K-theory,
Forum Math. 29 (2017), no. 2, 383-447.

M. A. Hill and K. Mazur, An equivariant tensor product on Mackey functors, J. Pure Appl. Algebra (2019).

M. A. Hill and L. Meier, The C,-spectrum Tmf, (3) and its invertible modules, Algebr. Geom. Topol. 17 (2017),
no. 4, 1953-2011.

E. Hogle and C. May, The freeness theorem for equivariant cohomology of Rep(C,)-complexes, Topology Appl.
285 (2020), 107413.

R. Hoyer, Two topics in stable homotopy theory, Ph.D. Thesis, University of Chicago, 2014.

P. Hu and 1. Kriz, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence,
Topology 40 (2001), no. 2, 317-399.

B. Kahn, Construction de classes de Chern équivariantes pour un fibré vectoriel réel, Comm. Algebra 15 (1987),
no. 4, 695-711.

S. O. Kochman, Homology of the classical groups over the Dyer-Lashof algebra, Trans. Amer. Math. Soc. 185
(1973), 83-136.

W. C. Kronholm, A freeness theorem for RO(Z / 2)-graded cohomology, Topology Appl. 157 (2010), no. 5, 902-915.
T. Lance, Steenrod and Dyer-Lashof operations on BU, Trans. Amer. Math. Soc. 276 (1983), no. 2, 497-510.

P. S. Landweber, Conjugations on complex manifolds and equivariant homotopy of MU, Bull. Amer. Math. Soc.
74 (1968), 271-274.

L. G. Lewis, Jr, and M. A. Mandell, Equivariant universal coefficient and Kiinneth spectral sequences, Proc.
Lond. Math. Soc. (3) 92 (2006), no. 2, 505-544.

Y. Liu, Twisted bar construction, arXiv.org: 2003.06856, 2020.

S. Lunee-Nielsen and J. Rognes, The topological Singer construction, Doc. Math. 17 (2012), 861-909.



FREENESS AND EQUIVARIANT STABLE HOMOTOPY | 397

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

C. May, A structure theorem for RO(C,)-graded Bredon cohomology, Algebr. Geom. Topol. 20 (2020), no. 4,
1691-1728.

H. Nakaoka, On the fractions of semi-Mackey and Tambara functors, J. Algebra 352 (2012), 79-103.

W. Pitsch, N. Ricka, and J. Scherer, Conjugation spaces are cohomologically pure, Proc. Lond. Math. Soc. (3)
123 (2021), no. 3, 313-344.

W. Pitsch and J. Scherer, Conjugation spaces and equivariant Chern classes, Bull. Belg. Math. Soc. Simon Stevin
20 (2013), no. 1, 77-90.

D. L. Rector, Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. Helv. 45 (1970),
540-552.

N. Ricka, Subalgebras of the Z /2-equivariant Steenrod algebra, Homology Homotopy Appl. 17 (2015), no. 1,
281-305.

M. R. and N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Bull. Amer. Math. Soc. 71 (1965),
872-875.

J.-P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198-
232.

L. Smith, Lectures on the Eilenberg-Moore spectral sequence, Lecture Notes Math., vol. 134, Springer, Berlin-
New York, 1970.

V. P. Snaith, Algebraic cobordism and K-theory, Mem. Amer. Math. Soc. 21 (1979), no. 221, vii+152.

D. Tambara, On multiplicative transfer, Comm. Algebra 21 (1993), no. 4, 1393-1420.

J. Ullman, On the slice spectral sequence, Algebr. Geom. Topol. 13 (2013), no. 3, 1743-1755.

D. Wilson, C,-equivariant homology operations: results and formulas, arXiv.org: 1905.00058, 2019.



	Freeness and equivariant stable homotopy
	Abstract
	1 | INTRODUCTION
	Conventions and notation

	2 | -GRADED HOMOLOGY
	3 | FREE -HOMOLOGY
	3.1 | Free and projective
	3.2 | Closure properties of 
	3.2.1 | Closure under sums
	3.2.2 | Closure under base-change
	3.2.3 | Closure under products
	3.2.4 | Closure under norms
	3.2.5 | Closure under duals
	3.2.6 | Pullbacks

	3.3 | Freeness and spaces
	3.4 | Hopf algebroids and comodule Tambara functors

	4 | AN EVEN NICER CLASS OF SPECTRA
	4.1 | Homological purity
	4.1.1 | Homology
	4.1.2 | Cohomology

	4.2 | Consequences in computations
	4.2.1 | Green functor structure
	4.2.2 | Tambara functor structure
	4.2.3 | CoTambara structure
	4.2.4 | Dyer-Lashof operations

	4.3 | Example: the homology of and of 
	4.3.1 | The - space 
	4.3.2 | The homology of 


	5 | BAR AND TWISTED BAR SPECTRAL SEQUENCES
	5.1 | Bar and Rothenberg-Steenrod
	Example: 

	5.2 | Twisted bar spectral sequence
	5.3 | Eilenberg-Moore
	5.4 | Twisted Eilenberg-Moore

	ACKNOWLEDGEMENT
	JOURNAL INFORMATION
	REFERENCES


