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Scalable Reinforcement Learning for Multi-Agent
Networked Systems
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Abstract

We study reinforcement learning (RL) in a setting with a network of agents whose states
and actions interact in a local manner where the objective is to find localized policies such
that the (discounted) global reward is maximized. A fundamental challenge in this setting
is that the state-action space size scales exponentially in the number of agents, rendering the
problem intractable for large networks. In this paper, we propose a Scalable Actor Critic (SAC)
framework that exploits the network structure and finds a localized policy that is an O(p*+1)-
approximation of a stationary point of the objective for some p € (0,1), with complexity that
scales with the local state-action space size of the largest x-hop neighborhood of the network.
We illustrate our model and approach using examples from wireless communication, epidemics
and traffic.

1 Introduction

The modeling and optimization of networked systems such as wireless communication networks
and traffic networks is a long-standing challenge. Typically analytic models must make numerous
assumptions to obtain tractable models as a result of the complexity of the systems, which include
many unknown, or unmodeled dynamics. Given the success of Reinforcement Learning (RL) in a
wide array of domains such as game play [Silver et al., 2016; Mnih et al., 2015}, robotics [Duan et al.,
2016], and autonomous driving [Li et al., 2019], it has emerged as a promising tool for tackling the
complexity of networked systems. However, when seeking to use RL in the context of the control
and optimization of large-scale networked systems, scalability quickly becomes an issue. The goal
of this paper is to develop scalable multi-agent RL for networked systems.

Motivated by real-world networked systems like wireless communication, epidemics, and traffic,
we consider an RL model of n agents with local interaction structure. Specifically, each agent i has
local state s;, local action a; and the agents are associated with an underlying dependence graph G
and interact locally, i.e, the distribution of s;(t 4+ 1) only depends on the current states of the local
neighborhood of i as well as the local a;(t). Further, each agent is associated with stage reward
r; that is a function of s;, a;, and the global stage reward is the average of r;. In this setting, the
design goal is to find a decision policy that maximizes the (discounted) global reward. This setting
captures a wide range of applications, e.g. epidemics [Mei et al., 2017], social networks [Chakrabarti
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et al., 2008; Llas et al., 2003], wireless communication networks [Zocca, 2019; Vogels et al., 2003],
queueing networks [Papadimitriou and Tsitsiklis, 1999], smart transportation [Zhang and Pavone,
2016], and smart building systems [Wu et al., 2016; Zhang et al., 2017].

A fundamental difficulty when applying RL to such networked systems is that, even if indi-
vidual state and action spaces are small, the entire state profile (si,...,s,) and the action profile
(a1,...,ay,) can take values from a set of size exponentially large in n. This “curse of dimensional-
ity” renders the problem unscalable. For example, most RL algorithms such as temporal difference
(TD) learning or (-learning require storage of a @-function [Bertsekas and Tsitsiklis, 1996] whose
size is the same as the state-action space, which is exponentially large in n. Such scalability issues
have indeed been observed in previous research on variants of the problem we study, e.g. in multi-
agent RL [Littman, 1994; Bu et al., 2008] and factored Markov Decision Process (MDP) [Kearns
and Koller, 1999; Guestrin et al., 2003]. A variety of approaches have been proposed to manage
this issue, e.g. the idea of “independent learners” in Tan [1993]; Claus and Boutilier [1998]; or
function approximation schemes [Tsitsiklis and Van Roy, 1997]. However, such approaches lack
rigorous optimality guarantees. In fact, it has been suggested that such MDPs with exponentially
large state spaces may be fundamentally intractable, e.g., see Blondel and Tsitsiklis [2000].

In addition to the scalability issue, another challenge is that, even if an optimal policy that
maps a global state (si,...,s,) profile to a global action (ay,...,a,) can be found, it is usually
impractical to implement such a policy for real-world networked systems because of the limited
information and communication among agents. For example, in large scale networks, each agent
1 may only be able to implement localized policies, where its action a; only depends on its own
state s;. Designing such localized policies with global network performance guarantees can also be
challenging, e.g., see Rotkowitz and Lall [2005].

The challenges described above highlight the difficulty of applying RL to control large scale
networked systems; however, the network itself provides some structure, particularly the local
interaction structure, that can potentially be exploited. The question that motivates this paper
is: Can the network structure be utilized to develop scalable RL algorithms that provably find a
(near-)optimal localized policy?

Contributions. In this work we propose a framework that exploits properties of the network
structure to develop RL to learn localized policies for large-scale networked systems in a scalable
manner. Specifically, our main result (Theorem 4) shows that our algorithm, Scalable Actor Critic
(SAQ), finds a localized policy that is a O(p"*!)-approximation of a stationary point of the objective
function, with complexity that scales with the local state-action space size of the largest k-hop
neighborhood. To the best of our knowledge, our results are the first to provide such provable
guarantees for scalable RL of localized policies in multi-agent networked settings.

The key technique underlying our results is we prove that, under the local interaction structure,
the Q-function satisfies an exponential decay property (Definition 1), where the @-function’s de-
pendence on far away nodes shrink exponentially in their graph distance with rate p < -, where ~
is the discounting factor. This leads to a tractable approximation of the Q-function. In particular,
despite the Q-function itself being intractable to compute due to the large state-action space size,
we introduce a truncated Q-function which only depends on a small spatial horizon, (see Lemma
3) that can be computed efficiently and can be used in an actor critic framework which yields an
O(p")-approximation. This technique is novel and is a contribution in its own right. It can be used
broadly to develop RL for networked settings beyond the specific actor critic algorithm we propose
in this paper.



To illustrate our model and our results, we provide stylized examples of applications in three
areas: multi-access wireless communication, epidemics, and traffic signal control in Section 2.2.
We conduct numerical experiments to demonstrate the performance of the approach using both
synthetic examples and an application to wireless communication in Section 5.

Related Literature. Our problem falls into the category of the “succinctly described” MDPs
in Blondel and Tsitsiklis [2000, Section 5.2], where the state/action space is a product space formed
by the individual state/action space of multiple agents. As the state/action space is exponentially
large, such problems are not scalable in general, even when the problem has structure [Blondel and
Tsitsiklis, 2000; Whittle, 1988; Papadimitriou and Tsitsiklis, 1999]. Despite this, there is a large
literature on RL/MDPs in multi-agent settings, which we discuss below.

Multi-agent RL dates back to the early work of Littman [1994]; Claus and Boutilier [1998];
Littman [2001]; Hu and Wellman [2003] (see Bu et al. [2008] for a review) and has been actively
studied, e.g. Zhang et al. [2018]; Kar et al. [2013]; Macua et al. [2015]; Mathkar and Borkar [2017];
Wali et al. [2018], see a more recent review in Zhang et al. [2021]. Multi-agent RL encompasses a
broad range of settings including competitive agents and Markov games. The case most relevant to
ours is the cooperative multi-agent RL where typically, the agents can take their own actions but
they share a common global state and maximize a global reward [Bu et al., 2008]. This is in contrast
to the model we study, in which each agent has its own state and acts upon its own state. Despite
the existence of a global state, multi-agent RL still faces scalability issues since the joint-action
space is exponentially large. Methods have been proposed to deal with this, including independent
learners [Tan, 1993; Claus and Boutilier, 1998; Matignon et al., 2012], where each agent employs
a single-agent RL method. While successful in some cases, the independent learner approach can
suffer from instability [Matignon et al., 2012]. Alternatively, one can use function approximation
schemes to approximate the large Q-table, e.g. linear function approximation [Zhang et al., 2018] or
neural networks [Lowe et al., 2017]. Such methods can reduce computation complexity significantly,
but it is unclear whether the performance loss caused by the function approximation is small. In
contrast, our technique not only reduces computation but also guarantees small performance loss.

Factored MDPs are problems where every agent has its own state and the state transition
factorizes in a way similar to our model [Kearns and Koller, 1999; Guestrin et al., 2003; Osband
and Van Roy, 2014]. However, they differ from the model we consider in that each agent does not
have its own action. Instead, there is a global action affecting every agent. Despite the difference,
Factored MDPs still suffer from scalability issues. Similar approaches as in the case of multi-agent
RL are used, e.g., Guestrin et al. [2003] proposes a class of “factored” linear function approximators;
however, it is unclear whether the loss caused by the approximation is small.

Other Related Work. Our work is also related to weakly coupled MDPs, where every agent has
its own state and action but their transition is decoupled [Meuleau et al., 1998]. Additionally, our
model shares some similarity with Glauber dynamics in physics [Lokhov et al., 2015; Mezard and
Montanari, 2009], though our focus is very different from these works. As we consider the class of
localized policies, another related line of work is Partially Observable MDP (POMDP) [Nair et al.,
2005; Oliehoek and Amato, 2016; Bertsekas, 2005], though the formulations and results we have
are very different from those works.

Finally, this work is related to our earlier work Qu and Li [2019], which assumes the full
knowledge of the MDP model (not RL) and imposes strong assumptions on the graph. In contrast,
our work here does not need knowledge of the MDP and significantly relaxes the assumptions.



2 Preliminaries

In this section, we introduce our model, provide a few illustrative examples, and provide important
background in RL that underlies our analysis. Throughout this paper, ||-|| denotes Euclidean norm
and || - ||oo denotes infinity norm. Notation ¢ and T' are reserved as iteration counters for the inner
loop of the algorithm to be introduced later, m and M for the outer loop, and « is used for counting
the hops of neighbors. Notation O(-) hides constants and O(-) hides log factors with respect to
iteration variables T, M and variable k. The total variation distance for two distributions 7, 7’ over
a finite set S is defined as TV(m,7") = suppcg |[7(E) — 7' (E)|.

2.1 Model

We consider a network of n agents that are associated with an underlying undirected graph G =
(N, E), where N = {1,...,n} is the set of agents and £ C N x N is the set of edges. Each agent i
is associated with state s; € S;, a; € A; where S; and A; are finite sets. The global state is denoted
as s = (81,...,8p) € S := 81 X --- x 8§, and similarly the global action a = (a1,...,a,) € A :=
Ap x - x Ay, At time t, given current state s(t) and action a(t), the next individual state s;(t+ 1)
is independently generated and is only dependent on neighbors:
n
P(s(t+ 1)[s(t), a(t)) = [T Plsi(t + Dlsn, (), ai(1)), (1)
i=1
where notation N; means the neighborhood of 7 (including i itself) and notation sy, means the states
of the agents in IV;. In addition, for integer x > 0, we use N;* to denote the x-hop neighborhood
of 7, i.e. the nodes whose graph distance to ¢ has length less than or equal to k. We also let
£(k) = sup; [ NF.

Each agent is associated with a class of localized policies Cig ¢ parameterized by 6;. The localized
policy Cf “(a;|s;) is a distribution on the local action a; conditioned on the local state s;, and each
agent, conditioned on observing s;(t), takes an action a;(t) independently drawn from Cf “(+|si(t)).
We use 0 = (01,...,60,) to denote the tuple of the localized policies Cfi, and also use ¢%(als) =
I, Qf “(ai|s;) to denote the joint policy, which is a product distribution of the localized policies
as each agent acts independently.

Further, each agent is associated with a stage reward function r;(s;,a;) that depends on the
local state and action, and the global stage reward is r(s,a) = 2 > | r;(s;, ;). The objective is
to find localized policy tuple 6 such that the discounted global stage reward is maximized, starting
from some initial state distribution g,

InélX J(G) = ESNﬂoEa(t)NCG(,‘S(t)) |:Z ’)/tT(S(t)7 Cl(t))
t=0

s(0) = s] . (2)

Remark 1. In the state transition (1) of our model, the distribution of each node’s next state is
allowed to depend on its neighbors’ states sy, (t), but only on its own action a;(t) as opposed to
its neighbors’ actions an;,(t). This restriction is imposed only for simplicity of exposition. With a
simple change of notation, our model, algorithm and analysis can be extended to the more general
dependence on an;, (t). Similarly, each agent’s reward function r;(s;,a;) can be generalized to depend
on its neighbors’ state-action pairs, i.e. r;(sn;,an;), and each agent’s localized policy can also be
generalized to depend on its neighbors’ states, i.e. Cfi (ailsn;)-
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Remark 2. In the paper, the interaction graph G is undirected, but our model and results can be
eastly generalized to the directed graph setting without essential changes in the algorithm and the
analysis. In detail, to generalize to the directed graph case, the only change needed is to redefine the
“neighbors”. Specifically, N; needs to be redefined as the “in-neighborhood” of i (including i itself),
i.e. 1 itself and the set of nodes that have a directed link pointing towards i. In addition, N needs
to be redefined as the k-hop “in-neighborhood” of i, i.e. the nodes whose shortest directed link to i
has a length less than or equal to k (including i itself).

2.2 Examples

In this section, we provide three networked system examples in wireless communication, epidemics,
and traffic that feature the local dependence structure we study in this paper. For ease of exposition,
we present simple versions of these examples, keeping the essence of the model and highlighting
the dependence structure while ignoring some application-specific details.

Wireless Communication. We consider a wireless network with multiple access points
[Zocca, 2019], where there is a set of users N' = {1,2,--- ,n}, and a set of network access points
Y = {y1,v2, - ,ym}. Each user i only has access to a subset ¥; C Y of the access points. We
define the interaction graph as the conflict graph, in which two users ¢ and j are neighbors if and
only if they share an access point, i.e. the neighbors of user i is N; = {j € N : Y; NY; # 0}. Each
user i maintains a queue of packets defined as follows. At time step ¢, with probability p;, user
i receives a new packet with an initial deadline d;. Then, user 7 can choose to send the earliest
packet in its queue to one access point in its available set Y;, or not send anything at all. If an
action of sending to yi € Y; is taken, and if no other users send to the same access point at this
time, then the earliest packet in user i’s queue is transmitted with success probability g which
depends on the access point yg; however, if another user also chooses to send to yg, then there is
a conflict and no transmission occurs. If the packet is successfully transmitted, it will be removed
from user i’s queue and user ¢ will get a reward of 1. After this, the system moves to the next
time step, with all deadlines of the remaining packets decreasing by 1 and packets with deadline
0 being discarded. In this example, the local state s; of user i is a characterization of its queue
of packets, and is represented by a d; binary tuple s; = (e1,e2,--- ,eq,) € S; = {0, 1}%, where for
each ¢ € {1,...,d;}, e, € {0,1} indicates whether user i has a packet with remaining deadline /.
The action space is A; = {null} UYj;, where null represents the action of not sending. The detailed
transition is provided in Table 1, where s;(¢ + 1) only depends on sy;(t),an;(t), which fits into
the local interaction structure we consider. The local reward is given by 7;(sy,(t),an,(t)) = 1 in
the case of the last row of Table 1, and r;(sn,(¢),an,(t)) = 0 in all other cases. The local state
space S;, the local action space A;, the local transition probabilities in Table 1 and the local reward
function 7;(-) form a networked MDP model described in Section 2.1. The above model serves
as a basis for more complex multi-access wireless communication models studied in the literature,
including those with multiple channels [Block and Van Houdt, 2016], (imperfect) carrier sensing
[Kim et al., 2011]. Existing analytical approaches typically require knowledge of modeling details
and parameters such as the packet arrival rate [Tassiulas and Ephremides, 1990; Yun et al., 2012],
while our RL-based approach does not require such knowledge and learns to improve performance
in a model-free manner.

Epidemic Network. We consider an SIS (Susceptible-Infected-Susceptible) epidemic network
model [Mei et al., 2017; Ahn, 2014; Azizan Ruhi et al., 2016a], where there is a undirected graph
of nodes G = (N, £), and each node has a binary state space S; = {susceptible, infected}, as well



si(t) ai(t) sni/f () anyn (1) | si(t +1)

any null any Left shift s;(t) and append Bernoulli(p;).

all zero not null any Left shift s;(¢) and append Bernoulli(p;).

dj e Nl/{l} s.t.

1l Y
not all zero g € ¥ s;(t) not all zero, a;(t) = yx

Left shift s;(t) and append Bernoulli(p;).

Flip left most “1” in s;(¢) to “0” w.p. g,

all other cases (denote a;() = yi) then left shift s;(¢) and append Bernoulli(p;).

Table 1: State transition for the wireless communication example. “Left shift” means for a binary
tuple, discarding the left most bit. Bernoulli(p;) means a random variable sampled i.i.d. from the
Bernoulli distribution that has probability p; to be 1, and probability 1 — p; to be 0.

as a finite action space A; with action a; € A; representing epidemic control measures like different
levels of vaccination [Preciado et al., 2013]. The evolution of the states follows a local interaction
structure: the probability of a node turning from susceptible to infected depends on the whether
its neighboring nodes are infected or not as well as its control action in place [Azizan Ruhi et al.,
2016b; Preciado et al., 2013]; the probability of a node turning from infected to susceptible depends
on the recovering rate. More precisely, s;(¢ + 1) only depends on sy, (¢) and a,(t), and the state
transition is provided by,

(1 — Bi(a(2)|WEN/dsi(O=1} " if 5,(¢) = susceptible,
i, if s;(t) = infected,

(3)

where 0; € (0,1) is a given recovering rate parameter, and 3; : A; — (0,1) is a given transmission
rate function and it depends on the control action a;(t), and |{j € N;/{i} : s;(t) = 1}| is the
number of neighboring nodes excluding ¢ itself that are infected. The local reward of each node is
given by,

Pl + 1) = suseeptibielsy, (1), i) = {

ri(si,a;) = 1(s; = susceptible) — ¢;(a;), (4)

which consists of two parts: a positive reward of 1 if the node is free from infection, subtracting a
given cost function c¢;(a;) on the epidemic control measure a;. In this setup, the expected global
reward is a weighted balance between the overall infection level and the epidemic control cost. The
above defined local state space S;, local action space A;, local transition probabilities in (3) and
local rewards in (4) form a networked MDP model in Section 2.1. We comment that the above
SIS model is a basis for more complex models, e.g. those with “exposed” and “recovered” states
[Kuznetsov and Piccardi, 1994; Britton, 2010] or more complex control interventions [Morris et al.,
2020]. These more complex models can also be captured using the framework above. We reiterate
that the approach in our paper does not require knowledge of model specifications and learns in a
model-free manner.

Traffic Network. Lastly, we consider a traffic signal control problem adapted from Varaiya
[2013]. In this setting, each node i represents a road link and the interaction graph represents the
physical connection of the road links. Given road link 7, the local state s; = (z;)i—; is a tuple of
variables with j ranging from neighboring links ¢ can turn to, and z; ; is the number of vehicles on
link ¢ that intend to turn to link j, and can only take values in [S] = {0, 1,...,S}. Correspondingly,



the local state space is S; = [S]Ni/ {i} Similarly, the local action a; = (¥i,5)i—; is the binary traffic
signal tuple with y; ; controlling the on-off of turn movement (i — j), and the local action space is
A; = {0, 1}{Ni}/{i} At each time, a random amount of vehicles on the queue x; ; will flow into link
J when the traffic signal y; ; is on. Meanwhile, link 7 will receive vehicles from other incoming links,
a random fraction of which are then assigned to each of the queues in (z; ;);—;. Mathematically,

s
zij(t+1) = [wi,j(t) — min(C ;(£)yi (1), i (1) + > min(Chi ()yei(t), mri(t)) Ri () o’ (5)
k—i

where [z]5 means max(min(z, S),0), C;;(t) (and similarly Cj;(¢)) is an i.i.d. random variable

indicating the random amount of vehicles leaving ¢ for j, and R; ;(t) is an i.i.d. random variable
that controls the split of the inflow to link i to the queue z; j(t). See Varaiya [2013] for the complete
details. Given a fixed distribution on the random variables C; ;(t), R; j(t), (5) provides a complete
characterization of the distribution of s;(¢ + 1) conditioned on sy;(t) and an;,(t), in which the
local state at each link s;(t + 1) only depends on its neighbors’ current states and current actions,
which fits into our local interaction structure (equation (1) and Remark 1). The local reward is
a characterization of the congestion level at link 4, and one version of the reward is the negative
queue length

ri(sia) =— Y @iy (6)

JEN;/{i}

The local state space S;, the local action space A;, the local transition probabilities (5) and the
local rewards (6) form a networked MDP discussed in Section 2.1. We comment that policies for
traffic signal control, like the max pressure policy in Varaiya [2013], typically require knowledge of
the statistics of the random variables Cj;(t) and R;;(t), while our approach learns from data in a
model-free manner.

2.3 Background in RL

To provide background for the analysis in this paper, we review a few key concepts in RL. First,
fixing a localized policy tuple § = (61,...,60,), an important notion is the Q-function, which is
defined for policy 0 as a “table” of values for each state-action pair (s,a) € S x A and it is the
expected infinite horizon discounted reward under policy € conditioned on the initial state and
action being (s, a):

Q%(s,a) = Eqgymco(|s(t)) {ZVtT(S(t)a a(t))
t=0

s(0) = s,a(0) = a}

1< >
= > Eaonco1so)) [Z v'ri(si(t), ai(t))
=1 t

=0

5(0) = 5,a(0) = a} - %ZQ?(S, o). ()

In the last step, we have defined Qf(s, a) which is the @ function for the individual reward r;. Both
QY and Qf are exponentially large tables and, therefore, are intractable to compute and store.

Additionally, another important concept we use is the policy gradient theorem, which provides
a characterization of the gradient of the objective J(6) and is the basis of many algorithmic results
in RL. The policy gradient theorem shows that the gradient of J(6) depends on Q? and, therefore,
is intractable to compute using the form in Lemma 1.



Lemma 1 (Sutton et al. [2000]). Let 7¥ be a distribution on the state space given by 7%(s) =
(1 =) o2 Y7 (s), where ¥ is the distribution of s(t) under a fived policy 6 when s(0) is drawn
from mwy. Then, we have,

1

VI(0) = 1= Bt ancor) | Q' (5 @)V og ¢ (als) (8)

3 Algorithm Design and Results

In this paper we propose an algorithm, Scalable Actor Critic (SAC), which provably finds an
O(p~t1)-stationary point of the objective J(0) (i.e. a 0 s.t. ||[VJ(0)]|?> < ¢) for some p < 7, with
complexity scaling in the size of the local state-action space of the largest x-hop neighborhood. We
state our main result formally in Theorem 4 after introducing the details of SAC and the key idea
underlying its design.

3.1 Key Idea: Exponential Decay of ()-function Leads to Efficient Approxima-
tion

Recall that the policy gradient in Lemma 1 is intractable to compute due to the dimension of the
Q-function. Our key idea is that exponential decay of the @) function allows efficient approximation
of the Q-function via truncation. To illustrate this, we start with the definition of the exponential
decay property. Recall that N is the set of k-hop neighborhood of node i and define N*, = N'/NF,
i.e. the set of agents that are outside of ¢’th x-hop neighborhood. We write state s as (SNZ.“, sNEi), ie.
the states of agents that are in the k-hop neighborhood of ¢ and outside of the x-hop neighborhood
respectively. Similarly, we write a as (a NE, @ Nfi)' The exponential decay property is then defined
as follows.

Definition 1. The (c, p)-exponential decay property holds if, for any localized policy 0, for any
i €N, snr € Snr, SN=,,Syx € SNx,, ans € Anr, ans,ays € Anx, QY satisfies,

Q7 sz, snm, s ans, ans,) — QF (snw, s'yx , ans, aiye )| < cp™ .

It may not be immediately clear when the exponential decay property holds. Lemma 2 (a)
below highlights that the exponential decay property holds generally with p = ~, without any
assumption on the transition probabilities except for the factorization structure (1) and the localized
policy structure. Further, many MDPs in practice have ergodicity and fast mixing properties, and
Lemma 2 (b) shows that when such fast mixing property holds, the (¢, p)-exponential decay property
holds for some p < v depending on the mixing rate. The proof of Lemma 2 is postponed to Appendix
A. The condition on mixing rate in Lemma 2 (b) is similar to those used in the literature on the
finite time analysis of RL methods, e.g. Zou et al. [2019]. In fact, our condition is weaker than
the common mixing rate condition in that we only require the distribution of the local state-action
pair (s;(t), a;(t)) to mix, instead of the full state-action pair (s(t),a(t)). We leave it as future work
to study such “local” mixing behavior and its relation to the local transition probabilities (1).

Lemma 2. Assume Vi, r; is upper bounded by 7. Then the following holds.

(a) The (ﬁ,y,’y)—exponentml decay property holds.



(b) If there exists ¢ > 0 and p € (0,1) s.t. under any policy 0, the Markov chain is ergodic
and starting from any initial state, TV(my;, Tooi) < ¢'ut,Vt, where m; is the distribution of
(si(t),a;i(t)) and mao; is the distribution for (si,a;) in stationarity, and recall TV(-,-) is the

2c'7
T=yp’

total variation distance. Then, the ( y)-exponential decay property holds.

Our definition of exponential decay is similar in spirit to the “correlation decay”, or “spatial
decay” that has been studied in the literature [Gamarnik, 2013; Gamarnik et al., 2014; Bamieh
et al., 2002], though these works consider very different settings. For example, Gamarnik [2013]
and Gamarnik et al. [2014] study optimization in a graphical model setting (no concept of state
and/or time), and show that the effect of cost functions far away on the optimal solution at
a particular node shrinks exponentially in their graph distance, under certain weak interaction
assumptions. Compared to these works where the optimization problem is static, we focus on an
MDP setting which has states that evolve on a time axis. Further, our exponential decay is in
terms of the ) functions, as opposed to the optimal solution. That being said, we believe there are
deep connections between our results and that in Gamarnik [2013]; Gamarnik et al. [2014], and we
leave the investigation of it as future work.

The power of the exponential decay property is that such properties usually lead to scalable
and distributed algorithm design, as in Gamarnik [2013]. In our context, the exponential decay
property guarantees that the dependence of Q? on other agents shrinks quickly as the distance
between them grows. This motivates us to consider the following class of truncated Q-functions,

QY (s, anx) = Z wi(sne,, ans s sne, ans)QY (sne, sye ans,anx),  (9)
SNEiESNEi’aNEiEANEi

where w; (s N®,, AN 5 SNE, O N{z) are any non-negative weights satisfying

Z wi(SNji, ANF . SNE, aNZ.N) =1, V(SNZ,H, (INZ,H) € SNik X ANZk (10)
sy €SNr Lans €EANk.
—1 —1 —1 —1

With the definition of the truncated @Q-function, our key insight is the following Lemma 3, which
says when the exponential decay property holds, the truncated @Q-function (9) approximates the
full @-function with high accuracy and can be used to approximate the policy gradient. The proof
of Lemma 3 is postponed to Appendix B.

Lemma 3. Under the (c, p)-exponential decay property, the following holds:

(a) Any truncated Q-function in the form of (9) satisfies,

sup |Qf (s, awy) = Q1 (s,a)| < cp™*,
(s,a)eSx A

(b) Given i, define the following truncated policy gradient,

) 1 1 N .
hZ(Q) = ﬁEstoaaNCG('|5) EVQZ log Cil(ai|si) Z Q?(SNJ’?,GNJ’?> R (11)
JENF
where Qg’ can be any truncated Q-function in the form of (9). Then, if ||Ve, log Cfi (ailsi)|] <
Li,Ya;, si, we have ||hi(0) — Vg, J(0)| < %p””“.
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Algorithm 1: SAC: Scalable Actor Critic

Input: 6;(0); parameter x; T, length of each episode; step size parameters h, tg, 7.
1 form=0,1,2,... do

2 Sample initial state s(0) ~ mp, each agent ¢ takes action a;(0) ~ Cfi(m)(~|si(0)), receives
reward 7;(0) = r;(s;(0), a;(0)).

3 Initialize Q? e ROV *ANE t6 be the all zero vector.

4 fort=1to T do

5 Get state s;(£), take action a;(t) ~ CU™ (:|si(t)), get reward r;(t) = ri(s;(t), ai(t)).
6 Update the truncated @ function with step size a1 = ﬁ,

7 Qﬁ(st(t—l),aNf(t—l)) =

(1= oq—1)QL (s (t — 1), ane (t — 1) + qu1 (ri(t — 1) + QL H(swr(t), anx (1)),

8 Qi(snr,any) = Qi (sny, ang) for (snx,ang) # (snp(t — 1), anp(t = 1)).

9 end
10 Each agent ¢ calculates approximated gradient,
1| Gilm) = S0 S enn QT (swx (1), ans () Vo, log ¢ (ai(t)]5:(1))-
12 Each agent ¢ conducts gradient step 0;(m + 1) = 6;(m) + 0, g:(m) with 7, = r2+1'

13 end

The power of this lemma is that the truncated () function has a much smaller dimension than
the true @) function, and is thus scalable to compute and store. However, despite the reduction in
dimension, the error resulting from the approximation is small. In the next section, we use this
idea to design a scalable algorithm.

3.2 Algorithm Design: Scalable Actor Critic (SAC)

The good properties of the truncated @Q-function open many possibilities for algorithm design.
For instance, one can first obtain the truncated @Q-function in some way (which could be much
easier than directly computing the full Q-function) and then do a policy gradient step using the
Lemma 3. In this subsection, we propose one particular approach using the actor critic framework.
Our approach, Scalable Actor Critic (SAC), uses temporal difference (TD) learning to obtain the
truncated @-function and then uses policy gradient for policy improvement. The pseudocode of
the proposed algorithm is given in Algorithm 1.

Overall structure. The overall structure of SAC is a for-loop from line 1 to line 13. Inside the
outer loop, there is an inner loop (line 4 through line 9) that uses temporal difference learning to get
the truncated Q-function, which is followed by a policy gradient step that does policy improvement.

The Critic: TD-inner loop. Line 4 through line 9 is the policy evaluation inner loop that obtains
the truncated () function, where line 7 and 8 are the temporal difference update. We note that
steps 7 and 8 use the same update equation as TD learning, except that it “pretends” (s NE, G Nf)
is the true state-action pair while the true state-action pair should be (s,a). As will be shown in
the theoretic analysis, such a TD update implicitly gives an estimate of a truncated @ function.

The Actor: policy gradient. Line 10 through line 12 define the actor actions. Here, each agent
calculates an estimate of the truncated gradient based on (11), and then conducts a gradient step.

10



Communication. To implement our training algorithm, each agent needs to communicate
with other agents in its k-hop neighborhood in line 7 and line 11; after training is done, each
agent implements its localized policy that does not need communication. This communication
requirement is weaker than the “centralized training with decentralized execution” paradigm in the
multi-agent RL literature [Lowe et al., 2017], where in the training phase, global communication
is used. We also comment that when x = 0, our algorithm does not need communication and is
effectively the same as the independent learner approach in the literature [Tan, 1993; Lowe et al.,
2017], as each agent simply runs a single-agent actor critic method based on its local state and
local action. When x > 1, our algorithm requires communication with agents beyond the direct
1-hop neighbors, which may be unrealistic for some applications. An interesting future direction is
to reduce the communication requirements, e.g. potentially using consensus schemes like in Zhang
et al. [2018], and also techniques that only communicate quantized bits as opposed to real numbers
[Magnisson et al., 2020].

Discussion. Our algorithm serves as an initial concrete demonstration of how to make use of
the truncated @-functions to develop a scalable RL method for networked systems. There are many
extensions and other approaches that could be pursued, either within the actor critic framework or
beyond. One immediate extension is to do a warm start, i.e., initialize Q? as the final estimate Q;‘F
in the previous outer-loop. Additionally, one can use the TD-A variant of TD learning, incorporate
variance reduction schemes like the advantage function (Advantage Actor Critic), or incorporate
function approximation. Further, beyond the actor critic framework, another direction is to develop
Q-learning/SARSA type algorithms based on the truncated @-functions. An appealing aspect of
Q-learning/SARSA algorithms is that they may exhibit better convergence properties, but the
challenge is that, unlike the actor critic framework, it is not straightforward to enforce the policy
to be local in Q-learning/SARSA algorithms. These are interesting topics for future work.

Remark 3 (Model-based vs model-free). We note that by using an actor critic framework, the
proposed approach is model-free, meaning it does not explicitly estimate the transition probabilities
and the reward function. This is in contrast to model-based RL, which explicitly estimates the
transition probabilities (or parameters that determine the transition probabilities, like the 6;, B;(+)
parameter in the epidemic example in Section 2.2). On one hand, it is known that model-based RL
can be more sample efficient than model-free RL in certain circumstances [Tu and Recht, 2019].
Additionally, for specific applications, model-based control design may come with properties like
robustness [Varaiya, 2013]. On the other hand, model-free RL offers more flexibility since it does
not impose assumptions on the model class. The comparison and tradeoff between model-based and
model-free approaches is an open research question and is beyond the scope of this paper. We refer
the reader to Tu and Recht [2019]; Qu et al. [2020b] for more details.

3.3 Approximation Bound

In this section, we state and discuss the formal approximation guarantee for SAC. Before stating
the theorem, we first state the assumptions we use. The first assumption is standard in the RL
literature and bounds the reward and state/action space size.

Assumption 1 (Bounded reward and state/action space size). The reward is upper bounded as
0 < ri(si,a;) < 7,Vi,8;,a;. The individual state and action space size are upper bounded as |S;| <
S, 1A < A,¥i.
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Assumption 2 (Exponential decay). The (c, p)-exponential decay property holds for some p < 7.

Note that under Assumption 1, Assumption 2 automatically holds with p = v, ¢f. Lemma 2 (a).
However, we state the exponential decay property as an assumption to account for the more general
case that p could be strictly less than «y, cf. Lemma 2 (b).

Our third assumption can be interpreted as an ergodicity condition which ensures that the
state-action pairs are sufficiently visited.

Assumption 3 (Sufficient local exploration). There ezists positive integer 7 and o € (0,1) s.t.
under any fived policy 0 and any initial state-action (s,a) € S x A, Vi € N',V(slyx,alyr) € Snr %
Anr, we have P((sny(7), ans (7)) = (s, aye)l(s(1),a(1)) = (s,a)) > 0.

Assumption 3 requires that every state action pair in the x-hop neighborhood must be visited
with some positive probability after some time. This type of assumption is common for finite time
convergence results in RL. For example, in Srikant and Ying [2019]; Li et al. [2020], it is assumed
that every state-action pair is visited with positive probability in the stationary distribution and the
state-action distribution converges to the stationary distribution with some rate. This implies our
assumption which is weaker in the sense that we only require local state-action pair (s NE, @ Nf) to
be visited as opposed to the full state-action pair (s,a). Having said that, we note that by making
Assumption 3, we do not consider the exploration-exploitation tradeoff, which is a challenging issue
even in single-agent RL. One potential way to relax Assumption 3 is to use Upper Confidence Bound
(UCB) bonuses to encourage exploration, which has been proposed in single-agent RL [Jin et al.,
2018]. We leave the study of the exploration-exploitation tradeoff in the multi-agent networked
setting as future work.

Finally, we assume boundedness and Lipschitz continuity of the gradients, which is standard in
the RL literature.

Assumption 4 (Bounded and Lipschitz continuous gradient). For any i, a;, s; and 6;, we assume

|V, log sz(az|sZ)H < L;. As a result, |Vglog(?(als)|| < L = />, L. Further, assume V.J(0)

is L'-Lipschitz continuous in 6.

With these assumptions in hand, we are ready to state our convergence result.

Theorem 4. Under Assumption 1, 2, 3 and 4, for any 6 € (0,1), M > 3, suppose the critic
step size qp = ﬁ satisfies h > %maX(Q, ﬁ), to > max(2h,4ch,T); and the actor step size
satisfies My, = \/7;77“ with n < ﬁ. Further, if the inner loop length T is large enough s.t. T +1 >

log,, @ + (k+1)log, p and

C’Aﬁ,T)_F c < 2cphtl
VT +tg T+t~ (1—7)2’

(12)

where ?’a(é, T) = % %[10g(2T(;f?) + f(r)log SA] and C! — 172\” max(lﬁi’”, %(T—l—to)), with
€= 4117 + 27 and we recall that f(k) = max; |[N[| is the size of the largest k-neighborhood. Then,
with probability at least 1 — 6,

M— 27 872L2 4, 9672L'L*? ~
Yoo Ml VIO _ iy Gy VI MI08 5+ Tt nlos M watter
om0 i - M+1 (1—7)°

(13)
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The proof of Theorem 4 is deferred to Section 4. To interpret the result, note that the first
term in (13) converges to 0 in the order of O(ﬁ) and the second term, which we denote as e,

is the bias caused by the truncation of the Q-function and it scales in the order of O(p**1). As
such, our method SAC will eventually find an O(p~*!)-approximation of a stationary point of the
objective function J(#), which could be very close to a true stationary point even for small k as e,
decays exponentially in x.

In terms of complexity, (13) gives that, to reach a O(e,)-approximate stationary point, the
number of outer-loop iterations required is M > Q(a%poly(F,L,L’ , ﬁ)), which scales polyno-
mially with the parameters of the problem. We emprlelasize that it does not scale exponentially
with n. Further, since the left hand side of (12) decays to 0 as 7" increases in the order of O(%)
and the right hand side of (12) is in the same order as O(ey), the inner-loop length required is
T > Q(E%poly(ﬂ %, ﬁ, 7, f(k))). This iteration complexity for the inner loop can potentially be
further rzduced if we do a warm start for the inner-loop, as the @J-estimate from the previous
outer-loop should be already a good estimate for the current outer-loop. We leave the finite time
analysis of the warm start variant as future work.

In the complexity bound, a key parameter is o, which we recall is defined in Assumption 3
and it roughly means the probability that a state-action pair in a x-hop neighborhood is visited.

Suppose we interpret o to scale with o ~ W, where we recall f(k) is the size of the largest

k-hop neighborhood around any node, and (|S||A[)f(*) is the largest state-action space size of
r-hop neighborhoods of any node. Then, the iteration complexity scales with 1 ~ (|S||A[)/*),
whereas the steady state error depends on p®t!. Therefore, s is a parameter that balances between
complexity and performance — the larger k is, the higher the complexity but the smaller the steady
state error. Exactly how the complexity grows depends on f(k), the size of k-hop neighborhoods,
which in turn depends on the topology of the interaction graph. On one hand, for a sparse graph
where f(k) is a constant much smaller than the number of nodes n, the state-action space size
of k-hop neighborhoods is much smaller than the global state-action space size, in which case our
algorithm can avoid the exponential scaling in n and is scalable to implement. In the case where
the graph is very dense or even complete, we have f(k) = Q(n) for any x > 0 and our algorithm
still suffers from the curse of dimensionality as the complexity scales with (]S||A)*™. However,
in the case of dense or complete graphs, the local interaction structure becomes degenerate as it
takes exponentially many parameters to even specify the local transition probabilities in (1). How
to handle the dense or complete graph case remains an interesting future direction, and we believe
more structural assumptions are needed to break the curse of dimensionality in that case.

Another thing to note in Theorem 4 is that our guarantee is an upper bound on the running
average of the squared norm of the gradient and is essentially a local convergence guarantee. This
kind of local convergence is typical for actor critic methods, see e.g. Konda and Tsitsiklis [2000];
Zhang et al. [2018]. Recently, there have been works studying the optimization landscape for policy
optimization, showing that in single-agent settings and for certain parameterizations of the policy,
the objective of the policy optimization problem J(#) may satisfy the gradient dominance property,
indicating any stationary point will be a global optimum [Bhandari and Russo, 2019; Agarwal et al.,
2021]. One interesting future direction is to show whether similar properties hold in our multi-agent
networked setting with the local interaction structure, and whether the local convergence guarantee
can imply a global optimality guarantee.

When put in the context of the broader literature in multi-agent RL, our contribution can be
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interpreted as follows. In multi-agent RL, the typical way to handle the curse of dimensionality
is to use function approximation of the @ function. For example, Zhang et al. [2018] uses linear
function to approximate the Q-function. Alternatively, it has also been popular to use neural
networks to do the approximation [Lowe et al., 2017]. However, in these approximation methods,
the resulting steady state error in the actor critic framework depends on the approximation error,
and it is generally unclear how to choose the function approximator that is both computationally
tractable and also accurate in representing the true @ function. In the context of these works, our
truncated @-functions can be viewed as a specific way of function approximation that exploits the
local interaction structure in our problem, and our method is not only computationally tractable
but also has a small approximation error.

4 Proof of Main Result

In this section, we provide the proof of the main result Theorem 4 with some auxiliary derivations
postponed to the appendix. As our algorithm is an actor critic algorithm, the proof is divided into
two parts: firstly, we provide an analysis of the critic, i.e. TD learning that estimates the truncated
@Q-function; secondly, we analyze the actor and finish the proof of Theorem 4.

Analysis of the critic. The first part of the analysis concerns the critic, and we show that
the critic inner loop converges to an estimate with steady-state error exponentially small in .
Specifically, recall that within iteration m the inner loop update is

Qi(sve(t — 1), ans(t—1)) = (1 — ap—1)QL  (snr(t — 1), an=(t — 1))
+ a1 (ri(si(t — 1), ai(t — 1)) +7Q5 (s (1), anx(1))), (14a)
Ql(snr,ans) = QU (svr,anw) for (syr,ans) # (syr(t —1),anx(t — 1)),  (14b)

where Q0 € ROV ¥ANE i initialized to be all zero, and oy = ﬁ is the step size. We note that
when implementing (14) within outer loop iteration m, trajectory (s(t),a(t)) is generated by the
agents taking a fixed policy 6(m). Let Q?(m) € RS*A be the true Q-function for reward r; under
this fixed policy 6(m) as defined in (7). Given the above notation, we prove the following theorem
on the critic, which bounds the error between the approximation QiT generated by (14) and the
true Qf(m).

Theorem 5. Assume Assumption 1, 2, 8 are true and suppose tg, h satisfies, h > %max(2, ﬁﬁ)
and tg > max(2h,4ch, 7). Then, inside outer loop iteration m, for each i € N, with probability at
least 1 — &, we have the following error bound,

0(m) AT Ca C(,JL 2@p’{+1
sup |Q; s,a) — Q5 (syr,ans)| < + + )
(s,a)GSXA‘ ( ) ( N O )’ \/m T+ 19 (1 —’)/)2
where
6e Th 27172 2 16eht 27
a — —1 | A = - t
C 1_ﬁ\/g[og( 5) T f(R)logSA], Cq 1_\ﬁmax( (),

with € = 1; + 2F.
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The proof of Theorem 5 is postponed to Section 4.1. The result in Theorem 5 is an upper bound
of the infinity-norm error between the truncated Q-function Q;‘F obtained by TD learning and the
true @Q-function. This error bound can be further decomposed into two parts - a transient part that
converges to zero in the order of ON(% + %), and a steady state error that is exponentially small
in k. In proving Theorem 5, we use two key techniques. The first is using the exponential decay
property (cf. Definition 1, Lemma 2) to show that in the “steady state”, the error of the truncated
Q-function is bounded by O(p"*1). This is possible due to our results in Lemma 3 which shows
the class of truncated @Q-functions are good approximations of the full @-function. Our second
proof technique is that we develop novel finite time analysis tools for TD learning to obtain the
finite time error bound. Our proof uses a novel recursive decomposition of the error. Compared
to existing work on finite time analysis on TD learning in Srikant and Ying [2019], our result does
not need the ergodicity assumption (the weaker Assumption 3 instead), and obtains error bounds
in the infinity norm as opposed to the (weighted) Euclidean norm in Srikant and Ying [2019]. This
finite time proof technique could be of independent interest.

Analysis of the actor. We view the actor step as a biased stochastic gradient step, with
the bias characterized by our result in the critic (Theorem 5). Under this viewpoint, we finish the
analysis of the actor and the proof of the main result in Section 4.2.

4.1 Analysis of the Critic: Proof of Theorem 5

Since Theorem 5 is entirely about a particular outer-loop iteration m, inside which the policy is
fixed to be #(m), to simplify notation we drop the dependence on m and 6(m) throughout this
section. Particularly, we refer to Qf(m) as (7, which is the true Q-function for reward r; under
policy 8(m) (cf. (7)). We also introduce short-hand notation z = (s,a) € Z =S x A to represent
a particular state action pair (s,a) € S x A. Similarly, we define z; = (s;,a;) € Z; = S; x A;, and
2N = (sNH aNn) € Znr = Snr ¥ .ANn A vector v € R? means a vector of dimension |Z| that is
indexed by z € Z, with its 2’th entry denoted by v(z). For example, the full @Q-function @} will
be treated as a vector in R? with its z’th entry denoted by Q(z). Similarly, a vector v € ]RZNf
means a vector of dimension |Z N{e\ indexed by znyx € Znr, and its zyr’th entry will be denoted by

v(sz). For example, the truncated Q-functions Qf will be treated as vectors in RZN Following
a similar convention, a matrix A € RZ*Z will be a |Z|-by-| Z| matrix indexed by (z,2') € Z x Z,
with its (z, 2’)’th entry denoted by A(z,2’).

Theorem 5 essentially says that the critic iterate Qf in (14) will become a good estimate of Q}
as t increases. We note that the full Q-function @} must satisfy the Bellman equation [Bertsekas
and Tsitsiklis, 1996],

Qi = TD(Q7) == ri +7PQ;, (15)

where TD : RZ — RZ is the standard Bellman operator for reward r; and P € RZ*Z is the
transition probability matrix from z(t) to z(t+1) under policy (m). Note in (15), without causing
any confusion, r; is interpreted as a vector in R? although r; only depends on z;.

Our proof is divided into 3 steps. In Step 1, we rewrite (14a) and (14b) in a linear update form
(cf. (17)), study its behavior (Lemma 6), and decompose the error into a recursive form (Lemma 7).
In Step 2, we bound the noise sequences in the error decomposition (Lemma 10 and Lemma 11).
Finally, in Step 3, we use the recursive error decomposition and the bound on the noise sequences
to prove Theorem 5.
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Step 1: error decomposition. Define e, to be the indicator vector in RZNf, i.e. the
znr'th entry of e, is 1 and other entries are zero. Then, the critic update equation (14) can be
written as,

Qi=Q " + oy € (t-1) " [Mizi(t = 1)) + QU (e (1) — QN (ann (- 1)), (16)

with Q? being the all zero vector in RZNF . Notice that Qfl(sz) = e;rNﬁ Qﬁfl, we can make the

following definition (where we omit the dependence on ¢ in notation A, ./, b.),

T T ZNrXZNK ZNk
A, =e.. ['yezﬁwi — ean] e R™™ v, by =e. . ri(z) € RN,
i 4 i i

and rewrite (16) in a linear form

Q= Q" + o1 [A -1 ()@ + b1y - (17)

We define the following simplifying notations, A;—1 = A1) (1), bt—1 = by—1). Let F; be the
o-algebra generated by z(0),...,z(t). Then, clearly A;_; is F;-measurable and by is F;—1 mea-
surable. As a result, Qf is Fy-measurable. Let 7 > 0 to be the integer in Assumption 3. Let
d;_1 € R? be the distribution of z(t — 1) conditioned on F;_,. Further define, A; 1 = EA; 1|F;_~,
bi_1 = Eb;_1|F;_. It is clear that dy;_q, A;_1, b;_1 are all F;_, measurable random vectors (ma-
trices). With these notations, (17) can be rewritten as,

Q! = Qlfl + oy [Atq@ﬁﬂ + bi—1]
= Qﬁ‘l + a1 [At—1Q§_1 + bi—1] + a1 [(Ay—1 — /L_l)Qﬁ_l + b1 — br_1]
= Qf_l + a1 [&—1@?1 + by—1]

+ a1 [(Ap—1 — At—l)QTT + b1 — be—1] Fou—1 (A1 — At—l)(Qgil - QTT)a (18)
5:2:—1 ::;:,1

where in the last step, we have defined sequences €;_1,¢;_1 € RZNF , which are noise sequences
that we will later control in Step 2. For now, we focus on the term Atq@f*l + b;_1, and show
the following Lemma 6. The proof of Lemma 6 is similar to the analysis of fixed points for TD
learning with linear function approximation, see e.g. Van Roy and Tsitsiklis [1995]. We postpone
the detailed proof of Lemma 6 to Appendix C.1.

ZNsXZNE Znn
1 K2 1

Lemma 6. Vt, there exists diagonal matrix Dy—1 € R and operator g;—1 : RZM 5 R

s.t.
At—ng_l + b1 = _Dt—ng_l + Dt—lgt—l(Qﬁ_l)a (19)

where Dy_1 satisfies Dy_1 = ol (recall o > 0 is from Assumption 3) with its zNr 'th diagonal entry
being dt,l(zNin) = ZZNH €Zpn dt,l(zNin,szi), which means the marginalized distribution of znr

under distribution d;—1. Further, gi_1 1s a y-contraction in the infinity norm, with unique fized
k+1

. Ak t—1 . . Ax,t—1
point ;" satisfying sup.ez |Q7" (2n) — Q7 (2)] < F=
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From Lemma 6, we can see the first two terms in (18) can be written as (I — at_lDt_l)QAﬁ_l +

A, t—1

o 1Dy 191 (fol)7 which roughly speaking drives the iterate to Q;” ", the fixed point of operator

gt—1. Though depending on ¢, Q:’t_l is a good approximation of the true Q-function @)} regardless
of ¢, as shown in Lemma 6. As such, moving towards Q;"t_l at each time step should eventually
produce a good estimate of the full @-function Q7. In the following, we turn the above intuition

into an error decomposition. In details, we unroll (18) and get,

= —o_1Di 1)Qt YYap 1Dy 1gt 1(Qt Dty 1-|-0<t 10t—1
t—

1 t—1 t—1
(I — axDy) QF + Z oDy H — aDy) gr(Q7) + Z o H — ayDy)(er + ),
k=1 k=1 l=k+1 k=1 {=k+1
BT—l,t Bkat Bk,i
(20)

where we have used the following short-hand notations Bjy; = a3Dj HZ_EH(I — ang),ngvt =
H@ k+1<I —ayDy). We also define S+ = oy, Hz;iﬂ(l — ayo), Bkt HZ k+1< — ayo). Since every
diagonal entry of Dy is lower bounded by o almost surely (Lemma 6), we have every entry of By,
is upper bounded by B, and every entry of Bk,t is upper bounded by Bk,t almost surely. With
these short-hand notations, we state the error decomposition below, which is a consequence of (20)
and the property of operator g(-) and its fixed point Q:k in Lemma 6. The proof of Lemma 7 is
postponed to Appendix C.2.

*

Lemma 7. Let § = sup,cz |Q§(ZNZ,~) — QI (z)|. The following recursion holds almost surely,

t—1 et
&< Brrilr+y sup D bl zm)gw +||ZakBmek||m+HZakBmkHoo,

ZNNEZNNk — k=7

where bk7t(sz) = aka(sz) Hz;iﬂ(l — ang(sz)) is the znx 'th diagonal entry of By

From Lemma 7, it is clear that to bound the error &, we need to bound || 261 oy By ser[loo
and || Zk 'y By 1910, which is the focus of the next step.
Step 2: bound the ¢; and the ¢,-sequence. The goal of this step is to bound || Zk . o By, 1€kl oo
and || ch_:lT By 19k || oo We first show some simple properties of Qi, ¢t and ¢ in Lemma 8. Since
every entry of a;Bj,; is upper bounded by S, we also show some properties of By, Bi; in
Lemma 9. The proofs of the two lemmas are postponed to Appendix C.3.

Lemma 8. We have almost surely, (a) ||Q!]lc < %; (b) |letlloc < €=

2630 t—r+1 ¥k

ri(e) |9l <

Lemma 9. If oy = where ty > h > 2 and tog > 4oh, and tg > T, then B, t,ﬁkt satisfies (a)

t+t ’

h (k+1+t k14t
ﬁkt,kﬂo( t+t0°> ,5k,t§(Tt0°> (b)Y s t+t0 ;) S Bre i 41 Q0 <

8hr 1
o t+t0

We now bound || ZZ_:IT oy By t€k||0o- Clearly, €,_1 is F;-measurable, and satisfies

Ele; 1| Fi—r] = E[(Ar—1 — Ay1)QV T + by — by_1|Fi—r] =0, (21)
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where the last equality is due to the definition of A;_; and b;_; and the fact QE_T is F;_r-measurable.
Equation (21) shows that €;—1 is a “shifted” martingale difference sequence (it is not a standard
martingale difference sequence which would require Ee;_1|F;—; = 0). Therefore, || 22;17 o Brser oo
can be controlled by Azuma-Hoeffding type inequalities, as shown by Lemma 10. We comment that
Bk,t is also random and Bk’tek is no longer a martingale difference sequence. As a result, to prove
Lemma 10 requires more than the direct application of the Azuma-Hoeffding bound. For more
details, see the full proof of Lemma 10 in Appendix C.4.

Lemma 10. We have with probability 1 — ¢,

-1
H § o By €k,
o0

k=1

_ Th 27t
< 66\/0_(t+t0) [log(T) + f(k)log SA].

Finally we bound sequence || >>5~! ay By 11 || oo using the fact ¢y_1 = (A;_1—A;_ 1)(Qt ! Qt i)
can be bounded by the movement of Q after 7 steps (i.c. HQt ! Qt "|loo), which is small due to
the step size selection. The proof of Lemma 11 can also be found in Appendix C.4.

Lemma 11. We have almost surely, || Z};—:IT ak3k7t¢k||oo < 162}” t+1to = C¢t+t0
Step 3: bound the critic error. = We are now ready to use the error decomposition in

Lemma 7 as well as the bounds on the €, ¢g-sequences in Lemma 10 and Lemma 11 to bound the
error of the critic. Recall that Theorem 5 states with probability 1 — ¢,

6 < Ca . Co . G
=T+t T+ty 1—1

, (22)

20p’i+1
1—

6e Th 27‘T2 2 16ehT 27
—lo k)1 A I =

To prove (22), we start by applying Lemma 10 to ¢ < T with ¢ replaced by ¢/T. Then using
’ < C.—1_ with

where Cy = and

C, =

(7 +t0))-

a union bound, we get with probability 1 — 4, for any ¢t < T, H Zi;lT akBk,tek m

Ce= 66\/% [log(%) + f(k)log SA]. Combining this with Lemma 7 and using Lemma 11, we get
with probability 1 — 9, for all 7 <t < T,
t—1

~ 1 1
< B- + ysu bt (znr)Ek + C. +C + Cy. 23
& < Br-14&r VZNEI; MEINVILS T T O, T (23)
We now condition on (23) is true and use induction to show (22). Eq. (22) is true for t = 7, as
c . .
> 2\f1 — where we have used |&;] < [|Q* oo + Q7 [loo < . Then, assume (22) is

true for up to k <t — 1, we have by (23),

= C c C 1 1
< B 1ibr + s bt (2 ¢4 a4 0 +C
S 5 Proaidr 'Vbﬁpkz_; o) e Y i T 1o T s T Yt

t—1 t—1

- 1 1
< Br-14&r +yCq sup bit(2n5 ) ——— + 7C’ sup bt ( ZNx
roLtée £ “ZNMX_; 3 Z)W ! ZNH,; )

L o1 G
Vitto  Pt4ty  1-—7

+Co

+ Ce
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We use the following auxiliary Lemma, whose proof is provided in Section C.5.

Lemma 12. Recall oy, = ﬁ, and bk,t(ZNf) = akcik(z]v{e) Z;iﬂ(l — aﬂg(zNin)), here (Jk(sz) >
o. Ifoh(1—/7)>1,t>1, and ag < %, then, for any znx, and any 0 <w <1,

1 1
E b <
kt(2ny) (k+ to)” — At +to)®

With Lemma 12, and using the bound on B’T—l,t in Lemma 9 (a), we have

1 1 Co
e +Cy——
Vitte  Ct+ty  1—n
1 1 T+ 1o\ " Co
e C. ! C ( ) : .
SV “Jixi «/t+to+ﬁ “t+to+ it T \txgy) © R

=Fy =F]

& < Bro1.4& +/7Ca m+ﬁ “t—i—t

To finish the induction, it suffices to show F; < —£a— and F/ < . To see this, note

\/W
T+ 1o C. 4t Cy | & (14 1to) (T+1t9)7" !
F = —_— F == e
t Ca \/’7"_ Ca’ t C(/l \/’74_ C¢/7, + Cclz (t_|_t0)a'hfl

— t+t

So, we can require C’a,C’ to be large enough such that i <1-\7 & % < 1_ﬁ, and ET(THO) <

- f Using &; < —7 one can check our selection of C, and cl satlsﬁes the above three 1nequal—
1tles and so the induction is finished and the proof of Theorem 5 is concluded. O

4.2 Analysis of the Actor and Proof of Main Result (Theorem 4)

With the error of the critic bounded in Theorem 5, the second part of the proof focuses on the
actor, i.e. the policy gradient step. Recall that at iteration m, the policy gradient step is given by

0;(m + 1) = 0;(m) + nmgi(m) with n,, = \/%H and g;(m) is given by

T
Gi(m) = DA 3 QT s (1), aes () Vi log ¢ a0 (1), (24)
t=0

jJENF

where QZ”T is the final estimate of the @)-function for r; at the end of the critic loop in iteration
m, where we have added an additional superscript m to QZ”T to indicate its dependence on m;
{s(t),a(t)}L, is the state-action trajectory with s(0) drawn from o (the initial state distribution
defined in the objective function J(#), cf. (2)) and the agents taking policy 6(m). Our goal is to
show that g;(m) is approximately the right gradient direction, Vg, J(6(m)), which by Lemma 1 can
be written as,

[e.9]

Vo J(0(m) =D E__ otm)  coim g |7 Q7 (5,0) Vo, log ("™ (a]s) | (25)
t=0

where 7rf (™) is the distribution of s(t) under fixed policy #(m) when the initial state is drawn from
7o; Q™) is the true Q function for the global reward r under policy O(m), cf. (7).
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To bound the difference between §;(m) and the true gradient Vg, J(6(m)), we define the following
additional sequences,

T
= va% 3 QI (s(8),at) Vo, og ¢ (ai(t) i(t)), (26)

t=0 JENF

1 0 0
) i gy |1 D2 Q™ (5,00 Vo log M ails) | @27)
t=0 JENF

tgﬂ

hi (m) =

where Qf(m) is the true @ function for r; under policy §(m). We also use notation h(m), g(m),
g(m) to denote the respective h;(m), g;(m), g;(m) stacked into a larger vector. The following result
is an immediate consequence of Assumption 1 and Assumption 4, whose proof is postponed to
Appendix D.1.

Lemma 13. We have almost surely, Ym < M, max(||g(m)|, |[[g(m)]], ||h(m)], |VJ(O(m))]) <
L
a2
With these definitions, we decompose the error between the gradient estimator g(m) and the
true gradient V.J(0(m)) into the following three terms,

g(m) = g(m) — g(m) + g(m) — h(m) + h(m) — VJ(0(m)) +V.J(6(m)). (28)

et (m) e*(m) e3(m)

In the following, we will provide bounds on e!(m), e?(m), e3(m), and then combine these bounds
to prove our main result Theorem 4.
Bounds on e'(m). Notice that the difference between §;(m) and g;(m) is that the critic estimate

Q;”’T is replaced with the true Q-function Qg(m). By Theorem 5, we have QTT will be very close

to Q?(m) with high probability when T is large enough, based on which we can bound ||e!(m)]],
which is formally provided in Lemma 14. The proof of Lemma 14 is postponed to Appendix D.2.

2cp”

_6
Lemma 14. When T is large enough s.t. Ca\(/éﬁftf) + 73 = = 7)2, where
6e Th 27712 2 16ehT 27
Co(0,T) = \/ log SA], C! = t
0T) = 2 T os () + ) o8 SA), Cl= 7 max( T 4 h)),
. _ L K41
with € = -4, SUPg< <1 llet (m)| < 4(01 p7 .

Bounds on ¢ (m) Let G,, be the o-algebra generated by the trajectories in the first m outer-loop
iterations. Then, 6(m) is G,,—1 measurable, and so is h;(m). Further, by the way that the trajectory
{(s(t),a(t))}L, is generated, we have E[g(m)|Gm—1] = h(m). As such, 5,,(VJ(0(m)),e*(m)) is a
martingale difference sequence w.r.t. G,,, and we have the following bound in Lemma 15 which is a
direct consequence of Azuma-Hoeffding bound. The proof of Lemma 15 is postponed to Section D.3.

Lemma 15. With probability at least 1 — §/2, we have

or2r2 | N

M
’ Z Nm(VJ(0(m)),e*(m))| < =) 2 Z:On%l log%
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Bounds on e3(m). The term e®(m) is the error between h(m) and the true gradient V.J(6(m)),
where h(m) is similar to the truncated policy gradient in Lemma 3 and therefore should be close to
the true gradient by Lemma 3. We provide Lemma 16 below to bound |e3(m)||. Due to technical
issues, h(m) is not exactly the same as the truncated policy gradient defined in Lemma 3, but a
variant of it instead. Therefore the conclusion of Lemma 3 can not be directly used in the proof
of Lemma 16. Nevertheless, the proof of Lemma 16 follows essentially the same arguments as in
Lemma 3 and is postponed to Appendix D.4.

10g<@) +(k+1)log p

Lc r+1
log v .

Lemma 16. When T+ 1 > —g

, we have almost surely, ||e3(m)| < 27

Combining the bounds and proof of Theorem 4. With the above bounds on e!(m), e?(m)
and e3(m), we are now ready to prove the main result Theorem 4. Since V.J(f) is L' Lipschitz
continuous, we have

J(O(m +1)) = J(0(m)) + (VJ(0(m)),0(m + 1) — 6(m)) — £IHG(m +1) = (m)]||?

= T00m)) + 1 (T(0m)). 3m)) — 222 g0 2 (29)
Using the decomposition of §(m) in (28), we get,
§0m)I? < 4llelm)[? + A2 + 4l + 4TI Em)*
Further, we can bound (V.J(8(m)), §(m)),

(VI (0(m)), §(m)) = [VI(O(m))|I* + (VI (0(m)), e’ (m) + €*(m) + € (m))
> [[VIO(m))|* + (VI (O(m)), e*(m)) — VI (@(m)|([le* (m)[| + [le*(m)])).-

Plugging the above bounds on ||g(m)||? and (V.J(8(m)), g(m)) into (29), we have,

J(O(m+1)) = J(0(m)) + (nm — 2L'ng )IIVI (O())|? + im0 — NmEm,1 — TmEm,2, (30)
whete &0 = (V.1(0(m)), €2(m), ema1 = VIOl (m)]| + [, ema = 2L/ (el (m)|? +
le2(m)]|? + |le3(m)]|?). Doing a telescope sum for (30), we get

J(Q(M) Z - 2L/ ”v'] H2 + Z TIm€m,0 — Z mém,1 — Z 77m€m2

1
0)) + Z Sl VI(0(m))[* + Z MmEm,0 — Z Nmém,1 — Z Mnemz,  (31)
m=0 m=0 m=0 m=0

where we have used 7,, — 2L’ 77,2n = (1 — 2L'n,,) > %nm, which is true because 1y, < n < 77
After rearranging, we get

M—-1 1 M—-1 M—-1 M—-1
> Gl VIO < JOM)) = JO0) = Y hmemo+ Y hmEm1+ Y nEma- (32)
m=0 m=0 m=0 m=0
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We now apply our bounds on e!(m),e?(m),e3(m). By Lemma 15, we have with probability

é
1- 9,

27’2L2 = 4
| Z mmemo| < 7=y |2 3 rhlog 5 (33)

By Lemma 14 and Lemma 16, we have with probability 1 — %,

TL 1 3 FL dcLptt Le .
sup € < m———5( sup Jlex(m)||+ sup [le"(m)|) < +2 K
s € (s [+ s [l m)]) € e (s 2
6L%cT
< K1 34
=15’ (34)
By Lemma 13, we have almost surely, max(|[e!(m)]|, [|e2(m)]], ||e3(m)]]) < =y and hence,
2472 L' L?
sup em,p = 2L ([le! (m)[I* + le*(m)[|* + [le* (m)II*) < <7 (35)
m<M-1 (1=7)

Using a union bound, we have with probability 1 — §, all three events (33), (34) and (35) hold,
which when combined with (32) implies

Soa0 VI (0(m)) ]2
Yoo T

2J(6(M)) — J(O(0)) + 2\ SM s

M—-1 92
+2 SupmSMfl €m,2 Zm 0 m

< +2 sup em
Z%_Ol Nm m<M—1 "
272 27172 —~M—1
Q(J(H(M» - J(e + (41T L \/2 Zm 0 nm IOg 5 4?I_L)£/ Zm 0 777271 12.[/2677
< : + =p"". (36)
S M (1—=7)
Since 7, = \/%H, we have, Z%:_OI Nm > 2n(vVM +1—-1) > nvM + 1 and Z% 01177271 < n*(1+

log(M)) < 2n?log(M) (using M > 3). Further we use the bound J(6(M)) < 157 and J(0(0)) >0
almost surely. Combining these results, we get with probability 1 — 4,

87212 9672L'L?
Sos mall VIO |2 _ iy Gy log M bog § + Sy nlos M aapzer
oot M1 (L=yp"

This concludes the proof of Theorem 4. O

5 Numerical Studies

In this section, we first conduct numerical studies in Section 5.1 using a synthetic example where
the optimal solution is known in closed form to verify our theoretic results. Then, in Section 5.2,
we demonstrate our approach using the wireless communication example introduced in Section 2.2.
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5.1 Synthetic Experiments

We first study a synthetic example where the interaction graph is a line of n nodes N’ = {1,2,...,n}
with the left most node labeled as 1 and the right most as n. Each node has a binary local state
space and local action space S; = A; = {0,1}. The left most node (node 1) has a reward 1 whenever
s1 = 1, and all other reward values of node 1 and the rewards of all other nodes are 0. Further,
s1(t + 1) = 1 with probability 1 when the second node has state so(t) = 1, and in all other cases
s1(t + 1) = 0 with probability 1. For the ¢’th node with 2 <i<n —1,

1, if s;i41(t) =1,0a(t) =1,
P(Si(t + ].) = 1|Si,1(t), Si(t), si+1(t),ai(t)) == 08, if Si+1 (t) == O,ai(t) == 1,
0, all other cases.

For the last node i = n, s,(t +1) = 1 w.p. 1 when a,(t) = 1, and s,(t +1) = 0 w.p. 1 when
an(t) = 0. The initial states of all nodes are s;(0) = 1.

In this example, the rewards and transitions are designed in a way so that the optimal policy
can be determined explicitly. Only agent 1 has a non-zero reward when its state is s; = 1, and it
will stay in state s; = 1 only when so = 1, which happens with high probability when ao = 1 and
s3 = 1, and so on so forth. Therefore, it is clear that the optimal policy is for all nodes to always
take action a;(t) = 1 regardless of the local state, in which case the states of all agents will stay as
si(t) = 1, and the resulting optimal global discounted reward is %1%

In our experiments, we set n = 8, v = 0.7. We use the softmax policy for the localized
policies, which is a standard policy parameterization that encompasses all stochastic policies from
S; to A; [Sutton et al., 1998]. We run the SAC algorithm with k = 0 up to xk = 7. We plot
the global discounted reward throughout the training process in Figure 1, and we also plot the
optimality gap in Figure 2 computed as the difference of the optimal discounted reward (%ﬁ)
and the discounted reward achieved by the algorithm with the respective x values. Figure 1 shows
that when s increases, the performance of the algorithm also increases, though the improvement
becomes small when x > 1. This is also confirmed by Figure 2, which shows the optimality gap is
decaying exponentially when k increases. This is consistent with our theoretic result in Theorem 4.
We note that the exponential decay appears to stop in Figure 2 when x > 4, and this is due to the
increasing complexity in training for large x as discussed in Section 3.3, and may also be due to
the fact that any further potential improvement may be too small (in the order of 1 x 1073) to be

noticed because of the noise.

5.2 Multi-Access Wireless Communication

We next study the multi-access wireless communication example discussed in Section 2.2. We
consider a grid of users in Figure 3, where each user has access points on the corners of the block
it is in. In the experiments, we set the grid size as 6 x 6, deadline as d; = 2, and all parameters p;
(packet arrival probability for user i) and ¢ (success transmission probability for access point yx)
are generated uniformly random from [0,1]. We set v = 0.7 and the initial state to be uniformly
random, and run the SAC algorithm with x = 0,1,2 to learn a localized softmax policy, starting
from an initial policy where the action is chosen uniformly random. We compare the proposed
method with a benchmark based on the localized ALOHA protocol [Roberts, 1975], where each
user has a certain probability of sending the earliest packet and otherwise not sending at all. When it
sends, it sends the packet to a random access point in its available set, with probability proportional
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Figure 1: Global discounted reward during the Figure 2: Optimality gap as function of x in the
training process in the synthetic experiments. synthetic experiments.

to the success transmission probability of this access point and inverse proportional to the number
of users that share this access point. The results are shown in Figure 4. It shows that the proposed
algorithm can outperform the ALOHA based benchmark, despite the proposed algorithm does not
have access to the transmission probability ¢i which the benchmark has access to. It also shows
that the SAC with k = 1,2 outperforms x = 0, which as we mentioned in Section 3.2 corresponds
to the independent learner approach in the literature [Tan, 1993; Lowe et al., 2017]. SAC with
k = 2 outperforms k = 1, but the improvement is small, which is consistent with the results in the
synthetic experiments in Section 5.1. We also study a case with the same 6 x 6 grid of access points,
but the 36 users are assigned randomly to the square blocks in the grid. We plot the results in
Figure 5. Similar phenomenons can be observed in Figure 5 as in Figure 4, with SAC outperforms
the benchmark and SAC with k = 1,2 outperforms x = 0, the independent learner approach.

6 Concluding Remarks and Extensions

This paper proposes a SAC algorithm that provably finds a close-to-stationary point of J(#) in time
that scales with the local state-action space size of the largest x-hop neighborhood, which can be
much smaller than the full state-action space size when the graph is sparse. This represents the first
scalable RL method for localized control of multi-agent networked systems with such a provable
guarantee. There are many possible extensions and open questions, which we discuss below.

Average Reward. One extension is to consider average reward instead of discounted reward,
i.e., to consider

T—

1
Jave(0) = Hm —Esom By co(|st)) [ 7( t))|s(0) = s].
t=0

)_l

Under appropriate ergodicity assumptions, the average reward above is equivalent to the reward
under the stationary distribution. Average reward is common in applications where the perfor-
mance is measured in stationarity, e.g. throughput or waiting time in communication and queueing
networks. Despite the importance in applications, average reward RL is known to be more chal-
lenging even in single-agent settings, see e.g. Tsitsiklis and Van Roy [1999, 2002]. For example,
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the @ function needs to be defined in a different way,

Q°(5,a) = Equymco(s(1)) [Z(T(S(t)a a(t)) = Jave(0))[5(0) = s,a(0) = al,

t=0

and because of the lack of a discounting factor ~y, the associated Bellman operator no longer has ~
as the natural contraction factor. In ongoing work summarized in Qu et al. [2020a], we have begun
to study an average reward multi-agent RL setting with the same local interaction structure (1) as
in this paper. While similar exponential decay properties on the Q-functions can be defined, in the
average reward setting, Qu et al. [2020a] shows that the exponential decay only holds under a form
of bounded interaction strength assumption. Under this assumption, Qu et al. [2020a] proposes
a variant of the SAC algorithm that achieves similar guarantees as the algorithm in this paper.
However, the bounded interaction strength assumption in Qu et al. [2020a] may be restrictive, and
searching for weaker assumptions that guarantee the exponential decay (or weaker forms of decay)
is an interesting open future direction.

Time-varying dependence structure. In this paper, the interaction graph that defines
the dependence structure (1) is a fixed graph, while in many real world applications the graph is
time-varying. In other words, if the interaction graph at time t is G, then (1) becomes,

n

P(s(t +D)ls(t), a(t) = [ ] Pilsi(t + Dlsw,gn (), ai(1)),
i=1

where N;(G;) means the set of neighbors of ¢ in graph G;. In another of our extensions of this work
[Lin et al., 2021], we study a stochastic graph setting where, at each time step, the graph G; is
sampled from a fixed graph distribution in which each link is present with probability exponentially
decreasing in a predefined distance measure between the two nodes. Lin et al. [2021] shows that a
weaker form of exponential decay holds in this setting, termed p-decay, and a similar SAC algorithm
can be used. Beyond Lin et al. [2021], an open question is how to handle the case where G; can be
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Figure 4: Global discounted reward during train- Figure 5: Global discounted reward during train-
ing. ing when user locations are assigned randomly.

arbitrarily chosen, rather than stochastically sampled. An issue in this setting is that the transition
kernel may not be time-homogeneous anymore, which means that is a challenging open problem.

Other future directions. While SAC is an actor critic based algorithm, the idea underlying
SAC, including the exponential decay property and the truncated Q-function (9), is a contribution
in its own right, and can potentially lead to other scalable RL methods for networked systems. For
example, within the actor critic framework, one idea is to change the critic to variants like TD-\,
change the actor to include the advantage function, or use the simultaneous update version of the
actor critic algorithm (as opposed to the inner-loop structure used in this paper). Beyond the actor
critic framework, one can develop policy-iteration type algorithms (e.g. @-learning/SARSA type
methods) on our truncated Q-functions. Further, our proof technique in showing the finite time
convergence of TD learning can be of independent interest. In fact, we have already considered
preliminary applications of our technique in the context of Q-learning and TD learning with state
aggregation [Lin et al., 2021], and we expect other applications to emerge in the coming years.
Additionally, the setting we consider here does not provide an investigation of the tradeoff between
exploration and exploitation. Adding consideration of this tradeoff is an interesting direction for fu-
ture work. Finally, other future directions include studying the landscape of our policy optimization
problem, and studying the robustness of the trained policies.

A The Exponential Decay Property

Our main results depend on the (¢, p)-exponential decay of the @-function (cf. Definition 1), which
means that for any i, any syx, sy~ and siyx , ans, ane, and ajy«x ,

|Q?(5Nf7 SN® ., ANE, aNfi) - Q?(SN;, 53\721.’ anr, a/Nfi)| < CPKH-

In Section 3.1, we have pointed out in Lemma 2 that the (c, p)-exponential decay property
always holds with p < «, assuming the rewards r; are upper bounded. We now provide the proof
of Lemma 2.

Proof of Lemma 2. We first prove part (a). For notational simplicity, denote s = (snx,sn=.),
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a = (anx,anx,); 8’ = (sNims’Nﬁi) and o' = (aNin,a’N,ii). Let 7;; be the distribution of (s;(t), a;(t))
conditioned on (s(0),a(0)) = (s,a) under policy 0, and let 7 ; be the distribution of (s;(t), a;(t))
conditioned on (s(0),a(0)) = (s, a’) under policy 6. Then, we must have m;; = m;; for all ¢ < &.
The reason is that, due to the local dependence structure (1) and the localized policy structure, 7 ;
only depends on (sy¢,ayt) (the initial state-action of agent 4’th ¢-hop neighborhood) which is the
same as (SINf’ S/N;f) when t < k per the way the initial state (s,a), (s',a’) are chosen. With these

definitions, we expand the definition of Qf in (7),

Q1 (s,a) — Q1(s', )]
<D B[R rilsi(t), ai(1))|(s(0),a(0)) = (s,a)] = E[y'ri(si(t), ai(t))[(5(0), a(0)) = (s',a")]

=0
t=0
e

- ¥

t=k+1

t t
VE(si,a0)~m i Ti (805 @) = VE (s, ap)~m Ti(S1, a0)

t t
VE (5,000~ iTi (805 @) = VE (s, ap)~m Ti(S0, a0)

(e 9] —

_ T
< D0 ATV m ) < 7
t=rk+1

AR (37)

where TV (m ;, ﬂgl) is the total variation distance between m;; and 77271. which is upper bounded by
1. The above inequality shows that the (%,7)—exponential decay property holds and concludes
the proof of Lemma 2 (a).

The proof of part (b) is almost identical to that of part(a). The only change is that in step
(37), we use TV (my 4,7 ;) < 2. O

B Proof of Lemma 3

We first show part (a), the truncated @ function is a good approximation of the true @ function.
To see that, we have for any (s,a) € S x A, by (9) and (10),

QY (snr,anr) — QY(s,a)]

0 (7
:‘ > wi('S?vzi,a’Nfi;SN;uaN:)Qi(SNf,S’Ng,azvf,aﬁvg)*Qi(SvasNi,.,aNfaaNfi)‘

! i
SNr ANk
—1 —1

< Z wz’(S/Nfi»aEvg;SNf,aNf) Q?(SNf,S?vii,aNf,alei) - Qf(SNfasNEiyaNi“’aNfi)‘

! /
Snk ANk
—1 —1

<cptth (38)

where in the last step, we have used the (¢, p)-exponential decay property, cf. Definition 1.
Next, we show part (b). Recall by the policy gradient theorem (Lemma 1),

1
ng‘](e) = ﬁEswﬂe,awge(-\s) [Qe(sv a)vei log Ce(a|s)]
1

. 0 Oi() lc.
= T Bonnt anc?(l) (@ (s, @)V, log ' (anlsi)]
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Vo, log Cfi(ai\si) by the localized

where we have used V. log(?(als) = Vo, > jenlog C?j(ajlsj) =
policy structure. With the above equation, we can compute iLZ(Q) — Vo, J(0),

hi(0) — Vo, J (0)

1 1 NG 0 0;

=T Rttt | | D Qjsny any) = Q(s,a) | Vo, log &' ailsy)
|\ jeny

1 .

o | [ @expion) - L T Qs0)| Vo o)
7 ]EN JG/\/
1
— fp}/EsNﬂ— GNCB Z Q SNK a’NK)VG logg (al|sl)
JeN*‘

= B — Es.

We claim that Fo = 0. To see this, consider for any j € N,
gm0 anco()s) [Ve. log Cei(ai|si)Q§(sN;, aN;)]

a;lS;) -
= ZW H 71’ Z)Qf'(SN;,GN;)
s,a

¢ (ailsi)
=> (s HCg (aelse) Vo, ¢ (ai]3:)Q J(snr,ane)
s,a £
= Z H (ag|s0)Q SN” anx ZveC (aisi)
8501500307 —1,Qi415++,0n -1 a;
= O’

where in the last equality, we have used Q?(SN;,CLN]@) does not depend on a; as i ¢ NF; and

>as Vgig“f"(aﬂsi) =V, >0, Cfi (ailsi) = Vp,1 = 0. Now that we have shown E3 = 0, we can bound
E; as follows

1hi(8) = Vo, J(0)]| = || Ex |

1 1

< Eontanco(ls | D
1-7 n JEN

QO (s ans) — Q(s,0)| [V, log ¥ (ailsy) |

< 70,05—’_1[/@‘,
L=

where in the last step, we have used (38) and the upper bound ||Vy, log Cfi(ai|si)H < L;. This
concludes the proof of Lemma, 3. O

28



C Proof of Auxiliary Results for the Analysis of the Critic

C.1 Proof of Lemma 6

The goal of Lemma 6 is to understand flt_le_l + b;—1. Recall that d;_; is the distribution of
z(t—1) conditioned on F;_ and A1 = E[A;1|F—7] = E[A, 1) 20) [Fi—r]s bt—1 = E[br—1|Fi—r] =
Elb.(t—1)|Fe—r]-

Recall that P is the transition matrix from z(¢—1) to z(¢). Given any distribution d on the state-
action space Z, we define A, = E.  p(|)Asz. and At = E, 4A,, b = E,4b,. Then, 4;,_; and
b,—1 can be rewritten as A;_; = A%-1, b_; = b%-1. In what follows, we provide characterizations
of A%, b? for general distributions d.

Firstly, A, is given by,

A, =B p(nAsy = € [YP([2)® — el I (39)
where P(:|z) is understood as the z’th row of P and is treated as a row vector. Also, we have
defined ® € RZ*M to be a matrix with each row indexed by z € Z and each column indexed by

T

Zyx € Znr. Further, the 2’th row of @ is the indicator vector e, ,

in other words ®(z, z\x) =1
if 2yx = zns and @(z, 2y ) = 0 elsewhere.

Then, A%, b are given by,

AT =F,qA, =) d(2)e.,, [YP(|2)® — e ] = & diag(d) [yPP — @], (40)
zEZ ’ !
b =E, 4b. = &' diag(d)r, (41)

where diag(d) € R*Z is a diagonal matrix with the z’th diagonal entry being d(z); in the last
equation, r; is understood as a vector over the entire state-action space Z, though it only depends
on z;.

With the above characterizations, we show the following property of A% and b% in Lemma 17.
Lemma 17 (with d set as d;—1) will directly lead to the results in Lemma 6, with D;_; being the
D in Lemma 17 and it satisfies Dy_1 = ol due to Assumption 3; g;_1 and Q:’til being g%-1 and

Q?t_l in Lemma 17.

Lemma 17. Given distribution d on state-action pair z whose marginalization onto zyr is non-zero
for every zyr, we have A?Q; + b4 can be written as

A%Q; + b = —DQ; + Dg*(Qy),

where D = ®Tdiag(d)® < RZNFXENE s g diagonal matriz, with the znrth entry being the
marginalized distribution of znx under distribution d; g4() is given by g%(Q;) = ITD®Q;, where
e = (@Tdiag(d)@)_lfb—rdiag(d) and TD(Q;) = r; + vPQ; is the Bellman operator in (15).

Further, g%(-) is v contractive in infinity norm, and has a unique fized point Qfl c RN
depending on d, and the fized point satisfies

rk+1

(42)

A A N cp
sup |Q(2nr) — Qi ()] = 19Q¢ — Qi < F—.
zEZ Y
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Proof of Lemma 17. Tt is easy to check that D = & "diag(d)® € RZNEXENE g diagonal matrix,
and the zyr'th diagonal entry is the marginal probability of zy» under d, which is non-zero by

the assumption of the lemma. Therefore, ' diag(d)® € RV “?NF is invertable and matrix II¢ =
(® " diag(d)®)~'® " diag(d) is well defined. Further, the ZNy'th row of 14 is in fact the conditional
distribution of the full state z given ZNE. So, II% must be a stochastic matrix and is non-expansive
in infinity norm.

By the definition of A% and b%, we have,

A4Q; + b = @ diag(d) [yP® — @] Q; + @ diag(d)r;

= @ "diag(d)[r; + yPPQ;] — ® " diag(d)PQ;

= & diag(d)TD(®Q;) — ® " diag(d)PQ;

= —DQ; + DIIYTD($Q;)

= —DQ; + Dg*(Q),
where TD is the Bellman operator for reward r; defined in (15), and operator g is given by
94(Qi) = ITD®Q);.

Notice that ® is non-expansive in || - ||c norm since each row of ® has precisely one entry being

1 and all others are zero. Also since II? is non-expansive in || - || norm and TD is a y-contraction
in ||+ [|oc norm, we have g? =TI9TD® is a vy contraction in || ||o norm. As a result, g? has a unique
fixed point Qf.

Finally, we show (42), which bounds the distance between @Qf and @7, where @)} is the true
Q-function for reward r; and it is the unique fixed point of TD operator (15). We have,

12Q7 — Qoo < Q] — TQ} oo + [ PIQF — Q;l|oo
= |PITD(PQY) — TTD(Q;) |00 + |P17QF — QF[|oo
<PQY = Qi lloe + 1R117Q; — Q5 [|oo
where the equality follows from the fact that Qf is the fixed point of II*TD®, Q7 is the fixed point
of TD; the last inequality is due to ®II¢TD is a ~ contration in infinity norm. Therefore,
Ad * 1 d )k *
[2QF — Qjlloo < ﬁH‘I’H QF — Qi lloo- (43)

Next, recall that the zyr’s row of TI? is the distribution of the state-action pair z conditioned on its
N coordinates being fixed to be zyr. We denote this conditional distribution of the states outside
of N, 2=, given znr, as d(zn~ |znx). With this notation,

(IQ))(znr) = 3 dlzne, o) Q] (n 2, ).

And therefore,

(PTQ}) (2n, 2ve,) = Y d(2iye |2np) Q5 (2 2y )



Further, we have
(PI19QF) (2nr, 2n=,) — Qf (2, 2n%)]

> d(2lys |2ns) Q5 (g, 2e ) = D d(2ye |2nF) Q5 (2, 2w,

! ’

ZNN. ZNH-
Zi —1
<> d(zyn |2ne)|QF (2np, 2vx, ) — Q7 (2N, 2n%, )|
Zyr
—1
< Cpn—l-l’

where the last inequality is due to the exponential decay property (cf. Definition 1 and Assump-
tion 2). Therefore,
117QF — QF[loo < cp .

Combining the above with (43), we get the desired result
c pn+1

Ad *
[2QF — Qfllc < 1=

C.2 Proof of Lemma 7

Recall that the zyx'th diagonal entry of By is by ¢ (2nr ), and we define similarly the zyx"th diagonal
entry of Bk’t to be Bk;,t(ZNf)- Using these notations, equation (20) can be written as,

:G(Zz\lf)

t—1

Qi (znr) = bro14(2n)Q7 (2n) + D bt (2 ) 9w (QF)] (27
k=1
t—1

+ ) arbra(2ng) (er(2nz) + dr(2nr))- (44)
k=1
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Notice that by definition, 57_17,5(21\7;) + 22;17 bki(sz) = 1. Then,

t—1
Gleny) = Qi@ < broreleng) Q7 (2p) = Qi) + Y biales)llon( @) (zvy) — Qi (2)
k=1
t—1
< bro1e (o) |QF (2vy) = Q7 (2| + D b ) [90( Q) () — Q7 ()
t—1 . k:T
+ 3 baleng) Q5 (2) — Q7 (znp)|

k=1

[e.9]

t—1
< b1 (2ne)|QT (2vs) — QF () 47D bra (v 1QF — QFF
k=1

t—1
* A*,k
+ Zbk,t(ZNf)HQi —2Q;" [l
k=1
t—1

<br10(zn)|QF (2vr) — QF () +7 ) biet (2n)|2QF — QF[loo
k=1

t—1
+23  ba(ane)1QF — 207l
k=1
t—1
N 2 Kk+1
< Bro14ér + sz: bit (27 )&k + 1p_ 7 (45)
=T

where in the thrid inequality, we have used that gj is «-contraction in infinity norm with fixed
point Qf’k, and in the last inequality, we have used the property of Q;.k’k in Lemma 6. Combining
the above with (44), we have

& = [12Q} — Qflloo

t—1

~ 2 K1 t—1 _ t—1 ~
< Broaér + 7ilj\ll£)l€§:bk,t(ZNf)§k + lp_ 5 + |l kz:akBk,tﬁkHoo + |l ; Byt Ok || oo-
i k=T =T =7

C.3 Proof of Lemma 8 and Lemma 9

In this section, we provide proofs of the two auxiliary lemmas, Lemma 8 and Lemma 9. We start
with the proof of Lemma 8.

Proof of Lemma 8. First, notice that A, . = e, .[yel, — eZTNN] and b, = e, .ri(z;). As such,
i NE i i
[Azzrlloo ST +7 <2, [[b2]le <7

7

Part (a) can be proved by induction. Part (a) is true for t = 0 as Q¥ = 0. Assume [|Q! ™| <
Recall the update equation (16),

Ql = Q" + auafri(zi(t — 1)) +7QF (anr () — Q1 (e (t — D)lezyr(t-1),

T
1—v-
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or in other words,
Qf(zns(t — 1)) = Q (anm(t = 1) + apa[ri(zi(t — 1) + Q4 2z () — Q4 (2ws (= 1))
= (1= -1)Q  (avr(t — 1)) + g [ri(zi(t — 1)) + Q) (2 (1)),
And for other entries of Qf, it stays the same as Qﬁ_l. For this reason,
1Q¢loo < max(]| Q5 oo, |Q (2 (t = 1))
Notice that
T T

+ o1 (T +7y = ,
- ( 1—7) 1—x

Qi (t = 1)] < (1= ap1)
which finishes the induction and the proof of part (a).

For part (b), notice that ¢, = (A; — AQQ?H*T + by — by. Therefore, it is easy to check that by
part (a), [lefloc < F—e

For part (c), notice that, for any k
. o o 7 -
1QF — QF Moo = k-1l Ap—1Q " + b lloe < Oékflpﬁ +7].

Therefore, by triangle inequality,

Q7" = Qi T lleo < 27 +17] Z Q.

k=t—T1

As a consequence,

I9elloe < 1140 = Aulloo|QF = Q™ Hloo < [87 + 47 Z ap = 2€ Z aj.

k=t—71+1 k=t—71+1

Proof of Lemma 9. Notice that log(l — z) < —z for all x < 1. Then,

_ _oh_ _ _oh_
(1 — o'at) = QIOg(l t+to) < e ttio,

Therefore,
t—1 o
[T (1-oar) <e ~ i i
l=k+1
ah
<e - Ji- k1 Tt ¥
t4-t
_ e—ahlog( k+1-&£)t0)

B <k+1+to>0h
O\ t+t ’
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which leads to the bound on f; and Bk’t.
For part (b),

h?  (k+1+tg)%>h - 2h?
(t + t0)2‘7h (k + t0)2 - (t + t0)2‘7h

ﬁ]%’t < (k + t0)20h727

where we have used (k + 1+ t0)?" < 2(k + t9)?°", which is true when t¢ > 4ch. Then,

kt = W ( 0) = W ) YyTilo Y
k=1 k=1
2h? 1 9 2h 1
< t t och—1 —_—
(t + to)27h 20h — p(t+t0) o (t+to)

where in the last inequality we have used 20h — 1 > oh.
For part (c), notice that for k —7+1 < ¢ < k — 1 where k > 7, we have ay < dﬁ < ki};o
(using top > 7). Then,

t—1 k—1 t—1 t—1
2ht h  (k+1+to\oh 2kt
< — <
gﬂk,tkgﬂae_gﬁk,tk_,_to—];k+t0< t+to ) k+to

t—1
Z 4h%T
= (t“‘to)ah( o)

oAt (t4t)

~ (t+to)" oh—1
8ht 1

<777

— o t+tio

where we have used (k + 1+ )°" < 2(k +t9)°", and ch — 1 > Loh. O

C.4 Proof of Lemma 10 and Lemma 11

Since || Z’,;;lT ak Br.ik||oo < ZZ;IT Br.t]|®k|loo, Lemma 8 (c) and Lemma 9 (c) directly leads to the
bound in Lemma 11. So, in this section, we focus on the proof of Lemma 10. We start by stating a
variant of the Azuma-Hoeffding bound that handles our “shifted” Martingale difference sequence.

Lemma 18. Let X; be a Fi-adapted stochastic process, satisfying EX¢|Fi_, = 0. Further, | X;| < Xy
almost surely. Then with probability 1 — §, we have,

t t
. 2T
E Xe| <012 E X2log(=).
|]€_0 t’ — Tk_o k Og( 5)

Proof of Lemma 18. Let £ be an integer between 0 and 7—1. For each ¢, define process Y,f = X k1,
scalar Y,f = Xpr1¢, and define Filtration }-15 = Frk+e- Then, Y,f is f,ﬁ-adapted, and satisfies

EY) | F 1 = EXprio| Frrso—r = 0.
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Therefore, applying Azuma-Hoeffding bound on Y/, we have

t2

P(| Y| > t) < 2exp(— _
k:k’rz—‘r:fﬁt Zk:kT+€§t<Y]f)

2)
i.e. with probability at least 1 — g,

Z XkTM‘:‘ Z Yif‘ﬁ Z Xir e log( 5)

k:kT+0<t kikT+0<t k:kT+H0<t

Using the union bound for £ =0,...,7 — 1, we get that with probability at least 1 — ¢,

t
\th\ )SIIDINE E5 SN b SEE T IIWEAPN P b FIE )
k=0

=0 k:kT+0<t =0 kikT4+0<t

where the last inequality is due to Cauchy-Schwarz. O

Recall that Lemma 10 is an upper bound on || 22;17 akék’tekH, where 22;17 akék,tek is a

random vector in RZY | with its zn+’th entry being

-1 -1
> ager(ans) [ (1= cede(zny), (46)
k=T l=k+1

with Jg(zNim) > o almost surely, cf. Lemma 6. Fixing 2y, as have been shown in (21), ex(2nz) is a
Fr+1 adapted stochastic process satisfying Eey.(2n+ )| Fg 41—~ = 0. However, Hz;k_ﬂ(l — ozgcfg(zNin))
is not Fxy1_r-measurable, and as such we cannot directly apply the Azuma-Hoeffding bound in
Lemma 18 to quantity (46). In what follows, we first show in Lemma 19 that almost surely, the
absolute value of quantity (46) can be upper bounded by the sup of another quantity, to which
we can directly apply Lemma 18. With the help of Lemma 19, we can use the Azuma-Hoeffding
bound to control (46) and prove Lemma 10.

Lemma 19. For each znr, we have almost surely,

t—1 t—1 t—1
)Z%Ek(zfvf) [T (0 —ude(zne))| < sup <} > enlzns)Bri| + 2€5k0,t>-
k=r (=k+1 TSROt N f ko

Proof of Lemma 19. Let p; be a scalar sequence defined as follows. Set p, = 0, and
pe = (1 — ap_1dp_1(2n%))pk—1 + Q1651 (2N%).

Then p, = ZZ;IT arer(2nr) H;;iﬂ(l - agcfg(sz)), and to prove Lemma 19 we need to bound [py|.
Let ~

ko = sup{k: <t—1: (1 - Oékdk(ZNf))|pk| < ak]ek(sz)H.
We must have kg > 7 since |p,| = 0. With ko defined, we now define another scalar sequence p s.t.

ﬁko-ﬁ-l = Pko+1 and
Pr = (1 — ag—10)pr—1 + 1651 (2n7 ).

35



We claim that for all k£ > ko + 1, pr and py have the same sign, and |pg| < |pg|. This is obviously
true for k = kg + 1. Suppose it is true for for kK — 1. Without loss of generality, suppose both pi_1
and pi_1 are non-negative. Since k — 1 > ko and by the definition of ky, we must have

(1 — g 1dp—1(2n%))Pe-1 > |a—1€p-1(2nx)|-
Therefore, p; > 0. Further, since Jk;_l(ZNiﬁ) > o, we also have
(1 — ak—lo')ﬁk—l > (1 — ak—ldk—l(ZNf))pk—l > |O‘k—1€k—1(ZNf)‘-

These imply pr > pr > 0. The case where both p;p_1 and pi_1 are negative are similar. This
finishes the induction, and as a result, |p| < |p¢l.

Notice,
t—1 t—1 t—1 t—1
pr= Y arer(ens) [] Q=) +hrn [[ C—cwo)= D er(zns)Bri+ Bror1Bros-
k=ko+1 =k11 =kot1 k=kot1

By the definition of kg, we have

Prot1] < (1 = g iy (2855)[Pro| 4 ke lero (2 )| < 20uky|eng (285 ) | < 20146,

where in the last step, we have used the upper bound on ||€g, |loc in Lemma 8 (b). As a result,

-1
e < [Pe] < ‘ Z ek(ZNf)Bk,t} + ‘ﬁko—HBkzo,t‘
k=ko+1
t—1 i
<| Z ex (287 ) Brot| + |20k €Bo 1t |
k=ko+1
t—1
= > en(zng)Br| + 268k
k=ko+1

With the above preparations, we are now ready to prove Lemma 10.

Proof of Lemma 10. Fix zys and 7 < kg < t — 1. As have been shown in (21), ex(2nr)Br 18
a Frr1 adapted stochastic process satisfying Eeg(znr) = 0. Also by Lemma &(b),
lex (2 N{c) Br,t| < €8k almost surely. As aresult, we can use the Azuma-Hoeffding bound in Lemma 18
to get with probability 1 — 4,

t—1 t—1
2T
E Gk(ZNH)IBkt‘ €, |21 E Bl%,t 10g(7)
k=ko+1 k=ko+1

By a union bound on 7 < ky <t — 1, we get with probability 1 — 9§,

sup | > en(ans)Bry| < sup & |2r Z 6,3tlog ) <€ Z Bitlog 2,

T<ko<t—1 f=ko+1 T<ko<t—1 k=ko+1 k=7+1
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Then, by Lemma 19, we have with probability 1 — 4,

1 1 1
‘ > ager(ans) [ (1- aeJe(ZN;))‘ < sup <{ > erlene)Bral + 2€/J’k0,t>
k=T (=k+1 TSkoSt=L N g4t
<é Z Br 10g sup 260 ¢
k=7+1 7’<k:()§t—1

~ Th 27t _h ko + 1+ tg\oh
<o T gl wp 2t (fetLiiey
\/U B 4 ) Tgk;og—l ko +to t+to

where in the third inequality, we have used the bounds on 3} ; in Lemma 9. Finally, apply the union
bound over zyr € Zyx, and noticing that [NF| < f(x) and [Znx| < (SA)/ (%) by Assumption 1, we
have with probability 1 — 9,

t—1
B Th 27't(SA)f(”) B Th 27t
< = —_— .
| k}; o Breer| < 66\/ vy e ) = 0e s =)+ f(n)log 54)

C.5 Proof of Lemma 12

Throughout the proof, we fix zy» and prove the desired upper bound. For notational simplicity,
we drop the dependence on zyrx and write by, and dj, instead, and we will use the property dj, > o.

Define the sequence
t—1
1
=S bt
P (k+to)~

The statement is clearly true for t = 7 + 1, as

1 2 .
(last step needs a; < 5, (1 + to)w < =5 implied

We use induction to show that e; <
1 71
ert1 = brri1 e = ordr g <

1
\ﬁ(t'*‘lto)“’ ’
VA (T+1+t0)*
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by to > 1, w < 1). Let the statement be true for ¢ — 1. Then, notice that,

1 1
“t kZ::T B o) T M = 11 f)e

t—2

_ 1 - 1
= (1 —a_1d;— bt 11— dp g ——————
( atltl)kz:; koot 1(k+t0)w+at1t1(t_1+t0)w
_ - 1
= (1 —a¢_1di—1)es— dp g ——————
( at1t1)€t1+at1t1(t_1+t0)w
<(1 di—1) ! + d, !
o di o
< ey s e (s

1
VYt —1+t)"

= [1 — oy 1di—1(1—/7)

where the inequality is based on induction assumption. Then, plug in oy =

ds_1 > o, we have,

r oh 1 1
<l/1l-—(1-
=] t—l—i—to( ﬁ)_\ﬁ(t—l—i—to)“’
[ oh T t+to w 1
i t—1+to( ﬁ)_(t—l—l—to) VAt +to)”
r oh 1 1 w 1
—l1-— (1- (1+ ) _.
e YY) t—1+tg) A(t+to)

Now using the inequality that for any x > —1, (1 +z) < e”

, we have,

h
t—1+tg

and use

Uh 1 w _Uih(l_ﬂ)_’_w%
]_ - 1 — j| (1 7) < t—14t t—14t < 1’
[ it VI Ty se 0=
where in the last inequality, we have used w < 1 and the condition on A s.t. oh(1l —,/7) > 1. This
shows ¢; < m and finishes the induction.

D Proof of Auxiliary Results for Analysis of Actor

D.1 Proof of Lemma 13
Recall that

Therefore,

), anx (1) Ve, log ¢

(ai(t)]si(t))-

™ (ai(t)]s:(t)]

O



where we have used that HQTTHOO < 157 almost surely (cf. Lemma 8 (a)). As a result,

7
gm)|| = L.
1g(m)] RREEYE
The upper bounds for |g(m)]], ||h(m)|| and ||VJ(6(m))| can be obtained in an almost identical
way and their proof is therefore omitted. O

D.2 Proof of Lemma 14

Let G,, be the o-algebra generated by the trajectories in the first m outer-loop iterations. Then,
Theorem 5 implies that, fixing each m < M and 7 € N, conditioned on G,, 1, the following event
happens with probability at least 1 — §:

Co(5,T) cl 2cpttt

0(m) Am,T
su . s,a) — SN, anc)| < + )
(s,a)EEX.A‘Ql ( ) @ ( NI BN )} VI'+to T+t (1 _’7)2
where
i3 Th 27'T2 , 2 16ehT 27
Culd1) = =%\ og 4 ) tog 4. = (e T o),

-V

We can take expectation and average out G,,—1, and apply union bound over 0 < m < M — 1
and i € NV, getting with probability at least 1 — $

_6 ' r+1
6(m) Am,T Ca(zanr, T) Ca 2cp
sup sup sup |Q;(s,a) — Q" (snr,any)| < +
mSM—liEN(s,a)ESXA‘ £ 5,0 = Qo an)| VI+ty  T+to (1-9)?

4c k41
<7 (47)

(1—7)?
where in the last step, we have used that our lower bound on T implies M + Ca 2cp™ "]
P PHES Tty T Ty = (1)

Therefore, conditioned on (47) being true, we have for any m < M — 1 and any i € N,

Igi(m )— i(m)]
<sz S Q1™ (s(t), alt) = Q7T (s (1), anx (8)] Vi, log ™ (as(t)]5:(2) |
]EN“
T
<3 3 [Q (s(0),a0) — QT (s (1), as ()W Tom ¢ a0
t=0 ]GNN
T
t 4Cp/1+1 4CLZ,pH+1
P B e e
As a result, )
. deLprt
LS [19m) = glm)ll < =

which is true conditioned on event (47) is true that happens with probability at least 1 — g. ]

39



D.3 Proof of Lemma 15

By Lemma 13, we have almost surely,

2/ L2
1 (VT (0(m), € (m))] < 11| VT (O(m)) [ [[2(m) — g(m)]| < Ty

As 0 (VJ(0(m)), e?(m)) is a martingale difference sequence w.r.t. G,,, we have by Azuma Hoeffding
bound, with probability at least 1 — %5,

N ) 27212 | N~ , 4
| 32 md9I00m). A m)| £ T2 3 whlog

m=0

D.4 Proof of Lemma 16
By (25), we have

[e.9]

Vo, J(6(m)) = ZESM{W O ([s) [ Q™) (s,a) Vg, log O™ ]s)}

t=0
=SB, it ooy |11 (5.0 Vi, log ¢ (ails)
=0

where we have used Vi, log ¢?(™) (als) = V,, > jenlog (?j(m)(aj]sj) = Vy, log Cfi(m)(ai\si). Also
recall the definition of h;(6) in (27),

T
1 O(m 0;(m
hi(m) = ZEswf(m),awc‘)<m>(~\s) ’Vtﬁ Z Qj( (s,a) Vg, log (7™ (ai]s:)
=0 jENE

The rest of the proof is essentially the same as Lemma 3. For completeness we provide a proof
below. Combining the above two equations, we have,

Vo, J(0(m)) — hi(m)

T
0;
= ZESNW,?(T"),Mcwm)(-ls) 7'V, 1og ¢ (ails) | QM (s, a) E Q; ) (5, a)
t=0

JEN“

S ' 0.m) 1\ ()
+ t_ZT;'_l ESNWf(m)’awcwm)(.‘s) |:fy v@j 10g C'L (azlsz)Q (37 a)}

=k + Fo.
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Clearly, the second term satisfies ||Ez| < svI L For By, we have

’Y)

JENE,

. _
0;(m 0
El:ZEs 200 g com) () ’YtV(ai logCi al]sl g Q (m (s,a) ]
t=0
QI

T
1
= ;Es~w3<m),a~§9(m)(~s) Y VQ logC (allsi)ﬁ Z (Q ( )

T
1 A8(m)
* ;Es~wf(m),a~<9(m)(.s) 7'V, logC (a1|3i)ﬁ Z Q; " (snr,anr)
= F3 + By,

where Q?(m) is any truncated @ function for Q?(m) as defined in (9). We claim Ej is zero. To see
this, consider for any j € N*, and any ¢,

0;(m AQ(m
ESN’[{'f(m>7aN<9<m)(~|s) |:v91 IOg Cz ( )(aZ|SZ)Q]( )(SvaaNf)

V Q. A;|S;) A
— Z 7.[.g(m) (S) H gglz(m) (CM|S() Gzegzm) ( ‘ ) Qf(m) (SN]'?> aN]’?)

, G (adlsq)
=) ") H ¢ (agl 5) Vo, ¢ (ai|5i)Q§(m)(5Nf, anr)
) LF#i
= Z 6’(m H C04 (acls0)Q ( )(SNJ'?, aNJ'?) Z Veicfi(m) (as]s;)
$,01:i—1,0i41:n i a;
= 07

where in the last equality, we have used Q?(m)(s N;,aN;) does not depend on a; as i € N, ]’-‘; and

> a; Veini(m) (ailsi) = Vo, D _,, Cfi(m)(ai\sz’) = Vjp,1=0.
For Ej3, by the exponential decay property, the truncated @ function has a small error, cf. (38),

A6
SUP |Q (5 a) — Qj(m)(SN;aaN;ﬂ < cptti,

and as a result,

1-— Lic
1Bl < = ——Licp™" < =5 p .

Therefore,

L;7
V0, 00m) — ham)] = B2+ Bl < 2004
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where in the last step, we have used

and as a result, [|[VJ(0(m)) — h(m)|| <2 Le  rt1 -
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