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We describe the structure present in algebras over the little disks operads for various 
representations of a finite group G, including those that are not necessarily universe 
or that do not contain trivial summands. We then spell out in more detail what 
happens for G = C2, describing the structure on algebras over the little disks 
operad for the sign representation. Here we can also describe the resulting structure 
in Bredon homology. Finally, we produce a stable splitting of coinduced spaces 
analogous to the stable splitting of the product, and we use this to determine the 
homology of the signed James construction.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
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1. Twisted equivariant “monoids”

We begin with a purely algebraic observation. Consider the free associative monoid on the set C2 = {x, ̄x}. 
The fixed points of this are the one point set consisting of the identity element, and elements which we 
expect from the commutative case, like the norm classes xx̄, are not fixed here. If we enforce commutativity, 
then these become fixed, but as homotopy theorists, we should instead attach cells which connect xx̄ to x̄x, 
building a C2-CW complex. Unfortunately, since xx̄ and x̄x form a free orbit, these new cells will also be 
C2-free. Continuing to make the multiplication more highly commutative will never add fixed cells, so we 
never produce new fixed points. This is reflecting a classical observation.

Proposition 1.1. If Otr is an E∞ operad with trivial G-action, and X is a free G-space, then the fixed points 
of the free algebra are trivial:

(
POtr (X)

)G � ∗.

More generally, if V is a countable dimensional vector space with trivial G-action, and if D(V ) is the 
little disks operad for V , then the free algebra on X also has trivial fixed points:
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(
PD(V )(X)

)G � ∗.

This is in stark contrast with the “genuine” commutative case, where the tom Dieck splitting shows that 
the putative norm classes do give rise to new fixed points.

Proposition 1.2. If O is a G-E∞ operad, and if X is a free G-space, then we have

(
PO(X)

)G � POtr (X/G).

The obvious map

i∗
ePO(X) � POtr (i∗

eX) → POtr (X/G) ↪→
(
PO(X)

)G

is the operadic norm from the underlying space to the fixed points. Adams’ original discussion of the 
construction of the transfer in the G-equivariant Spanier-Whitehead category shows that we have a similar 
norm map for free algebras over the little disks algebra for any orthogonal G-representation in which G
equivariantly embeds [1].

The primary goal of this paper is to study these exact phenomena by carefully unpacking some of the 
structure that we see in these algebras over little disks operads for (possibly finite dimensional) orthogonal 
G-representations. Since a trivial E∞ operad and a G-E∞ operad are both little disks operads, we will 
recover our classical understanding. More generally, a little disks operad for a G-universe U is the prototype 
of an N∞ operad, the definition of which and the basic properties thereof were described by Blumberg 
and the author in [3]. In particular, the N∞ operads behave very much like ordinary E∞ operads plus 
operations which coherently encode norm maps. A natural question then, is what operads deserve to be 
called Nk operads for finite k. Exploring the examples for little disks gives desiderata for defining the Nk, 
but we leave this for later work.

Work of Rourke and Sanderson [17], Segal [19], and Hauschild [10], equivariantizing foundational work of 
May [15], connects this general analysis to the study of loop spaces. They show that if O is the little disks 
operad for a representation V , then the natural map

PO(X) → ΩV ΣV X

is a group completion. Thus our operadic analysis describes geometric content for these generalized loop 
spaces, unpacking the encoded structure. In particular, it provides a basic step for describing the operations 
on V -fold loop spaces, in the vein of Cohen [5].

The group C2 has a non-trivial one-dimensional representation: the sign representation σ, and the corre-
sponding operad Eσ and its algebras have become a central object of study in algebraic topology recently. 
Here are several recent example:

(1) Work of Dotto–Moi–Patchkoria–Reeh has described the Real topological Hochschild homology of Eσ

algebras. Their computations of π0 closely parallel the results below [6].
(2) Hahn–Shi have used the Eσ-algebra structure on various quotients of MUR by regular sequences to show 

that Lubin–Tate spectra are all Real oriented [8] and the Real orientations are maps of Eσ-algebras.
(3) Behrens–Wilson have lifted Mahowald’s description of HF2 as a Thom spectrum to a C2-equivariant 

spectrum, showing that HF2 is a Thom spectrum over Ω1+σS2+σ [2], and this has been generalized to 
arbitrary cyclic p-groups by Hahn–Wilson [9] and by Levy [13].

(4) Ongoing work of Hahn–Wilson in their program to build an odd-primary analogue of MUR generalizes 
Eσ algebras to odd primes, building what they call “spoke algebras”.
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In the second part of the paper, we study the basic properties of signed loop spaces. We then turn to 
cohomology, looking at the cohomology of a coinduced space and the resulting structure on the homology 
of a signed loop space. We next study the signed version of the James construction on a C2-space, showing 
that after suspension by the regular representation it splits.

As an appendix, we include a result of independent interest: stable splittings of coinduction. For C2, coin-
duction splits after a signed suspension, while for Cp, coinduction splits after suspending by an irreducible 
2-dimensional representation.

Notation and conventions In all that follows, G will denote a finite group, and H will usually denote a 
subgroup thereof. Letters around X in the alphabet will denote G-spaces; letters around T in the alphabet 
will denote G-sets; and letters around V in the alphabet will denote G-representations.

If X is a G-space and x ∈ X is any point, then Stab(x) will denote the stabilizer subgroup of x in G. If 
H ⊂ G, then WG(H) will denote the Weyl group of H in G.

In the second half of the paper, we will begin doing equivariant algebra, and we will work often with 
Mackey functors for the cyclic group of order 2, C2. The Mackey functor versions of standard classical 
constructions like homotopy or homology groups will be denoted with an underline to the classical symbol. 
For Mackey functors, we will follow Lewis’ notation, stacking the values at the two orbits and indicating 
the structure maps:

M(C2/C2)

res

M(C2/e)

tr

Finally, for gradings, we follow the increasingly standard wild-card notation: ∗ will be reserved for an 
arbitary element of Z, while � will denote an element of RO(G).

Acknowledgments We thank Mark Behrens and Dylan Wilson for several very inspiring conversations early 
on in this project and for reading an early preprint. We also think Kirsten Wickelgren, Ugur Yigit, and 
Doug Ravenel for several helpful conversations about the James construction and signed loops. We also 
thank Andrew Blumberg and Tyler Lawson for help clarifying several operadic points.

2. Algebras over equivariant little disks operads

2.1. The general case

We take as our model the analysis of algebras over the little disks for a G-universe from [3, Theorem 4.19]. 
The key idea there was to understand which finite H-sets embed in our universe. Essentially everything goes 
through without change: the only difference is that the spaces parameterizing our generalized multiplications 
are no longer necessarily contractible. Much of the analysis of the spaces is closely related to results of Rourke 
and Sanderson [17]; we cast things in a way that most transparently reflects how various norms arise in the 
algebras.

2.1.1. Basic definition

Definition 2.1. Let V be an orthogonal representation of G (not necessarily finite dimensional, and not 
necessarily a universe for G). Let W be a finite dimensional orthogonal subrepresentation of V . A little disk
in W is a (not necessarily equivariant) affine map D(W ) → D(W ).
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Define the space DW (V )n to be the space of n-tuples of nonoverlapping little disks. This is a G × Σn-
space, where G acts by conjugation and Σn by permuting the coordinates. The operadic structure is by 
composition.

If W ⊂ W ′, then the affine maps defining any of the little disks in DW (V )n extend to give little disks in 
DW ′(V )n, so we define

D(V )n = colim
W

DW (V )n.

Of course, if V is finite dimensional, then {V } is cofinal in the set of finite dimensional subspaces of V , 
so we can ignore any colimits.

The operadic multiplications and transfers are produced by the fixed points for various subgroups of 
G × Σn.

2.1.2. Structure of graph fixed points
We begin with a basic observation which follows immediately from the requirement that the little n-disks 

not overlap.

Proposition 2.2. For any orthogonal representation V , Σn acts freely on D(V )n.

Thus the only subgroups which could have fixed points are the “graph subgroups” considered in [3].

Definition 2.3. A graph subgroup of G × Σn is a subgroup which intersects Σn trivially.

The name comes from the fact that if Γ is a graph subgroup of G × Σn, then there is a subgroup H ⊂ G

and a homomorphism φ : H → Σn such that Γ is the graph of φ. In particular, to each graph subgroup, 
associate a subgroup H of G and an H-set structure on {1, . . . , n}. If H is a proper subgroup of G, then 
the analysis of the Γ fixed points of D(V ) is most naturally an H-equivariant one, and hence is covered by 
an induction argument on the subgroups. We can therefore restrict attention to H = G.

Lemma 2.4. Let Γ be a graph subgroup of G × Σn corresponding to a G-set T . Then the map taking a disk 
to its center gives a weak equivalence

D(V )Γ
n � EmbG(T, V ),

where EmbG(T, V ) is the space of G-equivariant embeddings of T into V . Moreover, this equivalence is

WG×Σn
(Γ) ∼= AutG(T )

equivariant.

Proof. The map sending a little disk to its center establishes a G × Σn-weak equivalence

D(V )n � Emb
(
{1, . . . , n}, V

)
,

where G × Σn acts on the latter via the Σn-action on the source and the G-action on the target. When 
restricted to Γ, this becomes the conjugation action on Emb(T, V ). �

Since we are considering only finite G-sets, these spaces of embeddings are a kind of equivariant config-
uration space.
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Definition 2.5. Let n ≥ 1, and let X be a G-space. Define the configuration space of nG/H in X to be

ConfnG/H(X) :=
{

(x1, . . . , xn) | ∀i, Stab(xi) = H and ∀i 
= j, ∀g ∈ G, xi 
= gxj

}
,

topologized as a subspace of Xn.

Note that by construction

ConfnG/H(X) ⊂ (XH)n.

The latter has a canonical action of WG(H) �Σn extending the coordinate actions of WG(H). By construction, 
ConfnG/H(X) is an equivariant subspace. With this observation, the following is immediate.

Proposition 2.6. If X is any space, then we have a homeomorphism

EmbG(nG/H, X) ∼= ConfnG/H(X)

given by choosing an ordering of the summands and evaluating at the cosets of the identity for each summand. 
This is equivariant for

AutG(nG/H) ∼= WG(H) � Σn.

When X is a representation, then these are simpler still: they are hyperplane complements.

Definition 2.7. Let H ⊂ G be a subgroup and V a representation of G.
Let

V ∂H :=
⋃

H⊂K

V K

be the H-relative singular set of V , and let

V̊ H := V H − V ∂H .

Proposition 2.8. The configuration space of nG/H in a representation V is a hyperplane complement:

ConfnG/H(V ) =
{

(v1, . . . , vn) ∈ V̊ H | ∀i 
= j, ∀gH ∈ WG(H), vj 
= gvj

}
= (V H − V ∂H)n −

⋃
i�=j,gH∈WG(H)

Wi,j,gH ,

where

Wi,j,gH =
{

(v1, . . . , vn) | vi = gvj

}
⊂ (V H)n.

Proof. The subspace V̊ H is the subspace of V consisting of those points with stabilizer H. It itself is a 
hyperplane complement, so its n-fold Cartesian power is. The result follows immediately from the defini-
tion. �

Putting this all together, we deduce the graph fixed points for an arbitrary graph subgroup.
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Theorem 2.9. Let T = n1G/H1 � · · · � nkG/Hk, where if i 
= j, then Hi and Hj are not conjugate. Then 
we have an AutG(T )-equivariant homeomorphism

EmbG(T, V ) ∼=
k∏

i=1
ConfniG/Hi

(V ).

In particular, this is a hyperplane complement.

Proof. It only remains to prove that the embeddings for non-conjugate stabilizers can never coincide (hence 
we get a product decomposition). However, this is immediate, since an embedding preserves stabilizers. �
Corollary 2.10. If T is any finite G-set such that T G = ∅, then

EmbG(T, V ) � EmbG(T � ∗, V ).

Proof. The origin is always fixed in V , thus ConfG/G(V ) is always non-empty. �
Remark 2.11. If |T | = n, then choose an ordering of the points of T and hence a non-equivariant identification 
of T and {1, . . . n}. Including ∗ as the (n + 1)st point gives a non-equivariant identification of T � ∗ with 
{1, . . . , n + 1}. In this case, the homotopy equivalence in Corollary 2.10 can be realized by the inclusion of 
the unit in the (n + 1)st coordinate.

2.1.3. Algebras over little disks
Lemma 2.4 is the key result that underpins our analysis.

Theorem 2.12 (Compare [3, Lemma 6.6]). Let X be a D(V )-algebra in spaces, and let T be a finite H-set. 
Then the space EmbH(T, V ) encodes H-equivariant multiplications

Map(T, X) → X.

Proof. Let Γ be the graph subgroup associated to an ordering of T . Lemma 2.4 shows that we have an 
equivalence

MapG×Σn
(
G × Σn/ΓT , D(V )n

)
� EmbH(T, V ),

and that this equivalence is compatible with the (H-)Weyl action on the source and the AutH(T )-action on 
the target. If EmbH(T, V ) is empty, then we have nothing to prove, so assume that this is non-empty. In 
this case, each point in EmbH(T, V ) gives a G-equivariant map

G ×H Map(T, X) ∼= G ×H

(
(H × Σn/ΓT ) ×Σn

X×n
)

→ D(V )n ×Σn
Xn → X.

The maps in the theorem are the adjoint. �
Using Corollary 2.10, we get a kind of module structure on a D(V )-algebra.

Corollary 2.13. If X is a D(V )-module and T is a finite G-set such that T G = ∅, then EmbG(T, V ) also 
parameterizes maps

Map(T, X) × X → X.
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There are coherence questions relating to how the pieces for various subgroups fit together which arise 
here, and the answer is encoded in Elmendorf’s Theorem allowing us to rebuild the homotopy type of a 
G-space out of the diagram of fixed points [7]. This gives us a way to understand the homotopy type of 
D(V )n ×Σn

X×n out of the data of Lemma 2.4.

Definition 2.14. Let OrbG denote the orbit category of G. Let

J : OrbG → T opG

denote the natural embedding which sends an orbit G/H to G/H viewed as a G-space. If X is a G-space, 
let

X(−) : (OrbG)op → T op

denote the functor which sends G/H to MapG(G/H, X) ∼= XH .

We will also take advantage of a simplification from the freeness of the Σn-action on D(V )n. This gives 
a natural family of subgroups and hence subcategory of the orbit category.

Definition 2.15. If V is an orthogonal representation of G, let Fn
V denote the family of subgroups Γ ⊂ G ×Σn

such that D(V )Γ
n is non-empty. Let Fn

V also denote the corresponding sieve in the orbit category.

Theorem 2.16. If X is a G-CW complex, then we have a natural weak equivalence

∣∣B•
(
D(V )(−)

n , Fn
V , J |Fn

V
×Σn

Xn
)∣∣ � D(V )n ×Σn

Xn,

where the left-hand side is the geometric realization of the 2-sided bar construction.

Proof. Elmendorf’s Theorem [7] shows that we have a natural G × Σn-weak equivalence

∣∣B•
(
D(V )(−)

n , OrbG×Σn , J
)∣∣ � D(V )n.

Since D(V )Γ
n is by definition non-empty only for those Γ ∈ Fn

V , and since Fn
V is a sieve, we have a simplicial 

homeomorphism of simplicial spaces

B•
(
D(V )(−)

n , OrbG×Σn , J
) ∼= B•

(
D(V )(−)

n , Fn
V , J

)
.

The result follows from passing the product with X past the geometric realization and commuting the 
Σn-orbits passed the geometric realization. �
Remark 2.17. The pieces in the two-sided bar construction are ones already encountered in Theorem 2.12: 
for some ΓT ∈ Fn

V , Lemma 2.4 identifies D(V )ΓT
n with EmbG(T, V ), and we have

(
G × Σn/ΓT

)
×Σn

Xn � Map(T, X).

Theorem 2.16 shows that the free D(V )-algebra on X is homotopically built out of exactly this data.

Corollary 2.18. Let K ⊂ H ⊂ G, and let T be a finite H-set and T ′ a finite K-set such that i∗
KT ∼= T ′. 

Then the inclusion
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MapH(T, V ) ↪→ MapK(T ′, V )

describes the restriction map on the operadic multiplications.

2.1.4. Basic consequences
We first make a simple observation which olds for all algebras over all little disks operads (including for 

the absurd case of V = 0).

Proposition 2.19. For any V and for any D(V )-algebra X, we have a canonical G-fixed basepoint e ∈ X.

Proof. This is the zeroth structure map corresponding to D(V )0 = ∗. �
This connects with traditional constructions in the expected way: trivial subspaces give increasingly

coherently commutative multiplications.

Proposition 2.20. For any V and for any D(V )-algebra X, if H ⊂ G has dim V H ≥ 1, then i∗
HX has an 

Edim V H -structure. The basepoint e ∈ i∗
HX is the unit.

Corollary 2.21. If V is any orthongal representation which contains infinitely many copies of the trivial 
representation, then any D(V )-algebra has an underlying E∞ multiplication.

The analysis of the embedding spaces automatically gives us additional structure maps.

Proposition 2.22. If V has V̊ H 
= ∅, then we have norm maps

MapH(G, i∗
HX) ∼= Map(G/H, X) → X,

and if π0V̊ H = ∗, then this is unique up to homotopy.

Remark 2.23. If V is a G-universe (so D(V ) is an N∞ operad), then coïnduction is both the right and the 
left adjoint to the forgetful functor. The norm maps realize the counit of the adjunction (with coïnduction 
as the left adjoint).

Proposition 2.24. If V has V̊ H 
= ∅, then we have an action map

μG/H : Map(G/H, X) × X → X

making X into a module over the Edim V H -space Map(G/H, X). If π0V̊ H = ∗, then this is homotopically 
unique.

Proof. Proposition 2.20 shows that i∗
HX is an Edim V H -space, and since coinduction is a strong symmetric 

monoidal functor from H-spaces to G-spaces, we deduce that

MapH(G, i∗
HX) ∼= Map(G/H, X)

is an Edim V H -space. The action map is given by any point in the space D(V )ΓG/H

|G/H|+1, which Corollary 2.10
shows is non-empty.

The only part of the proposition which requires proof is the assertion that this action map makes X a 
module. For this, note that μG/H determines a disk deH inside of D(V ), namely the one corresponding to 
the coset eH. This in turn gives a map
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D(V )m
ΔG

−−→ Map
(
G/H, D(V )m

) μG/H−−−→ D(V )m|G/H|

which is G × Σm-equivariant. Here ΔG is the twisted diagonal adjoint to the identity map on i∗
HD(V )m, 

and Σm acts diagonally in the coinduced space and via the diagonal copy of Σ|G/H|
m in Σm|G/H|. Moreover, 

we here identify the element μG/H with the equivariant map

G × Σ|G/H|/ΓG/H → D(V )|G/H|.

This map views D(V )m as being an arrangement of m little disks in deH , forming the |G/H| collections 
of little m disks by conjugating by g, and then using the natural embedding of G ×H deH into V given by 
μG/H . This map is visibly compatible with compositions in the source, which gives the module structure.

The homotopical uniqueness follows from the homotopical uniqueness of μG/H in the case the space V̊ H

is path connected. �
Remark 2.25. We have not used the full-strength of the operadic action here. The operad D(i∗

HV ) acts on 
i∗
HX and hence on Map(G/H, X). This also has norm maps, by this procedure, and that endows X also 

with a compatible module structure over this via

MapH
(
G, MapK(H, i∗

KX)
)

× Map(G/H, X) × X → Map(G/H, X) × X → X.

2.2. The case of D(σ)

Now let X be an algebra in spaces over D(σ). Here, however, we run into the issue that σ is one 
dimensional. In particular, i∗

eD(σ) is an E1-operad, and hence we have no reason to believe that it is 
homotopy commutative. One of the surprising features of a D(σ)-algebra is that it comes equipped with a 
canonical isomorphism

i∗
eX

∼=−→ i∗
eXop.

This is one of the defining features of a D(σ)-algebra, and it was independently observed by Hahn-Shi in 
their study of the Real orientation of the Lubin-Tate spectra [8].

2.2.1. Underlying E1-space
Since σ is one dimensional, the space i∗

eX is an E1-space. The following is classical; we include it to 
emphasize the equivariance.

Proposition 2.26. Pulling the images of points in an embedding of {1, . . . , 2k} to the points −k, . . . , −1, 1, . . . , k
in σ gives a Σ2k-homotopy equivalence

D(i∗
eσ)2k � Σ2k.

Pulling the images of points in an embedding of {1, . . . , 2k + 1} to the points −k, . . . , k in σ gives a Σ2k+1-
homotopy equivalence

D(i∗
eσ)2k+1 � Σ2k+1.

We write these symmetrically because then the underlying action of C2 on σ preserves the preferred 
images: the sets {±1, . . . , ±k} and {±1, . . . , ±k, 0} are C2-equivariant subsets of σ. Of course, the underlying 
story does not a priori care about what collection of points we choose, and our analysis of the underlying 
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structure does not care what collection of points in σ we choose. By having a C2-invariant subset, however, 
we underscore the connection with the fixed points.

Under any choice of points, we see that the underlying C2 sign action turns an ordered collection of 
points into one with the opposite order. Since C2 is abelian, this is also a C2-equivariant map from D(σ) to 
itself. This shows the following.

Proposition 2.27. If X is a D(σ)-algebra, then the non-trivial element of C2 acts on X as an anti-
automorphism of E1-algebras.

This is exactly what makes the fixed points of a D(σ)-algebra not have a product: the action and 
multiplication do not commute.

Remark 2.28. If X = ΩσY , then the effect of the anti-automorphism from Proposition 2.27 in homotopy is 
readily understood: it is inversion.

2.2.2. Norms and actions
The analysis in the previous section shows that X comes equipped with a collection of structure maps

Map(kC2 + εC2/C2, X) ∼= Map(C2, X)k × Xε → X,

as k ranges over the natural numbers and ε is 0 or 1. Since dim i∗
eσ = 1, this is homotopically quite simple.

Proposition 2.29. For all k and ε, the space of structure maps is a homotopy discrete AutC2(kC2)-torsor.

Emb(kC2, σ) � AutC2(kC2).

Proof. The space (̊σ)e is R× ∼= C2 ×R. Given any embedding, we can pull the images like beads on a string 
so that they become {±1, . . . , ±k}. This is obviously AutC2(kC2)-equivariant. �

Thus up to homotopy, there is a unique such map for each automorphism of kC2, and moreover, the 
automorphisms generated by 2 kinds:

(1) Ordinary permutations of the C2-sets and
(2) the action of C2 = AutC2(C2) on each summand.

Let γ be the non-trivial element of C2. Here, we have 2 norm maps

nC2
e : Map(C2, X) → X and nC2

e ◦ γ : Map(C2, X) → X,

and 2 action maps

μC2 : Map(C2, X) × X → X and μC2 ◦ γ : Map(C2, X) × X → X.

The identification of the embedding space from Proposition 2.29 is compatible with restriction, giving us 
the chosen points in Proposition 2.26. Observing that the ordering of the negative integers is again opposite 
those of the positive shows the following.

Proposition 2.30. As E1-space, we have

i∗
e Map(C2, X) ∼= i∗

eX × i∗
eXop,

the enveloping algebra of i∗
eX.
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Of course, Proposition 2.27 shows that as E1-spaces, this is isomorphic to the Cartesian square of i∗
eX. 

Using this hides the more natural ordering of the coordinates.

Corollary 2.31. The restriction of the norm map is the multiplication map

(i∗
eX × i∗

eXop) → i∗
eX.

The restriction of the action map is the bimodule action map

(i∗
eX × i∗

eXop) × i∗
eX → i∗

eX.

The Map(C2, X)-module map condition restricts to the observation that these are maps of i∗
eX-bimodules.

3. Cohomology of D(σ)-algebras

3.1. RO(C2)-graded algebra

To describe the structure seen in the homology of a D(σ)-algebra, we need to work in the category 
of RO(C2)-graded Mackey functors. A wonderful introduction is provided by Lewis and Mandell in their 
study of equivariant Künneth and Universal Coefficients Spectral Sequences [14], especially Sections 2 and 3 
therein. We include here only what we need.

Definition 3.1 ([14, Definition 2.2]). An RO(C2)-graded Mackey functor is a collection of Mackey functors 
Mα, where α ranges over the virtual representations of C2.

A map of RO(C2)-graded Mackey functors f : M� → N� is a collection of maps of Mackey functor 
fα : Mα → Nα, where α ranges over the virtual representations of C2.

There are natural suspension functors which change the gradings in the expected ways.

Definition 3.2. If M� is an RO(C2)-graded Mackey functor and if α is a virtual representation of C2, then 
let ΣαM� be the RO(C2)-graded Mackey with

(ΣαM)τ = Mτ−α.

Just as with ordinary abelian groups, the category of RO(C2)-graded Mackey functors inherits a closed 
symmetric monoidal structure from Mackey functors.

Proposition 3.3 ([14, Proposition 2.5]). There is a close symmetric monoidal category structure on the 
category of RO(C2)-graded Mackey functors extending the box product on Mackey functors.

Definition 3.4. An RO(C2)-graded Green functor is an associative monoid for the box product in RO(C2)-
graded Mackey functors.

Proposition 3.5 ([14, Proposition 3.10(a)]). If R� is a commutative RO(C2)-graded Green functor, then 
there is closed, symmetric monoidal category of R�-modules.

Remark 3.6. There is a subtlety as to what graded commutativity means in the RO(C2)-graded setting, 
since commuting the sign representation past itself introduces the unit

ε = 1 − [C2]
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in the Burnside ring. In the applications below, this unit of the Burnside ring maps to −1, and hence this 
is ordinary commutativity.

We can further unpack the internal Hom to understand maps in this category a little better. We introduce 
some useful notation.

Definition 3.7. Let T be a finite G-set, and let AT denote the Mackey functor:

AT (T ′) := A(T × T ′).

Viewing this as an RO(C2)-graded Mackey functor in degree zero, if R� is a commutative RO(C2)-graded 
Green functor, let

RT
� := R��AT .

Finally, if M� is an R�-module, then let

MT
� := M��RT

� .

Proposition 3.8 ([14, Proposition 4.2]). Let M� be an R�-module. Then we have a natural isomorphism

Hom0
R�

(ΣαRT
� , M�)(C2/C2) ∼= Mα(T ).

In other words, maps out of the R-modules ΣαRT
� recover the value at T of the αth Mackey functor of 

an R�-module, and hence ΣαR� is a projective R�-module.
The shifts RT

� have a second nice interaction with the symmetric monoidal structure.

Proposition 3.9. For any finite G-sets T and T ′ and for any R�-module M�, we have natural isomorphisms

RT
� �

R�

MT ′

�
∼= MT ×T ′

� .

In our cases of interest below, we will be considering only special modules.

Definition 3.10. Let R� be an RO(C2)-graded Green functor, and let M� be an R�-module. Then we say 
that M� is free if there is an isomorphism of R�-modules

M�
∼=

( ⊕
s∈S∗

ΣαsR�

)
⊕

⎛
⎝ ⊕

t∈SC2

ΣβtRC2
�

⎞
⎠ .

3.2. Coinduction and the norm

Any algebra X over D(σ) in spaces is endowed with operadic transfer maps

Mape(C2, X) → X.

By naturality of homology, this gives us a map

H�

(
Mape(C2, X); M

)
→ H�(X; M)

for any Mackey functor M , which is a kind of twisted analogue of the Pontryagin product on the homology 
of an associative algebra in spaces. We make this precise here.
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Definition 3.11. A graded set is a set S together with a map S
deg−−→ Z.

This allows us to describe what we see in algebra for the Bredon homology of coinduction. We remark 
that there is almost the expected universal property: the difficulty is that maps out of R itself in degree 0
is a priori non-zero for a great many RO(C2)-graded suspensions of R.

Definition 3.12. Let S be a graded set. We define a kind of RO(C2)-grading on the C2-set Mape(C2, S) as 
follows. If f ∈ Mape(C2, S), then define

deg(f) :=
{

deg
(
f(e)

)
+ deg

(
f(g)

)
f(e) 
= f(g)

deg
(
f(e)

)
ρ2 f(e) = f(g).

In particular, for each point f ∈ Mape(C2, S), we have assigned a virtual representation for the subgroup 
Stab(f). Since C2 is abelian, this is all we need to form wedges of the form

∨
f∈Mape(C2,S)

Sdeg(f) ∈ SpC2 .

We pause here to clarify a small notational point. The set over which we take our wedge in the proof of 
Theorem 3.13 is a C2-set. In particular, the action on the indexing set is combined with the action on the 
individual factors. Thus if f ∈ Mape(C2, S) has f(e) 
= f(g), then the summands corresponding to f and 
to g · f are switched by the group action. Thus we could rewrite the sum as

∨
f∈Mape(C2,S)/C2

C2+ ∧
Stab(f)

Sdeg(f).

Theorem 3.13. Let R be a ring and let X be a space such that the homology of X with coefficients in R is 
free on a graded set S. Then the Bredon homology of Mape(C2, X) with coefficients in NC2

e R is free on the 
RO(C2)-graded set Mape(C2, S).

Proof. The graded set S gives a weak equivalence of HR-module spectra

∨
s∈S

Sdeg(s) ∧ HR
	−→ Σ∞

+ X ∧ HR.

If we apply the norm NC2
e to both sides, then we deduce an equivalence of NC2

e HR-module spectra

NC2
e

( ∨
s∈S

Sdeg(s)

)
∧ NC2

e HR
	−→ NC2

e (Σ∞
+ X) ∧ NC2

e HR.

The distributive law applied to the source gives an isomorphism of NC2
e HR-modules

NC2
e

( ∨
s∈S

Sdeg(s)

)
∧ NC2

e HR �
∨

f∈Mape(C2,S)

Sdeg(f) ∧ NC2
e HR.

Similarly, since the infinite suspension is strong G-symmetric monoidal, we have a natural equivalence

NC2
e Σ∞

+ X � Σ∞ Mape(C2, X).
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Finally, since HR can be modeled by a commutative ring spectrum, NC2
e HR is a C2-equivariant com-

mutative ring spectrum, so the category of modules thereover is symmetric monoidal. The map from a 
(−1)-connected C2-equivariant commutative ring spectrum to its zeroth Postnikov section preserves C2-
equivariant commutative ring spectra, and

π0NC2
e HR ∼= NC2

e R,

where the righthand norm is the Mazur-Hoyer norm on Mackey functors [11], [12]. Base-changing along the 
zeroth Postnikov map

NC2
e HR → HNC2

e R

gives the desired result. �
Remark 3.14. There is also a coordinate-free version of this result. We have a canonical isomorphism of 
simplicial G-sets

Mape
(
C2, Sing•(X)

) ∼= Sing•
(

Mape(C2, X)
)
.

In particular, this produces a canonical isomorphism of simplicial Mackey functors upon applying the 
Burnside Mackey functor (or more generally, any other coefficients). The left-hand side is essentially the 
definition of the Mazur-Hoyer norm is simplicial Mackey functors. We will return to this more generally in 
a subsequent paper.

Since cohomology with coefficients in a field is always free, this gives us a nice family of space for which 
we know Bredon homology groups.

Definition 3.15. Let B = NC2
e F2. This is the Green functor

Z/4

1

Z/2

2

Definition 3.16. Let

B� := π�HB.

Proposition 3.17. The RO(C2)-graded Mackey functor B is naturally a commutative RO(C2)-graded Green 
functor.

Proof. The Eilenberg-Mac Lane spectrum HB is a commutative ring spectrum by work of Ullman. Since 
π� is a lax monoidal functor (see, for a complete proof [14, Appendix A]), the result follows. �

Since B is a quotient of the constant Mackey functor Z, the sign rule here is the ordinary one, using only 
the underlying dimension of the representations.

Corollary 3.18. If X is any space, then the Bredon homology of Mape(C2, X) with coefficients in B is a free 
B�-module.
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This can also be identified with a purely algebraic functor: the norm in RO(C2)-graded Mackey functors. 
This is the obvious extension of the Mazur-Hoyer norm, taking into consideration the canonical isomorphism

NC2
e ΣkM ∼= ΣkρNC2

e M.

This, plus the distributive law, immediately gives the following.

Corollary 3.19. If X is any space, then the Bredon homology of Mape(C2, X) with coefficients in B is 
isomorphic to

NC2
e H∗(i∗

eX;F2).

More generally, we get a freeness result for any module over B. Since the Bredon homology with co-
efficients in B is a free RO(C2)-graded module, it is flat over B�. In particular, the universal coefficients 
spectral sequence collapses.

Corollary 3.20. If M is any B-module, then

H�

(
Mape(C2, X); M

) ∼= NC2
e

(
H∗(X;F2)

)�
B

M,

which splits as an RO(C2)-graded sum of copies of M .

In particular, this implies a fairly strong form of a Künneth isomorphism.

Proposition 3.21. If X is a space and Y is a C2-space, then we have a natural isomorphism

H�

(
Mape(C2, X) × Y ; B

) ∼= H�

(
Mape(C2, X); B

) �
B�

H�(Y ; B).

Proof. The Lewis-Mandell RO(C2)-graded Künneth spectral sequence collapses, since H�

(
Mape(C2, X); B

)
is a free module. �

Finally, there is a pointed version of all of these results; the proofs are essentially unchanged.

Proposition 3.22. If X is a pointed space, then

H̃�

(
NC2

e X; B
) ∼= NC2

e

(
H̃∗(X;F2)

)
.

3.3. Cohomology of D(σ)-spaces

We can now combine the structural results from § 2.2 to determine the structure present in homology of 
a signed loop space. We begin with a small definition.

Definition 3.23. Let R be an associative ring. A pointed R-module is an R-module M together with an 
element m ∈ M .

By the free-forget adjunction, this is of course the same data as an R-module homomorphism R → M .

Theorem 3.24. Let X be an algebra over D(σ). Let

R∗ = H∗(i∗
eX;F2)
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and let

R� = NC2
e R∗ ∼= H�

(
Map(C2, X); B

)
.

Then

(1) R∗ is a graded, associative ring equipped with an isomorphism

(-) : R∗ → Rop
∗

(2) H�(X; B) is naturally a pointed R�-module, and the restriction of distinguished point is the multiplicative 
unit in R∗.

Remark 3.25. The pointing in Theorem 3.24 gives us a kind of norm map on the homology. This has been 
used most recently by Behrens-Wilson in their construction of HF2 as a Thom spectrum [2].

3.4. Aside: even more structure

Just as the homology of any space with coefficients in a field is a co-commutative co-algebra, the homology 
of a C2-space with coefficients in B has kinds of comultiplications. These arise from the two [twisted] 
diagonals:

X
Δ−→ X × X and X

Δg−−→ Map(C2, X).

Applying homology with coefficients in B then gives structure maps.

Proposition 3.26. If X is any C2-space, then the homology of X with coefficients in B has a natural co-norm 
map

H�(X; B) → NC2
e H∗(i∗

eX;F2).

Proof. Corollary 3.19 identifies the homology of the target of the map H�(Δg). �
In the case we have flatness, then we can deduce also a comultiplication.

Proposition 3.27. If X is a C2-space such that H�(X; B) is a flat B�-module, then we have a natural 
comultiplication

H�(X; B) → H�(X; B) �
B�

H�(X; B).

In this case, H�(X; B) is naturally a co-Tambara functor.

Since these are induced by natural maps of spaces, we deduce that all of the structure maps described 
before are actually maps of co-Tambara functors.

4. The signed James construction

4.1. Construction and interpretation

Just as classically there is a combinatorial model for the loop space of the suspension of a space, there is 
an elegant combinatorial model due to Rybicki for the signed loops on the signed suspension of a C2-space.
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Definition 4.1 ([18, Section 2]). If X is a pointed C2 space, then let

Jσ
n (X) :=

n∐
k=0

X×k/ ∼,

where C2 acts on X×k via

(x1, . . . , xk) �→ (x̄k, . . . , x̄1),

and where ∼ is the equivalence relation which simply omits any coordinate which is the basepoint.
Let Jσ(X) be the colimit of Jσ

n (X) as n varies.

The intertwining of the C2-action on the space and on the Cartesian factors is what makes this definition 
viable. For us, we will need an inductive pushout description of the finite Jσ

k (X).

Lemma 4.2. Let X be a pointed C2-space. For a finite C2-set T , let FT (X) denote the “fat wedge” for 
Map(T, X), that is, the collection of points in Map(T, X) for which one of the coordinates is the basepoint.

We have pushout squares of C2-equivariant spaces:

FnC2(X) Map(C2, X)n

Jσ
2n−1(X) Jσ

2n(X)

and
FnC2
∗(X) Map(C2, X)n × X

Jσ
2n(X) Jσ

2n+1(X).

4.2. Splitting the signed James construction

Classically, the James construction splits after a single suspension into a wedge of a suspension of smash 
powers of the original space. Here, the presence of two kinds of products requires two suspensions.

Theorem 4.3. For any pointed C2-space of the homotopy type of a C2-CW complex, we have a natural weak 
equivalence

Σρ
+Jσ(X) �

∨
k≥0

Σρ(NC2
e i∗

eX∧k) ∧ (S0 ∨ X).

Proof. This is immediate from Lemma 4.2, once we remember that we have equivariant homeomorphisms

Map(C2, X×k)/FkC2(X) ∼= (NC2
e i∗

eX)∧k,

and

(
Map(C2, X×k) × X

)
/FkC2
∗(X) ∼=

(
NC2

e i∗
eX∧k

)
∧ X.

Theorem A.3 below shows that upon a single sign or regular suspension, the top row in both pushout 
squares from Lemma 4.2 splits. In particular we deduce two splittings

ΣρJσ
2n(X) � ΣρJσ

2n−1(X) ∧ NC2
e (X)∧n

and
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ΣρJσ
2n+1(X) � ΣρJσ

2n(X) ∧
(
NC2

e (X)∧n
)

∧ X.

Splicing these together gives the desired result. �
Corollary 4.4. For any k and for any C2-space X, we have James-Hopf maps of the form

hkC2 : ΩσΣσX → ΩρΣρNC2
e i∗

eX∧k

and

hkC2+1 : ΩσΣσX → ΩρΣρ(X ∧ NC2
e i∗

eX∧k).

Proof. These are adjoint to the projections onto the summands of the splitting of

ΣρJσ(X) � ΣρΩσΣσX. �
Specializing to the case of X a sphere, we have a sequence of maps which are equivariant refinements of 

the James-Hopf map.

Corollary 4.5. For any natural numbers j, k, we have a James-Hopf map

hC2 : ΩσSj+(k+1)σ → ΩρS(j+k+1)ρ.

There are two somewhat surprising features (and computationally vexing) aspects of this:

(1) We see an extra loops appearing (here in the form of Ωρ = ΩΩσ), making an analysis of the fiber trickier 
than in the classical case, and

(2) the target of the map depends only on the underlying, non-equivariant sphere, and not on the particular 
equivariant sphere used.

4.3. The homology of the James construction

As an immediate consequence of the stable splitting of the James construction, we can compute the 
Bredon homology of the signed James construction with coefficients in B.

Theorem 4.6. For any C2-space X, we have an isomorphism of RO(C2)-graded Mackey functors

H�

(
JσX; B

) ∼=
( ∞⊕

i=0
NC2

e

(
H̃∗(i∗

eX;F2)⊗i
))

�(
B� ⊕ H̃�(X; B)

)
.

Proof. The stable splitting of the signed James construction yields

Σ∞ρ
+ JσX �

( ∞∨
i=0

NC2
e (i∗

eX)∧i

)
∧ (S0 ∨ X).

Proposition 3.22 together with the classical Künneth theorem shows that

H�

( ∞∨
i=0

NC2
e (i∗

eX)∧i; B

)
∼=

( ∞⊕
i=0

NC2
e

(
H̃∗(i∗

eX;F2)⊗i
))

.

The pointed version of Proposition 3.21 then gives the rest. �
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Remark 4.7. There is a version of the Bott-Samelson theorem for the signed loops, which allows us to 
describe the homology as a particular algebraic functor [4]. For this case, it is possible to work out directly, 
though the analysis is a bit unenlightening. In short, it is the free D(σ)-algebra in Mackey functors on 
H̃�(X; B). The difficulty here is describing the twisted powers, just as with the norm in spaces above. In 
joint work with Tyler Lawson, we will return to this point.

Appendix A. Splitting C2-coinduction

Classically, the Cartesian product splits into the wedge and smash products after a single suspension. 
Equivariantly, we have instead our G-Cartesian monoidal structure on G-spaces, and this necessitates a 
more general splitting result. We begin with a non-example.

Proposition A.1. All suspensions by trivial representations of the C2-equivariant map Sσ → C2+ ∧ S1 with 
cofiber Mape(C2, S1) are essential.

Proof. The standard picture showing the 2-torus as a quotient of the square can be visibly made equivariant. 
In this case, all that follows is simply reinterpreting that picture.

First observe that the standard C2-equivariant cell-structure of Sσ (and hence of Sk+σ) gives us an exact 
sequence (of pointed sets, if k = 0):

. . . [S1+k, C2+ ∧ S1+k]C2 [C2+ ∧ S1+k, C2+ ∧ S1+k]C2

[Sσ+k, C2+ ∧ S1+k]C2 [Sk, C2+ ∧ S1+k]C2 . . .

Since the C2-action on Sk and S1+k is trivial, and since the C2-fixed points of any space of the form 
C2+ ∧ X are a point, we conclude that the two outer terms both vanish. Thus for all k, the map

[S1+k, i∗
eC2+ ∧ S1+k] ∼= [C2+ ∧ S1+k, C2+ ∧ S1+k]C2 q∗

−→ [Sσ+k, C2+ ∧ S1+k]C2

induced by the collapse map Sσ → C2+ ∧ S1 is an isomorphism. In particular, the suspension map is an 
isomorphism as well for all k ≥ 1, by the classical result, and the suspension for k = 0 is abelianization.

We pause here to point out a simple geometric fact: the inverse to q∗ is the function that assigns to a 
C2-equivariant map

f : Sσ → C2+ ∧ S1

the non-equivariant map f |Im(z)≥0, where we are viewing Sσ as the unit circle in C. Unpacking the standard 
description of the attaching map for S1 × S1 shows that the map Sσ → C2+ ∧ S1 here corresponds to the 
standard crush map S1 → S1 ∨ S1, which survives abelianization. �
Remark A.2. The curious fact we used here is that while the underlying non-equivariant map is the com-
mutator of the two canonical inclusions S1 ↪→ S1 ∨ S1, as a C2-equivariant map, the upper and lower 
semi-circles are oriented the same way. In particular, we never trace out the inverses, equivariantly.

In fact, for Cp in general, coinduction splits after any suspension by a representation sphere.

Theorem A.3. For a based Cp-space X, we have equivalences

Σλ Map(Cp, X) � ΣλNCp
e (X) ∨ Σλ

(
Cp+ ∧

p−1∨ 1
p

(
p

i

)
X∧i

)
,

i=1
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where λ is an irreducible 2-dimensional representation of Cp.
If p = 2, we have the same splitting but with the σ-fold suspension:

Σσ Map(C2, X) � ΣσNC2
e X ∨ Σσ(C2+ ∧ X).

Proof. A choice of equivariant embedding

∗ � Cp ↪→ λ

gives a Thom collapse

Sλ → Sλ ∨ Cp+ ∧ Sλ.

Smashing this with Map(Cp, X) gives us then gives us a map

Σλ Map(Cp, X) → Σλ Map(Cp, X) ∨ Cp+ ∧ Σλ Map(Cp, X).

On the first summand, we can further map out via the crush the fat-wedge map:

Σλ Map(Cp, X) → ΣλNCp
e X.

For the second summand, we have an isomorphism:

Cp+ ∧ Σλ Map(Cp, X) ∼= Cp+ ∧
{e}

(
Σ2X×p

)
,

and we now can use the classical splitting

Cp+ ∧
{e}

(
Σ2X×p

)
� Cp+ ∧

{e}

(
S2 ∧

p∨
i=1

(
p

i

)
X∧p

)
.

The summand for i = p is actually already handled by the norm summand, so we project away from that. 
The summands 

(
p
i

)
X∧i break into orbits for the Cp action that permuted the coordinates, so choosing one 

for each orbit gives us an equivariant map

Cp+ ∧ Σλ Map(Cp, X) → Cp+ ∧
(

S2 ∧
p−1∨
i=1

1
p

(
p

i

)
X∧i

)
.

All told, we get a (natural in X) map

Σλ Map(Cp, X) → ΣλNCp
e X ∨ Σλ

(
Cp+ ∧

{e}

p−1∨
i=1

1
p

(
p

i

)
X∧i

)
.

Since we have chosen one summand from each orbit, the map is an underlying equivalence by the classical 
splitting. There are no fixed points for the second summand, and we note that the Euler class and diagonal 
give a map

q∗i∗
eX

aλ−→ Σλq∗i∗
eX

ΣλΔ−−−→ Σλ Map(Cp, X),

where q∗ takes a space to a Cp-space with the trival action, and this map is an equivalence on fixed points. 
The projection



M.A. Hill / Journal of Pure and Applied Algebra 226 (2022) 107052 21
Σλ Map(Cp, X) → ΣλNCp
e X

is therefore also an equivalence.
For p = 2, we can use σ instead of λ; the proof goes through without change. �

Remark A.4. For C2, there is also an argument using a twisted version of the join, and this appeared in 
the first version of this paper. The current version is heavily informed by the co-H-space approach to the 
splitting as explained in [16].

Remark A.5. The same kind of argument will give more general splittings for coinduction; the question is 
the isotropy types of the action of G on the expected stable splitting.
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