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ABSTRACT
Enabling participation of demand-side flexibility in electricity mar-

kets is key to improving power system resilience and increasing

the penetration of renewable generation. In this work we are mo-

tivated by the curtailment of near-zero-marginal-cost renewable

resources during periods of oversupply, a particularly important

cause of inefficient generation dispatch. Focusing on shiftable load

in a multi-interval economic dispatch setting, we show that incom-

patible incentives arise for loads in the standard market formulation.

While the system’s overall efficiency increases from dispatching

flexible demand, the overall welfare of loads can decrease as a result

of higher spot prices. We propose a market design to address this

incentive issue. Specifically, by imposing a small number of addi-

tional constraints on the economic dispatch problem, we obtain

a mechanism that guarantees individual rationality for all market

participants while simultaneously obtaining a more efficient dis-

patch. Our formulation leads to a natural definition of a uniform,

time-varying flexibility price that is paid to loads to incentivize

flexible bidding. We provide theoretical guarantees and empirically

validate our model with simulations on real-world generation data

from California Independent System Operator (CAISO).
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1 INTRODUCTION
The traditional paradigm of generation following load is being

transformed as variable, non-dispatchable resources like solar and

wind are an ever increasing share of the generationmix. This creates
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situations, typically during midday, where there is an excess near-

zero marginal cost renewable generation which must be curtailed

in order to maintain supply-demand balance. While this scenario

might have seemed far-fetched even a few years ago, it is already

occurring in major markets. On October 11, 2020, renewables met

more that 100% of the total demand in Southern Australia for several

hours [3]. In the CAISO (California Independent System Operator)

market, solar regularly provides more that 60% of total generation

during the afternoon and reached an all-time peak of 80% in May

2019 [12]. Due to a generation queue dominated by renewables

and a 100% zero-emission target for 2045, over-generation from

renewables will become increasingly common in the California and

other large markets [1].

Storage and demand response are two approaches for shifting

surplus renewable generation from peak midday hours to peri-

ods of higher demand. In an influential 2017 report, researchers at

Lawrence Berkeley National Lab analyzed opportunities for demand

response and proposed the "Shape-Shift-Shed-Shimmy" taxonomy

of flexible loads [7]. They argue that each type of load flexibility is

applicable for a particular timescale and use case. Shift flexibility,

where the total energy consumed over the time horizon (e.g., 24

hours) remains constant but can be shifted between time inter-

vals, is identified as the form of demand response best suited to

accommodate renewable over-generation. Sources of shiftable load

include electric vehicle charging, commercial and residential HVAC,

and non-time-sensitive industrial processes.

Mechanisms and incentives for offering demand response have

been extensively studied but most often they focus on direct com-

pensation for load shedding or peak shaving. Demand response

programs implemented by ISOs (Independent System Operators)

and utilities tend to be tailored to that same goal. Despite the calls

for attention, mechanisms for Shift flexibility in particular remain

relatively understudied [7, 37]. The operational benefits of dispatch-

ing shiftable loads are clear to market operators, but as existing

markets do not invite significant demand-side participation, from

the consumer’s point of view the advantages are less clear. This

motivates the core questions of this work: Is a flexible load better off
offering its shiftable demand to the market operator than not? And, if
not, can we redesign the market to encourage loads to offer shiftable
demand to the marketplace?

Contributions. The answers are No and Yes. We prove that

there is incentive misalignment in traditional market designs where

flexible loads may prefer not to expose their flexibility to the mar-

ketplace. To address this, we introduce a new mechanism where

loads have incentives to offer flexibility and generator incentives

remain aligned with the social welfare objective. More specifically,

this paper makes the following contributions.
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First, we establish a market and utility model for analyzing

shiftable demand. Ours is a variant of the multi-interval market, ex-

tensively studiedwith ramping inequality constraints [26, 29, 31, 48]

where equality constraints are added to couple the demand con-

sumption in all periods. Our framework for load utility is derived

from the load utility model implied by the standard economic dis-

patch formulation.

Second, we identify a fundamental incentive incompatibility for

loads offering flexible dispatch while being compensated with the

standard electricity spot price. We show in Theorem 3.1 that even

in very simple scenarios, loads are worse off under flexible dispatch,

even as generators capture more profit and the efficiency of the

dispatch solution improves. This counter-intuitive situation arises

from the interplay between the time-coupling demand constraint

and the power balance constraint that holds in each time interval.

Third, we propose a new multi-interval economic dispatch mar-

ket that corrects the demand-side incentive incompatibility. Our

mechanism preserves core features of the existing structure while

making some novel changes: we add inequality constraints to con-

strain the demand allocation and clear the generation and demand

sides of the market separately in a two-step procedure that ensures

supply-demand balance and revenue adequacy. Loads that offer flex-

ibility are compensated for deviating from their nominal baseline

with a flexibility price, defined in Section 4, while inflexible loads

continue to pay the baseline spot price for energy. Our main result,

Theorem 4.3, proves that loads have incentives to offer flexibility un-

der the new market design without disturbing dispatch-following

incentives for generators.

Finally, in Section 5 we present a case study using generation

data from CAISO. The case study highlights the importance of en-

suring that shiftable loads have incentives to bid their flexibility

into the marketplace. Our results show that curtailment of renew-

able generation can be eliminated, leading to a 15% reduction in

the net generation costs.

Related work. This paper builds on and contributes to three

areas of the literature on electricity markets: (1) mechanisms for

demand response, (2) multi-interval dispatch, and (3) incentive

alignment in mechanism design.

Demand response has been extensively explored in both the

academic literature and in practice. In both contexts, interest in

demand response has mainly centered around rate-based demand

reduction [19, 22, 32, 45] and incentive-based programs [13]. In the

former category are time-of-use pricing [18], critical-peak pricing

[27], and real-time pricing [6], all schemes which use a given price

schedule to incentivize loads to consume energy during lower-cost

periods. In the latter group are programs like direct load control [21]

and emergency demand reduction [4] inwhich loads are given lump-

sum or per-event payments by the system operator in exchange for

the curtailment. Such programs are popular in practice since they

lower demand and spot prices during peak load hours.

A drawback of many of these existing designs is that they tend to

emphasize a particular variety of demand response—load shedding—

and do not explicitly offer incentives for other types of flexible load.

The demand response taxonomy in [7] identifies four major types

of demand response, each requiring their own dispatch and incen-

tive structures. A general mathematical formulation for optimal

dispatch of flexible load is notably given in [37] but the formula-

tion therein assumes knowledge of demand-side value functions.

In practice these are very difficult to determine, partly for practical

reasons (there are seldom opportunities for loads to reveal their

price elasticity) and partly due to historical reasons (electricity has

always been treated as an “on-demand” commodity) [33]. We are

not aware of any works that formally analyzes incentives for offer-

ing shiftable demand—identified as the most significant potential

source of demand-side flexibility in [7]—while also retaining the

established economic dispatch market structure.

Another important theme in the demand response literature is

strategic behavior by loads when reporting their baseline energy

consumption. Because demand response almost always defined as a

reduction from a baseline, there can be incentives for loads to inflate

their baselines to give the appearance of a larger load reduction in

real-time. There are a number of works that analyzed incentives

for misreporting and proposed mechanisms to discourage it [14, 16,

39, 40, 46]. While we retain the concept of a baseline in this work

for convenience, our model is compatible with schemes to limit the

incentives to misreport it, e.g., [41].

Multi-interval markets are of growing interest as a way to guar-

antee reliable electricity dispatch in the face of uncertain generation.

Several substantial works have explored multi-interval market de-

sign including [26, 29, 31, 48]. The intertemporal constraints in all of

these are limited to ramping limits, which only couple adjacent time

periods. In contrast, along the lines of the model proposed in [37],

our work considers equality constraints on demand consumption

that couple all time periods together. This type of inter-temporal

constraint introduces a particular incentive misalignment—a the

focus of this paper.

More broadly, our work connects to the topic of mechanism

design. Analysis of incentive and participation constraints in mar-

ket mechanisms was pioneered by Hurwicz, Groves, and Ledyard,

among others [25, 34]. The study of incentives in electricity markets

has a rich history beginning with the seminal work of Schweppe

[44] and has strongly influenced subsequent research on congestion

pricing [15, 28] and non-convex pricing [8, 24, 30, 36]. In addition

there has been research on market manipulation by generators, e.g.,

through market power and/or strategic curtailment of renewable

generation. Some notable recent results in this direction include

[10, 35, 42, 43]. While this body of work establishes a framework

for analyzing electricity market incentives, it does so almost ex-

clusively for the generation side of the market [38]. Efficiently

dispatching demand-side resources to meet system needs requires

similar evaluation of incentive structures.

2 MARKET MODEL
We study an economic dispatch market for energy that the market

operator (e.g., ISO/RTO) uses to calculate dispatch quantities and

settlement prices. Our model is distinctive from the standard short-

term setting in several important ways. First, we consider a multi-

interval market with intertemporal equality constraints, which

are necessary to model shiftable demand. This contrasts with an

existing body of work on multi-interval markets with intertemporal

inequality constraints. Second, we explicitly model and dispatch

the demand side of the market. Typically demand is taken to be
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fixed with only generation being variable. Third, we evaluate the

welfare of both generators and loads in our analysis of incentives.

As loads are the participants providing demand response flexibility,

explicitly incorporating them into the social welfare formulation is

crucial for quantifying the impacts of flexibility.

2.1 Market participants
The market has 𝑁 generators, indexed by 𝑖 , and operates over

discrete time horizon of length𝑇 , indexed by 𝑡 . The energy produced

by generator 𝑖 in interval 𝑡 is denoted by 𝑝𝑖,𝑡 ∈ R. We denote

generators’ production over the time horizon with the generation

matrix P ∈ R𝑁×𝑇
. It is sometimes convenient to refer to individual

row/columns of this matrix. The 𝑡-th column, themarket production

vector for time 𝑡 , is p𝑡 = [𝑝1,𝑡 , . . . , 𝑝𝑁,𝑡 ]⊤ ∈ R𝑁 . Analogously, the

𝑖-th row, generator 𝑖’s production across the entire time horizon,

is denoted p𝑖 = [𝑝𝑖,1, . . . , 𝑝𝑖,𝑇 ]⊤ ∈ R𝑇 . Generator cost functions
𝑐𝑖,𝑡 (𝑝𝑖,𝑡 ) : R → R+ are assumed to be convex, monotonically

increasing, sub-differentiable, and zero-crossing. This last property

requires that 0 ∈ dom(𝑐𝑖,𝑡 ) and 𝑐𝑖,𝑡 (0) = 0. For convenience, we

refer to the total cost function for each generator as

𝑐𝑖 (p𝑖 ) =
∑
𝑡

𝑐𝑖,𝑡 (𝑝𝑖,𝑡 ).

The market includes 𝑀 demand participants, which we refer

to as loads, indexed by 𝑗 . Each load consumes a fixed amount of

energy 𝐸 𝑗 over the 𝑇 periods. We use 𝑑 𝑗,𝑡 ∈ R to denote the the

energy consumed by load 𝑗 in interval 𝑡 . Like with generators, we

stack the 𝑑 𝑗,𝑡 into a demand matrix D ∈ R𝑀×𝑇
. We refer to the 𝑡-th

column with d𝑡 = [𝑑1,𝑡 , . . . , 𝑑𝑀,𝑡 ]⊤ ∈ R𝑀 and the 𝑗-th row with

d𝑗 = [𝑑 𝑗,1, . . . , 𝑑 𝑗,𝑇 ]⊤ ∈ R𝑇 . Loads do not have preference functions
that vary with consumption in each time interval. However, they do

report a preferred baseline in each interval 𝑑0
𝑗,𝑡

∈ R. 𝐸 𝑗 is defined
in terms of the cumulative baseline consumption of load 𝑗 :

𝐸 𝑗 =
∑
𝑡

𝑑0𝑗,𝑡 .

The use of a baseline is a common assumption in demand re-

sponse (see e.g., [45]) that we retain here in order to provide a

natural definition of flexibility Δ 𝑗 as the amount that the actual dis-

patch d𝑗 deviates from load 𝑗 ’s preferred baseline d0
𝑗
: Δ 𝑗 := d𝑗 −d0

𝑗
.

2.2 Market mechanism
The structure of bids, the market clearing procedure, and the settle-

ment structure are laid out in the following steps:

1. All participants (loads, generators) submit their bids. For

loads, this takes the form of a triple

(𝐸 𝑗 , d𝑗 , d𝑗 ) ∈ R+ × R𝑇+ × R𝑇+
that consists of their energy requirement and lower/upper

bounds on consumption in each time period.
1
For generators,

the bid takes the form of a pair

(𝑐𝑖 , p𝑖 ) ∈ C × R𝑇+
C is the set of all functions 𝑐 : R𝑇+ → R that are convex,

monotonically increasing, and contain the origin. Generators

1
As d𝑗 is assumed to be non-negative, all components of the bid are non-negative.

only submit their upper bounds on production; to avoid non-

convexities arising from unit commitment, generation lower

bounds are assumed to be 0.

2. The market operator collects bids and solves a market clear-

ing optimization problem, defined in (1a) - (1e). Its solution

provides an allocation of energy to each participant (the

dispatch) and a unit price for energy in each time period.

3. Generators are obligated to produce the dispatch quantities

and are paid the unit price for whatever they produce. Loads

must consume the dispatch quantities and must pay the

unit price for whatever they consume. If any participant

deviates from the dispatch schedule, the market operator

has the ability to administratively penalize the violator, e.g.,

via large monetary penalties or exclusion from the market.
2

The centerpiece of the market structure is the market clearing
optimization problem in Step 2. We study a version of the economic

dispatch problem used by ISOs, made distinctive in our case by the

multi-interval setting and the inclusion of intertemporal equality

constraints. For the sake of focusing our analysis on the impacts

of these unique features, we do not consider unit commitment,

start-up/no-load costs, and line congestion. We also ignore ramping

constraints (i.e., intertemporal inequality constraints) for both loads

and generators. As previously mentioned, these have been stud-

ied extensively on the generation side of market in [26, 29, 31, 48]

among others. Finally, we consider a “single-shot” market-clearing

procedure where dispatch quantities and prices are determined at

the beginning of the dispatch horizon and adhered to through the re-

mainder of it.
3
Relaxing these simplifying assumptions is discussed

as future work in the Conclusion but we note here that incentive

misalignment for loads arises even in the most straightforward

setting of the problem.

The market clearing optimization problem is as follows:

min

p𝑗 ,d𝑗 ∀𝑖, 𝑗

∑
𝑖

𝑐𝑖 (p𝑖 ) (1a)

subject to

𝜆𝑡 ⊥ 1⊤d𝑡 − 1⊤p𝑡 = 0 ∀𝑡 (1b)

𝜌 𝑗 ⊥ 1⊤d𝑗 = 𝐸 𝑗 ∀𝑗 (1c)

𝜇−𝑖 , 𝜇
+
𝑖 ⊥ 0 ≤ p𝑖 ≤ p𝑖 ∀𝑖 (1d)

𝜂−𝑗 , 𝜂
+
𝑗 ⊥ d𝑗 ≤ d𝑗 ≤ d𝑗 ∀𝑗 (1e)

In the above, (1a) is the total generation cost; (1b) are the power

balance constraints in each interval; (1c) enforces that each load’s

energy requirement 𝐸 𝑗 is met over the time horizon (these are the

intertemporal equality constraints); and (1d) - (1e) ensure that the

dispatch satisfies participants’ minimum and maximum produc-

tion/consumption limits.

Given an optimal solution to (1), the time-varying non-negative

energy price 𝜋𝑡 is defined for all 𝑡 as

𝜋𝑡 := 𝜆∗𝑡 (2)

where 𝜆∗𝑡 is the optimal dual variable for (1b).

2
This requirement reflects the auction design of most North American ISOs, see e.g.,

Section 2.1 in [17].

3
The only assumption needed to support this is that the d0

𝑗
are known at 𝑡 = 1 and do

not adjust over the course of the time horizon.

3
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By offering flexibility in the form of a box constraint on de-

mand as in (1e), the efficiency of the dispatch is improved. This is

expressed in the following theorem.

Theorem 2.1. Let OPT0 be the optimal value of problem (1a) -
(1e) when 𝑑 𝑗,𝑡 = 𝑑 𝑗,𝑡 = 𝑑0

𝑗,𝑡
for all 𝑗 and 𝑡 , assuming it exists. Let

OPT be the optimal value of the problem where 𝑑 𝑗,𝑡 < 𝑑0
𝑗,𝑡

< 𝑑 𝑗,𝑡 for
at least one 𝑗 or 𝑡 . Then OPT ≤ OPT

0.

Theorem 2.1 states that dispatching demand-side flexibility offers

benefits to the market allocation in the form of lower cost (greater

efficiency). A proof of this result follows immediately from the fact

that relaxing constraint (1e) results in a large feasible set, which

therefore gives a lower bound on the optimal value in the case

where the constraint is tight. The existence of OPT is guaranteed

by the existence of OPT
0
.

Notice that the formulation of economic dispatch in (1) reduces to

the standard setting (𝑇 independent sequential economic dispatch

problems) when d𝑗 = d𝑗 = d𝑗 . In this situation, constraints (1c) and

(1e) are redundant and d𝑡 in (1b) can be replaced by d0𝑡 .

2.3 Utility models for generators and loads
An important goal of this paper is to evaluate whether the market

allocation, given by the optimal primal solution of (1), and the

market-clearing price, given by the optimal dual variable of (1b),

are aligned with the individual incentives. To study this question

we need to introduce definitions of utility and the individual utility

maximization problem for both loads and generators.

Let 𝜋 ∈ R𝑇+ be the vector of market-clearing energy prices for

the time horizon. We assume all agents are price takers and define

the following utility models for generators and loads respectively.

Definition 2.2. Let p𝑖 ∈ R𝑇 be generator 𝑖’s production vector and
P𝑖 be its private constraint set

P𝑖 =

{
p𝑖 ∈ R𝑇

��� 0 ≤ p𝑖 ≤ p𝑖
}
⊆ R𝑇 .

Generator 𝑖’s utility is defined as

𝑢𝑖 (p𝑖 ;𝜋) := 𝜋⊤p𝑖 − 𝑐𝑖 (p𝑖 ) . (3)

We assume a generator acts rationally when facing the given

price schedule 𝜋 and therefore seeks to maximize its utility with

argmax

p𝑖
𝑢𝑖 (p𝑖 ;𝜋)

s.t. p𝑖 ∈ P𝑖 .
(4)

In contrast to generators, loads do not have a cost function and

are only constrained by a required amount of energy to be delivered

over the time horizon, 𝐸 𝑗 . Instead we assume that there is a constant

utility value𝑈 𝑗 ∈ R+ that represents the value a load receives from

having 𝐸 𝑗 satisfied. We assume that the load is indifferent to how

energy is allocated across the intervals, as long as 𝐸 𝑗 is delivered

and upper/lower consumption limits are respected.

Definition 2.3. Let d𝑗 ∈ R𝑇 be load 𝑗 ’s consumption vector and
D𝑗 be its private constraint set,

D𝑗 =

{
d𝑗 ∈ R𝑇

��� d𝑗 ≤ d𝑗 ≤ d𝑗 , 1⊤d𝑗 = 𝐸 𝑗

}
⊆ R𝑇 .

Load 𝑗 ’s utility is defined as

𝑢 𝑗
(
d𝑗 ;𝜋

)
= 𝑈 𝑗 − 𝜋⊤d𝑗 . (5)

We again assume each load acts rationally when facing the given

price schedule 𝜋 and therefore seeks to maximize its utility with

argmax

d𝑗
𝑢 𝑗 (d𝑗 ;𝜋)

s.t. d𝑗 ∈ D𝑗 .

(6)

A feature of this presentation of utility that deserves comment

and justification is our representation of the positive “value” com-

ponent of load utility with a constant 𝑈 𝑗 . This choice is made to

align with the classical auction-based economic dispatch model in

Section 2.2. Specifically, if we use utility functions (3) and (5) to

construct the market’s social welfare maximization problem subject

to a shared market clearing constraint and private feasibility con-

straints, we get exactly the auction-based economic dispatch model

(i.e., cost minimization) of the market described by (1). To see this,

recall that the market’s social welfare maximization problem is

max

p𝑖 ,d𝑗 ∀𝑖, 𝑗

∑
𝑖

𝑢𝑖 (p;𝜋) +
∑
𝑗

𝑢 𝑗 (d𝑗 ;𝜋)

s.t. 1⊤p𝑡 = 1⊤d𝑡 ∀𝑡
p𝑖 ∈ P𝑖 ∀𝑖
d𝑗 ∈ D𝑗 ∀𝑗

(7)

At an optimal point p∗
𝑖
, d∗

𝑗
∀𝑖, 𝑗 of (7),

1⊤p∗𝑡 − 1⊤d∗𝑡 = 0 ∀𝑡

⇒
∑
𝑖

p𝑖 −
∑
𝑗

d𝑗 = 0

Plugging in (3) and (5) into the objective function of (7), we get∑
𝑖

𝑢𝑖 (p;𝜋 ) +
∑
𝑗

𝑢 𝑗 (d𝑗 ;𝜋 ) =
∑
𝑖

𝜋⊤p𝑖 − 𝑐𝑖 (p𝑖 ) +
∑
𝑗

𝑈 𝑗 − 𝜋⊤d𝑗

=
∑
𝑗

𝑈 𝑗 −
∑
𝑖

𝑐𝑖 (p𝑖 ) + 𝜋⊤
(∑

𝑖

p𝑖 −
∑
𝑗

d𝑗
)

=
∑
𝑗

𝑈 𝑗 −
∑
𝑖

𝑐𝑖 (p𝑖 )

It is clear that the objective function of (7) differs from (1a) by only

a constant factor and the constraint sets of the two problems are

identical. Therefore, they have the same optimal solution (although

the optimal value differs by a factor of

∑
𝑗 𝑈 𝑗 ). While the choice of

𝑈 𝑗 does not impact the optimal solution, intuitively, it should be

a positive number, large enough so that 𝑈 𝑗 − 𝜋⊤d𝑗 > 0 for most

realizations of 𝜋 and d𝑗 . However this condition is not necessary

for our analysis of prices and dispatch quantities.

3 PARTICIPATION INCENTIVES
Our first set of results focuses on understanding the consequences

of dispatching flexibility via the classical market formulation de-

scribed in the previous section. We show in this section that, though

dispatch-following incentives for generators remain intact, partici-

pation incentives for loads are misaligned and offering flexibility

(i.e., d𝑗 < d𝑗 ) to the market operator is not necessarily rational.

4
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3.1 Participation incentives for loads
Participation constraints affect a rational agent’s behavior. In par-

ticular, given a choice to enter into a market/mechanism or not,

it is expected that a rational agent only does so if their utility is

higher under participation than their best alternative. To put this

precisely for the case of loads in our model, let d0
𝑗
be the allocation

a load receives outside of the flexibility mechanism (i.e., the load

simply consumes its reported baseline). Let d′
𝑗
be the allocation a

load receives by participating in the mechanism. 𝑗 ’s participation

constraint is satisfied if and only if 𝑢 𝑗 (d′𝑗 ) ≥ 𝑢 𝑗 (d0𝑗 ) .
Once a participant submits its bid to the market operator, it

is obliged to obey the dispatch instruction that comes in return

when the market is cleared. We show in the following theorem

that, depending on the market outcome, loads can end up worse

off by offering flexibility under the energy price in (2), despite the

increase in efficiency that flexibility offers to the market as a whole

(established in Theorem 2.1).

Theorem 3.1. Assume the baseline solution d0
𝑗
∀𝑗 is feasible for

(1a) - (1e). Under the market dispatch (1a) - (1e) and energy price 𝜋𝑡
given in (2), participation constraints for loads are are not guaran-
teed. That is, there exist choices of parameters 𝑐𝑖 (·), d0𝑗 , p𝑖 , d𝑗 , d𝑗 with
𝑑 𝑗,𝑡 < 𝑑 𝑗,𝑡 for some 𝑗, 𝑡 such that 𝑢 𝑗 (d′𝑗 ) < 𝑢 𝑗 (d0𝑗 ) for some 𝑗 .

Proof. Our proof takes the form of a counterexample. Consider

a market environment with 2 time periods: 𝑡 = 1, 2. There is a single

load with demand given by d = [𝑑1, 𝑑2]⊤ and a single generator

with generation given by p = [𝑝1, 𝑝2]⊤. The unit generation costs

are c = [1, 2]⊤ and the baseline demand is d0 = [2, 2]⊤. Thus 𝐸 = 4.

Generation is constrained by p = [0, 0]⊤, p = [3, 3]⊤, and demand

by d = d0 (1−𝛼) ≤ d0 (1+𝛼) = d, where 𝛼 ∈ [0, 1]. We parameterize

the demand lower/upper bounds with the constant 𝛼 to allow us

to vary the offered flexibility between 0 (𝛼 = 0) and its maximum

(𝛼 = 1).
4

Market dispatch model (1a) - (1e) with these parameters gives

the following optimization problem:

min

𝑝,𝑑
𝑐⊤p

s.t. 𝜆 ⊥ p = d

1⊤d = 4

0 ≤ p ≤ 3 · 1
2(1 − 𝛼) · 1 ≤ d ≤ 2(1 + 𝛼) · 1.

(8)

By (2) the energy price vector is 𝜋 = 𝜆∗. We assume the value

constant for the load is 0 and take the optimal solution of (8) to be

(p′, d′, 𝜆′), we have the following form of load utility:

𝑢 (d′) = −𝜆′⊤d′.
We solve (8) for 𝛼 ∈ [0, 1] and compute demand utility 𝑢 (d′;𝛼).

Since 𝛼 parameterizes the "amount" of flexibility demand offers,

increasing values of 𝛼 correspond to greater demand flexibility

(looser bounds on min/max consumption in each interval). The

results are shown in Figure 1.

4𝛼 = 1 is the maximum because demand cannot be negative. The upper bound does

not have the same restriction as the lower one but we stick to a single parameter here

for simplicity.

0.0 0.5 1.0
α

−8

−6

u(
d)

Figure 1: Demand utility vs. 𝛼 ∈ [0, 1]

Maximum consumer utility of −5 is reached as 𝛼 ↑ 0.5 and

𝑢 (d0) ≥ 𝑢 (d) only for 𝛼 < 0.5. That is, the demand is worse off by

offering for 𝛼 ≥ 0.5 than none at all. In fact, if we had chosen the

parameters differently (e.g., 𝑑0 arbitrarily close to 𝑝 in one interval),

the demand participation constraint is violated for all 𝛼 > 0. □

Remark:We retain the standard price-taking assumption in the
above proof. With a single generator, this may be practically unrealis-
tic. At the expense of greater complexity additional generators can be
considered without changing the qualitative behavior we highlight.
The purpose of the proof is to demonstrate that incentive violations
arise even in the simplest of market settings.

Analyzing which generation constraints in (1d) bind as 𝛼 varies

in the counterexample above gives insight into how misaligned

incentives for loads come about.

Analogously to how a marginal generator 𝑖 can be defined in

the single-period economic dispatch, we define a marginal pair:

generator and interval (𝑖, 𝑡). If 𝑝𝑖,𝑡 −1
⊤d0

𝑡
≥ 0, then flexible demand

can shift to 𝑡 from costlier intervals to take advantage of this excess

supply without changing the price 𝜆𝑡 . However, once the upper

bound is exceeded for the marginal pair (i.e., 1⊤d0
𝑡

> 𝑝𝑖,𝑡 ), 𝜆
∗
𝑡

jumps up to the marginal cost of the next cheapest marginal pair.

This surprising behavior occurs because time periods are coupled

together through constraint (1c) Adding constraints on d𝑗 that
prevent this jump motivates the mechanism proposed in Section 4.

3.2 Participation incentives for generators
The previous section addresses the incentive misalignment for loads

under the standard market structure. One may worry that a similar

misalignment happens for generators. In this section we show that

there is no such issue on the generator side of the market, i.e., that

utility-maximizing decisions of the generators exactly match the

dispatch decision by the market operator.

Specifically, the following theorem states that the optimal solu-

tion of the market dispatch problem (1a) - (1e) provides dispatch

following incentives to generators, provided we treat generators

as pricetakers. Along the way, we also show that generators do

not have negative profit (i.e., participation constraints are satisfied).

Throughout, we make the standard assumption that (1a) - (1e) has

a feasible point.

Theorem 3.2. Let p∗
𝑖
, d∗

𝑗
∀𝑖, 𝑗 be the optimal primal solutions of

(1a) - (1e). The energy prices are 𝜋 := 𝜆∗ where 𝜆∗ is the vector of

5
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optimal dual variables for constraint (1b). Then

p∗𝑖 = argmax

p𝑖
𝑢𝑖 (p𝑖 ;𝜋)

s.t. p𝑖 ∈ P𝑖

Further, 𝑢𝑖 (p∗𝑖 ) ≥ 0.

Proof. See Appendix A. □

Note that this theorem extends a well-known result for single-

period economic dispatch to our multi-interval setting with equality

constraints.

4 INCENTIVIZING FLEXIBILITY
Section 3 highlights that loads have an incentive not to reveal their

flexibility under the standard market design where only the energy

price is used for settlement. This is problematic since exploiting the

flexibility of loads is essential for system reliability, avoiding curtail-

ment of renewable energy, and improving the economic efficiency

of the dispatch. This section presents the main contribution of the

paper: a new market design that ensures both loads and generation

have incentives that are aligned with the market operator’s and,

specifically, provides incentives for loads to reveal their flexibility

to the market. First we introduce the market design and prove its

incentive properties and following, in Section 5, we illustrate the

market design using a case study.

4.1 A market design for flexibility
Our proposed design adopts a similar structure to the standard

market while introducing three important components: (1) a small

number of additional constraints on the demand allocation, (2) a

time-varying price 𝜅𝑡 for flexibility, and (3) a two-stage market

clearing scheme for the demand side of the market.

Before presenting the mechanism we must introduce some nota-

tion. First, let the constant

𝑐min := min

𝑖,𝑡

𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝0𝑖,𝑡 )

be the smallest marginal cost (over all 𝑖 and 𝑡 ) under the baseline

allocation. Second, define T ⊆ {1, . . . ,𝑇 } to be the subset of in-

tervals for which it is true that
𝜕𝑐𝑖,𝑡
𝜕𝑝𝑖,𝑡

(𝑝0
𝑖,𝑡
) = 𝑐min for at least one

𝑖 ∈ {1, . . . , 𝑁 }. T c
is the set of all intervals that do not meet this

condition. Together, T ¤∪ T c = {1, . . . ,𝑇 }.5 In what follows, we

assume that neither T and T c
is empty. Third, for each 𝑡 ∈ T ,

define a generator index set

I𝑡 := {𝑖 |
𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝0𝑖,𝑡 ) = 𝑐min} ⊆ {1, . . . , 𝑁 }.

Fourth, define

𝑃
cap

𝑡 :=
∑
𝑖∈I𝑡

𝑝
cap

𝑖,𝑡

5
In the real-world scenario of renewable curtailment, 𝑐min = 0 (since marginal cost of

renewables is taken to be 0) and T is simply the set of intervals for which renewables

are curtailed.

where

𝑝
cap

𝑖,𝑡
= argmax

𝑝∈R
𝑝

s.t.

𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝) = 𝑐min

𝑝 ≤ 𝑝𝑖,𝑡

This (regrettably heavy) notation makes precise the amount of

available excess capacity at the lowest price 𝑐min in the baseline

dispatch. Observe that when the 𝑐𝑖 are linear, 𝑝
cap

𝑖,𝑡
= 𝑝𝑖,𝑡 for 𝑖 ∈ I𝑡 .

With this notation in hand, we summarize the structure of the

market mechanism. Additional discussion of each step is provided

following the exposition of the procedure.

1. Generators submit bids (𝑐𝑖 , p𝑖 ) and loads submit bids (d0
𝑗
, d𝑗 , d𝑗 )

to the market operator.

2. Market operator collects bids, forms the market-clearing op-

timization problem (1a) - (1e) with the additional constraint

d𝑗 = d0
𝑗
, and produces a baseline solution (p0

𝑖
, d0

𝑗
, 𝜋0) ∀𝑖, 𝑗 .

3. Market operator re-solves (1a) - (1e) with the addition of

three new constraints:

1⊤d𝑡 ≤ 𝑃
cap

𝑡 ∀𝑡 ∈ T (9a)

𝑑 𝑗,𝑡 ≥ 𝑑0𝑗,𝑡 ∀𝑗, ∀𝑡 ∈ T (9b)

𝑑 𝑗,𝑡 ≤ 𝑑0𝑗,𝑡 ∀𝑗, ∀𝑡 ∈ T c
(9c)

An interim solution and prices are computed: (p̃𝑖 , ˜d𝑗 , �̃�) ∀𝑖, 𝑗 .
4. The market operator defines a flexibility price

𝜅 = 𝜅 (d0𝑗 , ˜d𝑗 , 𝜋
0, �̃�) ∈ R𝑇 (10)

as a function of optimal solutions of the two market clearing

problems. (We discuss the precise form of 𝜅 in Section 4.3.)

5. The market operator solves a demand dispatch problem (11a)

- (11f), producing a final allocation for demand: d∗
𝑗
∀𝑗 .

6. Generators are dispatched to produce energy p̃𝑖 at price �̃� .
Loads are dispatched to consume energy d∗

𝑗
at price 𝜋0 and

contribute flexibility Δ∗
𝑗
compensated with price 𝜅.

We now walk through the steps in more detail, beginning with

Step 2. Step 2 establishes a baseline allocation that is used later in

the procedure to ensure that participation constraints are satisfied.

In Step 3, additional inequalities (9a) - (9c) constrain the demand

dispatch to a desirable region. (9a) enforces that the total demand

does not exceed the total maximum capacity of the cheapest gener-

ator(s) in the interval—provided that there is spare capacity under

the baseline solution. (9b) ensures that demand can only increase
if there is excess cheapest generation in a period. (9c) guarantees

that demand can only decrease during intervals where all of the

cheapest generation is already dispatched. These additional linear

inequalities only add |T | + 𝑇 constraints to the market dispatch

problem, which already has (1 +𝑀 + 𝑁 )𝑇 +𝑀 constraints. Due to

the assumption that T and T c
are non-empty, a solution to (9a) -

(9c) exists: namely D0
.

Step 4 defines a flexibility unit price 𝜅 . The definition of a flexibil-

ity price is central to our proposed mechanism. Rather than enforce

a specific price function, here we present properties that a price of

flexibility should satisfy. Later in Section 4.3 we provide examples

6
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that satisfy the given properties. Before introducing them, we first

we define the concept of a flexibility surplus.

Definition 4.1. The flexibility surplus 𝑆 :=
∑
𝑡 (𝜋0𝑡 − �̃�𝑡 )1⊤ ˜d𝑡 is the

difference between the total demand-side energy payment if demand
were paying baseline energy price 𝜋0𝑡 and the total demand-side pay-
ment when demand pays the price, �̃�𝑡 . Because of Lemma B.2 (see
Appendix B) and constraint (1c), 𝑆 ≥ 0. We interpret 𝑆 as the improve-
ment in welfare (over the baseline) of the demand side of the market
as a whole when the dispatch ˜d𝑡 optimally utilizes flexibility.

Now we establish properties that should be satisfied by a flexi-

bility price 𝜅:

• 𝜅 is uniform (each load faces the same 𝜅)

• 𝜅𝑡 ≥ 0when

∑
𝑗 Δ 𝑗,𝑡 ≥ 0 and 𝜅𝑡 ≤ 0when

∑
𝑗 Δ 𝑗,𝑡 ≤ 0. This

means that the payment for both up and down flexibility is

non-negative, as at least some flexibility in both directions

is necessary to dispatch shiftable demand.

• The sum of all flexibility payments equals the flexibility

surplus:

∑
𝑡 𝜅𝑡1⊤ ( ˜d𝑡 − d0𝑡 ) = 𝑆.

This last property is natural, as our scheme distributes the surplus

arising from the increased economic efficiency of the flexibility

dispatch to the loads that provide this flexibility. Another desirable

property we seek when constructing 𝜅𝑡 is that its magnitude should

reflect the value of flexibility to the system in interval 𝑡 .

Step 5maximizes social welfare for the demand side of themarket

given flexibility price 𝜅 and energy price 𝜋0. In order to construct

this welfaremaximization problem, we need to update the definition

of demand utility with a term that quantifies the benefit that comes

from offering flexibility.

Definition 4.2. Let d𝑗 ∈ R𝑇 be load 𝑗 ’s consumption vector and 𝜅
and 𝜋 be the flexibility and energy price vectors, respectively. d0

𝑗
is

the load’s reported baseline. Then demand utility is given by

𝑢∗𝑗 (d𝑗 ;𝜋, 𝜅, d
0

𝑗 ) = 𝑈 𝑗 − 𝜋⊤d𝑗 + 𝜅⊤ (d𝑗 − d0𝑗 )
Next, we solve a demand allocation optimization where the total

demand dispatch amount in each interval is fixed to be equal to the

total interim demand dispatch from Step 3. This allows the settle-

ment for the generation side of the market to remain unaffected by

the redistribution on the demand side.

max

d𝑗 ∀𝑗

∑
𝑗

𝑢∗𝑗 (d𝑗 ) (11a)

subject to

1⊤d𝑗 = 𝐸 𝑗 ∀𝑗 (11b)

d𝑗 ≤ d𝑗 ≤ d𝑗 ∀𝑗 (11c)

𝑑 𝑗,𝑡 ≥ 𝑑0𝑗,𝑡 ∀𝑗, ∀𝑡 ∈ T (11d)

𝑑 𝑗,𝑡 ≤ 𝑑0𝑗,𝑡 ∀𝑗, ∀𝑡 ∈ T c
(11e)

1⊤d𝑡 = 1⊤ ˜d𝑡 ∀𝑡 (11f)

The optimal solution of the above problem d𝑗 ∗ determines the

actual consumption of load 𝑗 over the horizon.

Finally, Step 6 settles the market with (p̃𝑖 ∀𝑖, �̃�) for generators
and (d∗

𝑗
∀𝑗, 𝜋0, 𝜅) for loads. Load 𝑗 pays 𝜋0⊤d∗

𝑗
for energy because

it is the price it would have payed in the baseline scenario. The load

receives 𝜅⊤Δ∗
𝑗
for deviating by Δ∗

𝑗
from its baseline.

4.2 Analyzing participation incentives
The following theorem establishes properties for both generator and

load utility under the proposed market mechanism and settlement

scheme. We show that incentives are aligned on both sides of the

market.

Theorem 4.3. Let (p̃𝑖 , d∗𝑗 ,Δ
∗
𝑗
) be the energy and flexibility alloca-

tion from the market mechanism. Let (�̃�, 𝜋0, 𝜅) be the corresponding
energy and flexibility prices. Then

(i) (p̃𝑖 , d∗𝑗 ,Δ
∗
𝑗
) clears the market;

(ii) (p̃𝑖 , d∗𝑗 ,Δ
∗
𝑗
, �̃�, 𝜋0, 𝜅) is revenue neutral for the market operator;

(iii) (p̃𝑖 , �̃�) provides dispatch-following incentives for generators
and satisfies their participation constraints;

(iv) (d∗
𝑗
,Δ∗

𝑗
, 𝜋0, 𝜅) satisfies participation constraints for loads. Specif-

ically, for each 𝑗 ,

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0, 𝜅, d0𝑗 ) ≥ 𝑢 𝑗 (d0𝑗 ;𝜋
0);

(v) For 𝑗 for which Δ∗
𝑗,𝑡

= 0 for all 𝑡 (no flexibility offered),

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0, 𝜅, d0𝑗 ) ≤ 𝑢 𝑗 ( ˜d𝑗 ; �̃�);

For 𝑗 for which |Δ∗
𝑗,𝑡
| > 0 for some 𝑡 (flexibility offered),∑

𝑗

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0, 𝜅, d0𝑗 ) ≥
∑
𝑗

𝑢 𝑗 ( ˜d𝑗 ; �̃�) .

Statement (v) is of particular importance and highlights that

loads are better off offering flexibility than not: no load becomes

worse off than at its baseline consumption but loads that do offer

flexibility are (weakly) better off as a group than those that do not.

Proof. See Appendix C.

□

4.3 A price for flexibility
A core piece of our proposed market design is the flexibility price 𝜅 .

How to properly compensate demand for flexibility is a challenging

open question. Flexibility, as defined in this work, is a public good:

in the interim, energy price-only settlement (P̃, D̃, �̃�), even those

loads who do not offer relaxed bounds on their consumption (i.e.,

offer flexibility to the market) still benefit from others that do by

enjoying a lower price. To address this, our mechanism directly

pays flexible loads that based on how much of the flexibility they

offer is dispatched. We proceed in two stages: first we define a

flexibility price 𝜅 that satisfies certain desirable properties (Step

4 in the mechanism); and second, we compute an allocation of

energy and flexibility that maximizes individual utility while also

respecting the previously-determined generation dispatch (Step 5

in the mechanism).

To this point, we have made the second stage concrete with (11a)

- (11f) but we have not yet given specific examples of flexibility

prices that satisfy the desirable properties of 𝜅 listed in Step 4

above. In this section we propose three different flexibility prices,

commenting on their relative advantages. An interesting future

research direction is to explore other forms of this price.

7
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4.3.1 Optimization-based. Our first approachis to directly solve

an optimization problem with the properties listed in Step 4 as

constraints.

min

𝜅∈R𝑇
𝑓 (𝜅)

s.t. 𝑆 =
∑
𝑡

𝜅𝑡1⊤ ( ˜d𝑡 − d0𝑡 )

𝜅𝑡 ≥ 0 ∀𝑡 ∈ T
𝜅𝑡 ≤ 0 ∀𝑡 ∈ T c

A benefit of this approach is that the choice of an objective

function 𝑓 (𝜅) can be made in order to enforce desired structural

properties. For example, setting 𝑓 (𝜅) = | |𝜅 | |2 yields a smooth price

schedule. If prices that weight high-value time-periods more are

desired, then one could have 𝑓 (𝜅) = | |𝜅 | |1.6
The adaptability of this formulation of 𝜅 is its main advantage.

One potential disadvantage is that it does not yield a closed-form

representation of 𝜅 in general, which could make the price diffi-

cult to interpret. The subsequent two designs we consider provide

closed-form representations of 𝜅.

4.3.2 Budget-balance. A contrasting formulation of 𝜅 is based on

the market operator’s budget balance condition:∑
𝑡

�̃�𝑡1⊤p̃𝑡 =
∑
𝑡

𝜋0𝑡 1
⊤d∗𝑡 −

∑
𝑡

𝜅𝑡1⊤
(
d∗𝑡 − d0𝑡

)
(12)

This condition states that the total payments to generators equals

the total energy payments from demand minus the total flexibility

payments to loads. Noting that 1⊤p̃𝑡 = 1⊤ ˜d𝑡 = 1⊤d∗𝑡 and enforcing
equality for each 𝑡 separately, we solve for (12) for 𝜅𝑡 to get

𝜅𝑡 :=

(
𝜋0𝑡 − �̃�𝑡

)
1⊤d∗𝑡

1⊤
(
d∗𝑡 − d0𝑡

) .

This form of 𝜅𝑡 satisfies our desired properties but it does have

an important drawback. When 𝑡 ∈ T , �̃�𝑡 = 𝜋0𝑡 = 𝑐min, which

implies that 𝜅𝑡 = 0. So, 𝜅𝑡 is never strictly positive, which leads to

only down-flexibility (Δ𝑡 < 0) being rewarded. Further, for 𝑡 ∈ T ,

𝜅𝑡 = 0 and so the prices do not capture the time-varying value of

flexibility for those intervals. The following design avoids these

disadvantages.

4.3.3 Flexibility surplus. Another closed-form version of 𝜅𝑡 can be

defined using the flexibility surplus:

𝜅𝑡 =


𝑆
2

𝑃
cap

𝑡 −1⊤d0𝑡∑
𝑡 𝑃

cap

𝑡 −1⊤d0𝑡
1

1⊤
(
˜d𝑡−d0𝑡

) , 𝑡 ∈ T

𝑆
2

�̃�𝑡∑
𝑡 𝜋𝑡

1

1⊤
(
˜d−𝑡 d

0

𝑡

) , 𝑡 ∈ T c

This form of 𝜅𝑡 is the product of three terms in both cases. The first,

𝑆
2
, divides the total flexibility surplus evenly between up- and down-

flexibility periods. The second term distributes that half-surplus

amongst the time intervals. For 𝑡 ∈ T , an interval receives an

amount proportional to its surplus (i.e., curtailed) lowest-cost gen-

eration. For 𝑡 ∈ T c
, an interval receives the amount proportional

to the interim price �̃�𝑡 in that time period. The third term divides

6
If 𝑓 (𝜅) is a norm, then this formulation has the additional property that 𝜅𝑡 = 0 only

if 1⊤ ( ˜d𝑡 − d0𝑡 ) = 0. This means that intervals that do not dispatch flexibility will not

have a non-zero price.

by the total allocation of flexibility, as determined by the dispatch

from (1a) - (1e) with (9a) - (9c).

Like the previous two flexibility prices, this 𝜅 satisfies all of the

desired properties including budget balance. Its two-part specifica-

tion reflects the different function flexibility has in T versus T c
.

In T , flexibility allows otherwise-curtailed low-cost generation

to be dispatched. In T c
, flexibility allows for lesser amounts of

more-costly generation to be dispatched. While this formulation

addresses the zero-price shortcoming of the budget-balance for-

mulation and has a closed form representation, it is vulnerable to

volatility when 1⊤d∗𝑡 − 1⊤d0𝑡 is small.

Comparing these three formulations, it is worth highlighting

that, while a closed-form 𝜅 might be desirable for reasons conve-

nience and interpretability, the optimized-based approach is more

principled and adaptable. For this reason we choose to implement

that version of the flexibility price in the case study in the next

section.

5 CASE STUDY
We conclude the paper with a demonstration of the our new market

dispatch of flexibility on a test case derived from the real-world

CAISO market. Our numerical results show a significant increase

in utility for loads when they allow their flexibility to be dispatched

by the market operator, thus highlighting the value of redesigning

the market to ensure participation incentives of loads are aligned.

5.1 Setup
Disaggregated demand-side data for bulk electricity markets is not

readily available [23]. We therefore take existing publicly-available

generation and aggregate load data from CAISO and simulate a

demand side to to the market. Our simulations are implemented in

Python and all optimization problems are solved with CVXPY[5, 20].
The simulation were run on a 2019 MacbookPro (2.8 GHz Quad-

Core i7, 16GB RAM).

Throughout our experiments, we ran the single-shot market

mechanism described in Section 4, which assumes an accurate

demand forecast, and computed the flexibility price 𝜅 using the

optimization-based formulation.

The test cases are constructed as follows. Generation time series

data, disaggregated by resource type (e.g., renewable, hydro, coal),

from July 2, 2020 is obtained from [11]. The data have observations

every 5 minutes for 24 hours (288 total). At their peak, renewables

(e.g., wind, solar, small hydro, biomass) account for approx. 60% of

the net generation.We clean the data by removing trivial generation

resources like batteries and negative values for solar generation

at night (due to concentrating solar); the result is 6 generation

resource types: renewables, natural gas, large hydro, nuclear, coal,

and external imports from adjacent control areas. The aggregate

demand 𝐷0 profile is obtained from the resulting net generation.

We scale up the entire renewable profile by 220% so that there is

a set of intervals T where renewable generation alone exceeds

aggregate demand and thus renewables must be curtailed. As we

noted previously, this scenario is not (yet) the case in California

but in other markets has already begun occurring [3].
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(a) Baseline dispatch (demand does not offer flexibil-
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(b) Flexibile dispatch (demand offers flexibility)
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(c) Individual load profile for 𝑗 = 29: baseline (black)
and flexible dispatch (red)

Figure 2: Comparison of the baseline market with the proposed market design in a CAISO case study.

We assume that conventional generation types and imports are

dispatchable up and down without ramping limits, whereas renew-

ables can only be curtailed. We also make the simplifying assump-

tion that conventional generation can produce any amount from 0

to their upper limits, which are taken from the original data to be

the maximum production at any point in the 24 hour window. Unit

cost data in $/MWh are the Variable O&M costs for 2020 from EIA’s

Annual Energy Outlook, see Table 1 in [2]. Unit costs for imports

were assumed to be the average of costs for the other generation

types present in our simulation.

The aggregate demand profile from the CAISO data (black dotted

line in Figure 2a) is disaggregated proportionally into individual

load profiles. These profiles are then perturbed with random noise

to introduce temporal variability to the relative fraction of the

aggregate each individual load consumes. The number of individual

loads𝑚 can be set arbitrarily and in our case study here,𝑚 = 30.
7

Half of these were designated inflexible loads and the other half to

flexible loads. Centered around each of the individual flexible load

profiles are upper and lower bound profiles for the consumption of

each load in each time interval. These bounds are generated with a

sinusoidal function which allows parametric scaling of flexibility by

varying the amplitude and phase. S We note here that despite not

being able to access real-world load profiles, our load disaggregation

scheme produces qualitatively similar results to the load shapes

in [47]. The baseline load profile (black) and the flexibility range

(grey) are shown for the market in aggregate in Figure 2a and for

an individual load in Figure 2c.

5.2 Results
Figure 2 provides a detailed contrast between the traditional base-

line market design, under which shiftable demands do not offer

their flexibility, and the proposed design of this paper, under which

shiftable demands have incentives to expose their flexibility. The

reduction of curtailment of renewable generation that results from

shiftable demands is immediately clear from these figures.

In more detail, Figure 2a shows the generation dispatch as well as

the baseline aggregate demand. The available aggregate flexibility is

shown as a light grey overlay. Notice that renewables are curtailed

between hours 8 and 17, as there is an excess supply available to

meet the baseline aggregate demand 𝐷0.

7
Experiments with other values of𝑚 did not change results qualitatively.

Figure 2a should be contrasted with Figure 2b, which shows the

market dispatch (aggregate shown in red) when flexible demand is

utilized. The flexibility upper/lower bounds (grey) and the baseline

aggregate demand (dotted black) are superimposed for comparison.

Load is dispatched up in periods with curtailed renewable (hours 8 -

17) and dispatched down during the remaining hours to compensate.

In this simulation, for the hours when load is dispatched down, the

lower bound on flexibility is often tight whereas the upper bound

is not attained at any point over the time horizon. This highlights

the point that both up- and down-flexibility are required in equal

amounts due to the equality constraint for total demand over the

time horizon (e,g., (1c), 11b). The limiting factor for shiftable loads

to increase demand during the middle of the day (and therefore

reduce renewable curtailment) could actually be their inability to

reduce its demand at other times.

Figure 2c drills deeper and considers the profile of an individual

load. This figure shows that feasibility of the flexible market dis-

patch for the load is indeed satisfied, as required by the constraints

in (11b) - (11e). The black curve shows the baseline demand d0
𝑗
for

load 𝑗 = 29 and the red curve shows the dispatch with flexibility

d∗
𝑗
. Both trajectories respect the upper and lower flexibility bounds

d𝑗 , d𝑗 . Further, all loads (and therefore the aggregate load as well)

change their dispatch under the flexibility dispatch allocation in

the same direction (i.e., up or down) in each interval. This is due to

constraints (9b) and (9c), without which the undesirable scenario

where some loads increase and other simultaneously decrease their

consumption could occur.

The case study also provides a concrete illustration of many of

the properties of prices we proved previously. In particular, the top

panel of Figure 3 shows this graphically that the baseline price 𝜋0

is a lower bound for �̃� , a property proven in Lemma B.2. The lower

panel of Figure 3 illustrates that the flexibility price 𝜅 satisfies its de-

sired properties in that it is positivewhen up-flexibility is dispatched

and negative when down-flexibility is dispatched. Its magnitude

also reflects a time-varying value of flexibility; specifically, 𝜅𝑡 is

most positive during the middle of the day when renewables have

peak capacity and load should be dispatched up to utilize them and

is most negative early and late in the day when expensive conven-

tional generation dominates the generation mix and load should be

dispatched down to reduce cost.

9
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Figure 3: Illustration of energy prices �̃� and 𝜋0 (top) and flexibility
price 𝜅 (bottom) in the CAISO case study.

Table 1: Total revenue, cost, and utility for generation and demand
in CAISO case study. Amounts are in millions.

Baseline With Flexibility % change

Total Generation Revenue $11.91 $10.58 -11.14

Total Generation Cost $6.39 $5.39 -15.62

Total Generation Utility (profit) $5.52 $5.19 -5.95

Total Demand Cost $11.91 $10.90 -8.49

Total Demand Utility $-11.91 $-10.58 +11.14

Total Flexibility Payment $0.00 $0.32 —

In Table 1 we quantify the economic value of the proposed mar-

ket design as compared to the baseline design by comparing market

participant utility gains/losses between the two scenarios. The first

observation from this table is that the demand side of the market

increases its utility by 11% over the baseline while only needing to

re-dispatch 10% of its total load. As flexibility is provided by the

demand side of the of the market, our mechanism increases their

utility to compensate.

The second observation is that each load individually is at least

as well off under the flexibility mechanism as under the baseline

scenario, but loads that offer flexibility are better off than those

that do not. This can be seen by comparing total demand cost of

$10.90 to the total demand utility of -$10.58. The difference in the

magnitudes of these values is exactly the flexibility payment of

$0.32. Inflexible loads pay for energy but do not receive any benefit

from the flexibility payment, which only goes to flexible loads.

Third is that generators are worse off under the flexibility mecha-

nism due to a lower energy price �̃� . Dispatching flexibility improves

the overall efficiency (i.e., generation cost) of the dispatch but be-

cause the spot price decreases as well, that benefit is not captured

by generators, instead going to the loads. From a generator’s point

of view, this is not desirable as it will lower their profits individu-

ally and collectively. However we remark that any improvement in

market efficiency is likely to lower generator profits (for additional

discussion of these see [33]). That does not mean that improvements

in market efficiency ought to be avoided though. Rather, we take

the view that incentives for improving system efficiency should be

aligned with those of the market participants who actually provide

the efficiency-improving service. In the setting we explore in this

work, the deserving participants are flexible loads with shiftable

demand.

6 CONCLUSION
This paper focuses on a crucial and under-explored aspect of de-

mand response markets: the incentives of loads with shiftable de-

mand to expose flexibility to the market operator. We first show

that relying on the energy spot price alone to compensate loads—as

the standard market design does—leads to incentive misalignment:

demand might end up worse off bidding flexibly than inflexibly.

Our market mechanism addresses this shortcoming in two parts.

The first constrains the total amount of flexibility that can be dis-

patched in each period, ensuring that costly generators cannot be

dispatched. The second introduces a flexibility price and distributes

the surplus that arises from the more efficient dispatch to loads that

offer flexibility.

The flexibility price serves two useful purposes. One is to provide

a time-varying signal to loads about the most profitable times to

offer their flexibility to the market. A second value of the flexibility

is to correct a free-rider problem that arises in an energy price-

only market: flexibility is a public good, which means that all loads

benefit from flexibility whether they contribute it themselves or not.

In our mechanism, the flexibility payment, which is the product of

flexibility price and flexibility dispatch, is only non-zero for flexible

loads.

Importantly, our proposed mechanism has the same basic struc-

ture as the current economic dispatch market design, which pro-

vides a pathway to adoption. In this work though, our model sets

aside several real-world electricity market features like startup

costs, ramping constraints, line congestion, and rolling window

market clearing. These undeniably impact market dispatch and are

the focus of large portion of research on electricity market design.

However they are typically evaluated without considering a re-

sponsive demand side of the market. In contrast, our focus here

is on the mechanism for incorporating shiftable demand into the

economic dispatch framework and analyzing the incentives that

result. It will be important in future work to tease out how the

above-mentioned generation-side characteristics interact with the

demand-side structure in our model.

Finally, another important open problem motivated by our work

relates to flexibility pricing. Our market design shows how to incor-

porate a flexibility price into the marketplace and proposes three

potential designs for flexibility prices. The flexibility prices we in-

troduce satisfy the minimal desired properties, but each have some

drawbacks and thus a further exploration of the design of flexibility

prices is an important research question. In particular, is there a

stable and interpretable flexibility price, aligned both with individ-

ual and social welfare objectives, that incentivizes loads to bid their

flexibility into the market?
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A PROOF OF THEOREM 3.2
Start by forming the Lagrangian for (1a) - (1e):

L (p𝑖 , d𝑗 ; 𝜆, 𝜌 𝑗 , 𝜇±𝑖 , 𝜂
±
𝑗 ) =

∑
𝑖

𝑐𝑖 (p𝑖 )

+
∑
𝑡

𝜆𝑡 (1⊤d𝑡 − 1⊤p𝑡 ) +
∑
𝑗

𝜌 𝑗1⊤d𝑗

+ 𝜇+𝑖
⊤ (p𝑖 − p𝑖 ) − 𝜇−𝑖

⊤ (p𝑖 − p
𝑖
)

+ 𝜂+𝑗
⊤ (d𝑗 − d𝑗 ) − 𝜂−𝑗

⊤ (d𝑗 − d𝑗 )

Weassume that (1a) - (1e) has a feasible point. Let (p∗
𝑖
, d∗

𝑗
, 𝜆∗, 𝜌∗

𝑗
, 𝜇±

𝑖
∗
, 𝜂±

𝑖
∗)

denote its optimal solution, which exists because the 𝑐𝑖 are contin-

uous and the feasible set is compact. Compactness follows from

constraint (1d) where it can be seen that all entries of p∗
𝑖
and d∗

𝑗

must be finite. Strong duality holds because all constraints are affine

and the objective function is convex (see e.g., Prop. 5.3.1 in [9]).

Therefore the following KKT stationarity condition for holds for

every 𝑖:

𝜕L

𝜕p𝑖
(p∗𝑖 ) = ∇𝑐𝑖 (p∗𝑖 ) − 𝜆∗ + 𝜇+𝑖

∗ − 𝜇−𝑖
∗ = 0 (13)

We compute the derivative of the 𝜆 term by noting that

𝜕

𝜕𝑝𝑖,𝑡

∑
𝑡

𝜆𝑡 (1⊤p𝑡 − 1⊤d𝑡 ) = 𝜆𝑡

Stacking this equation for each 𝑡 into vector form gives

𝜕

𝜕p𝑖

∑
𝑡

𝜆𝑡 (1⊤p𝑡 − 1⊤d𝑡 ) = 𝜆.

The price vector, as defined in (2), is 𝜋 = 𝜆∗. Thus (13) is

∇𝑐𝑖 (p∗𝑖 ) − 𝜋 + 𝜇+𝑖
∗ − 𝜇−𝑖

∗ = 0 (14)

Next, we rewrite (4) equivalently as a minimization of −𝑢𝑖 over
the same feasible set and take its Lagrangian.

8

L𝑖 (p𝑖 ; 𝜇±𝑖 ) = 𝑐𝑖 (p𝑖 ) − 𝜋⊤p𝑖 + 𝜇+𝑖
⊤ (p𝑖 − p𝑖 ) − 𝜇−𝑖

⊤ (p𝑖 − p𝑖 )
The KKT stationarity condition is

𝜕L𝑖

𝜕p𝑖
= ∇𝑐𝑖 (p𝑖 ) − 𝜋 + 𝜇+𝑖 − 𝜇−𝑖 = 0 (15)

It is clear that p𝑖 = p∗
𝑖
, 𝜋 = 𝜆∗, 𝜇±

𝑖
= 𝜇±

𝑖
∗
is a solution to (15) because

(p∗
𝑖
, 𝜆∗, 𝜇±

𝑖
∗) satisfies (14).

Now we show that p∗
𝑖
satisfies participation constraints. Outside

of the mechanism, the generator would produce p𝑖 = 0with𝑢𝑖 (0) =
0. This is because we assumed that 𝑐𝑖 (0) = 0. We need to show that

0 is a lower bound for 𝑢𝑖 (p∗𝑖 ).
In (14), when 𝜇+

𝑖,𝑡
∗
> 0 then 𝜇−

𝑖,𝑡
∗ = 0 as only one of the lower/upper

bounds can be attained at a time. But if 𝜇−
𝑖,𝑡

∗ > 0 then 𝑝∗
𝑖,𝑡

= 0.

When 𝜇+
𝑖,𝑡

∗
= 𝜇−

𝑖,𝑡
∗ = 0, then 𝑝∗

𝑖,𝑡
> 0 and

𝜕𝑐𝑖,𝑡
𝜕𝑝𝑖,𝑡

(𝑝∗
𝑖,𝑡
) = 𝜋𝑡 . Therefore

𝜋𝑡𝑝
∗
𝑖,𝑡

− 𝑐𝑖,𝑡 (𝑝∗𝑖,𝑡 ) = 0. Finally, when 𝜇+
𝑖,𝑡

∗
> 0, then 𝜇−

𝑖,𝑡
∗ = 0 and

𝜕𝑐𝑖,𝑡
𝜕𝑝𝑖,𝑡

(𝑝∗
𝑖,𝑡
) < 𝜋𝑡 . So 𝜋𝑡𝑝

∗
𝑖,𝑡

− 𝑐𝑖,𝑡 (𝑝∗𝑖,𝑡 ) > 0. In each of these three

situations we get that 𝑢𝑖 (p∗𝑖 ) ≥ 0.

8
Note that we use the same names for primal/dual variables in the individual problem

as in the market dispatch problem. Although these variables do not represent the same

quantities, we hope this is not cause for confusion.

B LEMMAS FOR THEOREM 4.3
This section contains two lemmas used in the proof of Theorem 4.3.

Let d0 and p0 be the optimal primal solutions to (1a) - (1e) in the

baseline case (i.e., d = d), and let 𝜆0 be the associated optimal

dual variable for (1b). In the presence of flexible demand, that is,

𝑑 𝑗,𝑡 < 𝑑 𝑗,𝑡 for some 𝑡 and 𝑗 , we get the following result.

Lemma B.1. Let ˜d𝑗 for all 𝑗 be optimal solutions of (1a) - (1e) with
added constraints (9a - 9c). Then for all 𝑗

𝑢 𝑗 ( ˜d𝑗 ) ≥ 𝑢 𝑗 (d0𝑗 ) .

The proof of this claim requires another technical lemma, which

we state and prove below before returning to the proof of LemmaB.1.

To proceed, we associate dual variables 𝛽 ∈ R |T |
, 𝛾+ ∈ R |T |

,

𝛾− ∈ R |Tc |
with constraints (9a) - (9c) respectively.

Lemma B.2. 𝜆0𝑡 ≥ ˜𝜆𝑡 for 𝑡 ∈ T c.

Proof of Lemma B.2. Let (P̃, D̃, ˜𝜆, 𝜌, �̃�±, 𝜂±, ˜𝛽,𝛾±) be the opti-

mal primal/dual solution of (1a) - (1e) with added constraints (9a) -

(9c). The arguments for the existence of this solution and the exis-

tence of strong duality are the same as those given in the proof of

Theorem 3.2 (see Appendix A).
9

For each 𝑡 , there is a set of marginal generators N𝑡 ⊆ {1, . . . , 𝑛}.
By its definition, a marginal unit produces strictly between its upper

and lower bounds. Therefore, for 𝑖 ∈ N𝑡

�̃�+𝑖,𝑡 = �̃�−𝑖,𝑡 = 0.

The KKT stationarity condition w.r.t. p𝑡 is

𝜕L

𝜕p𝑡
(p̃𝑡 ) = ∇𝑐 (p̃𝑡 ) − ˜𝜆𝑡1 + �̃�+𝑡 − �̃�−𝑡 = 0. (16)

From this equation we have that for all 𝑖 ∈ N𝑡 ,

˜𝜆𝑡 =
𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡

(
𝑝𝑖,𝑡

)
. (17)

That is, all marginal costs are equal in that time for the marginal

units.

Next, we claim that no generator produces more than its baseline;

that is 𝑝𝑖,𝑡 ≤ 𝑝0
𝑖,𝑡

for all 𝑖 ∈ {1, . . . , 𝑛}. In the baseline scenario there

are three groups of generators: those producing at their upper

bound, those producing at their lower bound, and the marginal

units. Those already at their upper bound are unable to increase

their production. Increasing the production of a unit at its lower

bound would incur a higher cost than increasing production by

the same amount for a marginal unit. In (17) we argued that all

marginal units have the same marginal cost at the optimal point.

Therefore they all would increase production or all decrease. Due

to the convexity and monotonicity of the cost functions, a decrease

in production would result in a lower value for 𝜆𝑡 by (17).

This leaves two remaining possibilities: 1) at least one generator

at its upper bound in the baseline case decreases its production

or 2) a marginal unit decreases its production. In the first case,

𝜆𝑡 is unaffected since its value is determined by the cost function

of a marginal unit. In the second case, due to the convexity and

9
We assumed previously that a baseline solution exists for (1a) - (1e). A feasible point

for (1a - 1e) with added constraints (9a - 9c) is just this baseline solution.
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monotonicity of the cost functions, a decrease in production would

result in a smaller value of 𝜆𝑡 by (17).

For all 𝑡 ∈ T c
,
˜𝑑 𝑗,𝑡 ≤ 𝑑0

𝑗,𝑡
for each 𝑗 by constraints (9c). Thus

we have 1⊤ ˜d𝑡 ≤ 1⊤d0𝑡 for 𝑡 ∈ T c
. By the power balance constraint

(1b),

1⊤p̃𝑡 ≤ 1⊤p0𝑡 .
From this we conclude that for at least one 𝑖 ∈ N𝑡 , 𝑝

0

𝑖,𝑡
≥ 𝑝𝑖,𝑡 . Since

we take the cost functions to be convex and if 𝑝0
𝑖,𝑡

≥ 𝑝𝑖,𝑡 ∀𝑖 as we
showed just above, then

𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝0𝑖,𝑡 ) ≥

𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝𝑖,𝑡 ) (18)

We conclude that

𝜆0𝑡 ≥ ˜𝜆𝑡 .

□

Proof of Lemma B.1. We take the aggregatemarginal cost curve

of (1a) - (1e) to be left continuous. This is equivalent to always pick-

ing the smallest value of the subgradient of

∑
𝑖 𝑐𝑖 (p𝑖 ) in the KKT

condition for p𝑖 when the subgradient is not unique.

For 𝑡 ∈ T , the following are true:

• ˜𝑑 𝑗,𝑡 ≥ 𝑑0
𝑗,𝑡

for all 𝑗 by primal feasibility from constraint (9b);

• 𝜆0𝑡 = ˜𝜆𝑡 = 𝑐min because of (9c). By definition of T , 𝑐min is

always the marginal cost in T . Note that this claim requires

the assumption from the beginning of the proof. Otherwise,

when constraint (9a) is tight, it could occur that
˜𝜆𝑡 > 𝜆0𝑡 .

Analogously for 𝑡 ∈ T c
we have:

• ˜𝑑 𝑗,𝑡 ≤ 𝑑0
𝑗,𝑡

for all 𝑗 by primal feasibility from constraint (9c);

• ˜𝜆𝑡 ≤ 𝜆0𝑡 by Lemma B.2.

By definition of the price 𝜋 , 𝜋0 ≥ ˜𝜆 follows from the above. We

have also established that
˜𝑑 𝑗,𝑡 ≥ 𝑑0

𝑗,𝑡
only when

˜𝜆𝑡 = 𝜆0𝑡 = 𝑐min.

Otherwise, 𝑑 𝑗,𝑡 ≤ 𝑑0
𝑗,𝑡
.

By definition of load utility in (5), we have that

𝑢 𝑗 ( ˜d𝑗 ) = 𝑈 𝑗 −
∑
𝑡 ∈T

�̃�𝑡 ˜𝑑 𝑗,𝑡 −
∑
𝑡 ∈Tc

�̃�𝑡 ˜𝑑 𝑗,𝑡

= 𝑈 𝑗 −
∑
𝑡 ∈T

𝑐min
˜𝑑 𝑗,𝑡 −

∑
𝑡 ∈Tc

�̃�𝑡 ˜𝑑 𝑗,𝑡

≥ 𝑈 𝑗 −
∑
𝑡 ∈T

𝑐min𝑑
0

𝑗,𝑡 −
∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
0

𝑗,𝑡

= 𝑢 𝑗 (d0𝑗 ) .
□

C PROOF OF THEOREM 4.3
We prove each statement from the theorem in order, making use of

the technical lemmas in the previous section.

(i) First note that D̃ is a feasible solution for (11b) - (11f). The opti-

mal solution D∗
of (11a) - (11f) satisfies 1⊤d∗𝑡 = 1⊤ ˜d𝑡 for all 𝑡 due

to primal feasibility.
10

Similarly, the generation dispatch P̃ satis-

fies 1⊤p̃𝑡 = 1⊤ ˜d𝑡 for all 𝑡 by constraint (1b) and primal feasibility.

Therefore 1⊤p̃𝑡 = 1⊤d∗𝑡 for all 𝑡 . Note that this is equivalent to

10
A feasible solution exists: observe that D̃ satisfies constraints (11b - 11f). An optimal

value is attained because the objective function is continuous and the feasible set is

compact.

∑
𝑖 p̃𝑖 =

∑
𝑗 d∗𝑗 .

(ii) Total generation revenue is given by

Revgen =
∑
𝑡

�̃�𝑡1⊤p̃𝑡 =
∑
𝑡

�̃�𝑡1⊤ ˜d𝑡

Total energy payments from demand are

Pay
demand

=
∑
𝑡

𝜋0𝑡 1
⊤d∗𝑡 =

∑
𝑡

𝜋0𝑡 1
⊤ ˜d𝑡

Total flexibility payments to loads are

Rev
flex

= 𝜅⊤
∑
𝑗

Δ∗
𝑗

=
∑
𝑡

𝜅𝑡1⊤ (d∗𝑡 − d0𝑡 )

= 𝑆

Revenue neutrality is the condition when

Pay
demand

− Revgen = Rev
flex

.

By the definition of 𝑆 , this condition is satisfied.

(iii) The proof of this result follows exactly the one for Theorem 3.2.

The KKT stationarity condition for p𝑖 is unaffected by the addition

of constraints (9a) - (9c).

(iv) By primal feasibility of d∗
𝑗
in (11a - 11f), 𝑑∗

𝑗,𝑡
≥ 𝑑0

𝑗,𝑡
for 𝑡 ∈ T

and 𝑑∗
𝑗,𝑡

≤ 𝑑0
𝑗,𝑡

for 𝑡 ∈ T c
. In the proof of Lemma B.1 (see Appendix

B) we showed that 𝜋0𝑡 = 𝜆0𝑡 = 𝑐min for 𝑡 ∈ T and 𝑐min < 𝜋0𝑡 for all

𝑡 ∈ T c
. As a consequence,∑

𝑡 ∈T
𝜋0𝑡 𝑑

∗
𝑗,𝑡 −

∑
𝑡 ∈T

𝜋0𝑡 𝑑
0

𝑗,𝑡 = 𝑐min

∑
𝑡 ∈T

(𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 )

By primal feasibility of d∗
𝑗
and d0

𝑗
from constraints (1c) and (11b)

we have that ∑
𝑡

𝑑∗𝑗,𝑡 = 𝐸 𝑗 =
∑
𝑡

𝑑0𝑗,𝑡

⇒
∑
𝑡 ∈T

𝑑∗𝑗,𝑡 +
∑
𝑡 ∈Tc

𝑑∗𝑗,𝑡 =
∑
𝑡 ∈T

𝑑0𝑗,𝑡 +
∑
𝑡 ∈Tc

𝑑0𝑗,𝑡

⇒
∑
𝑡 ∈T

(𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 ) = −
∑
𝑡 ∈Tc

(𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 )

Then

𝑐min

∑
𝑡 ∈T

(𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 ) = −𝑐min

∑
𝑡 ∈Tc

(𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 )

≥ −
∑
𝑡 ∈Tc

𝜋0𝑡 (𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 )

13
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By construction of 𝜅 , 𝜅𝑡Δ
𝑗
𝑡 ≥ 0 ∀𝑗, 𝑡 . Putting everything together,

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0, 𝜅) = 𝑈 𝑗 −
∑
𝑡 ∈T

𝑐min𝑑
∗
𝑗,𝑡 −

∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
∗
𝑗,𝑡 +

∑
𝑡

𝜅𝑡Δ
∗
𝑗,𝑡

≥ 𝑈 𝑗 −
∑
𝑡 ∈T

𝑐min𝑑
∗
𝑗,𝑡 −

∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
∗
𝑗,𝑡

= 𝑈 𝑗 −
∑
𝑡 ∈T

𝑐min𝑑
∗
𝑗,𝑡 −

∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
∗
𝑗,𝑡

+
(∑
𝑡 ∈T

𝑐min𝑑
0

𝑗,𝑡 +
∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
0

𝑗,𝑡

)
−

(∑
𝑡 ∈T

𝑐min𝑑
0

𝑗,𝑡 +
∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
0

𝑗,𝑡

)
= 𝑈 𝑗 −

∑
𝑡 ∈T

𝑐min (𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 ) −
∑
𝑡 ∈Tc

𝜋0𝑡 (𝑑∗𝑗,𝑡 − 𝑑0𝑗,𝑡 )

−
(∑
𝑡 ∈T

𝑐min𝑑
0

𝑗,𝑡 +
∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
0

𝑗,𝑡

)
≥ 𝑈 𝑗 −

∑
𝑡 ∈T

𝑐min𝑑
0

𝑗,𝑡 +
∑
𝑡 ∈Tc

𝜋0𝑡 𝑑
0

𝑗,𝑡

= 𝑈 𝑗 −
∑
𝑡

𝜋0𝑡 𝑑
𝑗,0
𝑡

= 𝑢 𝑗 (d0;𝜋0)

(v) LetM
flex

⊆ {1, . . . , 𝑀} be the index set of loads whose flexibility

is dispatched. Complementarily, Mc
flex

⊆ {1, . . . , 𝑀} is the index
set of loads whose flexibility is not dispatched. For 𝑗 ∈ Mc

flex
,

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0) = 𝑈 𝑗 − 𝜋0
⊤d∗𝑗

≤ 𝑈 𝑗 − �̃�⊤ ˜d𝑗

= 𝑢 𝑗 ( ˜d𝑗 ; �̃�) .

(19)

The inequality comes from the fact proved in Lemma B.2.

Finally we show the second statement in (v):∑
𝑗

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0, 𝜅) =
∑

𝑗 ∈M
flex

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0, 𝜅) +
∑

𝑗 ∈Mc
flex

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0)

=
∑
𝑗

𝑈 𝑗 − Pay
demand

+ Rev
flex

=
∑
𝑗

𝑈 𝑗 − Revgen

=
∑
𝑗

𝑈 𝑗 −
∑
𝑗

�̃�⊤ ˜d𝑗

=
∑

𝑗 ∈M
flex

𝑢 𝑗 ( ˜d𝑗 ; �̃�) +
∑

𝑗 ∈Mc
flex

𝑢 𝑗 ( ˜d𝑗 ; �̃�)

From (19) we have that

∑
𝑗 ∈Mc

flex

𝑢 𝑗 ( ˜d𝑗 ; �̃�) ≥
∑

𝑗 ∈Mc
flex

𝑢∗
𝑗
(d∗

𝑗
;𝜋0, 𝜅).

The sequence of equalities implies∑
𝑗 ∈M

flex

𝑢∗𝑗 (d
∗
𝑗 ;𝜋

0, 𝜅) ≥
∑

𝑗 ∈M
flex

𝑢 𝑗 ( ˜d𝑗 ; �̃�) .
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