
1.  Introduction
StorAge Selection (SAS) functions and transit time distributions (TTDs) have been widely used to model catch-
ment scale hydrologic transport (e.g., McGuire & McDonnell, 2006; van der Velde et al., 2012; Harman, 2015). 
Recently, SAS functions have been developed to capture controls on the time-variability of transit time distribu-
tions when flow rates and transport pathways through the system are variable in time. These functions capture 
the system-scale transport of conservative tracers in a form that is useful both for the interpretation of tracer data 
(e.g., Harman, 2015; Kim et al., 2016), and potentially for large-scale transport modeling.

In most applications of TTDs and the SAS functions, the functional forms of these functions have been chosen 
a priori, and the function's parameters were calibrated using observed tracer datasets (e.g., Benettin et al., 2017; 
McGuire & McDonnell, 2006). Those calibrated functions were mostly explained quantitatively but not mecha-
nistically (e.g. Harman, 2015; van der Velde et al., 2014). While recent advances have been made in estimating 
TTDs without imposing functional forms a priori (Kim & Troch, 2020; Kirchner, 2019), these methods still do 
not provide mechanistic explanations. This, in part, results from the lack of parsimonious predictive tools relating 
TTD or SAS functions directly to hillslope and catchment scale properties. We have very limited and incomplete 
tools to explain the calibrated SAS functions, or even to make informed choices about appropriate functional 
forms to calibrate.

This challenge is similar to (and really an extension of) the challenge of finding simplified hydraulics and 
process-based theories (or models) that can predict the observed signatures of flow, such as the flow recession 
curves and the flow duration curves, at the hillslope or catchment scale. Some progress has been made in that area 
by developing simple theories based on idealized domains (e.g., the Boussinesq model (Boussinesq, 1877), the 
Hillslope-storage Boussinesq model (Troch et al., 2003), and TOPMODEL (Beven & Kirkby, 1979)), and using 
mechanistic understandings gathered from those models to frame hypotheses (Troch et al., 2013).
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Such simple, idealized, hydraulics and process-based models have not been developed for hydrologic transport 
at the hillslope scale to the same extent. There are several studies that examined the theoretical linkage between 
the landscape's internal transport processes and TTDs. However, those models are not fully developed and are 
limited to models for 1-D domains (e.g., Cox & Miller,  1972), models for homogeneous 2-D semi-confined 
aquifers (Cornaton & Perrochet, 2006; Etcheverry, 2001; Fiori et al., 2009; Leray et al., 2012, 2016; Raats, 1978; 
Vogel,  1966), and models for homogeneous unconfined aquifers based on the Boussinesq model (Gelhar & 
Wilson, 1974; Haitjema, 1995). Theoretical TTDs based on such models do not reproduce spectral characteristics 
inferred from tracer datasets, for example, 1/f scaling (Godsey et al., 2010; Kirchner et al., 2000).

Kirchner et al. (2001) extended the 1-D model and showed that the hillslope scale dispersion must be on the order 
of the hillslope length in order to explain the 1/f scaling. However, this steady state, a one-dimensional theory is 
difficult to relate to actual processes since it is hard to quantify what contributes to the dispersion: it could be the 
local hydrodynamic dispersion (e.g., Taylor, 1953), the effect of self-organized macropore network (e.g., Sidle 
et al., 2001), or the difference between actual flow path length and those projected on the approximated one-di-
mensional flow paths. In other words, the actual flow pathways that the model simulates are somewhat obscure. 
The situation is similar in the recent studies of van Meerveld et al. (2019) and Rodriguez et al. (2020). In those 
studies, the flow path length and the water velocity are used to explain TTDs and the SAS functions, but it is not 
yet clear how to estimate the flow path length and the water velocity. The vertical dimension of the flow pathways 
and the water velocity variation along the flow pathway is not explicitly considered.

The two main purposes of this study are: first, to develop more complete but still parsimonious process and 
hydraulic theory-based models of flow and transport in idealized hillslope domains, and second, to use these to 
understand the relationship between the shapes of SAS functions and hillslope surface and subsurface structure. 
When estimated (or observed) SAS functions of a hydrologic system are available, the relationship can be used 
to develop a first-order hypothesis about the internal structures of the hydrologic system. We expect that such 
a first-order hypothesis can be validated (or invalidated) by other data, as the hypothesis is based on hydraulic 
theories that utilize soil hydraulic properties and geomorphologic structures. In addition, the parsimonious model 
of the TTDs or the SAS functions can be used as a first-order guess to describe system-scale transport dynamics 
when tracer data is not available but soil hydraulic properties and geomorphologic structures are known (or can be 
estimated). Furthermore, when developing the model, we seek dimensionless numbers that can be used to classify 
the hillslope scale water flow and transport dynamics.

Inspired by the work of Ameli et  al.  (2016), we will study the hillslope scale transport using the SAS func-
tion framework in a 2-D domain allowing for an exponential decline in permeability with depth. Though an 
idealization, this structure has been observed (e.g., Beven, 1982) and adopted in parsimonious models such as 
TOPMODEL (e.g., Beven & Kirkby, 1979). Ameli et al. (2016) found that TTD for 2-D numerical hillslope simu-
lations had the properties necessary to reproduce the 1/f scaling of stream chemistry power spectra, indicating the 
importance of considering permeability structure of hillslopes.

In this work, analytically-derived SAS functions will be compared to numerically-simulated results from a Rich-
ards equation-based model (ParFlow, Maxwell et  al.  [2014]) and its particle tracking module (SLIM-FAST, 
Maxwell & Thomson [2006]). The corresponding generalized TTDs will also be presented to allow the results to 
be compared to previous studies of homogeneous aquifer.

As a first step toward a more general theory, we will consider hillslopes of constant width, planar surface slope, 
and saturated hydraulic conductivity that declines exponentially with depth. The analysis will focus on the effect 
of varying (a) the rate of exponential saturated hydraulic conductivity declines with depth and (b) topographic 
slope. For simplicity, and as we are currently at a very elementary level in this type of study, we restrict our anal-
ysis to steady state conditions. Also, the effect of local hydrodynamic dispersion is neglected.

We have chosen to limit our attention to steady state as the first step toward a more general understanding. 
We believe the steady state SAS functions are useful for providing first-order insights into unsteady transport 
dynamics. Previous work has shown that they can capture major features of experimental unsteady systems (Kim 
et al., 2016). This is an important difference from TTDs which fail to guarantee mass balance when they are 
directly applied to an unsteady system. Furthermore, we hypothesize that the SAS function is a better tool for 
linking lumped transport dynamics to internal structures as the SAS function is directly linked to actual turnover 
of water in storage (e.g., Rinaldo et al., 2015).
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In Section 2 we will present the results of numerical modeling of nine virtual hillslopes. In Section 3 these will 
motivate and guide the analysis of controls of hillslope structure on TTDs and the SAS functions, and derivation 
of useful analytical and approximate expressions for TTDs and SAS functions that capture the effects of these 
controls. We will apply the analytical SAS function to two experimental hydrologic systems and discuss limita-
tions in Section 4. We will conclude by suggesting ways these results might be used to guide further research.

2.  Numerical Experiments
We performed ‘virtual’ (numerical) experiments in idealized hillslope domains using a Richards equation-based 
model and a particle tracking algorithm. In this section, we present brief description of the models and how we 
set up the hillslopes. We also present the numerical results of SAS functions and hillslope hydro-chronological 
structures.

2.1.  Numerical Models

ParFlow (Maxwell et al., 2014) was used to simulate subsurface flow, and its particle tracking module, SLIM-
FAST (Maxwell & Thomson, 2006), was used to simulate transport numerically. ParFlow simulates subsurface 
flow dynamics by solving Richards equation, which is given by:

𝜕𝜕

𝜕𝜕𝜕𝜕
𝜃𝜃(𝒙𝒙, 𝑡𝑡) = ∇ ⋅ (𝑘𝑘(𝜓𝜓(𝒙𝒙, 𝑡𝑡),𝒙𝒙)∇(𝜓𝜓(𝒙𝒙, 𝑡𝑡) + 𝑧𝑧))� (1)

where t is time, x = (x, y, z) is Cartesian spatial coordinate, θ is water content, k is hydraulic conductivity, ψ is 
suction head (defined as negative when pressure is below atmospheric).

The particle tracking module SLIM-FAST (Maxwell & Thomson, 2006) solves particle trajectories based on the 
estimated velocity field V(x, t) = − k(θ(x, t), x)∇(ψ(x, t) + z)/θ(x, t) as:

𝑑𝑑

𝑑𝑑𝑑𝑑
𝒙𝒙𝑛𝑛(𝑡𝑡) = 𝑽𝑽 (𝒙𝒙𝑛𝑛, 𝑡𝑡)� (2)

where n is an index that labels each particle, and xn is the location of the particle n at time t.

ParFlow employs a cell-centered finite difference scheme to solve Richards equation (e.g., Jones & Wood-
ward, 2001; Kollet & Maxwell, 2006), meaning that V is estimated at the center of grid elements. SLIM-FAST 
linearly interpolates the velocity at points of interest using the cell-centered velocity field V, following the method 
of Pollock (1988).

2.2.  Description of Virtual Hillslopes

We considered nine virtual hillslopes that differed in their topographic slope and the length scale of the expo-
nential saturated hydraulic conductivity decline with depth. The topographic surface H(x) of the hillslopes was 
assumed to be planar, and described by H(x) = HL + (L − x) tan β, where x is horizontal location, L is the hillslope 
length, HL is the height of the outflow boundary at x = L, and β is the slope of the surface. HL was set to 3 m, and 
L was set to 80 m. Three values were applied for tan β: tan β ∈ {0.05, 0.15, 0.30}.

The saturated hydraulic conductivity field ks (x, z) was constructed by assuming that the surface hydraulic conduc-
tivity is constant value k0 at the topographic surface, and then declines with depth as:

𝑘𝑘𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥) = 𝑘𝑘0𝑒𝑒
−(𝐻𝐻(𝑥𝑥)−𝑧𝑧)∕𝑃𝑃 (when 0 ≤ 𝑧𝑧 ≤ 𝐻𝐻(𝑥𝑥))� (3)

where P is the decline length scale (e-folding depth). The surface hydraulic conductivity k0 was chosen differently 
for each case so that the transmissivity (vertically integrated hydraulic conductivity 𝐴𝐴 = ∫

𝐿𝐿

0
∫
𝐻𝐻

0
𝑘𝑘𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∕𝐿𝐿 ) is 

the same value (12.5 m 2/day) for the all cases. Three decline length scales were considered: P ∈ {0.5 m, 2.0 m, 
∞}. When P → ∞ the conductivity is homogeneous. The combination of three decline length scales and slopes 
generates the nine hillslopes shown in Figure 1.

The van Genuchten model was used to describe the soil-water retention characteristic, which can be written 
as (van Genuchten, 1980): 𝐴𝐴 𝐴𝐴(𝜓𝜓) = 𝜃𝜃𝑟𝑟 + (𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟)

(
1 + |𝜓𝜓∕𝜓𝜓𝐴𝐴|𝑛𝑛

)𝑚𝑚 where θ is water content, θr is residual water 
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content, θs is saturated water content, ψ is suction pressure head (ψ < 0), ψA is a parameter sometimes referred 
to as the air-entry pressure, n is the parameter related to the pore-size distribution, and m = 1 − 1/n. The van 
Genuchten-Mualem relationship (van Genuchten, 1980) was used to describe the relative hydraulic conductivity: 

𝐴𝐴 𝐴𝐴𝑟𝑟(𝜓𝜓) = (1 + |𝜓𝜓∕𝜓𝜓𝐴𝐴|𝑛𝑛)−𝑚𝑚∕2
(
|𝜓𝜓∕𝜓𝜓𝐴𝐴|−1+𝑛𝑛(1 + |𝜓𝜓∕𝜓𝜓𝐴𝐴|𝑛𝑛)−𝑚𝑚 − 1

)2 . Parameters used in the numerical simulations 
were: θs = 0.4, θr = 0.01, ψA = 0.2 m, and n = 2, which are typical values for loamy sand (Harman & Kim, 2019). 
The values for ψA and n are similar (though not identical) to those of the soil used in the Landscape Evolution 
Observatory (LEO), Biosphere 2, The University of Ariozna, Tucson, AZ, USA (e.g., Pangle et al., 2015).

Boundary conditions for flow and transport models are required for each side of the hillslopes: the most upslope 
(x = 0), the horizontal impermeable layer (z = 0), the soil surface (z = H(x) for x ∈ [0, L]), and the outlet (x = L). 
A no-flux boundary condition was imposed at the upslope and horizontal boundaries: 𝐴𝐴

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 where ξ is the 

co-ordinate orthogonal to the boundary. At the soil surface, a constant flux boundary condition was set to simu-
late steady state infiltration of 5 mm/day, which could represent the mean recharge rate during a wet season in a 
humid climate, or during snowmelt. For the downslope boundary condition, the water table was assumed to be 
determined by the water level in an adjacent stream zone, and fixed at z = 2 m. A no-flux condition was set for 
the unsaturated zone above the water table z ∈ (2 m, HL]. Below the water table, the boundary condition is no-flux 
for 𝐴𝐴 𝐴𝐴 ∈ [0, 1.9m) , and it is hydrostatic (of 2 m) along z ∈ [1.9 m, 2 m]. (This boundary condition is similar to that 
used in Ameli et al. [2016]).

The grid spacing was set to 0.05 m, and the computation time step was set to grow from 0.00001s to 1 day with 
the rate of 1.5. The model was run to steady state and the final flow field was used to drive particle tracking in 
SLIM-FAST. 10,000 particles were introduced 0.01 m below the surface, evenly across the hillslopes. These were 
considered to have exited the domain when they crossed the seepage face at the right hand boundary, and the 
model was run for 5000 days after introducing the particles.

2.3.  Hydro-Chronological Structure of Storage and Discharge

2.3.1.  StorAge Selection Function

The transport behavior of the hillslopes was examined by calculating the StorAge Selection (SAS) function, ΩQ. 
As this approach is still relatively new, we will introduce the function briefly. For more details see for example, 
Harman (2015). In the SAS function framework, the age-ranked storage ST = ST (T, t) is an un-normalized form 
of the cumulative residence time distribution (volume of water younger than an age T at time t). The SAS function 

Figure 1.  Structure of the nine virtual hillslopes used to compare numerical solutions to the analytical results. Three slopes were considered 
(tan β ∈ {0.05, 0.15, 0.30}), and three rates of decline of hydraulic conductivity (e-folding depths P ∈ {0.5m, 0.2m, ∞}, where ∞ represents the homogeneous case). 
Color represents the hydraulic conductivity.
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is equal to the cumulative (backward) transit time distribution ⃖⃖⃖⃖⃖��(� , �) under a change of variables T → ST, that 

is, Ω�(�� (� ), �) = ⃖⃖⃖⃖⃖��(� , �) .

The governing equation of the SAS function framework, which solves time-variable transport dynamics, is 
(Harman, 2015):

�
��
�� (� , �) = � (�) −�(�)⃖⃖⃖⃖⃖��(� , �) −

�
��

�� (� , �)� (4)

which can be solved (with the boundary condition ST (0), t = 0) to determine how ST evolves in time. ⃖⃖⃖⃖⃖��(� , �) can 
be obtained from ⃖⃖⃖⃖⃖��(� , �) = Ω� (�� (� , �), �) at each moment in time.

Under steady state, the governing equation can be written as:

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑆𝑆𝑇𝑇 (𝑇𝑇 ) = 𝑄𝑄 (1 − 𝑃𝑃𝑄𝑄(𝑇𝑇 )) = 𝑄𝑄 (1 − Ω𝑄𝑄 (𝑆𝑆𝑇𝑇 (𝑇𝑇 )))� (5)

where ΩQ(ST) is the SAS function and PQ(T) is the transit time distribution under steady state. The forward and 
backward TTDs are equivalent in this case, and so the arrow will be dropped from the notation. This equation can 
be used to relate the SAS function to a steady state equivalent TTD.

Particle tracking allows us to estimate the transit time distribution PQ(T) by counting the fraction of injected 
particles that exit the hillslope prior to time T. This was done for each time step ΔT, which was set to 1 day for 
all simulations. Using the transit time distribution, the age-ranked storage ST(T) was estimated through Equation 
(5). The SAS function ΩQ can then be obtained by plotting PQ (T) against corresponding values of ST(T) with the 
same T, that is: ΩQ(ST(T)) = PQ(T).

The dark grey lines in Figure 2 illustrate the resulting StorAge Selection (SAS) functions for all the consid-
ered cases. The relationship between hillslope structures and these SAS functions will be considered closely in 
Section 2.4 and Section 3, but here we can describe some general trends. The SAS functions were mostly linear 
for the homogeneous cases and showed more convexity as P decreases; that is, as saturated hydraulic conductivity 
declines more sharply, the SAS function skewed toward to the younger water in the storage. This means that the 
hillslopes with sharper hydraulic conductivity declines with depth transmit a larger young fraction of water. The 
effect of surface topographic gradient on the SAS function is more subtle though.

2.3.2.  Internal Age, Life Expectancy, and Transit Time Structures

Particle tracking also allowed us to explore internal water age structure. Internal water age structure A(x) is an 
important control on geochemical transformations taking place in a system, as it represents the exposure time 
of water to the system's condition (e.g., Gomez & Wilson, 2013; Maher, 2011). In addition to the age structure, 
spatial life expectancy and transit time structure also can be examined through particle tracking. By definition, 
the life expectancy LE(x) is the time that will be required for a particle starting at location x to exit the system. 
The ultimate transit time T of any parcel is the sum of the two: T(x) = A(x) + LE(x) (e.g., Benettin et al., 2013; 
Cornaton & Perrochet, 2006). While the transit time T has usually been examined for water exiting a system, 
it is also possible to construct the internal (spatial) transit time distribution, which will be a constant along the 
trajectory of a given particle.

Figure 3 illustrates the internal water age, life expectancy, and transit time structures for the low and high slope 
cases at the end of the virtual experimental period (5000 days after introducing particles). In many cases, the 
water age shows limited variability downslope (either parallel to the base impermeable layer in the homogeneous 
case, or to the soil surface in the others). Younger water layers ‘stack’ above the older water layers. The structure 
is slightly different for the steep homogeneous case (P → ∞, tan β = 0.30), where age contours are parallel to 
the surface in the unsaturated zone, and appear to refract at the saturated interface to become more parallel  to 
the base. Contours of life expectancy in the saturated zones are mostly orthogonal to the impermeable layer 
in  the  homogeneous case (P → ∞), meaning that water particles along a vertical line take a similar amount of 
time to get to the outlet. In the unsaturated zone, the contour lines are tilted toward the outlet, as water particles 
located at upper locations take more time to exit the hillslope. For sharper declines in hydraulic conductivity, the 
contours of life expectancy in the saturated zone tilt away from the outlet, reflecting the fact that water higher in 
the profile is on a faster track to the outlet. The hydraulic conductivity is lower, deeper in the profile, and so, water 
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particles located lower will take more time to get to the outlet. The transit time structures are also illustrated in 
Figure 3, where the contour lines correspond to the flow pathways because water particles along a flow trajectory 
have identical transit time. The pathways show that the water particles move mostly vertically in the unsaturated 
zone, and then turn toward the outlet once they pass through the water table.

Figure 2.  The estimated StorAge Selection (SAS) functions in the nine idealized hillslopes. (Black and dark gray lines) the SAS functions for the hillslopes as a whole. 
(Blue lines) the SAS functions for the unsaturated zone. (Green and light gray lines) the SAS functions for the saturated zone. The bold lines of the colors (except light 
gray) are the SAS function estimated using the Richards equation based model and the particle tracking module. The dotted lines are the functions estimated using a 
simplifying assumption, the 1-D approximation or the Dupuit-Forchheimer assumption. The bold light gray lines are the analytical solutions for the saturated zone SAS 
function using Equation (26). In each plot, ST is scaled accordingly to fit the hillslope scale SAS functions to the size of the plots.
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Figure 3.  (left) age, (middle) life expectancy, and (right) transit time structures for the six selected cases. The dotted contour lines are drowned at 50, 100, 200, 400, 
800, 1500, and 2500 days, and the thick dark lines indicate the water table. The white area inside the hillslopes is where no information is available because either age 
or life expectancy is higher than 5000 days, which is the virtual experimental period.
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2.4.  Decomposition of Saturated and Unsaturated Age and SAS Function Structure

The contrasting behavior of the saturated and unsaturated zone seen above suggests that we should look at their 
individual contributions to the overall SAS function. Figure 4 shows the low-gradient, homogeneous slope (P → 
∞ and tan β = 0.05) and its corresponding SAS function (black line in the inset figure). The SAS function shows 
three distinct types of behavior across the range of age-ranked storage. For values of ST below a threshold, the 
SAS function is zero (yellow region), indicating that no water from these age-ranks in storage is discharged. In 
the middle range of ST (green region) the SAS function shows convexity, which indicates that younger water (just 
older than the threshold) is preferentially discharged relative to older water. The SAS function gradually becomes 
linear in the last region, meaning that discharged water is drawn from all age-ranked storage uniformly (without 
preference for younger or older). The division between the second and third regions was chosen to correspond to 
the median transit time (so water in storage with higher ST is already older than half the water is when it exits).

We can start to understand the origins of these distinct regions and their relationship to structure by mapping them 
back onto the spatial distribution of age in the hillslope, as shown in the left part of Figure 4. The threshold value 
of ST separating the first and second parts of the SAS function corresponds with the age rank of the youngest 
water entering the saturated zone close to the hillslope toe. The threshold value of ST does not precisely separate 
the saturated and unsaturated zone throughout the hillslope, as there are upslope unsaturated areas with larger ST 
(green region). The third range of ST (blue) represents water that entered the saturated zone in the upper part of the 
hillslope, where the water table gradient was relatively low. This is illustrated by the trajectory (black dotted line) 
of a particle injected half way up the hillslope, which eventually converges to the boundary between the second 
and third region as it moves down to the outlet.

Further insight can be obtained by separating the entire hillslope control volume into two distinct control volumes 
for the unsaturated zone (with infiltration as the inflow and recharge to the saturated zone as the outflow) and the 
saturated zone (with recharge as the inflow and discharge from the hillslope toe as the outflow), and considering 
their separate SAS functions (see the blue and green lines in Figures 2 and 4). In most cases, the unsaturated zone 
SAS function is a relatively narrow S-curve offset from zero, which suggests that water reaching the saturated 

Figure 4.  (left) Low slope, homogeneous hillslope (tan β = 0.05 and P → ∞) decomposed into three ranges of age-ranked storage. The thick blue line illustrates 
the water table. (right) The estimated hillslope StorAge Selection (SAS) function for this case (black line). The blue and green lines show the SAS function for the 
unsaturated zone and the saturated zone, respectively. The dotted line in the right figure illustrates at what fraction of discharge the hillslope SAS function becomes 
linear. In the left figure, the dotted line illustrates the flow pathway that separates the linear and the non-linear part of the SAS function; for example, water infiltrates 
through the left part of the line resulting in the linear hillslope SAS function.
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zone has a narrow range of ages, but none is younger than some threshold. The saturated zone SAS function 
shows a similar pattern to the overall hillslope SAS function, but without the offset from zero – for the homoge-
neous case it displays some convexity for younger age-ranked storage, but is linear for older one, while for the 
exponentially declining 𝑘𝑘𝑠𝑠 it is generally convex.

3.  Analysis and Analytical Solutions for Hillslope Flow and Transport
3.1.  Overview

The results above suggest that the structure of the SAS function can potentially be explained by the internal struc-
ture of storage and flow paths. The unsaturated zone is largely acting like plug (or ‘piston’) flow, which we might 
expect given the primarily-vertical flow paths and (assumed) absence of dispersion. The approximately uniform 
SAS function of the homogeneous 𝑘𝑘𝑠𝑠 saturated zone is also close to the behavior that would be expected from 
established theory. Gelhar and Wilson (1974) and others have shown that idealized aquifers with nearly-hori-
zontal upper recharge boundaries have exponential TTD at a steady state, which corresponds with uniform SAS 
functions.

But there are aspects of the modeled behavior that are less easily understood. Why is the SAS function slightly 
convex for the middle range of age-ranked storage in the homogeneous case (indicating preferential release of 
young water from that storage)? For the non-homogeneous cases, is there a predictable relationship between the 
shape of the SAS function and the rate of decline in 𝑘𝑘𝑠𝑠 with depth? And how do the SAS functions for the unsatu-
rated and saturated zones ‘add up’ to produce the hillslope scale behavior?

Here we will examine the observed behavior in the light of simplified expressions of the flow hydraulics. Our aim 
is to develop functional forms for the SAS functions that are directly tied to the physical hillslope structure. There 
is a rich literature in hydraulic groundwater theory that we will draw on to accomplish this. Some key previous 
results are summarized below.

As the results above show, the spatial organization of saturated and unsaturated zones in the hillslope are 
extremely important and must be predicted first in order to determine the hillslope SAS function. The Boussinesq 
equation provides a prediction of the location of the water table for a homogeneous conductivity aquifer (e.g., 
Brutsaert,  1994). This model estimates the water table height h above a horizontal impermeable layer under 
steady state as (Boussinesq, 1877):

ℎ(�) =
√

ℎ2
� +

� (�2 − �2)
��

� (6)

where J is influx (or recharge) rate at the water table, L is length of hillslope, and x is distance from the most 
upslope, and hL is the Dirichlet boundary condition for h at x = L. (See the bottom left panel of Figure 1).

When the impermeable layer is sloping, the total hydraulic gradient can be decomposed into contributions from 
the gradient of that underlying layer, and from the varying thickness of the aquifer itself. In the limit of a thin layer 
of saturation overlying a steeply sloping base the effect of the latter is minimal, and there arises a quite different 
spatial organization of lateral flux rate, saturated thickness, and flow paths from that which applies in the case of 
Equation (6) (Harman & Sivapalan, 2009; Harman & Kim, 2019). The relative contributions can be quantified 
by a dimensionless number suggested by Brutsaert (1994), known as the Hillslope number: Hi 𝐴𝐴 = 𝐿𝐿tan𝜂𝜂∕(2𝐻𝐻) , 
where tan 𝜂𝜂 is the slope of the base and 𝐴𝐴 𝐻̄𝐻 is an effective thickness of the saturated aquifer. This dimensionless 
number arises naturally in linearized solutions to the Boussinesq equation (Brutsaert, 1994), and controls the 
nature of the transient response in numerical solutions (Harman & Sivapalan,  2009). Although we will only 
consider cases with Hi = 0, we will propose in the next section a modified form of this appropriate for the case 
where an exponentially declining 𝑘𝑘𝑠𝑠 makes the effective thickness and driving slope different from the saturated 
thickness and impermeable base slope.

Several forms of TTD have been suggested based on simplified process-based models under certain assumptions. 
Vogel (1966) derived the (cumulative) TTD for a homogeneous semi-confined aquifer as:

𝑃𝑃𝑄𝑄(𝑇𝑇 ) = 1 − 𝑒𝑒
−

𝑇𝑇

𝑇𝑇𝑚𝑚� (7)
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where Tm = Heθs /J is the mean transit time, He is the thickness of the aquifer, and J is the influx. Gelhar and 
Wilson (1974) showed that this expression is valid for the Boussinesq type aquifer as long as the water table 
height difference between the most upslope and the most downslope is small enough compared to the most 
downslope water table height. Haitjema (1995) derived an implicit form of TTD for the Boussinesq aquifer and 
showed that the model Equation (7) works effectively when the averaged water table height is used for He, regard-
less of the relatively large water table difference.

Bredenkamp and Vogel (1970) further showed that the TTD is also exponential for semi-confined aquifers if the 
saturated hydraulic conductivity and the porosity decline with depth at the same rate. However, to capture the 
behavior in a truly unconfined hillslope aquifer we need a different approach.

3.2.  Hybrid Boussinesq-TOPMODEL for Water Table Prediction

TOPMODEL, in its original form (Beven & Kirkby, 1979), was based on the assumption of an exponentially 
declining 𝑘𝑘𝑠𝑠, and we will adapt this approach, but augment it with an alternative approach to estimating the gradi-
ent driving flow. If we assume that under quasi-steady state the upslope recharge Jx (where x is the distance from 
the watershed divide, and thus also the accumulated upslope area per unit contour width in a straight hillslope) 
is balanced by the lateral flow according to Darcy's Law, we can write: Jx = −KH(x)dh/dx where KH(x) is trans-
missivity, and dh/dx is the hydraulic gradient. If the depth to the water table is D (= H − h where H is the soil 
surface elevation) and 𝑘𝑘𝑠𝑠 is declining exponentially to the impermeable boundary the transmissivity is given by 
KH = k0P(e −D(x)/P − e −H(x)/P). Rearranging, this gives the depth to the water table as:

𝐷𝐷(𝑥𝑥) = 𝑃𝑃 ln

(
𝑒𝑒−

𝐻𝐻(𝑥𝑥)

𝑃𝑃 +
𝐽𝐽𝐽𝐽

𝑘𝑘0𝑃𝑃 tan 𝛽𝛽

)
� (8)

TOPMODEL also adopted the ‘kinematic wave’ assumption—that is, that the hydraulic gradient in Darcy's law 
can be reasonably approximated by the surface topographic gradient. This contrasts with the Boussinesq equa-
tion, which is based on the Dupuit-Forchheimer assumption that the hydraulic gradient may be distinct from the 
surface topographic gradient, but that it is well approximated in each vertical section of the aquifer by the water 
table gradient.

Here we will use a hybrid of these models by adopting an exponential decline in 𝑘𝑘𝑠𝑠 with depth, but relaxing the 
kinematic wave assumption in TOPMODEL, and replacing it with the Dupuit-Forchheimer assumption. In this 
case we can write the continuity equation to estimate the water table height h above the impermeable layer as:

𝜙𝜙
𝜕𝜕𝜕(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕
= 𝑘𝑘0

𝜕𝜕

𝜕𝜕𝜕𝜕

(
𝜕𝜕𝜕(𝑥𝑥𝑥 𝑥𝑥)

𝜕𝜕𝜕𝜕 ∫

ℎ(𝑥𝑥𝑥𝑥𝑥)

0

𝑒𝑒−(𝐻𝐻(𝑥𝑥)−𝑧𝑧)∕𝑃𝑃 𝑑𝑑𝑑𝑑

)
+ 𝐽𝐽 (𝑡𝑡)� (9)

where ϕ is drainable porosity. At steady state the left hand side of Equation (9) is zero.

We will adopt boundary conditions commonly used to represent hillslope domains: a no-flux boundary at the 
upslope end at x = 0, so 𝐴𝐴 𝐴𝐴𝑥𝑥(𝑥𝑥) = −𝑘𝑘0

𝜕𝜕𝜕(𝑥𝑥𝑥𝑥𝑥)

𝜕𝜕𝜕𝜕
× ∫

ℎ(𝑥𝑥𝑥𝑥𝑥)

0
𝑒𝑒−(𝐻𝐻(𝑥𝑥)−𝑧𝑧)∕𝑃𝑃 𝑑𝑑𝑑𝑑 = 0 at x = 0; and a fixed head or fixed gradient 

at the downslope end, representing the connection between the hillslope and riparian zones, so h = hL (fixed 
head) or 𝐴𝐴

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ℎ′

𝐿𝐿
 (fixed gradient) at x = L. (Note that the above continuity equation is similar to that of Rupp and 

Selker (2005) for the power-law decay of saturated hydraulic conductivity with depth).

This equation reduces to both the TOPMODEL governing equation and the Boussinesq model as special cases. 
The governing equation of TOPMODEL can be obtained when the hydraulic head gradient term 𝐴𝐴

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is set by the 

surface slope − tan β. The no-flux boundary condition at the most upslope is h(0, t) = 0 for this case (as tan β 
≠ 0), since that is the only way to set zero flux with the kinematic wave assumption. This boundary condition 
is implicitly used in TOPMODEL to keep water mass balance. The depth to the water table, in this case, can be 
estimated using: Equation (8). The Boussinesq model, Equation (6), can be recovered when P → ∞.

Note that when P is small relative to the relief of the hillslope L tan β, the deeper part of the aquifer is effectively 
impermeable, and the water table becomes shallower to accommodate the required flow. Consequently, the over-
all hydraulic gradient is more strongly related to the imposed slope of the ground surface than to the varying 
thickness of the saturated aquifer. This is not captured by the Hillslope number Hi defined above. We can define 
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an alternative Hillslope number that applies in this case by examining linearized solutions to Equation (9) in a 
similar manner to previous studies in homogeneous Boussinesq aquifers (e.g., Berne et al., 2005; Brutsaert, 1994) 
(see Appendix A for more details). This suggests an exponential Hillslope number can be usefully defined as:

Hi𝑋𝑋 =
𝐿𝐿 tan 𝛽𝛽

2𝑃𝑃
� (10)

For the Dirichlet (fixed depth) boundary condition D(L)  =  DL  =  HL  −  hL and the linear soil surface 
H(x)  =  HL  +  (L  −  x) tan β used in the simulations described in the previous section, the above equation 
yields the following analytical solution under steady state (expressed in dimensionless form using the relief 
Ht = H(0) − HL = L tan β to non-dimensionalize vertical length scales, and L for horizontal length scales):

𝐷̂𝐷 (𝑥̂𝑥) = 𝐻̂𝐻 (𝑥̂𝑥) − 𝑅̂𝑅𝐿𝐿 +𝑀𝑀𝑀𝑀2Hi𝑋𝑋𝐻̂𝐻(𝑥̂𝑥)

(
1

2Hi𝑋𝑋
+ 𝑥̂𝑥

)

+
1

2Hi𝑋𝑋
𝑊𝑊−1

(
−𝑒𝑒𝑒𝑒𝑒𝑒

(
2Hi𝑋𝑋

(
𝑅̂𝑅𝐿𝐿 −𝑀𝑀𝑀𝑀2Hi𝑋𝑋𝐻̂𝐻(𝑥̂𝑥)

(
1

2Hi𝑋𝑋
+ 𝑥̂𝑥

))))� (11)

where 𝐴𝐴 𝐷̂𝐷 =
𝐷𝐷

𝐻𝐻𝑡𝑡

 , 𝐴𝐴 𝐴𝐴𝐴 =
𝑥𝑥

𝐿𝐿
 , 𝐴𝐴 𝐴𝐴 =

𝐽𝐽

𝑘𝑘0(tan𝛽𝛽)
2
 , 𝐴𝐴 𝐻̂𝐻 (𝑥̂𝑥) = 𝐻̂𝐻𝐿𝐿 + (1 − 𝑥̂𝑥) , and W−1(⋅) is lower branch of the Lambert-W func-

tion (which always yields values less than −1 [Corless et al., 1996]). 𝐴𝐴 𝑅̂𝑅𝐿𝐿 depends on the boundary condition:

𝑅̂𝑅𝐿𝐿 = 𝐻̂𝐻𝐿𝐿 − 𝐷̂𝐷𝐿𝐿 −
𝑒𝑒2Hi𝑋𝑋(𝐻̂𝐻𝐿𝐿−𝐷̂𝐷𝐿𝐿)

2Hi𝑋𝑋
+𝑀𝑀𝑀𝑀2Hi𝑋𝑋𝐻̂𝐻𝐿𝐿

(
1

2Hi𝑋𝑋
+ 1

)
� (12)

where 𝐴𝐴 𝐻̂𝐻𝐿𝐿 =
𝐻𝐻𝐿𝐿

𝐻𝐻𝑡𝑡

 , 𝐴𝐴 𝐷𝐷𝐿𝐿 =
𝐷𝐷𝐿𝐿

𝐻𝐻𝑡𝑡

 .

An analytical solution for the Neumann boundary condition (fixed gradient) and its comparison to the 
TOPMODEL solution are given in Appendix A. Equation 11 is presented in a dimensionless form to clarify the 
essential controls. (Note that the applied non-dimensionalization scheme is similar to that of Koussis [1992] and 
Harman & Sivapalan [2009]). The equation is a function of four dimensionless parameters: 𝐴𝐴 𝐻̂𝐻𝐿𝐿 and 𝐴𝐴 𝐷̂𝐷𝐿𝐿 which are 
related to the downslope boundary conditions, the dimensionless recharge rate M, and the exponential Hillslope 
number HiX. When HiX → 0, the solution approaches that predicted by the Boussinesq model, while the results 
approach those that might be obtained by TOPMODEL when HiX is large enough. (See Appendix A for more 
details.).

Figure 5 illustrates the water table height (or depth to water table) estimated by the numerical model and the 
solution presented above. As we can see, the solution matches the Richards equation-based simulation results. 
This suggests that the Dupuit-Forchheimer assumption is valid for the considered cases even with the exponential 
decline in hydraulic conductivity with depth.

3.3.  Unsaturated Zone Transport

Having developed some useful tools to determine the separation between the saturated and unsaturated zones, we 
can now consider transport through each. For the unsaturated zone, the numerical solutions suggest that we may 
(in this idealized, steady state case) approximate the transport as a collection of piston flow systems. A piston 
flow system has a (cumulative) transit time distribution given by a step-function located at the single age—All 
discharge from the system acquires this age the moment it leaves. The final age Tu (x) of a parcel of water moving 
vertically through the unsaturated zone at downslope location x can be calculated as:

𝑇𝑇𝑢𝑢(𝑥𝑥) =
∫

𝐷𝐷(𝑥𝑥)

0

1

𝑣𝑣 (𝑥𝑥𝑥 𝑥(𝑥𝑥) − 𝑧𝑧′)
𝑑𝑑𝑑𝑑′ =

1

𝐽𝐽 ∫

𝐷𝐷(𝑥𝑥)

0

𝜃𝜃
(
𝑥𝑥𝑥 𝑥(𝑥𝑥) − 𝑧𝑧′

)
𝑑𝑑𝑑𝑑′ =

𝑆𝑆𝑢𝑢(𝑥𝑥)

𝐽𝐽
� (13)

where v is the velocity field, J is the influx rate, θ is water content, and Su (x) is the unsaturated zone storage at x. 
That is, Tu (x) is simply the time required to displace the resident water in the unsaturated zone.

Since these strips are operating in parallel, the (cumulative) transit time distribution PQ,u is a linearly-scaled 
(cumulative) histogram of the unsaturated zone storage Su (x) ∀x ∈ [0, L], which can be formulated as:

𝑃𝑃𝑄𝑄𝑄𝑄𝑄(𝑇𝑇 ) =
1

𝐿𝐿 ∫

𝐿𝐿

0

𝐇𝐇 (𝑇𝑇 − 𝑇𝑇𝑢𝑢(𝑥𝑥)) 𝑑𝑑𝑑𝑑 =
1

𝐿𝐿 ∫

𝐿𝐿

0

𝐇𝐇 (𝐽𝐽𝐽𝐽 − 𝑆𝑆𝑢𝑢(𝑥𝑥)) 𝑑𝑑𝑑𝑑� (14)
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where H(⋅) is the Heaviside (or unit) step function (Abramowitz & Stegun, 1974).

The unsaturated zone age-ranked storage ST,u can be estimated using Equation (5). This turns out to be:

𝑆𝑆𝑇𝑇 𝑇𝑇𝑇(𝑇𝑇 ) = 𝐽𝐽𝐽𝐽 −
1

𝐿𝐿 ∫

𝐿𝐿

0

(𝐽𝐽𝐽𝐽 − 𝑆𝑆𝑢𝑢(𝑥𝑥)) H (𝐽𝐽𝐽𝐽 − 𝑆𝑆𝑢𝑢(𝑥𝑥)) 𝑑𝑑𝑑𝑑� (15)

=
1

𝐿𝐿 ∫

𝐿𝐿

0

min (𝐽𝐽𝐽𝐽 𝐽 𝐽𝐽𝑢𝑢(𝑥𝑥)) 𝑑𝑑𝑑𝑑� (16)

The SAS function can be obtained by eliminating T between the two equations above and setting PQ,u (T) = ΩQ,u 
(ST,u (T)). This can be expressed in compact form by inverting (15) for JT by defining f −1(ST,u) = JT:

Ω𝑄𝑄𝑄𝑄𝑄 (𝑆𝑆𝑇𝑇 𝑇𝑇𝑇) =
1

𝐿𝐿 ∫

𝐿𝐿

0

𝐇𝐇
(
𝑓𝑓−1 (𝑆𝑆𝑇𝑇 𝑇𝑇𝑇) − 𝑆𝑆𝑢𝑢(𝑥𝑥)

)
𝑑𝑑𝑑𝑑� (17)

Unlike the TTD and age-ranked storage, the SAS function is not a direct function of J (though the unsaturated 
zone storage Su (x) does depend on J). This characteristic is related to the “internal” and “external” variabilities 
suggested in Kim et al. (2016). The shape of the SAS function depends on the current internal organization of 
storage (which is conditioned by the past history of inputs), and not directly on the external variability of the 
time history of recharge (Kim et al., 2016; Wilusz et al., 2017). In the current discussion in steady state, this 
means that the unsaturated zone SAS function is only related to the unsaturated zone thickness and unsaturated 
zone saturation structure, and it does not directly relate to the infiltration or recharge rate. Thus, the problem of 
estimating the SAS function (or the TTD) reduces to the one-dimensional problem of estimating the unsaturated 
zone storage Su (x) for all x ∈ [0, L].

This can be further broken down into finding the depth to the water table D(x) and the vertically-averaged water 
content 𝐴𝐴 𝜃̄𝜃(𝑥𝑥) . If we can approximate the relationship between D(x) and 𝐴𝐴 𝜃̄𝜃(𝑥𝑥) , a simple form of transit time distribu-
tion and the SAS function is maybe obtainable. For example, if Su(x) varies linearly along the hillslope between a 
minimum of 𝐴𝐴 𝜃̄𝜃𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 and a maximum of 𝐴𝐴 𝜃̄𝜃𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 (i.e., 𝐴𝐴 𝐴𝐴𝑢𝑢(𝑥𝑥) = 𝜃̄𝜃𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜃̄𝜃 (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 −𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) 𝑥𝑥 ), the TTD, the age ranked 
storage and the SAS function are given by the equations above as:

Figure 5.  Saturation structure estimated using ParFlow (color represents saturation) and the water table (dark line) estimated using the hybrid Boussinesq-TOPMODEL 
Equation (11).
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The SAS function in this case is zero for ST less than 𝐴𝐴 𝜃̄𝜃𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 . It then rises increasingly steeply for 𝐴𝐴 𝐴𝐴𝑇𝑇 > 𝜃̄𝜃𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 until 
it reaches the total storage. This behavior is nearly identical to that observed in the numerical results, particularly 
for the steep, homogeneous case, which has the deepest water table. (More details about the condition for the 
linearity can be found in Supporting Information S1). Differences could be due to the non-linear variation in the 
water table depth (determined by Equation [11]) and unsaturated zone saturation along the hillslope.

To make more precise estimates of the storage Su(x) in the numerical simulations above we may use Equation 
(11) to obtain D(x) and multiply this with an estimated vertically-averaged 𝐴𝐴 𝜃̄𝜃(𝑥𝑥) . We can obtain 𝐴𝐴 𝜃̄𝜃(𝑥𝑥) using the 
one-dimensional Richards equation, Equation (1) with i ∈ {z} with steady state boundary conditions of constant 
flux at the surface (𝐴𝐴 𝐴𝐴 = −𝑘𝑘(𝜓𝜓𝜓 𝜓𝜓)

𝑑𝑑(𝜓𝜓+𝑧𝑧)

𝑑𝑑𝑑𝑑
= 𝐽𝐽  at z = 0) and constant saturation at the water table θ(D(x)) = θs). 

Unfortunately, even for one-dimensional cases, the Richards equation is hard to solve analytically with the 
highly non-linear van Genuchten soil water retention curve and the van Genuchten-Mualem relationship. Certain 
approximations on the soil water retention curve and the relative hydraulic conductivity allow us to derive an 
analytical solution for Su (x; and thus Tu (x)), and the solution can be found in Supporting Information S1.

The blue dotted lines in Figure  2 show the unsaturated zone SAS function estimated using the approximate 
analytical solutions for D(x) and 𝐴𝐴 𝜃̄𝜃(𝑥𝑥) . The close matches between the analytical SAS functions and the func-
tions estimated by ParFlow and SLIM-FAST (bold lines) confirm that ΩQ,u is controlled by Su (Kolmogo-
lov-Smirnov distance < 0.05).

3.4.  Saturated Zone Transport

Saturated zone transport is more complicated than unsaturated zone transport since the flow field is (in our 
idealized simulations) two-dimensional, and not a collection of parallel one-dimensional systems. However, we 
can simplify the two-dimensional flow and transport using Dupuit-Forchhemier assumptions and mass balance 
arguments.

3.4.1.  General Formulation With Dupuit-Forchhemier Assumption

A useful characteristic of the saturated zone transit time problem is that it is reasonable to assume a monotonic 
relationship between travel time and distance upslope (Haitjema, 1995; Fiori et al., 2009). That is, the fraction 
of discharge leaving with a transit time in the saturated zone less than some time Ts (i.e., the fraction defined 
by the cumulative saturated-zone TTD PQ,s(Ts)) is equal to the fraction of recharge entering the saturated zone 
downslope of a location x0 where recharge has a transit time of exactly Ts.

Let us define a function x0(Ts), where x0 is the x-directional location where a water particle recharged at the 
location has saturated zone transit time Ts. We assume that the point of origin x0 is uniquely determined by the 
travel time Ts and that x0 monotonically decreases with Ts (Fiori et al., 2009; Haitjema, 1995). With these assump-
tions,  the transit time distribution can be written as (e.g., Haitjema, 1995):

𝑃𝑃𝑄𝑄𝑄𝑄𝑄 (𝑇𝑇𝑠𝑠) = 1 −
𝑥𝑥0 (𝑇𝑇𝑠𝑠)

𝐿𝐿
.� (21)

The injection location x0 associated with transit time Ts can be determined using its inverse function Ts (x0). This 
relationship can be found if the velocity field (specifically the component of velocity normal to the exit plane, in 
this case x) is known:
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𝑇𝑇𝑠𝑠 (𝑥𝑥0) =
∫

𝐿𝐿

𝑥𝑥0

1

𝑣𝑣𝑥𝑥 (𝑥𝑥′, 𝑧𝑧𝑑𝑑 (𝑥𝑥′, 𝑥𝑥0))
𝑑𝑑𝑑𝑑′� (22)

where vx is the x-directional component of water velocity, and zd (x′, x0) is the vertical location of a particle when 
its point of origin is x0 and it has reached x′ > x0.

If the functions vx and zd can be estimated, then the TTD can be obtained by eliminating x0 between the equations 
above. Under the Dupuit-Forchheimer assumptions the x-directional local velocity vx(x, z) is:

𝑣𝑣𝑥𝑥(𝑥𝑥𝑥 𝑥𝑥) = −
𝑘𝑘𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥)

𝜃𝜃𝑠𝑠

𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
� (23)

where h is the hydraulic head. Note that the hydraulic head gradient does not depend on z under the Dupu-
it-Forchheimer assumptions. Consequently, in the homogeneous case vx is a function of x only—Thus vx(x, zd) 
in Equation (22) and 𝑣𝑣𝑥𝑥(𝑥𝑥𝑥 𝑥𝑥) in Equation (23) can be replaced with vx(x). Otherwise, we can estimate zd through 
mass balance by equating the rate of recharge between x0 and x with the cumulative downslope flux between zd 
and the water table height h(x):

−∫

ℎ(�)

��(�,�0)
��
(

�, �′
)

��′
�ℎ(�)
��

= � (� − �0)� (24)

The right hand side term is the recharge flux between x0 and x, and the left hand side term is the lateral flux at x along 
z ∈ [zd (x, x0), h(x)]. A similar equation can be formulated balancing the recharge between 0 and x0 and with the flux 
along z ∈ [0, zd(x, x0)]. When the exponential decline with depth given in Equation (3) is used, zd(x, x0) is given by:

𝑧𝑧𝑑𝑑 (𝑥𝑥𝑥 𝑥𝑥0) = ℎ(𝑥𝑥) − 𝑃𝑃 log

(
𝑥𝑥

(𝑥𝑥 − 𝑥𝑥0) 𝑒𝑒
−

ℎ(𝑥𝑥)

𝑃𝑃 + 𝑥𝑥0

)

� (25)

Equations (21, 23) and (25) provide the TTD and the SAS function for a given water table profile h(x). That 
profile can be estimated using the model developed in Section 3.2. While the complicated functions involved 
make it difficult to obtain a closed-form of the SAS function for the general case, the steps can be followed 
numerically. The dotted green lines in Figure 2 compare the approximate SAS functions estimated based on this 
model with those of ParFlow. The approximate solutions match the SAS function estimated from the Richards 
equation-based model. This suggests that the assumption of constant 𝐴𝐴

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 along a vertical profile—the Dupu-

it-Forchheimer assumption—is valid for estimating transport through hillslopes with and without exponential-
ly-declining permeability. This greatly reduces the complexity of the model describing transport.

3.4.2.  Approximate Analytical Solutions Using the Effective Thickness Assumption

Useful analytical solutions can be found with simplification. To obtain approximate solutions we assume an 
“effective” water table height, whereby water table height He is constant in space. Hydraulic head for the effective 
thickness aquifer can be estimated based on the previous mass balance argument, that is, using Equation (24) with 
x0 = 0. The transmissivity for this case is �� = ∫��

0 ��(�)�� = �0�
(

1 − �−��∕�
)

 and does not depend on x. Thus, 
the hydraulic head gradient is a linear function similar to the homogeneous case. However, resulting TTDs and 
SAS functions are not exponential and linear, respectively, because vx in Equation (23) is now a function of z. The 
TTD and the SAS function can be estimated using Equations (21) – (25) and can be formulated as:

𝑃𝑃𝑄𝑄 (𝑇𝑇 ∗
𝑠𝑠 ) =

1

1 −
1

2
𝑒𝑒−𝑃𝑃

∗

(
1 + coth

(
𝑇𝑇 ∗
𝑠𝑠

2 (1 − 𝑒𝑒𝑃𝑃
∗
)

))

Ω𝑄𝑄

(
𝑆𝑆∗

𝑇𝑇 𝑇𝑇𝑇

)
=

1

1 −
1

2
𝑒𝑒−𝑃𝑃

∗

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 + coth

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑆𝑆∗

𝑇𝑇 𝑇𝑇𝑇

(
1 +

∑∞

𝑛𝑛=2

𝑆𝑆
∗(𝑛𝑛−1)

𝑇𝑇 𝑇𝑇𝑇

∑𝑛𝑛−1

𝑘𝑘=1
𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒

𝑚𝑚𝑚𝑚 ∗

𝑛𝑛! (−1 + 𝑒𝑒(𝑛𝑛−1)𝑃𝑃
∗
)

)

2 (1 − 𝑒𝑒𝑃𝑃
∗
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

� (26)
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where 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
∑𝑚𝑚−1

𝑗𝑗=0

(
𝑛𝑛

𝑗𝑗

)
(−1)

𝑗𝑗
(𝑚𝑚 − 𝑗𝑗)

𝑛𝑛−1 . To simplify the equations the saturated zone age-ranked storage ST,s and 

transit times Ts are expressed in dimensionless forms 𝐴𝐴 𝐴𝐴∗

𝑇𝑇 𝑇𝑇𝑇
=

𝑆𝑆𝑇𝑇 𝑇𝑇𝑇

𝑃𝑃 𝑃𝑃𝑠𝑠
 and 𝐴𝐴 𝐴𝐴 ∗

𝑠𝑠 = 𝐽𝐽
𝑇𝑇𝑠𝑠

𝑃𝑃𝑃𝑃𝑠𝑠
 , respectively. ST,s ranges between 

0 and Heθs. Note that the SAS function does not depend on J, only on the storage.

The thick light gray lines in Figure 2 show the analytically derived SAS function using Equation (26) for the 
considered cases. For the homogeneous hillslope, the analytical solutions were illustrated for the upper half; we 
will discuss the reason why in the following section. The thickness of the effective aquifer He was determined as 
the spatial average of h, denoted as 𝐴𝐴 ℎ̄ hereafter, for each case. The model worked for all the cases effectively with 
the maximum Kolmogorov-Smirnov distance of 0.06 for the case with P = 2.0 and tan β = 0.15. Detailed reasons 
why the effective thickness assumption-based model works are described in Supporting material S2.

Moreover, the agreement implies that the role of the no-flow condition in the saturated zone boundary condition 
at the most downslope (that used in the PARFLOW model) is negligible for the cases considered in this study. A 
detailed examination of the effect of the boundary conditions is out of the scope of this study. Nevertheless, previ-
ous work has shown that the extent of the no-flow condition at the lower boundary has a negligible effect on the 
system-scale transport (for the homogeneous semi-confined aquifer) when He/L < 0.1 (Luther & Haitjema, 1998). 
Our results indicate that He in the condition may need to be replaced with the active saturated zone thickness (in 
terms of transport) when the permeability declines along the depth.

As the effective thickness model works in many cases, it would be worthwhile to look at limiting cases to see if 
we can simplify the analytical solution. We can define two limiting cases: P → ∞ and He → ∞. When P → ∞, the 
aquifer is homogeneous. The case He → ∞ can be thought of as the case when the decline length scale P is very 
small compared to He. (The latter condition is similar to the condition of large P* = He/P, which will be discussed 
later.) For these cases, the TTDs can be written as:

�� (� ∗) = 1 − �−� ∗ (when � → ∞)

= � ∗

1 + � ∗ (when �� → ∞)
� (27)

where 𝐴𝐴 𝐴𝐴 ∗ =
𝐽𝐽𝐽𝐽𝑠𝑠

𝐻𝐻𝑒𝑒𝜃𝜃𝑠𝑠
 for P → ∞ and 𝐴𝐴 𝐴𝐴 ∗ =

𝐽𝐽𝐽𝐽𝑠𝑠

𝑃𝑃𝑃𝑃𝑠𝑠
 for He → ∞.

As previously discussed, the transit time distribution for the homogeneous aquifer (P → ∞) is exponential and 
identical to Equation (7). For the case which the saturated conductivity declines much faster than the aquifer 
thickness, the TTD is a Lomax distribution (Johnson et al., 1994, 1995) with exponent 1. The associated SAS 
functions are:

Ω�
(

�∗
� ,�

)

= �∗
� ,� (when � → ∞)

= 1 − �−�
∗
� ,� (when �� → ∞)

� (28)

where 𝐴𝐴 𝐴𝐴∗

𝑇𝑇 𝑇𝑇𝑇
=

𝑆𝑆𝑇𝑇 𝑇𝑇𝑇

𝐻𝐻𝑒𝑒𝜃𝜃𝑠𝑠
∈ [0, 1] for P → ∞ and 𝐴𝐴 𝐴𝐴∗

𝑇𝑇
=

𝑆𝑆𝑇𝑇 𝑇𝑇𝑇

𝑃𝑃 𝑃𝑃𝑠𝑠
∈ [0,∞) for He → ∞.

The solutions for He → ∞ are a reasonable approximation when, roughly, P* > 5. For P* > 5, the analyti-
cal solution in Equation (26) differs from the exponential SAS function above with the maximum Kolmogo-
lov-Smirnov distance of less than 0.007. For the hillslopes with P = 0.5 and the case of {P = 2.0, tan β = 0.30}, 
the SAS function is approximately exponential as P* > 5 with 𝐴𝐴 𝐴𝐴𝑒𝑒 = ℎ̄ (see Figure 2).

The derived saturated zone TTDs and the SAS function can be used to estimate the hillslope scale TTD and SAS 
function in Section 3.5. Furthermore, those solutions allow us to easily examine those properties. For example, 
the derived saturated zone TTD is heavy-tailed but not 1/f scaled, which is discussed in the following section.

3.4.3.  Heavy-Tailed (But Not 1/f Scaled) Transit Time Distribution Through the Saturated Zone

The analytical derivations of the TTDs, Equations (26) and (27), allow us to look at those statistical properties 
easily. Our two particular interests are its tailing and power spectrum. The tailing of TTD has been studied 
and used to characterize transport at a scale of interest. The power spectrum of the TTD has served as a useful 
tool to understand catchment-scale transport, for example, in Kirchner et al. (2000) and Godsey et al. (2010). 
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As described previously, Ameli et al.  (2016) reported that the numerically estimated TTD for P ≈ 0.3 m (or 
𝐴𝐴 ℎ̄∕𝑃𝑃 ≈ 3.4 ) can be fitted to the gamma distribution with the shape factor of 0.5, which is associated with the 1/f 

scaling (Kirchner et al., 2000).

The analytical TTD is heavy-tailed when P* < ∞. (Heavy-tailed distribution refers to the distribution whose tail is 
not bounded exponentially (Bryson, 1974).) This heavy-tailed distribution suggests that if one treats the hillslope 
as an effective one-dimensional system (similar to the way used in Kirchner et  al.,  [2001]) the system-scale 
transport is non-Fickian. The exponential decline in the saturated hydraulic conductivity results in non-Fickian 
behavior despite lacking a stochastic hydraulic conductivity field or dual-domain model assumptions.

In addition, the TTD in Equation (26) does not show the 1/f scaling (see the middle panel of Figure 6). Gamma 

distribution with its shape factor 0.5 has the 1/f signal, because 𝐴𝐴 𝐴𝐴 ∼ Γ

(
1

2
, 𝑇𝑇𝑚𝑚

)
 decays following T −0.5 up to around 

the mean transit time Tm. However, the TTDs in Equations (26) and (27) do not have such regions (see the left 
panel in Figure 6). Nevertheless, if we “fit” a gamma distribution to the TTD by minimizing, for example, mean 
squared error, the gamma distribution with the shape factor α = 0.5 is the best fit for the case of P* = 3.4, because 
the gamma distribution can reproduce the heavy-tailed TTD with α < 1. Thus, it is likely that the TTDs at these 
hillslopes do not have the 1/f characteristic, and the result in the previous study is an artifact of such fitting. While 
we only looked at this property for the saturated zone transport, it is unlikely that the unsaturated zone transport 
endows 1/f scaling, especially when P is low.

3.5.  Hillslope Scale Transport

Hillslope scale transit time T can be formulated as the sum of the unsaturated zone transit time Tu and the satu-
rated zone transit time Ts as: T = Tu + Ts. Following our previous discussion, Tu, Ts, and T may be determined by 
the associated injection location of water particle x0. Thus, it is possible to formulate hillslope scale transit time 
distribution PQ(T) using Equation (14) by replacing Tu with Tu + Ts. In case T is a monotonically decreasing func-
tion of x0, Equation (21) may be used to estimate the hillslope scale transit time distribution by replacing Ts with 
Tu + Ts. The SAS function can be constructed using the transit time distribution.

We also can ask another question: can we construct hillslope scale TTD and SAS function using those of unsatu-
rated zone and saturated zone? This question is directly related to the problem of determining a system-scale 
transport measure, where the system is composed of multiple sub-systems (or buckets) in a series and when we 
know about sub-system scale transport closures (either TTDs or the SAS functions). Unfortunately, it is not possi-
ble unless we have additional information on a certain relationship between Tu and Ts.

In the theory of probability, a probability distribution of the sum of two continuous random variables, let's say 
T = Tu + Ts, can be formulated as (e.g., Wackerly et al., 2002):

Figure 6.  The saturated zone transit time distributions, those power spectrum, and the StorAge Selection functions.
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𝑝𝑝𝑄𝑄(𝑇𝑇 ) =
∫

𝑇𝑇

0

𝑝𝑝𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝜏𝜏𝜏𝜏𝜏  − 𝜏𝜏)𝑑𝑑𝑑𝑑� (29)

where PQ,u,s(Tu, Ts) is the joint distribution of Tu and Ts.

Thus, we need to know the joint distribution, not PQ,u and PQ,s, to determine the hillslope scale transit time 
distribution. Determining the joint distribution using only PQ,u and PQ,s is, in general, not possible. Those are 
marginal distributions of the joint distribution which can be formulated as: 𝐴𝐴 𝐴𝐴𝑄𝑄𝑄𝑄𝑄(𝑇𝑇 ) = ∫

𝑇𝑇

0
∫
∞

0
𝑝𝑝𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝜏𝜏𝜏 𝜏𝜏)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , and 

𝐴𝐴 𝐴𝐴𝑄𝑄𝑄𝑄𝑄(𝑇𝑇 ) = ∫
𝑇𝑇

0
∫
∞

0
𝑝𝑝𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝜂𝜂𝜂 𝜂𝜂)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . Through the integration some information in pQ,u,s is destroyed and cannot be 

recovered using PQ,u and PQ,s.

Nevertheless, we can think of two end-member cases where determining the joint distribution is possible using 
PQ,u and PQ,s. First, the determination is possible when the two random variables Tu and Ts are independent; in 
such case, the joint distribution is multiple of the two: pQ,u,s(Tu, Ts) = pQ,u(Tu)pQ,s(Ts), and Equation (29) reduces 
to the convolution: 𝐴𝐴 𝐴𝐴𝑄𝑄(𝑇𝑇 ) = ∫

𝑇𝑇

0
𝑝𝑝𝑄𝑄𝑄𝑄𝑄(𝜏𝜏)𝑝𝑝𝑄𝑄𝑄𝑄𝑄(𝑇𝑇 − 𝜏𝜏)𝑑𝑑𝑑𝑑 (e.g., Hogg et al., 2005). This is useful, for example, when 

the unsaturated zone transit time is mostly constant as Tu(x0) ≈ T1 for all 𝐴𝐴 𝐴𝐴0 ∈ (0, 𝐿𝐿] where T1 is a constant. 
In  this case, pQ,u(Tu) = δ(Tu − T1), where δ is Dirac-delta function, and pQ(T) is simply equivalent to pQ,s(T − T1) 
for T ≥ T1. Otherwise pQ(T) = 0. If we further assume that the saturated zone is homogeneous and water table 
gradient is negligible, the assumptions yields the “piston-exponential” function as the hillslope scale transit time 
distribution (Małoszewski & Zuber, 1982). The function has been used widely, especially, in tritium dating (e.g., 
Morgenstern et al., 2010; Zuber et al., 2005). Generalization is possible using Equation (26), or Equation (27), 
to consider the effect of the exponential hydraulic conductivity decline with depth. For the case of He → ∞, the 
hillslope scale TTD is a piston-Lomax(1,1) like distribution or, more formally, the generalized Pareto distribution 
with (μ = Tu/T*, σ = 1, η = 1) (Pickands, 1975), when the same normalization used for Equation (27) is applied.

On the other hand, Tu and Ts are maybe not independent of each other but related by a single-valued function q as: 
Ts = q(Tu). Let us assume that q is any monotonically increasing function. Then there exists a strictly increasing 
function w that satisfies T = w(Tu) = Tu + Ts = Tu + q(Tu). In this case, the TTDs are related by PQ,u(Tu) = PQ,s(Ts =  
q(Tu)) = PQ(T = w(Tu)). These give an interesting relationship between the age-ranked storages, ST, ST,u, and  
ST,s, as:

�� (� ) = �
(

� − ∫

�

0
��(�)��

)

= �

(

� (��) − ∫

�(��)

0
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0
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= �� ,�
(

�−1(� )
)

+ �� ,�
(

�
(

�−1(� )
))

� (30)

where w −1 is the inverse function of w and it exists since w is strictly increasing function. For the equation in the 
second line we used the relationships: dw (Tu) = dTu + dq (Tu) and the previously mentioned relationship between 
the TTDs.

The above Equation (30) means that the age-ranked storage for the whole hillslope is the sum of the unsaturated 
age-ranked storage and the saturated age-ranked storage when the value of the SAS functions are the same: ST 
(ΩQ) = ST,u (ΩQ) + ST,s (ΩQ). In other words, the SAS for the hillslope as a whole is the sum of the unsaturated 
and saturated SAS functions if we rotate the SAS function plot counter-clockwise 90°. The assumption of the 
monotonic increasing function q is valid for several cases that are considered here because the water table gradi-
ent is usually lower than the surface slope. The validity can be easily checked using Equation (3) in Supporting 
Information that estimates Su(x). If Su (and thus Tu) is one-to-one on x, the monotonic increase is valid. Finally, 
the black dotted lines in Figure 2 illustrate the hillslope scale SAS functions that are estimated using the method 
described in this section, which is very close to those estimated by ParFlow and SLIM-FAST (bold dark gray 
lines in Figure 2).
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3.6.  Internal Age, Life Expectancy, and Transit Time Structures

In this section we described the internal age, life expectancy, and transit time structures using the previously devel-
oped models. The numerical results were introduced previously and illustrated in Figure 3. The model for the veloc-
ity field, Equations (23)–(25), can be used to estimate the spatial age and life expectancy in saturated zone with:

�(�, �) = ∫

�

�0(�,�)

1
�� (�′, �� (�′, �0(�, �)))

��′

��(�, �) = ∫

�

�

1
�� (�′, �� (�′, �0(�, �)))

��′
� (31)

Those are, again, only a function of vx because of the Dupuit-Forchheimer assumption. For the effective thickness 
aquifer, using the velocity field that discussed in Section 3.4.2, the above can be written analytically as:
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For the effective thickness aquifer the age-structure is not a function of x and only a function of z, while the 
life expectancy is a function of x and z unless the hydraulic conductivity is homogeneous; when, P → ∞, 

𝐴𝐴 𝐴𝐴𝐴𝐴(𝑥𝑥) =
𝐻𝐻𝑒𝑒𝜃𝜃𝑠𝑠
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log
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 . (In that case, 𝐴𝐴 𝐴𝐴(𝑧𝑧) =
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log

(
𝐻𝐻𝑒𝑒

𝑧𝑧

)
 (e.g., Cornaton & Perrochet,  2006; Raats,  1978; 

Vogel,  1966). The independency of the age structure on z means that the structure is parallel to the surface 
and impermeable layer of the effective thickness aquifer. As we talked about previously, the effective thickness 
assumption was valid for certain cases to explain the transport closures in unconfined aquifers. From the success, 
we can expect that the model Equation (32) would also be valid to explain the age and life expectancy structures. 
However, it is not clear how to map the findings from the effective thickness aquifer to the unconfined aquifers 
as h varies in the latter case. Is it a water table or impermeable layer that the parallel age structure referenced to?

The question could be answered, if we can find analytical expressions for Equation (31), by examining those func-
tional forms. However, analytical forms of Equation (31) are hard to be obtained, and we thus took another way and 
focused our discussion on the two limiting cases: P → ∞ and h → ∞. Let us first define dd(x, x0) = h(x) − zd(x, x0) 
as the depth from the water table where a water particle injected at x0 is located at x. (zd was formulated in Equation 
(25), and we shall use h2(x) in Supporting Information S3 as h(x) for the upslope half of homogeneous aquifer in 
this discussion when P → ∞.) If an age structure parallels to the water table appears, we should be able to formulate 
dd with A not x nor x0. Let us also define new variable xA(A, x0) as the horizontal location of a water particle injected 
at x0 at age A, which can be formulated by inversing �(��, �0) = ∫ ���0

1∕�� (�′) ��′ . Using xA, dd can be written as:
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For the limiting cases, analytical formulations of xA/x0 are possible by inversing A(xA, x0) as:
�0

�� (�, �0)
= �−�� (when � → ∞)

= 1
1 + ��

(when ℎ → ∞)
� (34)
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 is the water table height at x = 0, and 𝐴𝐴 𝐴𝐴 =

𝐽𝐽

𝑃𝑃𝑃𝑃𝑠𝑠
 .

These allow us to examine the age-structure for the limiting cases by replacing x0/xA(A, x0) in Equation (33) by 
Equation (34). For the upper half of the homogeneous aquifer (when P → ∞), dd/h is a function of A not x and 
x0. This means that the age-structure is not parallel to either the impermeable layer or the water table but to the 
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normalized coordinate z/h or d/h. This case is identical to the type of spatial age distribution called “scaled lateral 
symmetry” in Harman and Kim (2019). For the case h → ∞, dd is a function of A not x and x0. This means that the 
age-structure is parallel to the water table. These age structures can be written as:

�(��) =
1
�
log

(

1
1 − ��

)

(when � → ∞)

�(�) = 1
�

(

�
�
� − 1

)

(when ℎ → ∞)

� (35)

where dn = d/h.

This shows how the depth-independence of age-structure in the effective thickness (or semi-confined) aquifers is 
reflected in the unconfined aquifers for the limiting cases. Using the above results, we can classify two regimes of 
age-structure: “lateral symmetry” (Harman & Kim, 2019) and “water table parallel”. The structure A(dn) presented 
above has the identical functional form to that for the homogeneous effective thickness aquifer when dn replaces with 
d/He or 1 − z/He (see the equation below (32)). The rates are a little different from each other as the effective thickness 
He is replaced with h0 for the upslope half of the unconfined Boussinesq aquifer. The “water table parallel” regime 
appears when, roughly, P* > 5. In the literature, the water table parallel regime has also appeared for the case where 
the water table thickened linearly from upslope to downslope (e.g., Cook & Böhlke, 2000). (Note that the water table 
is more or less thinning linearly for the case considered here.) While the structure is similar in the two cases, the rate 
that the age increases with depth is different significantly. It is linear with the rate of 𝐴𝐴

𝜃𝜃𝑠𝑠

𝐽𝐽
 for the linear thickening case 

(Cook & Böhlke, 2000) and is exponential for the exponential decline of saturated hydraulic conductivity cases.

The upper three panels in Figure 7 shows the saturated zone age-structures estimated using Equation (32) for the 
cases with tan β = 0.15 and three different P values. In the homogeneous aquifer, the structure is linear for the 
upslope half in dn co-ordinate. For 𝐴𝐴 𝐴𝐴 = 0.5

(
𝑃𝑃 ∗ = ℎ̄∕𝑃𝑃 = 15.6

)
 , the age structure is parallel to the water table 

which can be seen easily in d co-ordinate. For 𝐴𝐴 𝐴𝐴 = 2.0
(
𝑃𝑃 ∗ = ℎ̄∕𝑃𝑃 = 2.73

)
 , the structure cannot be explained by 

the two limiting cases.

The structure can be altered when we consider the time water spent in the unsaturated zone as we can see in 
the second row of Figure 3. Thus, the above discussion is valid for the hillslope as a whole for the cases where 
unsaturated zone transit time Tu(x) is mostly constant along x. When this is not true, the age structure is different 
from what is discussed in this section. Examining such cases (Tu(x) ≠ const.) in a simple manner would also be 
possible using: � (��, �0) = ∫ ���0

1∕��(�′)�� + ��(�0) . However, this is out of the scope of this paper, and we leave 
it as a future study.

In terms of the life expectancy structures, those vary mostly depending on P. The contour lines of the life expectancy 
are orthogonal to the impermeable layer for the case P → ∞, as the horizontal velocity of water particles along a 
vertical line is constant under the Dupuit-Forchheimer assumption. This is also approximately true in the Richards 
equation-based model (see the top-left panel in Figure 3). In fact, the life expectancy structures for the saturated zone 
are mostly identical to those estimated at the hillslope as a whole (in Figure 3), since life expectancy is determined 
from the outlet. As a result, the effect of P on the structure is the same as discussed previously for the hillslope as a 
whole; low P results in tilting the contour lines as the lateral velocity is slower at more bottom locations.

The saturated zone transit time structure can also be obtained using Equation (31) as T(x, z) = A(x, z) + LE(x, z), 
and the structures are illustrated in the bottom panels of Figure 7. The structures for the hillslope as a whole are 
shown in Figure 3. As previously described, the contour lines of the transit time structure illustrate the flow path-
ways under steady state. The flow pathways were determined more by the surface topography when P is smaller 
as those are mostly parallel to the soil surface. Moreover, the contour lines showed that, when P is small, most of 
the recharged water moves through a very shallow layer underneath the water table, and the water below the layer 
was water recharged at the very narrow upslope locations.

3.7.  Correlated HiX, P*, and Unsaturated Zone Transit Time

Throughout this study, we defined several dimensionless numbers such as HiX and P*. HiX and P* explain satu-
rated zone flow and transport, respectively. The exponential Hillslope number HiX is similar to the Hillslope 
number Hi = � ��� �

2�
 (Brutsaert, 1994). The effective thickness 𝐻̄𝐻  is substituted with P in HiX, and the slope of 
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the impermeable base is replaced with the surface slope. P* is the number that determines the saturated zone 
transport.

The two numbers, HiX and P*, are correlated: HiX determines the water table profile with M, 𝐴𝐴 𝐻̂𝐻𝑡𝑡 , and 𝐴𝐴 𝐻̂𝐻𝐿𝐿 , and 
P* is proportional to the (average) water table height. The upper panels in Figure 8 illustrate P* as a function 
of HiX and M for several selected Hts. The figures show that the saturated zone transport number P* is largely 
determined by HiX rather than M. With that in mind, this is perhaps worthwhile to note here that, roughly, P* > 5 

Figure 7.  Age, life expectancy, and transit time structures in the saturated zone for different P with tan β = 0.15. The age structures are illustrated in three vertical 
coordinates: the height above the impermeable layer z, d = h − z, where h is water table height, and dn = d/h. The life expectancy and the transit time structures are 
illustrated in z coordinate.
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when HiX > 10. The condition of HiX > 10 is the condition that TOPMODEL works (see Figure A1). This means 
that the SAS function associated with TOPMODEL is an exponential function for two-dimensional hillslopes.

The exponential Hillslope number HiX is also related to the unsaturated zone transport. One of its important 
controls is the effect on the variance of the unsaturated zone transit time Tu(x) for x ∈ [0, L]. The variance (or 
standard deviation) of the unsaturated zone transit time is important as it can be used as a measure of deter-
mining the method to combine the unsaturated and the saturated TTDs and the SAS functions (as discussed in 
Section 3.5). Also, it determines the validity of the discussion on the saturated zone age structure, presented in 
Section 3.6. As we can expect from Figure 5, the higher the HiX the smaller the standard deviation, because the 
water table is largely determined by the topographic surface when HiX is high. The bottom panels of Figure 8 
show the ratio of the standard deviation of Tu to the mean hillslope transit time 𝐴𝐴 𝑇̄𝑇  , as a function of HiX and M. As 
it was expected, the standard deviation was largely determined by HiX. When HiX > 10, the ratio was, roughly, 
less than 0.1 for the considered cases.

4.  Application and Limitations
In this section, we evaluate the theoretical framework in terms of estimating the SAS function and the tracer break-
through curve (BTC) in two experimental hillslopes. The two experimental systems have quite distinct Hillslope 
numbers Hi. For one system, we will consider the exponential decline in the saturated hydraulic conductivity with 
depth. We will also discuss the limitations of the current framework that the application highlights.

The two experimental systems are (a) one of the Landscape Evolution Observatory (LEO) hillslopes, the LEO 
west hillslope, located in Biosphere 2, The University of Arizona (with a Hillslope Number of Hi > 10), and (b) 
a small-scale sloping soil lysimeter called miniLEO located in the same facility (with Hi ≈ 0.2). The LEO west 
hillslope is 30 m long, 11 m wide, and 1 m deep hillslope supported by a steep and convergent plan shape steel 
structure (e.g., Pangle et al., 2015). MiniLEO is a smaller scale experimental system which is 2 m long, 0.5 m 
wide, and 1 m deep (e.g, Kim et al., 2016). It is supported by a straight planar steel base. The average slope of 

Figure 8.  (Top) The saturated zone transport number 𝐴𝐴 𝐴𝐴 ∗
(
= ℎ̄∕𝑃𝑃

)
 as a function of M (= J/(k0(tan β) 2)) and the exponential Hillslope number HiX. In the above 

equations, 𝐴𝐴 ℎ̄ is the average of water table height, P is the decline length scale, J is the steady rain rate, k0 is the saturated hydraulic conductivity at the soil surface, and 
β is slope of the surface. (bottom) the ratio of the standard deviation of unsaturated zone transit time Tu(x) to the mean hillslope transit time 𝐴𝐴 𝑇̄𝑇  . The location of the nine 
dots indicates the nine considered cases.
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both LEO west and miniLEO is 10°. Both of the experimental systems are primarily filled with a loamy-sand 
textured basaltic tephra except for the downslope region (0.5 m long for the LEO west hillslope and 0.1 m long 
for miniLEO) where gravel textured basaltic tephra is filled. The porosity of the loamy-sand textured soil is 
approximately 0.4. The saturated hydraulic conductivity for both systems was estimated in previous studies. The 
hydraulic conductivity of the LEO west hillslope is effectively homogeneous and is about 10 m/day (e.g., van den 
Heuvel et al., 2018). For miniLEO it is about 0.3–3.5 m/day, and is highest in topsoil and decreases with depth 
(Pangle et al., 2017).

Tracer datasets and the observed SAS functions are available for experiments conducted on both systems. A tracer 
experiment conducted in 2016 at the LEO west hillslope produced tracer BTCs and the observation of the SAS 
functions (Kim, Volkmann, et al., 2022). For miniLEO, we use the data collected during the 2014 experiment and 
the observed SAS functions reported in (Kim et al., 2016). Both experiments used the PERiodic Tracer Hierarchy 
(PERTH) method (Harman & Kim, 2014) to observe the SAS function at periodic steady state (see Figures 9 
and 10). Both systems were driven almost to the wettest possible state given the constraint that they do not gener-
ate overland flow. There is a significant difference between the two experiments in terms of Hi, which is higher 
than 10 in the LEO west hillslope, and it is about 0.2 in the miniLEO. The Hillslope number is determined by the 
average height that the water must flow L tan η/2 and the effective thickness of the water table 𝐴𝐴 𝐻̄𝐻 as: �tan�∕

(

2�̄
)

 . 
In the LEO west hillslope, the height L tan η/2 is on average about 2.6 m, while it is about 0.1 m in miniLEO. We 
use the average water table thickness during the experiments as the effective thickness 𝐴𝐴 𝐻̄𝐻 when estimating the 
hillslope number. The water table in the LEO west hillslope along the center is the thickest downslope with the 
temporal average of 0.42 and 0.47 m at 1.0 and 7.0 m upslope from the downslope boundary (Kim, Volkmann, 
et al., 2022). It decreases toward the upslope, and no water table was developed at the most upslope region. The 
spatial and temporal average thickness is less than 0.3 m. In miniLEO, the water table extended up to the upslope 
boundary, with time-averaged thicknesses of 0.49 m, 0.53 m, and 0.39 m at 0.15 m, 0.75 m, and 1.35 m from the 
downslope boundary, respectively. The spatial and temporal average thickness was 0.45 m (Kim et al., 2016).

The observed SAS functions in each system differ greatly from one another (see Figures 9 and 10b). The shape 
of the observed SAS function in the LEO west hillslope is concave, indicating the preferential discharge of old 
water (Kim, Volkmann, et al., 2022). The SAS function mainly shifts to the right as the system becomes wetter, 
meaning that the hillslope preferentially discharges older water from storage under wetter conditions. In contrast, 
the SAS function observed in miniLEO indicates that the system preferentially discharges younger water stor-
age during wetter conditions. The phenomenon in which young water is released in greater proportion under 
wetter conditions is termed “inverse storage effect” (Harman, 2015), and observed in many catchments (e.g., 
Harman, 2015; van der Velde et al., 2014). The shape of the SAS function is mostly convex except for the function 
over the young water storage where the shape is concave. The concave part extends as the system becomes drier.

We can compare the predictions of the theory developed above with the observed SAS functions and the observed 
BTCs. For the LEO west hillslope where Hi is high, an analytical solution of the steady state SAS function is 
provided based on the framework that we described in the proceeding sections and by utilizing the kinematic 
wave assumption. They estimated the water table profile using the hillslope-storage kinematic wave model (Troch 
et al., 2002) to consider the convergent topography and estimated the SAS function using the framework provided 
in this study. The mean discharge is used as the steady state flux. For miniLEO, we estimate a hydraulic theo-
ry-based steady state SAS function using the effective thickness assumption discussed in Section 3.4.2, where 
the water table height is approximated by an effective water table height. When the unsaturated zone volume 
and the saturated zone volume are available, we can estimate the SAS function using those volumes and P*. 
The SAS function for the saturated zone can be estimated using Equation (26). Note that, in the SAS function, 
the soil porosity θs only linearly scale the age-ranked storage; Thus, when the saturated zone storage volume is 
available, the value of porosity does not need to be determined, and we can linearly scale the SAS function so 
that the age-ranked storage at ΩQ = 1 matches the saturated zone storage. We assume the piston flow for the 
unsaturated zone volume, and the hillslope scale SAS function is the saturated zone SAS function shifted by the 
amount of the unsaturated zone. We estimate the storage volumes using the water table data measured at the three 
locations and the soil water content data measured at 15 locations (Kim et al., 2016). The region under the water 
table and the region above the water table up to the extent of the tension saturated zone (0.2 m; see Pangle et al. 
[2017]) was treated as the saturated zone and the storage volume was estimated using the soil water content data. 
The unsaturated zone storage was also estimated using the soil water content data above the saturated zone. The 
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discharge weighted storage of the unsaturated zone and the saturated zone is used for the steady state. Regarding 
the parameter describing the decline in conductivity with depth, P*, we consider two cases. First, we assume that 
there is no decline of the saturated hydraulic conductivity with depth (i.e., P → ∞) and the saturated zone SAS 
function for this case is linear as in Equation (28); Second, we use the declining hydraulic conductivity with depth 
that approximates the decline used in the previous modeling study of Pangle et al. (2017) (see Figures 10b–3). In 
the following, we briefly discuss the SAS functions obtained experimentally and those estimated using the theory 
developed in this paper. This discussion is followed by a discussion of how the steady state SAS functions can be 
adapted to account for time-variability and used to model BTCs under time-variable conditions.

The hydraulic theory-based steady state SAS functions well approximate the observed SAS functions. In the 
LEO west hillslope, the concave shape of the hydraulic theory-based steady state SAS function is attributed to 
the high Hi and the convergent topography of the hillslope (Kim, Volkmann, Bugaj, et al., 2021; Kim, Volk-
mann, et al., 2022). For miniLEO where Hi is low, the case with P → ∞ well approximates the observed SAS 
function but with a linear shape. The SAS function with P = 1.0 m reproduces the convexity of the SAS function 

Figure 9.  (a) Time series of the experiment conducted at the landscape evolutionary observatory (LEO) west hillslope. (A-1) 
The effective rainfall, discharge, and storage. Deuterium, Cl −, and Br − were used as a tracer, and the pulses that are labeled 
with those tracers are indicated in this plot. (A-2) The observed and the simulated breakthroughs. (b) The StorAge Selection 
(SAS) functions. The observed SAS functions are illustrated by the blue lines. The color saturation indicates the storage 
state from wet to dry (from less saturated to more saturated; Modified from Kim, Volkmann, et al. [2022]). Note that the 
system is in the periodic steady state, and the SAS function during one periodic cycle is shown in the figure. The dotted black 
line illustrates the steady state SAS function estimated using the mean discharge. The bold black lines in (B-1) and (B-2) 
illustrate the quasi-steady state SAS functions and the linearly scaled SAS function, respectively, at the driest and the wettest 
conditions.
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observed at the wet conditions across most of the age-ranked storage and at the dry condition for the older water 
storage.

Utilizing the steady state SAS function to reproduce the BTCs observed under the unsteady state requires an 
additional step: how to reconcile the steady state SAS function with the time-variability of the system. There are 
several ways this can be done.

1.	 �The steady state SAS function can be directly applied, assuming time-invariant flow pathways with fixed 
effective storage

2.	 �he steady state SAS function can be scaled linearly each time to match the storage. This is equivalent to a 
time-invariant fractional SAS (fSAS) function (much like van der Velde et al. [2014])

3.	 �We can estimate a SAS function at each time step using a quasi-steady state (QSS) assumption (where an 
unsteady process is approximated as a succession of steady state processes (e.g., Akylas et al., 2015; Verhoest 
& Troch, 2000). Either the discharge or storage time series can be used to determine the ‘state’ at each time 

Figure 10.  (a) Time series of the experiment conducted at miniLEO. (A-1) The effective rainfall, discharge, and storage. 
Deuterium was used as a tracer, and the pulses that are labeled with the tracer are indicated in this plot. (A-2) The observed 
and the simulated breakthrough curves. (b) The StorAge Selection (SAS) functions and the depth-dependent ks. The observed 
SAS functions are illustrated by the blue lines. In (B-1) and (B-2), the color saturation indicates the storage state from wet to 
dry (from less saturated to more saturated; Modified from Kim et al. [2016]). Note that the system is in the periodic steady 
state, and the SAS function during one periodic cycle is shown in the figure. The dotted black line illustrates the steady state 
SAS function estimated using the discharge weighted storage. The bold black lines in (B-1) and (B-2) illustrate the quasi-
steady state SAS functions for the case of P* → ∞ and P* = 1.0 m, respectively, at the driest and the wettest conditions. (B-3) 
illustrates the depth-dependent ks used in Pangle et al. (2017) and the vertical structure with P* = 1.0 m.
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step – each will likely produce different results, and the difference will be larger when the QSS is a poor 
approximation

In this study, we use the storage time series to model the QSS and generate corresponding SAS functions at 
each time. For the LEO west hillslope, we utilize the total storage to represent the state. When calculating the 
SAS function at each time step, the steady state flux is chosen so that the total storage estimated by hydraulic 
theory matched the observed total storage in LEO west. For the time-invariant fSAS model, the estimated 
steady state SAS function is linearly scaled to match the observed total storage at each time step. For miniLEO, 
total storage is the sum of the unsaturated zone storage and the saturated zone storage. The SAS function for 
each zone is scaled to match the corresponding storage; As we discussed previously, both SAS functions line-
arly depend on the corresponding storage. Thus, when we estimate the SAS functions for each zone, there is 
no difference between the time-invariant SAS function application and the QSS application. Although these 
methods should be investigated further in detail, we will briefly compare these methods and discusses their 
limitations.

The hydraulic theory-based SAS function as a time-invariant fSAS function captures the observed SAS function 
reasonably well for the LEO west hillslope (Figures 9b–2). The quasi-steady state (QSS) hydraulic theory-based 
SAS function is more similar to the observed SAS function under wetter conditions (Figures 9b–1). However, the 
QSS SAS function shows the inverse storage effect in young water (⪅ 170 mm of the age-ranked storage), which 
is not observed in this hillslope.

The simulated BTCs using those SAS functions generally follow the observed BTCs with some notable differ-
ences (Figures 9a–2). The simulated BTCs are lower than the observed BTCs during the first two cycles since 
the estimated SAS functions export a smaller fraction of young water compared to the observed SAS function. 
For the same reason, the simulated BTCs are higher than the observed BTC during the fourth and the fifth 
cycles, when the tracer-labeled water is old. The effect of the SAS function time-variability on the modeled 
BTC can best be seen during the flow recession period in the second cycle. The concentration simulated using 
the QSS SAS function decreases during the period, which can be attributed to the inverse storage effect in 
young water. The linearly-scaled SAS function simulated increasing concentration during the period because 
the tracer-labeled water gets old and moves to the older age-ranked storage where it is more preferentially 
discharged. The observed concentration remains more or less the same during the period, meaning that there 
was an insignificant change in the preference when the tracer-labeled water moves to the older age-ranked 
storage.

The QSS approach performed better for the case of miniLEO. The QSS SAS function for P → ∞ closely 
captures the upper and the lower envelope of the observed SAS functions, although details in the observed 
SAS function are not captured (Figures 10b–1). The QSS SAS function for P = 1.0 m better reproduces the 
covex part of the SAS function during wet conditions (Figures 10b–2). It also reproduces the convex part of 
the SAS function during dry conditions but not the concave part over the younger age-ranked storage. The 
observed inverse storage effect is reproduced in both cases. Both SAS functions reproduce the observed BTCs 
reasonably well (Figure 10a). As the convexity increases the discharge of younger water, the SAS function 
with P = 1.0 m estimates higher concentration during the early time and better reproduces several peaks of the 
observed BTC.

This application shows that the hydraulic theory-based SAS function framework developed here can provide 
good predictions of hillslope transport under these experimental conditions. It has also revealed several important 
limitations.

First, methods to impart time-variability to the estimated SAS function need to be further developed and tested 
in more hydrologic systems. The quasi-steady state approach shows promise in the application to miniLEO. A 
preliminary result in Kim (2018) suggests the quasi-steady state approach has the potential to reproduce time-var-
iable transport dynamics in a real-world catchment with a sharp exponential decline in the saturated hydraulic 
conductivity with depth. However, in the LEO west hillslope, the QSS approach does not reproduce the observed 
time-variability. For the cases considered, estimating the temporal variation of the water table profile and the 
unsaturated zone storage is an important factor in reproducing the time-variability of the observed SAS function. 
In miniLEO, we used the observed unsaturated zone storage and the saturated zone storage, and the hydraulic 
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theory provides a good approximation of the observed water table around the downslope boundary. The kine-
matic wave model applied for the LEO west hillslope estimates the downslope water table based on soil hydraulic 
and geomorphologic properties and the flux at each time. The model may underestimate the water table and 
overestimated the unsaturated zone storage at the dry condition, resulting in the large shift of the hillslope scale 
SAS function that leads to the inverse storage effect. This situation can potentially be improved by utilizing the 
hillslope-storage Boussinesq equation (Troch et al., 2003) and by imposing the downslope water table boundary 
condition using observed water table data around the downslope boundary. However, the consequence of assum-
ing the quasi-steady state requires further investigation.

Second, the effect of unaccounted processes and flow pathways in the model of the SAS function needs to 
be better understood. This is important both in predicting the SAS function as well as in understanding the 
hydrologic transport of a system when an observed SAS function exists. For example, a numerical study by 
Kim (2018) showed that the relative contribution of lateral flow in the unsaturated zone to the discharge is 
larger under drier conditions in the LEO west hillslope. Such a piece of knowledge can help understanding the 
difference between the hydraulic-theory based SAS function and the observed SAS function; The observed 
SAS function shows younger water transport compared to the hydraulic-theory-based SAS function under 
relatively dry conditions. This may be due to ongoing drainage from the unsaturated zone that is not accounted 
for. The concavity of the observed miniLEO SAS function over the young storage might also be due to the 
unaccounted processes such as dispersion. The theoretical framework may produce tighter predictions if such 
processes were included.

Despite those limitations, the hydraulic theory-based SAS function improves our ability to predict BTC 
(without calibration) and to explain the form of the SAS function. Where no other information about the 
shape of the SAS function exists, a reasonable first guess for the SAS function might be the uniform distri-
bution (Harman,  2015), which represents the transport mechanism referred to as ”uniform sampling” (or 
”random sampling”). The hydraulic theory-based SAS function improves on this by utilizing the hydraulic 
properties of the hydrologic system, leading to significant improvement in the BTC prediction compared 
to the use of the uniform SAS function (see Figures 9a-2 and Figures 10a-2). Furthermore, the framework 
provides a way to explain the form of the SAS function. It helps to characterize the transport dynamics in 
the LEO west hillslope based on Hi and the convergent topography. For miniLEO, the convexity of the SAS 
function might be due to the vertical structure of the soil hydraulic conductivity. It also allows us to hypoth-
esize missing components in the model by comparing the observed and the modeled BTCs or the observed 
and the estimated SAS functions.

5.  Conclusions
In this study, we developed a simple process-based model to predict the transit time distributions, the StorAge 
Selection (SAS) functions, and the internal hydro-chronological structures at the hillslope scale with steady 
infiltration. The developed theoretical framework first considers unsaturated zone and saturated zone flow and 
transport separately and combines those to estimate the hillslope scale transport closures. The framework is based 
upon several simplifications of flow and transport processes using the well-known assumptions such as: Dupu-
it-Forchheimer assumption for saturated zone flow and transport, and vertical flow and transport dominance in 
the unsaturated zone.

The current framework was developed and applied for the idealized virtual hillslopes with exponential saturated 
hydraulic conductivity declines along the depth. Analytical solutions for predicting water table, unsaturated zone 
flow, and transport, and saturated zone flow and transport are derived, in some cases, with additional assump-
tions such as the assumption of effective thickness (semi-confined) aquifer for the saturated zone transport. The 
developed theoretical framework was validated by comparing the estimated water table and the SAS functions 
to those estimated using the higher-order numerical model—ParFlow and SLIM-FAST. We also illustrated the 
usefulness of the framework by applying it to the two experimental systems with contrasting Hillslope numbers. 
The framework estimated the steady state SAS function close to the observed SAS functions and help us explain 
the difference in the SAS function observed in the systems.

The simplified framework furthermore allowed us to define several dimensionless numbers, characterizing 
flow and transport. The hybrid model for estimating water table shows that the effect of water table gradient is 
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negligible when HiX > 10, and, in that case, the model is similar to the original version of TOPMODEL. The 
SAS function for saturated zone converges to the exponential function when P* > 5 and to the linear function 
when P* → 0. The convergence to the exponential function implies that the effect of large-scale variations in 
bedrock topography on transport is limited when P* > 5, and total water storage is not important when the 
condition holds. The two regimes for the internal age structure were also identified: the ‘scaled lateral symme-
try’ for P* → 0 and the ‘water table parallel’ for P* > 5. While we looked at the age structure to understand the 
links between the internal structures and the SAS functions, those identified regimes would be useful to further 
develop simple process-based bedrock weathering models like those discussed in Harman and Kim (2019).

The framework, however, was developed for simple and idealized systems, and it built upon many assumptions 
and simplifications. The framework was developed under steady state assumption, the assumption of negligible 
local dispersion, negligible spatial (random) heterogeneity in hydraulic conductivity, Darcy-Richards paradigm, 
and so on. Adding more processes and relaxing the assumptions will be tasks for future study, and we hope the 
developed framework would serve as a basis to add such complexities. For example, one apparent and direct 
path toward such generalization would be adding the transport dynamics into the hillslope-storage Boussinesq 
model (Troch et al., 2003), which would allow one to consider diverse shapes of hillslopes. For example, Kim, 
Volkmann, et al. (2022) consider the diverse plan shape of hillslope using the hillslope-storage kinematic wave 
model of Troch et al. (2002).

Even with the limitations and the simplifications, we expect that this basic framework could be useful in 
several ways. First, we may use it to obtain a first-order guess for the forms of TTD and SAS at the hillslope 
scale. The first order guess can then be compared to the estimated SAS functions based on the tracer dataset 
to frame the hypothesis on internal transport dynamics. Note that other processes could lead to similar forms 
of the SAS functions, and so correspondence with observed tracer data supports but does not confirm the 
estimate. Nevertheless, as the hypothesis is based on the soil hydraulic properties and the geomorphologic 
structure of a system, other data can be collected to further validate (or invalidate) the theory and its assump-
tions. For example, for the cases considered in this study, the spatial pattern of water table depth, hydraulic 
conductivity profile (that is either measured or inferred using flow data), or depth-dependent water age would 
be useful to validate the first order hypothesis by comparing those to the spatial pattern of the estimated water 
table depth (e.g., see Figure 5) and the internal age structure (e.g., see Figure 3 or Figure 7). In addition, the 
first order guess could serve as a functional form of the SAS function in the usual calibration procedure. The 
physically meaningful parameters in the form can then be calibrated using tracer datasets when those values 
are not available, and such application would yield first order guess on those values. This application is possi-
ble since the steady state SAS functions can be used directly in unsteady-state modeling, unlike steady state 
TTDs which fail to keep the mass balance.

Second, the analytical solutions can be generalized to unsteady state solutions directly using the quasi-steady 
state assumption (e.g., Verhoest & Troch, 2000; Akylas et al., 2015), which further allows us to do the previ-
ously described applications considering the internal flow pathway variability. However, as we discussed in 
Section 4, its applicability and methods of application (e.g., imposing an observed water table data as a bound-
ary condition to better simulate the unsaturated zone storage that does not contribute to discharge) need to be 
further investigated. Furthermore, the presented analytical solutions for the TTDs are a generalization of the 
widely applied ground water transport model of Vogel (1966) and Małoszewski and Zuber (1982), that has 
been applied widely for tracer-based water age estimation, such as tritium dating (e.g., Ma et al., 2019), and 
those TTDs (or the SAS functions) can be applied to model the transport considering the exponential decline. 
We furthermore expect the derived dimensionless numbers to be useful in classifying the hillslope scale water 
flow and transport dynamics.

Appendix A:  Generalized TOPMODEL Prediction of the Water Table Depth
Originally, TOPMODEL estimates the depth to the water table D based on the assumption that the hydraulic 
gradient can be assumed to be parallel to the soil surface slope (Beven & Kirkby, 1979). This assumption can be 
easily relaxed by replacing tan β by the water table gradient 𝐴𝐴

𝑑𝑑(𝐻𝐻(𝑥𝑥)−𝐷𝐷(𝑥𝑥))

𝑑𝑑𝑑𝑑
 as:

𝑑𝑑(𝐻𝐻(𝑥𝑥) −𝐷𝐷(𝑥𝑥))

𝑑𝑑𝑑𝑑
𝑘𝑘0

∫

𝐻𝐻(𝑥𝑥)−𝐷𝐷(𝑥𝑥)

0

𝑒𝑒−(𝐻𝐻(𝑥𝑥)−𝑧𝑧)∕𝑃𝑃 𝑑𝑑𝑑𝑑 = 𝐽𝐽𝐽𝐽� (A1)



Water Resources Research

KIM AND HARMAN

10.1029/2019WR025917

28 of 33

or in its derivative form as:

𝑑𝑑𝑑𝑑 (𝑥𝑥)

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
+ 𝑌𝑌 (𝑥𝑥)

𝑑𝑑2ℎ(𝑥𝑥)

𝑑𝑑𝑑𝑑2
+

𝐽𝐽

𝑘𝑘0𝑃𝑃
= 0� (A2)

where Y(x) = e −H(x) / P(e h(x) / P − 1).

As an analogy to the analysis done for Boussinesq aquifer with sloping bedrock, we may define a type of Hillslope 
(peclet) number and use it as a measure of how the model is close to the original TOPMODEL since TOPMODEL 
works when advection (of water energy) dominates.

To do so, we may linearize the differentiated governing equation. The governing Equation  A2 can be line-
arized if we remove h(x) dependency of Y(x). Let us do this by assuming h(x) in Y(x) as Hl which gives: 

𝐴𝐴 𝐴𝐴 (𝑥𝑥) = 𝑒𝑒−𝐻𝐻(𝑥𝑥)∕𝑃𝑃
(
𝑒𝑒𝐻𝐻𝑙𝑙∕𝑃𝑃 − 1

)
 . Then the exponential Hillslope number HiX can be written as:

Hi𝑋𝑋 =
𝐿𝐿

2𝑌𝑌 (𝑥𝑥)

𝑑𝑑𝑑𝑑 (𝑥𝑥)

𝑑𝑑𝑑𝑑
=

𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿

2𝑃𝑃
� (A3)

The exponential Hillslope number HiX has a very similar functional form to the Hillslope number Hi which 
is 𝐴𝐴

𝐿𝐿tan𝜂𝜂

2𝐻̄𝐻
 , where 𝐻̄𝐻 is the effective water table height and η is the slope of the impermeable layer. In HiX, 

P is the depth where the hydraulic conductivity is 0.37 (= e −1) of its surface value (or where 63% of trans-
missivity at saturation is above the depth) and replacing the effective depth 𝐻̄𝐻 in the original Hillslope  
number Hi.

The model (A1) is a non-linear first order differential equation that can be solved with a boundary condition at 
the most downslope at x = L. The upslope boundary condition is dh/dx = 0, since q = 0 at x = 0. In terms of 
the downslope boundary condition, we considered two cases: the Neumann boundary condition and Dirichlet 
condition.

The solution for the Dirichlet boundary condition is presented in Equation (11). For a Neumann boundary condi-
tion 𝐴𝐴

𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
= 𝜖𝜖 , the solution for D is the same, but with 𝐴𝐴 𝑅̂𝑅𝐿𝐿 defined as:

𝑅̂𝑅𝐿𝐿 =

ln

(
1 +

2Hi𝑋𝑋

1+𝜖𝜖
𝑀𝑀𝑀𝑀2Hi𝑋𝑋𝐻̂𝐻𝐿𝐿

)
− 1

2Hi𝑋𝑋
+𝑀𝑀𝑀𝑀2Hi𝑋𝑋𝐻̂𝐻𝐿𝐿

(
1

2Hi𝑋𝑋
+ 1 −

1

1 + 𝜖𝜖

)
� (A4)

Using the same symbols, the TOPMODEL depth to water table can be re-written as: 

𝐴𝐴 𝐷̂𝐷 (𝑥̂𝑥) = 𝑃𝑃 ln

(
1∕

(
𝑒𝑒−𝐻̂𝐻(𝑥̂𝑥)∕𝑃𝑃 +𝑀𝑀 𝑀𝑀𝑀∕𝑃𝑃

))
 , and the associated water table gradient 𝐴𝐴 ℎ̂ (𝑥̂𝑥) (𝐴𝐴 = 𝐻̂𝐻 (𝑥̂𝑥) − 𝐷̂𝐷 (𝑥̂𝑥) ) is:

𝑑𝑑ℎ̂

𝑑𝑑 𝑑𝑑𝑑
=

1 +𝑀𝑀𝑀𝑀2Hi𝑋𝑋𝐻̂𝐻(𝑥̂𝑥)

1 + 2Hi𝑋𝑋𝑀𝑀𝑀𝑀2Hi𝑋𝑋𝐻̂𝐻(𝑥̂𝑥)𝑥̂𝑥
− 1� (A5)

In TOPMODEL, the estimated water table gradient is actually different from head gradient driving flow 
(i.e., the topographic gradient), especially when 𝐴𝐴 𝐴𝐴𝐴 is small. (Note that in the dimensionless units the gradient 
of surface is −1). We examined the difference between TOPMODEL and the hybrid model by plotting the 
predicted values of 𝐴𝐴 ℎ̂ (𝑥̂𝑥) for the case of ϵ = 0 which sets the downslope boundary condition identical to the 
hydraulic gradient in TOPMODEL. The water table profiles are functions of M, HiX and HL. We examined the 
effect of HiX at different M ∈ {0.01, 0.05, 0.1}. 𝐴𝐴 𝐻̂𝐻𝐿𝐿 has only a weak control, determining only the elevation of 
the topography above the water table and not the form of the water table itself, so 𝐴𝐴 𝐻̂𝐻𝐿𝐿 was chosen in each case 
such that 𝐴𝐴 𝐻̂𝐻𝐿𝐿 = 2ℎ̂(1) —that is, the water table intersects the downslope boundary halfway up the subsurface 
domain). Figure A1 shows the results. Overall, Equation (11) is close to that of TOPMODEL as HiX increases. 
However, the new model does not converge to the original TOPMODEL, especially at the upslope, since 
TOPMODEL requires D → ∞ at x = 0.
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Figure A1.  Differences between the hybrid model and TOPMODEL for the fixed gradient boundary condition. (top) The difference in the hydraulic head, (middle) the 
difference in water table gradient, (bottom) some examples of water table prediction.

Notation
t	 Time
x	 x = (x, y, z) is Cartesian spatial coordinate/or Lagrangian coordinate of a particle n when it used 

as x(⋅, n)
z′	 Depth from the soil surface; z′ = H − z
x0(Ts)	 The x-directional injection location of a water particle that has the saturated zone transit time Ts.
zd	 zd(x′, x0) is the vertical location of a particle at x′ which can be determined by its injection location 

x0.
D	 Depth to water table
θ	 Water content
θs	 Saturated water content
θr	 Residual water content
k	 Hydraulic conductivity
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ks	 Saturated hydraulic conductivity
k0	 Saturated hydraulic conductivity at the soil surface (z = H or D = 0)
kr	 Relative hydraulic conductivity as a function of ψ.
ψ	 suction head that is negative when soil is unsaturated
ψA	 Van Genuchten soil water retention curve parameter
n	 Van Genuchten soil water retention curve parameter
m	 Van Genuchten soil water retention curve parameter; m = 1 − 1/n.
V	 Velocity vector
Vx	 The x-directional component of water particle velocity
H	 Soil surface profile of hillslopes
He	 Thickness of the effective thickness (or semi-confined) aquifer
HL	 Soil thickness at the downslope boundary (x = L)
L	 Hillslope length
tan β	 Topographic slope
P	 The length scale of the exponential decline of saturated hydraulic conductivity with depth
h	 Hydraulic head
hL	 Hydraulic head at the downslope boundary
ST	 Age-ranked storage
ΩQ	 StorAge Selection function
ΩQ,u	 StorAge Selection function for unsaturated zone

𝐴𝐴 ⃖⃖⃖⃖⃖𝑃𝑃𝑄𝑄  	 Time-variable backward (cumulative) transit time distribution
J	 Infiltration rate or recharge rate; those are the same under steady state
Q	 Outflux rate and Q = J in this study because of the steady state assumption
PQ	 Cumulative transit time distribution
PQ,s	 Cumulative transit time distribution for saturated zone
PQ,u	 Cumulative transit time distribution for unsaturated zone
PQ,u,s(Tu, Ts)	 The joint distribution of Tu and Ts.
pQ	 Transit time distribution
A	 Age
LE	 Life expectancy
T	 Transit time
Tu	 Transit time in the unsaturated zone
Ts	 Transit time in the saturated zone
Su	 Unsaturated zone storage
ϕ	 Drainable porosity
HiX	 Exponential Hillslope number
Hiu	 Unsaturated zone Hillslope number with the exponential saturated hydraulic conductivity decline 

with depth
Dau	 Unsaturated zone dimensionless number
P*	 Saturated zone transport number
KH	 Transmissivity

Data Availability Statement
The LEO West hillslope data and the miniLEO data are available in Hydroshare; See Kim, Volkmann, Wang, 
et al. (2021) and Kim, Pangle, et al. (2022).
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