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We implement the numerical unified transform
method to solve the nonlinear Schrédinger equation
on the half-line. For the so-called linearizable
boundary conditions, the method solves the half-
line problems with comparable complexity as the
numerical inverse scattering transform solves whole-
line problems. In particular, the method computes the
solution at any x and ¢ without spatial discretization
or time stepping. Contour deformations based on the
method of nonlinear steepest descent are used so that
the method’s computational cost does not increase
for large x,t and the method is more accurate as x, ¢
increase. Our ideas also apply to some cases where the
boundary conditions are not linearizable.

1. Introduction

In 1997, Fokas developed the unified transform method
(UTM) for nonlinear integrable partial differential
equations (PDEs) on the half-line [1]. The UTM is
a generalization of the well-known inverse scattering
transform (IST) [2] to initial-boundary-value problems
(IBVPs) and has been applied to many integrable
equations [3-6]. Figure 1 illustrates the schematics of the
IST and the UTM.

In 2012, Trogdon et al. developed the numerical
inverse scattering transform (NIST) for the initial-
value problems (IVPs) of the Korteweg—de Vries (KdV)
equation [7] and the modified KdV equation [7]. The
NIST has since been successfully applied to the IVPs
of other integrable systems such as the focusing and
defocusing nonlinear Schrédinger (NLS) equations [8],
the Toda lattice [9] and the sine-Gordon equation [10].

© 2021 The Author(s) Published by the Royal Society. Al rights reserved.
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Figure 1. A comparison of the schematics of the IST and the UTM. Panel (a) is the diagram of the solution process for the IST for
solving an integrable PDE on the whole line. Panel (b) is the diagram of the solution process of the UTM for solving a linear or
nonlinearintegrable PDE on the half-line. The inverse problemsin both the IST and the UTM are formulated as Riemann—Hilbert
problems. Dashed lines denote evolution via the integrable PDEs in question. Solid lines denote the steps of the IST and the UTM
that can be accomplished by solving a linear problem.

As a hybrid analytical-numerical method based on the IST, the NIST differs in many aspects
from traditional numerical PDE methods. It has the following features:

(i) The method gives the solution at given (x, t) without time-stepping or spatial discretization.
(ii) The method is spectrally accurate in the sense that the error at fixed (x,t), ENutm(N, x, 1) =
O(1/N) for any integer /, where N is the number of arithmetic operations.
(iii) The method is uniformly accurate in the sense that the computational cost to compute the
solution at a point (x, t) with given accuracy remains bounded for large x, f.
(iv) The method only requires some decay and regularity assumptions on the initial and
boundary data. No closed-form expressions for the scattering data are required.
(v) The method does not artificially truncate infinite physical domains.
(vi) The solution steps require only the solution of linear problems.

Feature 3, which concerns uniform accuracy, comes from the use of the method of nonlinear
steepest descent for Riemann—-Hilbert problems (RHPs) [11]. As shown in figure 1, both the
IST and the UTM use RHPs for the inverse transforms. It is natural to ask if it is possible
to numerically implement the UTM for IBVPs with the same features. Before we discuss the
nonlinear case, it is worth pointing out that although the UTM was originally developed for
nonlinear integrable PDEs, it offers a way to analyse IBVPs for linear PDEs, giving the solution
in terms of contour integrals in the complex plane [12,13]. Thus a clear understanding of the
differences and difficulties of the UTM for linear problems is necessary for the study of nonlinear
problems. For linear evolution equations, there have been numerical methods developed based on
the UTM and applied to the heat equation g; = gxy on the half-line [14,15] and on finite intervals
[16], to the Stokes equations g; & gxxx =0 on the half-line [14] and on finite intervals [17], and
to the advection—diffusion equation g; + gx =gxx on the half-line [18]. These applications are
implemented with features 1, 2, 5 and 6, but they generally do not possess features 3, 4. Using
proper contour deformations and techniques for oscillatory integrals, we recently implemented
the numerical unified transform method (NUTM) for the heat equation, the linear Schrédinger
(LS) equation and the linear KdV equation with advection on the half-line with features 1-6 [19].

A major difference in the UTM for nonlinear integrable IBVPs is that the determination of
the unknown boundary data, or transforms of these data, from the given initial and boundary
conditions is difficult. For general boundary conditions, the unknown boundary data satisfy
a system of nonlinear Volterra integral equations [20]. We believe that this complication is
unavoidable when solving problems with general boundary conditions but we do not consider
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this further here. In this paper, we show that for linearizable boundary conditions (see §3 for the
definition) the NUTM applies to the NLS equation on the half-line in the same way as for the
whole-line problem with all features 1-6. This is indeed expected as these cases can be treated by
appropriate spatial reflection. But importantly, in other cases, if the spectral functions are known,
the same procedure applies to compute some solutions in the nonlinearizable case.

This paper is organized as follows. Section 2 gives a brief overview of the UTM for the
NLS equation on the half-line. In §3, we discuss the NUTM applied to the NLS equation with
linearizable boundary conditions. In §4, we consider the solutions with prescribed spectral
functions. The corresponding boundary conditions are not necessarily linearizable. In §5, we
discuss the asymptotics of the spectral functions to improve accuracy for small x, ¢.

2. The unified transform method for the nonlinear Schrodinger equation on the
half-line

In this section, we describe the UTM applied to the NLS equation on the half-line. A complete
discussion is given in [3,13].

(a) The Lax pair

The NLS equation
iq; + qux + 20g1%g =0, A=+£1, 2.1)
is integrable with the associated Lax pair
My + iklo3, u] = Q(x, Hu (2.20)
and .
pt +2ik%[o3, 1] = Q(x, £, k), (2.2b)

where 03 =diag(1, —1), [A,B] = AB — BA and

0 , ~ . .
Q(x,t)=[_kq(x,t) e t)}, Q1,0 = 24Q — iQu03 + g

Here 1 = +1 gives the focusing/defocusing NLS equation (A in [3] is —A here). The compatibility
of (2.2a) and (2.2b), juxt = uix, requires q(x, t) satisfying (2.1). Using the Lax pair (2.24) and (2.2b),
we define

W, t,2) = d(e® 205 1y (x, 1, ) = 022035 (Quu(x, 1, K) dx + Quulx, £, k) i), 2.3)
where
03A=[03,A], ePA=¢e%Ae .

Requiring that W is closed implies that g(x, f) satisfies (2.1). An integral equation for a solution of
the Lax pair (2.2a), (2.2b) is obtained by integrating the differential form

(xh)
uix, tk)y=I1+ J
(x*ft*)

where I is the 2 x 2 identity matrix, x,t € (0,00) and x., t« € [0, oc]. Using particular choices of
(x4, t+), particular solutions are constructed and used to define the so-called spectral functions.

Tl 205 W (e 7 k), 2.4)

(b) The spectral functions
Assume that g(x, t) solves (2.1) for x, t > 0 with the initial values and the boundary values
q(x/ 0) = ‘70(?()/ x>0, ‘7(0/ t) =g0(i’), t>0, ‘Jx(Oz t) =81 (t)/ t>0.

In general, we do not know both boundary functions go(t) and g1 (f). The NLS equation on the half-
line is well posed with either go(f) or g1(t) specified [21-23]. We further assume that the initial
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condition gy is in Sx(R™), the Schwartz class functions restricted to the positive half-line with
exponential decay rate o > 0:

xeR*

Se(RT) = :fe SMR)|g+, I’ > >0: sup e*¥|f(x)| <oo}.

Following [3], in this section, the boundary functions gp and g; are assumed to be smooth
functions on [0, T] and when T = 00, gg and g1 are assumed to be in S(R)|r+ which is sufficient to
define the spectral functions. For the numerical examples we consider, this sufficient condition
may not be satisfied. Different assumptions on the boundary values are used for problems
discussed in §§3-5 so long as the spectral functions can be computed.

Using the conventions in [3], 11, u2 and p3 are defined using (x, t«) = (0, T), (x«, t«) = (0,0) and
(x4, ts) = (00, 1), respectively. For T < oo the spectral functions s(k) and S(k, T) are defined by

s(k) = 13(0,0,k),  S(k, T) =[e*FT% 150, T, )] .

With this choice, s(k) depends only on the initial values g9 and S(k,T) depends only on the
boundary values gg and g1 on the interval [0, T]. There is an alternative definition S(k, oc) =
11(0,0, k), which is more convenient when T = co.

(c) Properties of the spectral functions

Using the symmetries of Q and O, the spectral functions have the form

ak) bk AKT) B(kT)
s(k) = o and Sk, T)= .
_3b(®)  a(k)

—AB(k, T) A(k,T)
Moreover, since Q and Q are traceless,
dets(k)=det S(k, T)=1,

which implies that o o
a(k)a(k) + rb(k)b(k) =1, keR (2.5)

and

A(k, T)A(k, T) + AB(k, T)B(k,T)=1, keC (ke RUIR if T = 00). (2.6)

It is convenient to characterize the spectral functions a(k) = ¢ (0, k) and b(k) = ¢1(0, k) using linear
Volterra integral equations:

105, K) = —j e 2K Vg0 (1)o(y, k) dy (2.70)

X

and

brx, k) =1 xj GoW)é1 (k) dy. (2.7b)

If g0 € SR)|r+, a(k) and b(k) are analytic for Im(k) > 0. With the additional assumption on
exponential decay qp€ Sy(R"), a(k) and b(k) are analytic in a larger region that contains
Im(k) > —a/2.

For T < oo, the spectral functions A(k, T) = ®»(T, k) and —e_4ik2TB(k, T) = ®1(T, k) are defined
using a different set of linear Volterra integral equations:

t - ~ ~
1K) = L e DO 01 + Op)(r, ) dr (2.80)

and

t ~ ~
Oo(t, k) =1+ L(Qz1¢1 + 0n®2)(z, k) dr. (2.80)

Therefore A(k, T) and B(k, T) are entire and bounded in Im(k?) > 0.
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For T = oo, the spectral functions A(k, o) = ®,(0, k) and B(k, 0o) = ®1(0, k) are defined by yet
another set of linear Volterra integral equations:

- w . ~ —~ o~ o~
B1(t,K) = — L e DO By + Opdy)(r, k) dr (2.90)

and

Gat ) =1~ fo(Qzlél + Onda)(r k) dr. (2.9)

Therefore A(k, o) and B(k, o0) are analytic for Im(k?) > 0 and bounded for Im(k?) > 0.

Since A(k, T), B(k, T) are computed from overdetermined boundary data © depends on both
g and gy), the spectral functions a(k), b(k), A(k, T), and B(k, T) are not independent. This is clear
because the Dirichlet to Neumann map depends on the initial data. The integral of the 1-form (2.3)
along the boundary of the domain (x, t) € (0, c0) x (0, T) must vanish and we arrive at the global
relation connecting the information from the initial value and the boundary values in terms of the
spectral data,

a(d)B(k, T) — b(H)A(k, T) = e*¥Tct(k, T), Im(k) >0, (2.10)

where ¢t (k, T) is:

— an undetermined function analytic for Im(k) > 0,
— continuous and bounded for Im(k) > 0, and
— ct(k, T) = O(1/k), as k — oo for Im(k) > 0.

If T = oo, the global relation reduces to
a(k)B(k, 00) — b(k)A(k,00) =0, Im(k) >0, Re(k) > 0. (2.11)
For details of the analysis of the global relation, the reader is referred to [3,4,24].

Definition (an admissible set of functions [3]). Given gy € S(R™), the pair {go, g1} of smooth
functions on [0, T] or [0, co) (if T = 00) is an admissible set of functions with respect to qg if the
following conditions are satisfied:

(i) The associated spectral functions {a, b, A, B} satisfy the global relation (2.10) for T < oo or
(2.11) for T = oo.

(ii) The functions qo, go and g1 are compatible at x =t =0, i.e. go(0) = 40(0), g1(0) = g,(0). More
equation-dependent conditions may be imposed if more regularity of the solution g(x, t)
is desired.

Remark 2.1. The spectral functions s(k), S(k, T) are nonlinear transforms of the corresponding

initial and boundary values. For the LS equation (when 1 = 0), u3(x, 0, k) = (/.31 /3% ) satisfies (2.2a),

R A 0 p2)_ (0 9&x0) (en p2 / (2.12)
M2 22 —u21 0 0 0 M21 22
with p3(00,0,k) = 1. Solving (2.12) yields

ik [ oike
1o—e e q@,O)ds), o)

X

,U,3(X, 0, k) =
0 1

and the spectral function s(k) is given by

[ o2k
s(k) = 3(0,0,k) = (1 Jo ¢ q(E,O)dg)' (2.14)
0 1
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Therefore b(k) = — fgo eZkE (¢, 0) d is the Fourier transform of the initial condition on the half-line
and a(k) = 1. On the other hand, (0, , k) = (.3} /3% ) satisfies (2.2b),

M) a0 0 2\ _ (0 2kq(0,1) +ig«(0, D)) (11 pa2 , (2.15)
M1 K22, —u21 0 0 0 M21 22
with 12(0,0,k) = I. Solving (2.15) yields
T
—4ik?T 4ik?n :
I'LZ(O/ T, k) — 1 € JO € (2kq(0/ 77) + qu(ol 77)) d’) , (216)
0 1
and the spectral function S(k, T) is given by
T
N _ 4ik*n ;
Sk, T) = [821k2Ta3 1200, T, k)]fl — (1 JO e (qu(oz n + qu(oz ) d')) ] (2.17)
0 1

Therefore B(k, T) = — fg 4k (2kq(0, 1) +ig(0, 1)) dn is a sum of Fourier-type transforms of the
boundary data on the interval [0, T] and A(k, T) = 1. The global relation (2.10) becomes

[ T » T e
| e, 0 (1| e n)n+ 2k | g0, man
=R Tt (k, T), Im(k) >0,

where

o0 .
kT = J 2k (s, T) .

0

This is exactly the same as the global relation in [12] which is obtained using Green’s theorem.

Remark 2.2 (the nonlinear Volterra integral equation). In [4], it is shown that for the Dirichlet

problem, the unknown Neumann value is given by

@(t, —k)dk,

. —4ik2t 10
2kt K) +igo®) g J 250x2(t,K) 41 J dke= 4t p(—k)
aDs3 D3

i T 71 a(=k)

g1ty = L

D3

for 0 <t <T where 9Dz is the boundary of the third quadrant in the complex plane with
counterclockwise orientation and

Kt K) = @it k) — &i(t,~K), j=1,2,0<t<T, keC.

This formula was already given in [24] with slightly different notation. For convenience, suppose
that a(k) does not have zeros in the upper half-plane. Plugging the equation of g1(t) back into (2.8a)
and (2.8b) yields a nonlinear Volterra integral equation for @1(t, k) and ®»(t, k) that depend only
on known data. However, since ®;(t, k) requires all the values of ®@1(s,k),0 <s < t,k € dD3, this is
a fundamentally nonlinear problem that depends on two continuous variables. As discussed in
§4a, even if one can solve the nonlinear Volterra integral equation for the unknown g1(f), the slow
decay of g1(t) will affect the overall accuracy when computing the solution to the NLS equation.
Perturbative methods for the nonlinear Volterra integral equation have been studied in [4,25]
using related equations.

(d) The Riemann—Hilbert problem

With the spectral functions a(k), b(k) and A(k, T), B(k, T) defined in the previous sections, we obtain
q(x, t) by solving the following RHP.

Theorem (Fokas et al. [3]). Suppose that qo and an admissible set of functions {go, g1} with respect to
qo are given. The spectral functions a(k), b(k) are defined via (2.7a) and (2.7b), A(k, T), B(k, T) are defined
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via (2.8a) and (2.8D) for T < oo and A(k, 00), B(k, 0o) are defined via (2.9a) and (2.9b) for T = co. Assume
that

— If » =1, a(k) has at most n simple zeros {p}? };'1:1 in region CT\iR. Let ny be the number of zeros in
the open first quadrant argp}Z €(0,m/2),j=1,...,n1, and therefore arg p}l e(@/2,m),j=n1+
1,...,n

— Ifx=1, forboth T < oo and T = oo, then

d(k, T) =a(k)Ak, T) + Ab(k)B(k, T), argkeln/2,7], (2.18)

has at most ny simple zeros in the second quadrant {p?};?zl, where argp}i €(n/2,m),j=1,...,na.
For both T < oo and T = oo, the following 2 x 2 matrix RHP for ®(k; x, t) has a unique solution:

(i) @(k;x, t) is sectionally meromorphic for k € C\{R U iR} (sectionally analytic if » = —1).
(i) ®(k; x, t) has continuous boundary values' on the cross k € R U iR with orientation as shown in
figure 2, and

Dy (k;x, t) = D (k; x, )] (k; x, 1). (2.19)

The jump matrix [(k; x, t) is given by

Ja(k;x,t), argk=0,
. —
Jox, b= Jik;x,t), argk=7%, (2.20)
Lk x,t), argk=m,
Ik x,t), argk=73F,
where
I 1 0 1 —ar(k, T)e 200
Ji(k; x, t) = —rk, T)62i9(k;x,t) 1i| , Jakx t)= |:0 ( ie :| ’
(14 2y Ry @)y (ke 200D
Jalksx, )= __ ,
L )\y(k) eZzO(k;x,t) 1
Jalk; x,8) = 1 (k; x, )] (k; x, )]3(K; x, £)
I 1 ~r (R T)+ y (ke 2006
|~y ®) + Ik, THEOED 14k, T) + y(R)(y () + I(k,T)
and
0(k; x,t) =kx 4+ 2K*t, keC, (2.21)
y(k)= &f) keR (2.22)
a(k)
Bk, T) b
and r'k,T)= _ai(k) ATy argke [2,71]. (2.23)

IFor k € C where C is an oriented contour, define ®. (k; x, t) to be the limit of ®(K; x,t) ask’ — k non-tangentially from the right
(+) or the left (—).
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Figure 2. The jump contour of RHPs (2.19) and (3.8). The contour consists of the real and imaginary axes.

3

(iii) If A =1, the first column of ®(k; x, t) has simple poles at {p}’};f;l and {p}i};zl. The second column

of ®@(k; x,t) has simple poles at {ﬁ};fél and {E};Z 1+ The associated residues satisfy the relations:

Resk:p/r_« @ (k;x,t)= khnpl“ @ (k; x, t)

]

Res,_z®(k;x,t) = lim &(k;x, 1)

-7

Res,_ 4 ®(k;x,t) = lim ®(k;x,t)
=Fi k~>p;.1

Resk_l?cb(k; x,t)= lim &(k;x,t)
=P

k— p;.’

(iv) ®(k;x,t) =1+ O(1/k) as k — oo.

Then (as is shown in [3])

solves the NLS equation with

0 0
1 2i0( 1)
———" 0]
@' (p)b(py)
—A 20007 x)
a(p)b(py) ,
0 0
0 0
oA
_ )»B(p/-) eZié)(p‘f;x,t) ol’
a(p)d'(pf)
oA _
;) o200 x0)
a(pHd (pf) /
0 0

q(x, t) =2i lim (k@ (k; x, £))12
k— o0

j=1,...

i=1,..

j=1,..

i=1,..

gx(x,t) = lim (402D (k; x, )12 + 2ig(x, 1)k (k; x, P))2)

and

q(x,0) = go(x),

q(0,t)=go(t) and qx(0,t) =go(t).

SN, (2.24a)

Lm,  (2.24b)

., o, (2.24¢)

na. (2.24d)

Figure 3 shows a detailed diagram of the UTM applied to nonlinear integrable PDEs. Steps 1
and 1’ denote the invertible transforms between the initial condition g(x, 0) = go(x) and the spectral
functions {a(k), b(k)}. Steps 2 and 2’ denote the invertible transforms between the pair of boundary
functions {g(0,t) =go(t), x(0, t) =g1(t)} and the spectral functions {A(k, T), B(k, T)} for T < oo or
T =o0. Step 3 denotes obtaining {A(k, T), B(k, T)} within a special class of boundary conditions
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boundary functions .
initial condition ©, 1) ©.f) —-——- )solutlon
4(x, 0) T2 25 g,
1 | 2 2’
5
the global relation

spectral functions. spectral functions
a(k), b(k) for linearizable BCs A(k), B(k)
3

L T RHP

Figure 3. Adiagram describing the use of the UTM to solve integrable PDEs on the half-line. The path along 1, 4, 5 is the same as
the IST for IVPs. In this paper, we focus on three paths: (i) the path along 1-5 for problems with linearizable boundary conditions,
(ii) the path along 1,2, 4, 5 for problems with overdetermined but compatible initial and houndary values, and (iii) the path along
4, 5 for problems with specified spectral functions.

known as linearizable boundary conditions as discussed in §3. Step 4 denotes the construction of
the associated RHP using the spectral functions incorporating time dependence. Step 5 denotes
the inverse transform to get the solution g(x, t) by solving the RHP. In the following sections, we
show examples of the solutions that can be efficiently computed with different types of given
data. In §3, we give an example with linearizable boundary conditions following steps 1-5. In
§4a, we show an example with an admissible set of functions gg, g1 € Sg(R) with respect to g €
Sy (RT). This follows steps 1, 2,4, 5 in figure 3. In §4b, we show an example with specified spectral
functions that follows steps 4, 5 in figure 3, which can also be understood as an application of the
dressing method to construct solutions to the NLS equation [13].

Remark 2.3. The defocusing NLS equation on the half-line does not have soliton solutions
[26]. More precisely, a(k) does not have zeros for Im(k) > 0 and d(k, T) does not have zeros for
arg(k) € [7/2, 7]

Remark 2.4. When t =0, the RHP (2.19) reduces to a RHP that depends only on a(k) and b(k) by
deforming J; and J3 to the negative real line. The global relation is not needed in the deformation.
When x =0, the RHP (2.19) reduces to an RHP that depends only on A(k, T) and B(k, T) on the
cross k € R U iR but the reduction requires the use of the global relation as well as (2.6).

(e) Algorithms for computing the spectral data

The goal of the numerical computation for the forward transform is to obtain: (i) the evaluation of
the spectral functions along the (deformed) jump contour and (ii) in the focusing case, the zeros
of a(k) and d(k, T) as well as the related residues.

(i) Continuous spectral data

For convenience, we describe the algorithm for the computation of the spectral data in the case
T =o00. Assuming gp and an admissible set of functions go and g; are given, we compute the
spectral functions {a(k), b(k)} using the differential equation form of (2.7a) and (2.7b). We compute
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A(k, 00), B(k, o0) using the differential equation form of (2.92) and (2.9b). Both sets of equations are

in the form
y1(s, k) y1(s, k) y1(s k)
+ My (k = Ms(s, k .
(yz(s,k) . 16) ya(s, k) +1 2(5/k) ya(s, k) +1
They are solved by a Chebyshev collocation method [27] on [0,L] with vanishing boundary

condition at y1(L, k) = y2(L, k) = 0 for sufficiently large L. A detailed discussion of the Chebyshev
collocation method solving this type of the equations can be found in [7,28].

(ii) Discrete spectral data

In [26], it is shown that the zeros of a(k) in the upper half-plane are the L?(R, C2*?) eigenvalues of
the operator

L =io30y — io3Q,,

where
q(x,0), x>0,

0 e
and = _ .
0, x<0, Q |:—)»qg 0}

The eigenvalues are obtained using the Floquet-Fourier-Hill method [29]. Though the Floquet—
Fourier-Hill method does not achieve spectral accuracy due to the possible discontinuity of the
potential g.(x) at x =0, it provides initial guesses for Newton’s method. The residue conditions
require evaluating c}z =1/a'( p}’)b( p;?) at the zeros {p;?}g” where a/( p}l) is computed using Cauchy’s
integral formula.

Similarly, it is shown in [26] that the zeros of d(k, T) satisfy the same eigenvalue problem except
that

Je(x) =

q(x, T), x>0,

X)=
e(x) 0, x <0.

The potential g, depends on the unknown solution g(x, T), and pure root-finding algorithms are

needed to find zeros of d(k, T). Once the zeros {p?};lz are obtained, c;.i = —(AB(E) Ja( p?)d’ (p;l)) are
computed using Cauchy’s integral formula.

3. The nonlinear Schrodinger equation with linearizable boundary conditions

(a) Linearizable boundary conditions

Obtaining A(k,T) and B(k,T) is non-trivial since they are defined in terms of the Dirichlet
and Neumann data, both of which cannot be arbitrarily specified, for a well-posed problem
[21-23,30]. In the special case of linearizable boundary conditions, A(k, T) and B(k,T) can be
obtained by solving algebraic equations involving a(k) and b(k) without solving (2.2b) (recall that
(2.2b) requires boundary functions go(t) and g1(t)). The idea is to use the global relation (2.10)
to find extra identities using the symmetries of the dispersion relation similar to how the UTM
is applied to linear PDEs [12]. For the NLS equation, we want to determine a relation between
A(k,T),B(k,T) and A(—k,T),B(—k, T). As shown in [3], for the homogeneous Robin boundary
condition with a real parameter p > 0 (this choice of sign is discussed below in remark 3.2)

there is the relation
2k +1i
Ak, T)=A(=k,T), Bk, T)=— " + 1’0 B(—k,T), keC. (3.2)
—ip

The results for the homogeneous Dirichlet boundary condition and the homogeneous Neumann
boundary condition are obtained by taking p — oo and p — 0, respectively. For instance, for the
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homogeneous Dirichlet boundary condition, (3.2) becomes
A(k, T)=A(=k,T) and B(k,T)=B(—k,T), keC. (3.3)

With this, we can solve for A(k) and B(k) in terms of a(k) and b(k) explicitly. Indeed, if T = oo, the
global relation (2.11) gives the following equation, valid in the first quadrant:

a(k)B(k, 00) — b(K)A(k,00) =0, argk e [o, %] . (3.4)

Letting k — —k in the expression for d(k, co) in (2.18) and using (3.3), we find a second equation,
also valid in the first quadrant:

Ak, 00)a(—k) + AB(k, 00)b(—k) = d(—k, 00), argke [o, %} . (3.5)
Solving both (3.4) and (3.5) for A(k, oo) and B(k, 0o) yields

_a(k)d(—k, 00) _ b(k)d(—k, o0)

Alk 00) = =1 and Bk o) = = =, argke [o, %] , (3.6)
where
Ag(k) = a(k)a(—k) + Ab(k)b(—k), argke[0,7]. (3.7)

There is no need to solve for d(k, 0o) in terms of a(k) and b(k) since the jump condition in (2.19)
depends only on B(k, o), A(k, 00) through the ratio B(k, c0)/A(k, 00).

Example 3.1 (the RHP associated with homogeneous Dirichlet boundary conditions). With
a homogeneous Dirichlet boundary condition, we obtain an RHP involving only a(k) and b(k),
which are determined solely by the initial condition. We seek a 2 x 2 matrix-valued function
@ (k; x, t) that satisfies

D4 (k;x,t) =D (k; x, )] (k; x, 1), (3.8)

with the jump functions defined in (2.20) on the cross k € R UiR, shown in figure 2. The only
difference is that (2.23) becomes

—Ab(—k)

0= a0

argke [0, ], (3.9)
where Ay(k) is given by (3.7).

Remark 3.2. In general, p in the homogeneous Robin boundary condition (3.1) can take any
real value [21]. As shown in [31], when p <0, generically, there are zeros of a(k) on the positive
imaginary axis. This requires modifications of our assumptions on the RHPs since we do not allow
for poles on the jump contour. Meanwhile, the longtime behaviour of such solutions at x =0 is
dominated by oscillatory standing solitons leading to non-decaying boundary data. The choice
of the sign of p is also related to the possibility of extending the half-line solution to a bounded
whole-line solution; see [32,33] for further details.

(b) Deformation of the contour based on the method of nonlinear steepest descent

We use the numerical approach developed in [28,34] to solve the RHP (3.8). Uniform accuracy
can be obtained using appropriate deformations of the jump contours. Then, the deformed RHP is
solved using the Mathematica package RHPackage developed by Olver [34] with spectral accuracy.
The deformations are derived in a similar manner as the deformations used for the solution of the
RHP for the NLS equation on the whole line [8]. The idea is to deform the contour near the saddle

point to the steepest descent direction so that the oscillations from the exponential factor e2¢(%1
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change to exponential decay. The saddle point ky of the phase (k; x, t) is determined by

do(k; x, t) x
LELD _gsky=—2.
T P s

We write the exponent as
ix? 2
2i9(k,' X, l’) = _Tt + 4it(k — ko) -

Thus e%?®xD js exponentially decaying if k follows a path with arg(k — ko) =/4,57/4. In
addition, the deformation of contours requires that the functions y(k), I"(k) are analytic in the
neighbourhood of k. Since qo € Sa(R™), a(k) and b(k) are analytic and bounded for Im(k) > —a/2.
To ensure that the residue condition is outside the region in which the contour is deformed, if
0< min({Im(p}')}?zl) < /2, we redefine « =min({Im(p‘?)}]T‘=1) /4. Therefore, y (k) is bounded and
analytic in a strip centred around the real axis with —«/2 <Im(k) < «/2, while I"(k) is bounded
and analytic for Im(k) > —«/2. In some cases, if 7(k) in (3.10) vanishes in the strip, then we need
to further shrink the width of the strip. Since t(k) > 1 on the real axis, we can always find a valid
choice for & > 0. We introduce the following deformation steps for the contour of the RHP (3.8).

(i) Step 1: deformations based on steepest descent directions

Let Rip =tk + rel? 17 >0}. The jump matrix Jy(k; x, t) has the factorization

1+ Ay Ry () y(k)e 200D
Jalk; x, )=

Aﬁeﬁé)(k;x,t) 1

1 % ( k)e72i0 (kx,t) 1 0
= _ = MP
0 1 Ay ( k) e2i<’-)(k;x,1‘) 1

This factorization provides J4(k;x,t) with decay away from kg as, by replacing the contour
on the real line with two oblique rays starting from kp. Then M approaches the identity
matrix exponentially fast in the lower half-plane along Ry, 7,/4 and P approaches the identity
matrix exponentially fast in the upper half-plane along Ry, /4. However, for Re(k) < Re(ko), the
exponentials in M and P are growing for M along Ry, 57/4 in the lower half-plane and P along
Rk, 37/4 in the upper half-plane. Alternatively, J>(k; x, t) has the factorization

1 —(k%—{— y(k))e72i0(k;x,t)
Jo(k; x,t) =

|~y (®) + PER)eE0ED 14 r(®) + y () Oy () + (k)
20 (k1)

i 1 0
B RCGRCE 1]

L 0 _ o 2i0(kx 1)
« | Tk |:1 —(Ar(k)“')’(k))T(k)i|
0 (k)] LO 1

=LDU,
where

t)=1+ Gy®) + FE)YACE +y(K), Im(k) < % (3.10)

This factorization provides J>(k; x, f) with decay for increasing t as, for Re(k) < Re(kg), L approaches
the identity matrix exponentially fast along Ry, 5, /4 in the lower half-plane and U approaches the
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Figure 4. (a) The deformed contour for the RHP (3.11) in the complex k-plane near the saddle point ko for the method of
nonlinear steepest descent. (b) The deformed contour for the RHP (3.13) in the complex k-plane near the saddle point k, after
removing the jump on the negative real axis. All jumps away from k; approach the identity exponentially fast as t — oo. The
length of the side of the square is of the order of 0(1/ /) for large t.

identity matrix exponentially fast along Ry, 37,4 in the upper half-plane. We obtain the RHP
@ (k;x,t)=®_(k;x,)H(k; x, 1), (3.11)
with jump functions

M(k;x,t), (k€ Ry 774 : Im(k)]

<%} UtkeC:k=ko+ Ye /9 45,5>0},
Pk x,t),  {k € Rig,n/a: [Im(k)|

<%}UfkeC:k=k + i@ +5,5>0},
itk x,t), k€ Ryyzads
H(k;x,t)={ Lk x,t), (k€ Rig5r/a s Im(k)| (3.12)

<% UfkeC:k=ky + $ei®™/H —5,5> 0},
D(k;x,t), {keC:k=ky—s,s>0},
Uk;x, 1), {k € Riyzmy4: [Tm(k)]

<% UfkeC:k=ky + $el®™/D —5,5>0},
Ja(k; x, 1), {k € Rig, 74},

and the deformed contour, with orientation, is shown in figure 4a.

(iii) Step 2: deformations for uniform accuracy

Similar to the RHP for the whole-line problem in [8], the errors for computing the solution of RHP
(3.11) are not uniformly small for large time since not all jumps decay to the identity matrix away
from the saddle point ky. For large ¢, although the jump matrix D along the negative real axis does
not contain oscillatory exponentials, the solution of the RHP (3.11) has increasing oscillations
along the jump contour for k <ky as t grows. Therefore we remove the jump matrix D using
conjugation [8]. We introduce the matrix-valued function A(k, ko):

koo
Alhke)— |:8(k6k0) 5*1((’)@ ko):| and  (k ko) = exp (217'[1 J_oo Ozg_f(kz)dz> .

Then ¥ (k;x,t) = & (k;x,H)A~1(k, ky) is continuous across the real axis for Re(k) = Re(kp), and
satisfies
W (ks x, £) = Wk x, ) Ak, ko) H(k; x, ) A (K, ko) = W (ks x, HH(k; x, ).
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Since §(k, ko) is singular at ko, lensing is used to avoid the singularity by introducing new jump
conditions on a square around kj (see figure 4b). The length of the side of the square is O(1/+/f)
for large t. See [8] for further details of the scaling. Summarizing all deformations, we have the
RHP

w, (k; x, ) = W_(k; x, HH(k; x, 1), (3.13)

where the jump contours are shown in figure 4b.

(iiii) Step 3: adding residue conditions

For the focusing NLS equation, there is an additional step for the residue conditions (2.24a-d).
By introducing small circles centred at the singularities, and modifying the unknown function
¥ inside the circle, the residue conditions are replaced with jump conditions on the circles [8].
Let {zj}”l'\'”2 be the union of the zeros of a(k) and d(k, T) defined by z;=p7, for 1 <j<n; and

1=j i
zj= p]f.’_nl, for ny +1<j<m +ny. Let {cj}’l”:JjT”z be defined by ¢; = c‘].’, l1<j<mniandci= C}-j_m, n +

1 <j <ny + ny. For a residue condition at k = zj in the upper half-plane,
1 0
U, ) = (kxt) | 20D (3.14)
1
(k—z))
is the jump condition on a circle centred at zj with radius ¢ oriented counterclockwise. The circles
need to avoid intersections with contours already present in the RHP. The corresponding residue
condition at k= zZjin the lower half-plane becomes
) _ijefziO(?j;x,t)
Utk x, )= v (kx, t) (k —z)) , (3.15)
0 1

on a circle centred at zZj with radius ¢. Since |c]-e2i9(zf;"'t)| may be unbounded for large x, t, we invert

this factor through a deformation when |Cje2i9(zf”"t)| > 1. We define the matrix-valued function
¥ (k; x, 1) by
1 —(k—z)
(C,eZiG(Zj;x,t)) )
lII(k/ X, t) (C]‘EZia(Zf;x’t)) ] V(k), if ‘k — Z]‘ <g,
- 0
R (k—z) )
W (k;x, t) = 0 (—gje 20ExD) (3.16)
k—7z: . _
(k; x, t) (k_z) ( ]) V(k), if ‘k—Z]\ <eg,
@e—ZiG(Z;x,t)) 1
w(k; x, t)V(k), otherwise,
where

_ . (z) 0
v(z):l—[;i_; and V(z):(vo 1 )

jeKus / v(2)

2i6/(zj;x,t

for each j in the set Ky+ = {j : [cje )| > 1} containing the indexes of the zeros of a(k) and d(k, T)

whose jump matrices need to be inverted. Then 'f/(k; x, t) satisfies the jump conditions

@ (k;x, 1) = W_(k;x, VL k) F (K x, HV (K),
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Figure 5. The real part of g(x, t) with homogeneous Dirichlet houndary condition g(0, {) = 0 and the initial conditiong(x, 0) =
xe ™ . The thick curves show the initial and boundary conditions.

on the same contours as (3.13). In addition, ¥ (k; x, ) satisfies the jump conditions circles around

{z;}’f;?zr
ik
& (k;x, V1 (k) (@) L vk, ifk—zl=¢,
. 0 1
r;x, t) =
1 0
& (k;x, HV (k) (k—z)) LV, ik -z =e.
@efzia(z;x,t) )

With all deformations, the RHP (3.13) is solved using RHPackage [34] after truncating the contours
along which the jump matrices are close to the identity matrix. In practice, this tolerance is set to
10~? unless otherwise stated. We use the same tolerance of 10~ when solving for the spectral
functions. For convenience, we also truncate the contours if they are outside a disc centred at the
origin with radius 50. In most cases, the truncation errors are of the same order as the tolerance
since the jump matrix approaches the identity matrix exponentially fast. When x, t are small, the
truncation error dominates. We discuss how to control the truncation error in §5.

(c) Numerical results

In figure 5, we plot the real part of the solution to the defocusing NLS equation on the half-line
with homogeneous Dirichlet boundary condition at x =0 and the initial condition g(x, 0) = xe ™.
We observe dispersive waves propagating to the right from the localized initial condition. We
plot the solution for 0 <x <10 and 0.1 <t < 3.5. The domain is chosen to be bounded away from
t =0 as the NUTM is less efficient there. Indeed, when the UTM is applied to linear PDEs on the
half-line, the solution formula requires principal-value integrals for its evaluation at x =t =0 [19].
This issue occurs with the NLS equation at x =t = 0 as well. The UTM is well defined for any x > 0
or t > 0 but the numerics suffer from slow convergence when x, t are small; see §5.
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4. Thenonlinear Schrodinger equation with non-linearizable boundary conditions [ 16 |

(a) Overdetermined boundary conditions

A possible way to avoid computing unknown boundary conditions is to specify both boundary
functions go(t) and g1(t), provided they are admissible with respect to the given initial condition
go(x). However, there are obstacles to computing the associated solution efficiently:

(i) For a generic whole-line solitonless solution g(x, t) with a non-trivial reflection coefficient
p(k) =b(k)/a(k), one has g(0,t) ~+ /2 and g(0,)~t"3/? as t— oo [3]. Therefore, in
general, for half-line problems the Dirichlet and Neumann data do not both decay
exponentially. This affects the regions where the contours can be deformed. For instance,
in the T = oo case, A(k, o0) and B(k, 00) are only guaranteed to be analytic in the first and
third quadrants. Therefore, jump contours , which depend on 7 (k) defined in (3.10) cannot
be deformed away from the real axis and the method of nonlinear steepest descent cannot
be applied directly. These undeformed contours become highly oscillatory as ¢ increases.
For linear PDEs, numerical methods such as Levin’s method can be used to compute
the oscillatory integrals with high accuracy [19]. For nonlinear integrable PDEs, efficient
numerical methods for oscillatory singular integral equations from the RHP are not as
well developed [35]. A complete discussion of this is beyond the scope of this paper.

(ii) For pure whole-line soliton solutions that have non-zero velocity, (0, f) and q«(0, t) decay
exponentially. In this case, the focusing NLS equation allows right-going soliton solutions
whose parameters correspond to zeros of d(k, T) in the second quadrant. As discussed in
§2e, this step requires root-finding algorithms.

There are solutions, with compatible gg, g0, g1, that do not suffer from (i) and (ii). We can
compute these solutions efficiently. Such solutions include left-going singular solutions of the
defocusing NLS equation, known as positons, or left-going soliton solutions of the focusing NLS
equation.

Such solutions have analytical expressions and are used to demonstrate the accuracy of the
NUTM. In fact, unlike for the whole-line problem, the jump function (2.20) in the half-line
problem is non-trivial even when the solution does not contain dispersion. For instance, suppose
the initial and boundary values are prescribed by the one-positon solution of the defocusing NLS
equation [28]

q(x, £) = 2ne~HHE—1)=2E ook (on(4tt + x — xp)),

where &, 1, x are constants. The positon is left-going if £ > 0. If xp < 0 the singularity is outside the
domain for all t > 0, therefore q(x, f) is exponentially localized and smooth for x, t > 0. This positon
solution corresponds to a simple zero of a(k) at ky =& + in tanh(2nxp) [36]. The assumptions & > 0
and xp <0 imply that k; is not in the first quadrant so no residue conditions are required for
formulating the associated RHP. Similarly, suppose the initial and boundary values are obtained
from the one-soliton solution of the focusing NLS equation [28]

q(x, £) = 2neHHE 1) -2 goch (2 (4t + x — xp)). (4.1)

This soliton corresponds to a simple zero of a(k) at k1 = & + in tanh(2nxp). If the initial position of
the centre of the soliton lies outside of the domain (i.e. xg < 0) and it is left-going (i.e. £ <0), the
soliton is represented by the continuous part of the spectral data and no residue conditions are
used. On the other hand, for the focusing NLS equation, it is possible to allow xp > 0. In this case,
kq is in the first quadrant and the associated residue conditions are required. These considerations
can be generalized to n-positon and n-soliton solutions.

Figure 6 shows the error plots of the solution using the NUTM with the initial and boundary
values given by (4.1) with £ =1, =1,x9 = 0.4 along different lines in the x, { quarter plane. The
spectral convergence of the NUTM is demonstrated by the errors with fixed x,t and varying
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Figure 6. The absolute value of the exact one-soliton solution (4.1) with& =1, n =1, Xy = 0.4, oy = 0 (solid lines) and the
absolute errors of the numerical solution with different numbers of collocation points N (dashed lines). Panel (a) shows the
evaluations for x € [0.4, 4], t = 0.4. Panel (b) shows the evaluations for x = 0.4, t € [0.1, 1]. Panel (c) shows the evaluations
forx =4s,t =, 5 € [0.1,1]. The tolerance of the error from computation of the spectral functions and contour truncations is
setto10~°.

N, the number of collocation points used in the solution of the RHP. The absolute errors are
uniformly controlled and decreasing for increasing x, t with fixed N. For increasing t, the NUTM
even maintains relative accuracy with N fixed, but sufficiently large. Although the absolute errors
decrease exponentially for fixed ¢, the exponential decay rate of the solution is not captured
exactly. As a result, the relative error with fixed t increases as x grows. This is expected, due
to the fact that the jump matrix after deformation decays to the identity exponentially but not
exactly at the decay rate of the solution. Indeed, how far we can deform the contour is restricted
by the region of analyticity of y (k) and I"(k). For instance, when gg € Sy, ¥ (k) is analytic within
—a <Im(k) < o, along a horizontal segment of the contour k=s + i,

e2i0(kxt) _ e78sat72o¢x+i(4(sz7a2)t+25x)

This is to be compared with the situation for the 1-soliton solution (4.1) which has an exponential
decay rate 27 in the x-direction. The zeros of a(k) are outside the strips —« < Im(k) <, since |o| <
In tanh(2nxp)| < |n|. To capture the same exponential decay rate, a deformation of the horizontal
contours up to the pole of y (k) at k =& + in tanh(2nxp) is necessary. The restriction is not required
if t is sufficiently large, in which case the jump matrix along the deformed contour approaches
the identity and is truncated before Im(k) =  tanh(2#x). For instance, consider the jump functions
related to P in figure 4b. When ¢ is sufficiently large, the jump function APA~Y in the top right
corner of figure 4b is close to the identity matrix and is negligible. After the truncation, only the
jump function APJ; A~ remains.

(b) Boundary conditions implicitly determined by given spectral data A(k, ) and B(k, T)

(i) A dressing argument

If A(k, T) and B(k, T) are given directly, the deformation steps discussed in §3 can still be performed
provided that the deformations are within the regions where A(k, T) and B(k, T) are analytic. From
the idea of the dressing method, as long as the spectral functions A(k, T) and B(k, T) satisfy (2.6)
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Figure 7. The numerical solution g(x, t) on the domain 0 < x <30 and 0.1 < t < 3 with spectral functions specified in §3.
The solution contains two right-going solitons as well as dispersion. (a) The real part of g(x, t). (b) The absolute value of g(x, ).

and (2.10), the RHP (2.19) generates solutions to the NLS equation. The dressing method was first
studied in [37]. For convenience, we adopt the following result from proposition 15.3 in [13].

Proposition (the dressing method [13,37]). Suppose that the oriented smooth curve L divides the
complex k-plane into the domains D and D~ Let M (k; x, t) satisfy the following 2 x 2 matrix RHP in
the complex k-plane for all x, t > O:

M*(x, t) =M~ (k;x, e R0 ke,

where J(k) is a 2 x 2 unimodular matrix with J[11 =1 or Jop = 1. Assume that the above RHP has a unique
solution which is sufficiently smooth for all x,t > 0. Define Q(x, t) by

Qlx, t) =i lim [o3, kM(x, £, k)],
k—o0
then Q(x, t) satisfies the nonlinear equation

iQr — Quos +2Q%03 =0.

To ensure that (2.6) is satisfied, we specify the ratio h(k) = B(k)/A(k) for k € D3 since this is the
quantity required in (2.19). The spectral data A(k) and B(k) are defined implicitly from (2.6):

1+ MR = ———, keRUIR.
AR)ARK)

Remark 4.1. The global relation (2.11) determines the value of h(k) in the first quadrant. If
T = o0, h(k) = b(k)/a(k) provided that a(k) # 0.

(ii) Numerical results

We solve the focusing NLS equation on the half-line with spectral functions b(k)/a(k) =0 and
B(k)/A(k) = 1000k/(k — 2(1 + i))° for arg(k) € [, 37/2]. In this case, y (k) = 0 and I"(k) = 1000k/(k —
2(1 —i))°. Furthermore, we impose two residue conditions at ky = —1+i and kp = —2 +i with
corresponding constants c; =100000,c; =2. The constant 1000 in I" is chosen so that the
dispersion is of the same order as the solitons for small x,t. The constants c1,c, are chosen so
that the interaction of the solitons is inside the domain. We plot the real part and the absolute
value of the solution for 0 <x <20 and 0.1 <t <3 in figure 7. The solution contains two right-
going solitons as well as dispersion. Two slices of the solution at t =0.1 and t =2.9 are shown
in figure 8. We also observe that the soliton part of the numerical solution is similar to the exact
two-soliton solution with its envelope plotted in dashed lines. We compare our solution with the
large t asymptotics along x/t =2,6,10 in figure 9. Away from the solitons, the large t asymptotics
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Figure 8. The real part of g(x, t) (solid curve). The envelope of the exact right-going 2-soliton (dashed curve). (a) g(x, 0.1).
(b) qlx,2.9).
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Figure 9. The real part of the numerically computed g(x, t) (solid curve), the real part of the dispersive wave from the
asymptotic formula (4.2) (dashed curves) and its envelope (dotted curves). Panel (a) shows evaluation along x = 2t. Panel (b)
shows evaluation along x = 6t. Panel (c) shows evaluation along x = 10¢. Panel (d) shows the errors compared with the
asymptotic formula (4.2).

along x/t = O(1) are described by (see [3])

)
2y (X Ll ry g G i~ ~(1/2)
qlx, t)=t a( 4t)exp(zhL + 2iAa ( 4t)logt+1¢( 4t) ~+ o(t ), (4.2)
where the amplitude «(k) and the phase ¢(k) depend on y(k) and I'(k). In practice, to
avoid computing the integral in the formula for the phase ¢, since ¢ is constant with fixed

x/t, we choose it so that the errors in figure 94 show a trend of decreasing errors with
order O(1/t).
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Figure 10. The plots of y (k), I" (k) along the jump contour. (a) Here y (k) on the real axis, (b) 1" (k) on the real axis and
(c) I" (k) on the positive imaginary axis. The real parts are plotted with solid curves and the imaginary parts are plotted with
dashed curves. The initial condition is go(x) = e + isech®(x) and the boundary condition is ¢;(t) = 0. The functions y and
I areof order1/k.
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Figure 11. (a) The contour of RHP (5.2). Jumps on Vs, Vg, V5, Vg are introduced to improve the rate at which the jump matrices
on Wy, Vs, V3, V, approach theidentity matrix. (b) The absolute error for computing (0.5, 0) with different number of collocation
points N. The dashed line is computed using the undeformed contour in figure 2. The solid line is computed using the contour
in (a). The flattening in both curves is due to the truncation error.

5. Using large k expansions for computing g(x, t) for small x, t

For a problem on the whole line, if the initial condition is in Schwartz class, the reflection
coefficient is also in Schwartz class [38]. Therefore no deformation for the associated RHP is
required when x, t are small because the jump matrix decays rapidly to the identity matrix when
|k| becomes large. However, this is not true for the RHP (2.19) from problems on the half-line, or
even for integrals that arise in the linear case.

Example 5.1. Consider the NLS equation with the homogeneous Neumann boundary
condition g1(t) =0 and initial condition gqo(x) = e +i sech?(x). This is a linearizable boundary
condition and we can solve for the spectral functions B(k, 00), A(k, c0) using symmetries of
the global relation k — —k. The associated RHP (5.2) for @(x,t,k) is formulated with the jump
condition on the cross k € R U iR in figure 2:

D (k;x, 1) = P_(k; x, )] (k; x, ). (6.1
The jump matrices are the same as in (2.20) except that (2.23) is replaced by

Ab(—k)

= m, argkel0,7], Aq(k)=a(k)a(—k) — rb(k)b(—k), arg k € [0, ].

r

The functions y (k) and I"(k) are O(1/k) as k — oo; see figure 10.

I8Y0L07:LLb ¥ 205 4 01 edsyjeunof /B0 Buysigndiaaposiefos



Downloaded from https://royalsocietypublishing.org/ on 05 May 2022

With the large k expansions derived in the electronic supplementary material, we can set up
RHPs with jump functions that tend to the identity matrix faster. We define

=00 k:*‘Wl, K) = yo(k) + v, (k), (k)= oK) + Tk,
yo(k) 2k - Ip(k) 2k - y(k) = yo(k) + yr(k), I'(k)=Io(k)+ I'v(k)

so that yp(k) and Ip(k) have the same large k behaviour as y(k) and I'(k) to the leading
order. To avoid introducing unnecessary residue conditions, we choose k=1-2i. After
separating the O(1/k) terms, we get a RHP which has the jump matrix approaching the
identity matrix with O(1/k?) as k— oo shown in figure 1la. The RHP for &(x,tk) is
formulated with a jump condition on the eight rays through the origin {r= pels|p €0, +00),
s=0,7/4,2n /4,37 /4,47 /4,57 /4,67 /4,77 /4}, and P(x, t, k) satisfies

D1 (k;x, t)=P_(k;x, )V(Kk; x, 1), (52)
with jump matrices
Vil x,t), argk=0,
Vilkx,t), argk=7%,
Vao(k;x,t), argk=m,
V. k; ,t , k: 37”/
Vi, = | &0, arg 2 (5.3)
Vs(k;x,t), argk==F,
Ve(k;x, 1), argk=3F,
Vz(k;x,t), argk= 77”,
Vs(k;x,t), argk=7,
where
[ 1 0 1 —AFT(E)e72i9(k;x't)
Vit x, )= ) , Valkx, t)= ,
_ Fr(k)ehe(k;x,t) 1 0 1
1+ a0yl yr(ke 200D
Va(k; x,t) = ,
Ay (E) eZiH (k;x,t) 1
| 1 —(3E) + yilk))e=203
Vo(k; x,t) = _ ) E— — ’
L —yr(k) + L (R)HED 14 Lo(R) + v (k) (k) + T3(K))
(1 —Gon® + ke 200k 1 0
Vst = | OO0 , Velbxt=| | ,
K 1 —(AIo(k) + po(k)e?kxd 1
(1~ + yok))e 200D 1 0
Vy(k; x, t) = (1000 700 , Vekx, t)y= - .
L0 ! ~(To() + Apo(RNeE0 1

Figure 11b shows the log-linear plot of the absolute error for computing 4(0.5,0) with different
numbers of collocation points N. In the computation, the segments of contours are truncated
when the jump matrix is close to the identity matrix ||V, (k) — Ill2 < 1078, m=1,2,...,8, or when
the contour reaches a large circle centred at the origin with radius 50. In figure 11b, the dashed
curve shows the error computed using the undeformed contour and the solid curve shows the
error computed using the contour in figure 11a. Both curves decay exponentially when N is not
large. Since the jump matrix of RHP (5.2) approaches the identity matrix faster, the flattening
in the solid curve appears later than the dashed curve. It is possible to perform the asymptotic
analysis for higher-order terms in the previous section and remove more terms so that the decay
of the jump matrix is faster than O(1 /k2). The calculation starts to become lengthy, however.
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Remark 5.2. For linearizable boundary conditions, if the solution of the half-line problem can
be mapped to a smooth solution of the whole-line problem, the jump matrix J, in (2.19) actually
decays exponentially to the identity matrix. Therefore there is no need to introduce modifications
to Vo, V5 and Vj in (5.2). In this case, I'(k) is automatically analytically extended to the first
quadrant by the analyticity of b(k) and a(k). Then it is possible to deform the jump contour J; and J3
in (2.19) to the positive real line on top of J4 and this new RHP is the same as the RHP in the whole-
line problem with the initial values on the negative real line defined properly corresponding to
the boundary condition using symmetry.
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