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Abstract A statistical method is likely to be sub-optimal if the assumed model
does not reflect the structure of the data at hand. For this reason, it is impor-
tant to perform model selection before statistical analysis. However, selecting an
appropriate model from a large candidate pool is usually computationally infea-
sible when faced with a massive data set, and little work has been done to study
data selection for model selection. In this work, we propose a subdata selection
method based on leverage scores which enables us to conduct the selection task on
a small subdata set. Compared with existing subsampling methods, our method
not only improves the probability of selecting the best model but also enhances the
estimation efficiency. We justify this both theoretically and numerically. Several
examples are presented to illustrate the proposed method.

Keywords Bayesian Information Criterion · Big Data · Discrimination Design ·
D-optimal design · Entropy · Measurement constraints
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1 Introduction

Understanding potential relationships among variables in massive data sets is
an essential topic in the big data era. Despite the fact that more data seems to
be better, diminishing marginal utility suggests that to achieve a preset statistical
efficiency in estimation or hypothesis testing, we do not have to utilize all the
observations. A smaller subdata set might be more cost effective while a researcher
is exploring a large data set, because data visualizing and exploration are certainly
easier and faster with fewer observations even when we have sufficient computer
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resources (Boivin and Ng, 2006; Ng, 2017). Among various methods proposed to
handle large data sets, subsampling has drawn the attentions of econometricians
and statisticians in recent years (Lee and Ng, 2020).

Great efforts have been made to estimate unknown parameters for given mod-
els based on incredibly large data sets over the last decades. See Drineas et al.
(2011); Mahoney (2012); Kleiner et al. (2015); Ma et al. (2015); Meng et al. (2017);
Wang et al. (2018, 2019); Yao and Wang (2019); Ma et al. (2020); Meng et al.
(2020a,b); Deldossi and Tommasi (2021); Li and Meng (2021); Yao and Wang
(2021), among others. Most of the existing investigations focus on reducing the
uncertainty brought by the sampling procedure, and they often ignore the uncer-
tainty induced by the assumed models. However, model uncertainty can be quite
influential for statistical inferences when the aforementioned methods are adopted.
For example, as described in Wang (2019), the optimal subsampling method un-
der the A-optimality criterion proposed in Wang et al. (2018) will be less efficient
when the underlying model is misspecified. As another example, Fithian and Hastie
(2014) pointed out that the case-control sampling method is inconsistent for the
risk minimizer in the original population when the model is misspecified.

Model selection has been an important topic in regression problems. Two kinds
of methods are routinely used by many data scientists to screen variables/models
and fit regression models. One approach is the shrinkage based methods which
are particularly suitable for the case that the true regression coefficient is sparse
or nearly sparse, see Tibshirani (1996); Fan and Li (2001); Efron et al. (2004);
Candes et al. (2007); Zhang (2010), among others. The other approach is the
subset selection based methods. These methods allow the data-based selection
of a single “best” model or a weighted average of multiple promising candidate
models. Typical examples include F-tests for nested models, stepwise selection
procedures, and model averaging. See Shao (1997); Miller (2002); Kadane and
Lazar (2004); Yuan and Yang (2005); Claeskens and Hjort (2008); Zheng et al.
(2019) and the references therein for examples. Besides the model discrimination
investigations in observational studies, fruitful results have been achieved in design
of experiments based on F-tests and Kullback-Leibler divergence. Important works
include, but not limited to, Box and Hill (1967); Meyer et al. (1996); López-Fidalgo
et al. (2007); Dette and Titoff (2009); Drovandi et al. (2014); Dette et al. (2015);
Consonni and Deldossi (2016).

It is worth mentioning that all of the shrinkage based methods, and part of
subset selection methods, such as stepwise selection, focus on picking a “good”
(or useful) model. Despite the success of the aforementioned methods, the abil-
ity to discriminate between models in a candidate pool based on some criteria
is also of interest in the big data era. An obvious benefit is that the discrimi-
nation results can help practitioners decide whether to use model averaging or
model selection, and it is particularly useful when candidate models are not nested.
More discussions can be found in Yuan and Yang (2005). These criteria are usu-
ally based on Kullback-Leibler divergence (Kullback and Leibler, 1951), such as
Akaike information criterion (AIC) (Akaike, 1974), Bayesian information criterion
(BIC) (Schwarz, 1978), and Kullback-Leibler information criterion (KLIC) (Sin
and White, 1996). It is worth mentioning that when the data are governed by a
parametric model in the candidate list, the BIC is consistent, i.e., it selects the
best model with probability approaching one (Yang, 2005). To discriminate among
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all possible models in a candidate pool, we focus on the subset selection method
based on BIC in this work.

For massive data, computing resources become a bottleneck for statistical in-
ference. Take a linear regression problem with n observations and p covariates
as an example. If there are m candidate models to be compared, the computa-
tional cost is O(np2m). This may be infeasible for the case with a large n and
moderately large m. To break the bottleneck of computation, one promising way
is data reduction. However, when the inference is subject to model uncertainly,
little work has been done to study how to perform data selection. Except uniform
sampling, most existing strategies are designed for a prespecified model, and are
not suitable to explore and prototype a variety of models. There are model-free
subsample selection procedures such as support points (Mak and Joseph, 2018),
Stein points (Chen et al., 2018), and the minimum energy design (Joseph et al.,
2019). However, these methods rely on the empirical distribution of the full data
and their computational cost is O(n2p) which is high for large n.

To address the issues mentioned above, this work studies a new subdata se-
lection method for linear regression model selection based on BIC. Theoretically,
we show that the proposed method is selection consistent under mild conditions.
As illustrated in Section 5, compared with the uniform subsampling method, our
method can detect a weaker signal which leads to a higher probability of selecting
the best model. In addition, our method also improves the performance in esti-
mating the true model. Extensive experiments on both simulated data sets and
real-world examples show that the proposed method outperforms several state-of-
the-art subsampling and subdata selection methods in terms of selection accuracy
and mean square prediction error.

The rest of this article is organized as follows. In Section 2, we briefly review the
model selection procedure via BIC. In Section 3, a subdata selection criterion based
on maximum entropy sampling is proposed and a subdata selection algorithm
based on leverage scores is designed. Theoretical results including the selection
consistency and parameter estimation consistency based on the selected subdata
are established in Section 4. Section 5 illustrates our methods via both simulated
and real-world datasets. Section 6 concludes this article with some discussions. All
technical proofs and additional simulation results are given in the Appendix.

2 Preliminaries

We assume that normally distributed independent observations y1, . . . , yn are
generated from the process

yi = µi + εi, i = 1, . . . , n, (1)

where εi is the normal distributed error term with mean zero and variance σ2,
and the true model for µi lies in a candidate set of models. Let zi be the vector
of observed values of the explanatory variables associated with each yi, through
the relationship µi = E(yi|zi) = f(zi)

Tβ where f(zi) = (f1(zi), . . . , fp(zi))
T and

fj(zi)’s are p known and linearly independent functions of zi. Here, the dimension
of zi does not have to be p. For ease of presentation, we define µ = (µ1, . . . , µn)

T,
xi = f(zi), X = (xT

1 , ..., x
T
n )

T, and Y = (y1, . . . , yn)
T. In model selection prob-

lems, the intercept parameter, denoted as βint is often not of interest, and it can
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be eliminated in linear models by centralizing the full data (Y,X). Thus, the slope
parameters β can be estimated by fitting the least squares without the intercept
term on the centralized full data. When the intercept becomes relevant such as
for prediction, it can be estimated with β̂int = Ȳ − X̄Tβ̂, where Ȳ is the full data
mean of Y , and X̄ is the column mean vector of X, and β̂ is the least squares
estimate of β from the centralized data. To ease the presentation, in the rest of
the paper we assume that the full data are centralized, i.e., the column means of
X and the mean of Y are zero.

Let (X∗, Y ∗) be a subset of the centralized full data. The column means of X∗

and the mean of Y ∗ may not be zero, but this does not affect the unbiasedness of
the subdata estimator β̂s = (X∗TX∗)−1X∗TY ∗. To see this, we first notice that
if the subdata selection rule does not depend on Y , then the subdata set satisfies

Y ∗ = βint1+X∗
ncβ + ε∗ − Ȳnc1

= βint1+X∗
ncβ + ε∗ − (βint + X̄ncβ + ε̄)1

= X∗β + ε∗ − ε̄1,

where the subscription nc indicates that the quantity is for the non-centralized
data, ε∗ is the error vector for the subdata, ε̄ is the mean of εi, i = 1, ..., n, and 1
is a vector of ones. Thus, we know that E(Y ∗) = X∗β and therefore E(β̂s) = β.

In the following, we consider the model selection problem on X. Let Sk (k =
1, . . . ,m) be a subset of the column indices of X, where m is the number of
candidate models to consider. We use M to denote the set of all such candidate
subsets. The candidate model corresponding to Sk has the form

µ = X(k)β(k), (2)

where X(k) is an n × p(k) submatrix of X and β(k) is the associated parameter
vector. It is worth mentioning that for two different model Sk1

and Sk2
, the jth

column of X(k1) may be different from the jth column of X(k2). We assume that
both p and m are fixed and do not change with n. Typically, m = 2p if all possible
models are considered andm = p when only nested models are considered. Without
loss of generality, we assume that the mth model is the widest model (also known
as the encompassing model), i.e., Sm = {1, . . . , p}, and we assume that it is always
included in M.

The kth candidate model is said to be correct if β(k) satisfies that µ = X(k)β(k).

Let MC be the set of correct candidate models. If there are multiple models in
MC , we wish to select a model with the fewest parameters, and we call the correct
model with fewest parameters the true model. For convenience, we define X(t) to
be the model matrix of the true model.

We provide a brief overview of the classical BIC method in the following. Let
Y = (y1, . . . , yn)

T be the response vector, and π(β) be the prior distribution of β.
The likelihood under the kth candidate model in M is

p(Y |Sk) =

∫
f(Y |β, Sk)π(β)dβ, (3)

Let P (S = Sk) be the prior probability that the kth model is the true model. The
posterior probability that the kth model is the true model is

P (S = Sk|Y ) =
p(Y |Sk)P (S = Sk)∑m
l=1 p(Y |Sl)P (S = Sl)

, k = 1, . . . ,m. (4)
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The basic idea of BIC is to select the model with the largest posterior probability
using the prior P (S = Sk) = 1/m for all k. It is worth mentioning that when
the number of candidate models is large, as suggested in Bingham and Chipman
(2007), incorporating prior information in experimental design, such as effect forc-
ing (Meyer et al., 1996) and effect heredity (Chipman and Hamada, 1996) will
help narrow down the candidate set.

Under the BIC framework, this principle means that the model that maximizes
the numerator p(Y |Sk) should be selected. For the normal regression model (2),
we write the selected model according to BIC based on the full data set as

ŜBIC = argmin
Sk

{
n log

(
n−1

n∑
i=1

(yi − µ̂
(k)
i )2

)
+ p(k) logn

}
, (5)

where p(k) is the cardinality of Sk, µ̂
(k)
i is the ith element of µ̂(k) = X(k)β̂(k), and

β̂(k) is the maximum likelihood estimator (MLE) under the kth candidate model.

3 Motivation and Methodology

When the full data is large and the computational resources are limited or
when the response variable is expensive to measure (Zhang et al., 2020), a practical
solution is to select a small subdata to save the computational cost or the data
collection cost. To handle the case that only a small proportion of the responses
can be measured, we are interested in both selecting a good model and achieving
better estimation results using the selected model based on the subdata. For this
purpose, we use entropy (Lindley, 1956) as a measure of the uncertainties coming
from the model selection and estimation.

Note that for a random vector α with density function f(·), the Shannon
entropy of α is defined as Ent(α) = Eα(− log f(α)). To achieve the goals on
both selecting a good model and achieving the smallest variance of the resultant
estimator based on the selected subdata, we need to acquire the maximum amount
of information about Θ = (S, β11(1 ∈ S), . . . , βp1(p ∈ S))T, where S is indices set
of X, and 1(j ∈ S) = 1 if the jth covariate variable is in model S and 1(j ∈ S) = 0
otherwise. Let Ent(Θ|X∗) be the entropy of Θ for the selected subdata of size r
with the r × p model matrix X∗. The goal of our subdata selection problem is
to choose subdata that minimize Ent(Θ|X∗). However, the exact minimizer is not
realistic due to the

(
n
r

)
possible combinations of the possible subdata. The following

theorem gives an equivalent representation of the subdata selection criterion, which
will guide us to find a practical solution.

Theorem 1 Suppose that Ent(Θ|X) < ∞ and the prior of the coefficient β under
the widest model obeys N(βprior, σ

2
fIp), where Ip stands for the p × p identity

matrix and βprior and σ2
f do not depend on X. Let X∗

(t) be the r × p(t) matrix
of the selected subdata corresponding to X(t), where p(t) is the dimension of the
true model. The optimal subdata selection problem of minimizing Ent(Θ|X∗) is
equivalent to finding X∗

(t) that maximizes

det(X∗T
(t)X

∗
(t) + σ2σ−2

f Ip(t)), (6)

where det(·) is the determinant of a square matrix.
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When we consider the estimation problem under the true model, the resul-
tant criterion is known as Bayesian D-optimality criterion (Pukelsheim, 2006) in
the language of experimental design. It is worth mentioning that Sebastiani and
Wynn (2000) has shown that the Bayesian D-optimal design achieves the mini-
mum entropy of β(t) under the true model. Here we further consider the problem
of model selection and establish the equivalence between Bayesian D-optimality
and the minimum entropy of Θ conditioning on the subdata. If σf = ∞, this
criterion becomes the D-optimality criterion. For ease of presentation, we assume
that σf = ∞ in the following discussion, which corresponds to a non-informative
prior. The idea of using D-optimality criterion to select subsets of data under a
given model is appealing and sensible, when the model is correctly specified in ad-
vance. For example, Dereziński and Warmuth (2018) studied the volume sampling
procedure that samples the subdata proportional to the squared volume of the
parallelepiped spanned by the rows of X∗. Thus, the probabilities of the subdata
sets being selected are proportional to det(X∗TX∗). Wang et al. (2019) also con-
sidered deterministically selecting subsamples based on D-optimality by selecting
the “edge” points of the data, i.e., the extreme points in X. The D-optimality cri-
terion also benefits model discrimination. On the one hand, the minimum volume
of the confidence ellipsoid for the zero coefficients of the widest model can benefit
the model selection. On the other hand, the minimum volume of the confidence
ellipsoid for the non-zero coefficients of the widest model achieves the smallest
variance of the true models’ estimates. Atkinson and Fedorov (1975) found that
D-optimal designs are useful for model discrimination in the presence of apprecia-
ble experimental error when the number of trials is limited.

Since X(t) is unknown, in working toward an approximate solution, we find a
connection between the widest model matrix and the candidate model matrices
via the leverage scores of the widest model. This will guide our later algorithm.

Theorem 2 Assume that XTX is a positive definite matrix. Let hii denote the
leverage score for the ith data point, i.e., the (i, i)th entry of the hat matrix
X(XTX)−1XT. For the kth candidate model,

X∗T
(k)X

∗
(k) ≤ min(

n∑
i=1

δihii, 1)X
T
(k)X(k), (7)

in the Loewner ordering, where X∗
(k) is the design matrix under the kth candidate

model for the selected subdata, and δi = 1 if the ith data points is selected and
δi = 0 otherwise.

Theorem 2 reveals that det(X∗T
(t)X

∗
(t)) ≤ (

∑n
i=1 δihii)

p(t) det(XT
(t)X(t)). There-

fore, data points with relatively small leverage scores of the widest model are
much more likely form an inefficient design in the sense of D-optimality. This mo-
tivates us to select the data points corresponding to the r largest leverage scores
of the widest model matrix. Moreover, as pointed out in the Kiefer-Wolfowitz
equivalence theorem (Pukelsheim, 2006), a design ξ is D-optimal for the model
y = f(z)Tβ + ε if and only if f(z)TM(ξ)−1f(z) = p when z is a support point of
ξ and f(z)TM(ξ)−1f(z) < p otherwise. Here, M(ξ) is the information matrix un-
der ξ. Therefore, finding large leverage scores tends to approximating the support
points of the D-optimal design for the widest model.
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This result also has an interpretation from the view of entropy sampling theory.
As pointed out by Shewry and Wynn (1987), a larger entropy implies a higher
prediction power. The prediction of yi using the full data set based on the widest
model can be expressed as ŷi = hiiyi+

∑
j ̸=i hijyj . Thus a data point with a higher

hii is harder to predict by using other data points, and sampling high leverage data
points makes the resultant subdata have higher prediction power.

Let #(Γ ) denote the cardinal number of a set Γ and κ(A) := λmax(A)/λmin(A)
denote the condition number of a matrix A, where λmax(·) and λmin(·) are the max-
imum and minimum eigenvalues of a squared matrix, respectively. For simplicity,
we define κ(A) = ∞ when A is a singular matrix. We summarize our idea in
Algorithm 1.

Algorithm 1: Deterministic Leverage Score Selection Algorithm

Input: The widest model matrix X ∈ Rn×p, target sample size r(> p), threshold
T (≥ 1).

Output: the selected index set Γ and the subsample design matrix X∗.
Initialization: Γ = ∅;UΓ = ∅;κ(UT

Γ UΓ ) = ∞.

Perform a singular value decomposition of X as X = UΣV T, calculate the leverage
scores hii := ∥Ui·∥2, where Ui· denotes the ith row of U , and sort hii’s to have
h(11) ≥ . . . ≥ h(nn).

for i = 1, ..., n do
if #(Γ ) ≤ r or κ(UT

Γ UΓ ) ≥ T then
Add the index of the data point corresponding to h(ii) to set Γ .
Update the UΓ as the selected rows of U in Γ.

else
Break.

Clearly, the proposed subdata selection algorithm only relies on the covari-
ates, i.e., X’s information. Thus Algorithm 1 is also applicable for the scenario of
measurement constraints. This is a situation that all the covariates are available
and the responses are expensive or time-consuming to collect. A typical example
is semi-supervised learning problems in linear models (see Chakrabortty and Cai,
2018, for more details).

Note that a large value of the condition number may lead to a ill-conditioned
matrix and thus cause multicollinearity. One purpose to set the stopping criterion
for Algorithm 1 on the condition number is to ensure that the subsample design
matrix is not ill-conditioned. As a result, a small condition number leads to a sta-
ble estimator. From a geometrical perspective, the condition number measures the
level of “space spanning” for the selected data. A small condition number implies
that the column space of the subdata matrix is well spanned, and a threshold
on the condition number prevents the case that the subdata lies in a low rank
subspace. Some two-dimensional synthetic samples are demonstrated in Figure 1
where Z is generated from a two-dimensional normal, t3 or log-normal distribu-
tion, respectively, and X is column-centralized version of Z. The selected subdata
are marked by triangles and the rest are marked by circles. Clearly, the selected
subdata well span the two dimensional space. We do not recommend setting the
stopping criterion on the condition number of X∗, because the condition number
of X∗ is unbounded and the threshold will be harder to determine.
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(a) Normal (b) t3 (c) Log normal

Fig. 1 Illustration of the selected subdata points through Algorithm 1 with r = 100, T = 4
(triangle) among 100,000 points (circle) that are randomly generated from two dimensional
normal, t3 and lognormal distributions. Here X is the centralized model matrix with two
columns.

Remark 1 If the covariates are from the family of elliptically contoured distribu-
tions (Fang et al., 1990), the covariate space of the selected data expands to the
covariate space of the full data quickly. For this scenario, the criterion on the con-
dition number is not critical because the condition number for the subdata drops
to be close to the condition number for the full data very quickly.

In general cases, if Algorithm 1 produces a subsample with more than r data
points and we want to strictly restrict the subsample size at r, the following pro-
cedure can be adopted. Let Γ̃ be the index set with r̃ > r elements from the
original Algorithm 1. Select r elements from Γ̃ via simple random sampling as
Γ . It can be shown that κ(UT

Γ UΓ )− κ(UT
Γ̃
UΓ̃ ) converges to zero in probability as

r → ∞, n → ∞. Thus the resultant subdata set satisfies the constraint on the con-
dition number asymptotically. On the other hand, comparing with simple random
sampling directly from the full data, the

∑
i∈Γ hii is larger, which implies that the

selected subdata set still enjoys the benefit brought by the leverage scores.

4 Selection Consistency and Parameter Estimation

Analogous to (5), for the selected subdata through Algorithm 1, the selected
model according to BIC, denoted as Ŝ∗

BIC, satisfies that

Ŝ∗
BIC = argmin

Sk

{
r log

(
r−1

r∑
i=1

(y∗i − µ̂
∗(k)
i )2

)
+ p(k) log r

}
, (8)

where µ̂
∗(k)
i is the ith element of µ̂∗(k) = X∗

(k)β̂
∗
(k), and β̂∗

(k) is the MLE of the
kth candidate model based on the selected subdata. In the following, we will show
the model selection consistency and estimation consistency based on the selected
subdata via Algorithm 1.

Recall that the true model refers to the model in the set of correct candidate
models MC with the fewest parameters. For convenience, we define β(t) to be
the parameter vector of the true model. For selection consistency, we mean that
a selection criterion selects the true model with probability approaching one. Let
σ̂∗2
(k) be the MLE of σ2 based on the selected subdata. Recall that h(ii) defined
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in Algorithm 1 is the order statistic of full data leverage scores such that h(11) ≥
h(22) ≥ . . . ≥ h(nn). The following theorem states the selection consistency of Ŝ∗

BIC

defined in (8) based on the subdata selected via Algorithm 1.

Theorem 3 Assume that n−1XTX goes to a positive definite matrix, and σ̂∗2
(k) ̸→

0, σ̂∗2
(k) ̸→ ∞ and lim infn,r→∞ minj(n

∑r
i=1 h(ii))∥β(t)j∥2/ log r → ∞, for k =

1, . . . ,m, where β(t)j is the jth component of β(t). As r → ∞, n → ∞, with proba-
bility approaching one, the model selection based on the selected subdata according
to Algorithm 1 is consistent. That is, the probability that Ŝ∗

BIC is correct and has
the smallest dimension, goes to one.

Theorem 3 reveals that the signal that can be detected based on X∗ mainly re-
lies on the distribution of the leverage scores. For the uniform random subsampling
method, the detection condition is lim infr→∞ minj r∥β(t)j∥2/ log r → ∞. Note

that r−1∑r
i=1 h(ii) ≥ n−1∑n

i=1 h(ii) because h(11) ≥ . . . ≥ h(nn). This implies
that pr ≤ n

∑r
i=1 h(ii). Recall that the true model can be selected via the subdata

obtained by Algorithm 1 when lim infr→∞ minj(n
∑r

i=1 h(ii))∥β(t)j∥2/ log r goes
to infinity. Thus the worst performance of our method is as good as the uniform
subsampling in the sense of the rate for ∥β(t)j∥ to go to zero. For very nonuniform

leverage scores with power law decay h(ii) = i−ah(11) with some a > 0 (Papail-
iopoulos et al., 2014), it is possible that n

∑r
i=1 h(ii) = O(n). Thus our method

has some “super” efficiency. That is to say, our method may select the true model
under the condition n∥β(t)j∥2/ log(n) → ∞, when only r(r ≪ n) subsample are
used, which is the weakest signal that the full data BIC selector can detect.

Now we turn our attention to the estimation efficiency. Note that the selection
rule in Algorithm 1 is auxiliary, i.e., the selection procedure does not depend on Y ,
so the MLE of β based on the subdata in the true model is unbiased and efficient.
Since Algorithm 1 has selection consistency, the following theorem focuses on the
variance of the estimator for the selected model, which is the true model with
probability approaching one.

Theorem 4 Assume that n−1XTX goes to a positive definite matrix, σ̂∗2 ̸→ 0,
and σ̂∗2 ̸→ ∞. Let β̂∗

s be the estimator under the selected model obtained from the
data selected by Algorithm 1. As r → ∞, n → ∞, the following result holds

var(β̂∗
s ) = O

(
1

n
∑r

i=1 h(ii)

)
. (9)

Theorem 4 reveals that the quality of the subdata MLE based on the selected
model also mainly relies on the distribution of the leverage scores. It gives a guar-
antee that our method outperforms the uniform random subsampling method since
pr ≤ n

∑r
i=1 h(ii) ≤ np.

5 Numerical Studies

5.1 Simulation Results

In this section, we use simulation to evaluate the finite sample performance of
Algorithm 1. We assume that there are seven potential covariates to be considered,
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and an intercept term is included in the model with the true value fixed at βint =
0.25. To be precised, we generate µi = βint +

∑p
j=1 zijβj for i = 1, . . . , n. The

responses yi’s are generated from yi = µi + εi with εi’s being i.i.d. N(0, 1). Here
we opt to simulate the case with an intercept since it is more common in practice.
For the model slope parameters in each repetition of the simulation, we generate
the values of β1 and β2 independently from distribution Unif(0.5, 1), generate the
values of β3 and β4 independently from distribution Unif(0.05, 0.1), and set βj = 0
for j = 5, 6 and 7. We assume that any non-empty subset of these variables can
be a candidate set of active variables. Therefore there are 27 − 1 = 127 candidate
models. Here we use all-subset regression to illustrate our method. The results of
model selection via the forward regression are quite similar and thus we relegate
them to Appendix B. We consider the following six scenarios to generate the
covariates zi = (zi1, . . . , zi7)

T for full (training) data sets with n = 500, 000.

Case 1 Covariates are generated from the multivariate normal distributionN(0, Σ1)
with the (i, j)th entry of Σ1 being 0.5|i−j|.

Case 2 Covariates are generated from the multivariate normal distributionN(0, Σ2)
with the (i, j)th entry of Σ2 being 0.51(i̸=j) where 1(·) is the indicator
function.

Case 3 Covariates are generated from a mixture multivariate normal distribution
0.5N(0, Σ1) + 0.5N(0, Σ2), where Σ1 and Σ2 are defined in Cases 1 and
2, respectively.

Case 4 Covariates are generated from the multivariate t-distribution with three
degrees of freedom. The mean parameter is 0, and the scale matrix param-
eter Σ1 is defined in Case 1.

Case 5 Covariates are generated from a multivariate t-distribution with three de-
grees of freedom. The mean parameter is 0, and the scale matrix parameter
Σ2 is defined in Case 2.

Case 6 Covariates are generated from the log-normal distribution with parameters
0 and Σ2, which is defined in Case 2.

Data generated in Cases 1–3 have different correlation structures and leverage
scores are more uniform. In Cases 4 and 5, leverage scores are less-uniform as data
are generated from heavy tailed distributions. The distribution of the covariates
in Case 6 is asymmetric and skewed to the right.

For all the above six cases, we centralize Z = (zT1 , . . . , z
T
n )

T and Y , so the
widest model matrix X input in Algorithm 1 is centralized Z. For each candidate
model Sk, we first estimate the slope parameters β̂∗

(k) using the selected subdata
from the centralized full data set, and then the intercept term βint(k) is estimated

by Ȳ − Z̄T
(k)β̂

∗
(k), where Z̄(k) is the column mean vector of Z(k).

The performance of a subdata selection/sampling strategy is evaluated by the
following two criteria:

(i) Accuracy: The selection probability of the true model.
(ii) MSPE: The mean squared prediction error for the observations in the test

sample. To be precise, MSPE =n−1
test

∑ntest

i=1 ∥µi,test − β̂∗
int(k) − zi(k),testβ̂

∗
(k)∥

2

where ntest is the size of test data, µi,test is the conditional mean of the test
data, k stands for the selected model Sk, and zi(k),test are the covariates of
the kth model in the test data.

For comparison, we consider Algorithm 1 (LEVSS) with T = 10; the uniform
subsampling (UNIF) in which the sampling probabilities are 1/n; leverage score



Subdata Selection Algorithm for Linear Model Discrimination 11

subsampling (LEV) in which the sampling probabilities are hii/
∑

i=1 hii (Ma
et al., 2015); and the IBOSS method proposed in Wang et al. (2019). For the
leverage score subsampling, the BIC is calculated through the sampling version of
BIC which is proposed in Xu et al. (2013). We repeat 1, 000 times for each method
under each setting throughout this section. Computations are performed using R.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Fig. 2 Selection accuracies for different r based on UNIF (solid line with circles), LEVSS
(dashed line with triangles), LEV (dotted line with squares), and IBOSS (dot-dash line with
plus signs) methods for the six cases listed in Section 5.1. The models are selected based on
all-subset procedures via BIC.

Figure 2 reports the model selection results on the accuracy. We see that the
selection accuracies of the four methods increase as r increases in general, which
echoes the result in Theorem 3. It is clear to see that our method is uniformly
better than the uniform subsampling method. Our method and the IBOSS method
have a similar performance in selecting the true model, because both of them
are influenced by the D-optimality criterion. They have a higher probabilities in
selecting the true model than the UNIF and LEVSS methods.

To see the prediction results based on the selected model, we report the corre-
sponding log MSPE in Figure 3 with ntest = 500. We clearly see that the IBOSS
and our method (LEVSS) are uniformly better than the uniform subsampling
method. It is worth mentioning that our method performs the best. The leverage
score subsampling has a similar performance to the uniform subsampling method
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in Cases 1–3. For Cases 4–6, the leverage score subsampling performs slightly
better than uniform subsampling and worse than the IBOSS and our method
(LEVSS). This phenomenon arises due to the following two reasons. The first is
that IBOSS and our method have the advantage in selecting the true model com-
pared with the uniform subsampling and leverage score sampling methods. These
echo the model selection results in Figure 2. Second, for Cases 4–6, both uniform
subsampling and leverage score subsampling methods result in a root r consistent
estimator while our method has a higher efficiency with more nonuniform leverage
scores as discussed in Theorem 4.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Fig. 3 Log MSPEs for different r based on UNIF (solid line with circles), LEVSS (dashed
line with triangles), LEV (dotted line with squares), and IBOSS (dotdash line with plus signs)
methods for the six cases listed in Section 5.1. The models are selected based on the all-subset
regression via BIC.

Now we evaluate the computational efficiency of the subsampling strategies.
We implemented all methods using the R programming language and recorded the
computing times of the four subsampling strategies using the Sys.time() function.
Computations were carried out on a laptop computer with macOS and an 8-Core
Intel Core i9 processor. For brevity, in Table 1 we only report the computing times
for Case 1. For reference, we also implemented the Lasso method based on the full
data set, and recorded its computing time as a benchmark. Note that the Lasso
method is much faster than the all-subset regression on the full data set.
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Table 1 Computational time (in seconds) with different r for the four methods in Case 1.
The average time spent on the model selection step based on the BIC valus are reported in
parentheses.

r UNIF LEVSS LEV IBOSS
300 0.062 (0.059) 0.208 (0.065) 0.179 (0.065) 0.165 (0.062)
500 0.188 (0.160) 0.348 (0.149) 0.278 (0.155) 0.260 (0.138)
700 0.334 (0.309) 0.458 (0.287) 0.465 (0.331) 0.424 (0.281)
1000 0.711 (0.661) 0.773 (0.600) 0.780 (0.646) 0.704 (0.596)
Full 3.444

Calculating the estimator using a subsample requires O(rp2) time for each
candidate model, which is a significant reduction in comparison with the compu-
tational cost of the full data estimator which is O(np2). As expected, it is seen
that subsample based methods are faster than the full data selection method. It is
worth mentioning that our method has comparable performance with the uniform
subsampling method when r is not that small. We also record the time spent on
calculating the BIC for all candidate models. More than 80% of the time was spent
on calculating BIC values with the uniform subsampling method. The time spent
on calculating the BIC values increases rapidly as r increases. When r = 1000,
more than 80% of the time was spent on calculating BIC values for the candidate
models with all the four methods. Thus when r is not very small, our method does
not take much more time than the uniform subsampling method. Here the lever-
age scores are calculated through the singular value decomposition of the widest
model matrix of the full data. The proposed method can be further accelerated if
some approximating or parallel computing methods such as those in Drineas et al.
(2006); Meng et al. (2014) are adopted. This will make our algorithm scalable to
large datasets.

5.2 Real Data Study

Understanding factors that affect the price of diamond is important because
each diamond is unique and it is hard to find a reference price of a new diamond.
The price of a new diamond has to be determined by its attributes; this is different
from the determination of price for most manufactured products. The diamonds

data set in the ggplot2 package contains the prices and the specifications for more
than 50,000 diamonds. The problem of interest is to identify important factors that
affect the diamond pricing. Here are the seven factors in this data set. The first is
the carat (z1) which is the weight of the diamond, ranges from 0.2 to 5.01, and a
cube-root transform is made on this factor; the second factor indicates the quality
of the diamond cut (z2) and it is coded as one if the quality is better than “ Good”
and zero otherwise; the third factor is the level of diamond color (z3) with z3 being
one if the quality is better than “level F” and zero otherwise; the fourth factor is
a measurement on how clear the diamond is (z4) with z4 being one if the quality
is better than “VS2” and zero otherwise; the fifth and sixth factors are the total
depth percentage (z5) and the width at the widest point (z6) i.e., the “depth” and
“table” columns in the data set, respectively; the last factor is the volume of the
diamond (z7) which is roughly calculated as the product of the diamond’s length,
width, and depth. The response variable y is log10 of the price. Note that some
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special attribute affects the price significantly and needs to be considered case by
case. For example, the gemological institute of America pointed out that prices of
diamonds are affected by the “magic sizes” (Mamonov and Triantoro, 2018). Some
outliers such as the NO.24068 are excluded since the corresponding diamond has an
unusually large width that makes the price too high. As in Section 5.1, we assume
that any non-empty subset of these variables can be a candidate set of active
variables so there are 27 − 1 = 127 candidate models. Again, we regard the model
with the smallest BIC value based on the full data set as the true model, which is
ŷ = 1.087 + 3.760z1 + 0.041z2 − 0.081z3 + 0.126z4 − 0.007z5 − 0.006z6 − 0.003z7.
The model selection and prediction results with 500 replications are reported in
Figure 4.

(a) Selection Accuracies (b) Log MSPE

Fig. 4 Empirical model selection accuracies and Log MSPE for the diamond data set with
different r for the UNIF (solid line with circles), LEVSS (dashed line with triangles), LEV
(dotted line with squares), and IBOSS (dot-dash line with plus signs) methods through BIC.

6 Conclusion and remarks

In this work, guided by the experimental design theory, we have developed
a deterministic data selection method using leverage scores for linear model se-
lection and estimation problems. Compared with random sampling, the proposed
method better identifies the correct model with weaker signals. When the leverage
scores are highly non-uniform, an analysis based on the selected subdata can be
arbitrarily close to the full data analysis. Furthermore, Theorem 4 shows that the
variance of the subdata estimator can converge to zero under a mild assumption
even with a fixed subsample size r. Extensive numerical results have demonstrated
the superiority of the proposed method to other state-of-the-art algorithms.

Investigating deterministic leveraging for linear model selection is the first step
to understand this approach. Although our analysis has focused on the linear
regression, we believe that the implications of leveraging apply to more complex
models and estimation problems. For example, if the covariates are the spline
bases in B-splines, then the idea of deterministic leveraging can be extended to
the generalized additive models (Hastie and Tibshirani, 1990; Truong et al., 2005).
Moreover, the proposed method can also be extended to include the weighted least
squares method and its variants, which are commonly used for generalized linear
models (McCullagh and Nelder, 1989) and varying coefficient models (Hastie and
Tibshirani, 1993).
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In this work, we have carried out model selection via the BIC and measure the
uncertainty with entropy under the assumption that the true model is included in
the candidate set. As a referee pointed out, lurking variables may exist in practice
and as a result the true model is not in the candidate set. For this scenario, the
AIC is more appropriate and the theoretical and practical performance warrant
further investigations. In addition, high leverage observations may contain outliers
and thus do not give a representative picture of the full data. A pre-processing
step that tries to eliminate outliers will be helpful in this situation. We address
the model discrimination framework with a fixed dimension in this paper, which
occurs in many practical problems and real datasets. The case that both p and n
are growing rapidly is also common in practice. How to conduct subdata selection,
especially in determining the subdata size, is an interesting and important problem
that warrants future investigations.
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Appendix

A Technical details

Proof of Theorem 1. For any given subdata X∗, by applying the entropy decomposition
in information theory (Sebastiani and Wynn, 2000, Equation (2)), the joint entropy of Y ∗ and
the parameter Θ can be decomposed as

Ent(Y ∗, Θ|X∗) = Ent(Θ|X∗) + EΘ{Ent(Y ∗|Θ,X∗)}
= Ent(Θ) + Ent(ε∗),

(A.1)

where ε∗ stands for the corresponding error term of (Y ∗, X∗) in model (1). The second equality
holds by the model assumption since all the randomness of Y ∗ comes from the error term con-
ditional on Θ,X∗ and Θ is functionally independent of X∗. This implies that Ent(Y ∗, Θ|X∗)
is a constant up to the subdata size r.

Also note that Ent(Y ∗, Θ|X∗) can also be decomposed as

Ent(Y ∗, Θ|X∗) = Ent(Y ∗|X∗) + EY ∗{Ent(Θ|Y ∗, X∗)}. (A.2)

That is to say maximizing Ent(Y ∗|X∗) indicates minimizing the overall expected deviance loss
EY ∗{Ent(Θ|Y ∗, X∗)}.

Now we turns to calculate Ent(Y ∗|X∗). Without loss of generality, we assume that the
first p(t) columns of X be the model matrix of the true model. Thus the prior of β(t) comes

from N(βprior,(t), σ
2
f Ip(t) ), where βprior,(t) corresponds to the first p(t) entries of βprior. Note

that Y ∗ = X∗
(t)

β(t) + ε and the prior of β(t) obeys N(βprior,(t), σ
2
f Ip(t) ). Thus the marginal

distribution of Y ∗ is normal with mean X∗
(t)

βprior,(t) and variance σ2It + σ2
fX

∗T
(t)

X∗
(t)

under

model (1). The desired results come from the facts

Ent(Y ∗|X∗) = log det(σ2Ir + σ2
fX

∗
(t)X

∗T
(t) ) + c1

= log det(σ−2σ2
fX

∗T
(t)X

∗
(t) + It) + c2,

= log det(X∗T
(t)X

∗
(t) + σ2σ−2

f It) + c3,

(A.3)

where c1, c2, c3 are some constant up to the subdata size r. The second equality comes from
the matrix determinant lemma, i.e., det(A+BC) = det(A) det(I+CA−1B) for some matrices
A,B,C with A > 0. ⊓⊔



16 Jun Yu, HaiYing Wang

Proof of Theorem 2. It is sufficient to show that X∗TX∗ ≤ (
∑n

i=1 δihii)X
TX in the

sense of Loewner ordering. Let xi be the ith row of X. For any a ∈ Rp, noting that XTX is a
full rank matrix, a can be represent as a = (XTX)−1/2b for some b ∈ Rp. Then,

aTxix
T
i a = bT(XTX)−1/2xT

i xi(X
TX)−1/2b

≤ tr{(XTX)−1/2xT
i xi(X

TX)−1/2}∥b∥22
= hii{bT(XTX)−1/2(XTX)(XTX)−1/2b} (A.4)

= hiia
T(XTX)a, (A.5)

where tr(·) is the trace operator and (XTX)−1/2(XTX)−1/2 = (XTX)−1. Therefore, xix
T
i ≤

hiiX
TX and the desired result comes from summing over the both side of the inequality. ⊓⊔
For clarity, we begin with the proof of the following lemma since some results in the

following lemma will be used in the proof of Theorem 3.

Lemma 1 Assume that n−1XTX goes to a positive definite matrix. Let β̂∗
k be the MLE based

on selected subdata set according to Algorithm 1 for the kth candidate model. As r → ∞, n →
∞, the following result holds:

Var(β̂∗
k) = O

(
1

n
∑r

i=1 h(ii)

)
. (A.6)

Proof of Lemma 1 According to Algorithm 1, X∗ = UΓΣV T. Then it is sufficient to show
that

c

r∑
i=1

h(ii) ≤ λmin(U
T
Γ UΓ ) ≤ λmax(U

T
Γ UΓ ) ≤

r∑
i=1

h(ii), (A.7)

for some constant c, where λmax(A), λmin(A) stand for the maximum and minimum eigen-
value of A, respectively. Since UT

Γ UΓ is positive definite through Algorithm 1, therefore

λmax(UT
Γ UΓ ) ≤ tr(UT

Γ UΓ ) =
∑r

i=1 h(ii). By the definition of the condition number, it holds
that

λmin(U
T
Γ UΓ ) = λmax(U

T
Γ UΓ )/κ(UT

Γ UΓ ) ≥ tr(UT
Γ UΓ )/(pT ),

where the last inequality comes from the fact that tr(UT
Γ UΓ ) ≤ pλmax(UT

Γ UΓ ).
From (A.7), it follows that

c
r∑

i=1

h(ii)V Σ2V T ≤ X∗TX∗ ≤
r∑

i=1

h(ii)V Σ2V T , (A.8)

and the desired results follows by noting XTX = V Σ2V T and Var(β̂k) = (PTX∗TX∗P )−1

for the projection matrix P such that X(k) = XP where X(k) is the design matrix for model
Sk. ⊓⊔

Now, let us turn to proof Theorem 3.

Proof of Theorem 3. Denote MC be the set of correct candidate models, and MI =
M−MC be the set of incorrect candidate models. We first show that

∆(k) = lim inf
r

min
Sk∈MI

∥µ∗ −H∗
(k)µ

∗∥2/ log r → ∞, (A.9)

where µ∗ stands for the mean of the selected data, H∗
(k)

= X∗
(k)

(X∗T
(k)

X∗
(k)

)−1X∗T
(k)

.

For any candidate model in MI , say Sk as an example, let the model matrix for the closest
correct model be X̃∗

(k)
:= (X∗

(č)
, X∗

(k)
). HereX∗

(č)
stands for the “complementary” design, which

consists of the columns of X∗
(t)

that are not included in X∗
(k)

. Denote the regression coefficient

vector corresponding to X∗
(č)

as β(č), which is a subvector of β(t). Direct calculation yields

∥µ∗ −H∗
(k)µ

∗∥2 = inf
α

∥X∗
(č)β(č) −X∗

(k)α∥
2 (A.10)
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= inf
α
{(βT

(č), α
T)(X̃∗T

(k)X̃
∗
(k))(β

T
(č), α

T)T}. (A.11)

Utilizing the results in (A.8), we have(
c2n

r∑
i=1

h(ii)

)(
1

n
XTX

)
≤ X∗TX∗ ≤

(
n

r∑
i=1

h(ii)

)(
1

n
XTX

)
, (A.12)

for some constant c2. Note that the X̃(k) is a submatrix of X up to a column permutation. Thus

λmin(X̃
∗T
(k)

X̃∗
(k)

) ≥ λmin(X̃
∗TX̃∗) = O

(
n
∑r

i=1 h(ii)

)
, where λmin(·) stands for the smallest

eigenvalue of a squared matrix. From (A.10), we have

lim inf
n,r→∞

min
Sk∈MI

∥µ∗ −H∗
(k)µ

∗∥2/ log r ≥ lim inf
n,r→∞

min
j

(n

r∑
i=1

h(ii))∥β(t)j∥2/ log r → ∞,

which implies (A.9) holds.

For convenience, let BIC∗(Sk) = r log
(
r−1

∑r
i=1(y

∗
i − µ̂

∗(k)
i )2

)
+ (p(k) + 1) log r. From

(3.7) in Shao (1997), for any model Sk in MI , we have

r∑
i=1

(y∗i − µ̂
∗(k)
i )2 −

r∑
i=1

(y∗i − µ̂
∗(t)
i )2 ≥ ∆(k) ≥ p log r > 0, (A.13)

which implies log(
∑r

i=1(y
∗
i − µ̂

∗(k)
i )2) − log(

∑r
i=1(y

∗
i − µ̂

∗(t)
i )2) > r log(1 + p log r/r) under

the assumption σ̂∗ ̸→ 0. Therefore,

BIC∗(Sk)− BIC∗(St) ≥ r log(1 + p log r/r)− (p− p(k)) log r → ∞. (A.14)

Similarly, for any model Sk′ in MC with p(k′) > p(t), where p(t) is the column dimension
of X(t), it is straightforward to see that

r log

(
r−1

r∑
i=1

(y∗i − µ̂
∗(k′)
i )2

)
− r log

(
r−1

r∑
i=1

(y∗i − µ̂
∗(t)
i )2

)
→ χ2

p(k′)−p(t)
, (A.15)

according to the log likelihood ratio test (see van der Vaart, 1998, Chapter 16). Therefore, it
holds that

BIC∗(Sk′ )− BIC∗(St) = O(log r) → ∞. (A.16)

Combining (A.14) and (A.16), we can get the desired result. ⊓⊔

Proof of Theorem 4. This is the direct result from Lemma 1. ⊓⊔
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B Additional Simulation Results on forward regression

Since the number of possible models increases exponentially with p, all-subset regression is
only feasible for the cases that p is relatively small. Alternatively, a forward selection approach
is usually adopted. More precisely, the forward regression starts from the null model, and
iteratively adds one variable to the currently “best” model which yields the lowest value for
the BIC at a time. This process is repeated until no more variables should be added into the
currently “best” model. In this part, we adapt the forward regression to illustrate the proposed
method. Of course, a backward elimination procedure and a step-wise regression procedure can
also be adopted. Since the three methods have similar performance, we only report the results
on forward regression.

In accordance with Section 5.1, we also demonstrate our method as well as the uniform
subsampling, leveraging score subsampling and IBOSS through the six cases. The selection
accuracies for the six cases are presented in Figure A.1. The log MSPEs are also provided in
Figure A.2 to evaluate the performance of prediction.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Fig. A.1 Selection accuracies for different r based on UNIF (solid line with circles), LEVSS
(dashed line with triangles), LEV (dotted line with squares) and IBOSS (dotdash line with
plus signs) method for the six cases listed in Section 5.1. The models are selected based on the
forward regression procedure via BIC.

From Figures A.1, and A.2, one can see that the forward regression results based on
BIC are very similar to the results on the all-subset regressions on BIC.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Fig. A.2 Log MSPEs for different r based on UNIF (solid line with circles), LEVSS (dashed
line with triangles), LEV (dotted line with squares) and IBOSS (dotdash line with plus signs)
methods for the six cases listed in Section 5.1. The models are selected based on the forward
regression via BIC.
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C Additional Simulation Results on Lasso

Now, we will exam our method’s performance on model selection according to Lasso (Tib-
shirani, 1996).

To be aligned with the settings described in Section 5.1, we also demonstrate our methods
as well as the other three methods (i.e., uniform subsampling, leverage score subsampling, and
the IBOSS) on the six cases listed at the beginning of Section 5.1 and evaluate the selection
performance through the selection accuracies and MSPEs. The Lasso method is conducted
through the glmnet package (Simon et al., 2011) and the tuning parameters are selected
through 10-fold cross-validation according to the cv.glmnet() function. As for the leverage
score subsampling, the Lasso is conduct as in Leng and Leung (2011).

Results on the selection accuracies are presented in Figure A.3. It can be seen that the
selection results based on Lasso are very similar to the results on the subset selection based
on BIC.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Fig. A.3 Selection accuracies for different r based on UNIF (solid line with circles), LEVSS
(dashed line with triangles), LEV (dotted line with squares) and IBOSS (dotdash line with
plus signs) method for the six cases listed in Section 5.1. The models are selected via Lasso.

To see the benefits of the model selection, we also report the log MSPEs in Figure A.4 with
ntest = 500. From Figure A.4, we can clearly see that the IBOSS and our method (LEVSS)
are uniformly performance better than the uniform subsampling method.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Fig. A.4 Log MSPEs for different r based on UNIF (solid line with circles), LEVSS (dashed
line with triangles), LEV (dotted line with squares) and IBOSS (dotdash line with plus signs)
methods for the six cases listed in Section 5.1. The models are selected via Lasso.
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