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Abstract

We investigate the computability of thermodynamic invariants at zero tem-
perature for one-dimensional subshifts of finite type. In particular, we prove
that the residual entropy (i.e., the joint ground state entropy) is an upper
semi-computable function on the space of continuous potentials, but it is not
computable. Next, we consider locally constant potentials for which the zero-
temperature measure is known to exist. We characterize the computability of
the zero-temperature measure and its entropy for potentials that are constant on
cylinders of a given length k. In particular, we show the existence of an open
and dense set of locally constant potentials for which the zero-temperature mea-
sure can be computationally identified as an elementary periodic point measure.
Finally, we show that our methods do not generalize to treat the case when & is
not given.

Keywords: zero-temperature measures, residual entropy, ground states, entropy,
thermodynamic formalism, computability

Mathematics Subject Classification numbers: Primary 37D35, 37E45, 03D15,
Secondary 37B10, 37140, 03D80.

1. Introduction

1.1. Motivation

It is a natural and important question to understand which mathematical invariants can (in
principle) be derived by computer experiments. In particular, since computer-based approxi-
mations are often used to gain insight into theoretical questions, estimates on the quality and
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accuracy of computational results may be needed to have confidence in any conjectures drawn
from such experiments. The answers to these questions (and the corresponding estimates) are
naturally linked to questions about mathematical proofs and models. In fact, these answers lie
at the boundary of mathematics, computer science, and their applications.

We provide some answers concerning the computability of basic thermodynamic invariants
at zero temperature. In particular, we study the computability of the residual entropy (which
coincides with the entropy of the ground states of the system) on the space of continuous
potentials for subshifts of finite type (SFTs). We show that the residual entropy is an upper
semi-computable function of the potentials, but it is not computable. One complication that
arises is that continuous potentials may have phase transitions, which do not occur in the Holder
continuous case. Since, in general, phase transitions cannot be detected algorithmically, see,
e.g., [34, 39], we are required to develop a new approach which is based on techniques from
convex analysis and the thermodynamic formalism.

We also consider the computability of the zero-temperature measure for locally constant
potentials. The existence of this measure was originally established by Brémont [5] by using
methods from analytic geometry (for existence proofs using methods from dynamical sys-
tems, see [7, 23]). For potentials that are constant on cylinders of a given length k, we provide
explicit characterizations of the sets of potentials for which the zero-temperature measure or its
entropy are computable. We explicitly describe an open and dense subset O, of locally constant
potentials for which the zero-temperature measure is a computable periodic point measure.
As acounterpart to these results, we show that once we consider the space of all locally constant
potentials (i.e., without fixing the cylinder length k), the set O = | J, Oy has empty interior. In
particular, this shows that our results do not directly generalize to the case where k is not given.

There are several recent papers that study invariant sets, topological entropy, and other
invariants from the computable analysis point of view. These papers include results about
the computability of certain specific measures (e.g., maximal entropy and physical measures),
see [1, 13, 14] and the references therein. Furthermore, there are papers proving results on
the numerical computation of invariant sets, entropy, and dimension, see, e.g., [9, 19, 20]
and the references therein. There are also studies concerning the computation of the topo-
logical entropy or pressure for one and multi-dimensional shift maps, see, e.g., [15, 16, 26,
27, 33, 34]. In our recent paper with Schmoll [6], we derive results about the computability
of generalized rotation sets and localized entropies. In particular, our results hold for SFTs.
We note that the results in [6] only consider the case of positive temperature, while the
more delicate case of zero temperature is considered in this paper. To the best of our knowl-
edge, this paper is the first attempt to study the computability of thermodynamic invariants at
zero-temperature.

1.2. Statement of results

Let f: X — X be a subshift of finite type (SFT) over an alphabet with d elements and let M
be the set of f~invariant Borel probability measures on X endowed with the weak * topology.
With this topology, M is a compact, convex, and metrizable topological space. We use the
standing assumption that f'is transitive and has positive topological entropy. We consider the
Banach space (C(X, R), ||-||«), where |||/ denotes the supremum norm. For ¢ € C(X, R) and
p € M, we write ju(¢) = | ¢dp and define

1(¢) = {(¢) : p € M} .

It follows, from the compactness and convexity of MM, that /(¢) is a compact interval [ag, by].
We define Minax (@) = {1 € M : u(P) = by }. If 1 € Minax (@), then we say p is a maximizing
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measure for ¢. Moreover, we say ¢ € C(X,R) is uniquely maximizing if Mx(¢) is a sin-
gleton. We note that the study of maximizing measures is one of the central objectives in the
area of ergodic optimization. We refer the reader to the survey article [18] for a state-of-the-art
presentation of this subject. We call

hoc,q’) - SUP{hu(f) pe Mmax(¢)}

the residual entropy of the potential ¢. The residual entropy coincides with the entropy of the
ground states of the potential ¢ (see section 2.3 for details). In particular, if the zero-temperature
measure fi., , of ¢ exists (see below and section 2.2 for the definition of zero-temperature
measures), then /1, coincides with the entropy of i, 4.

There are several recent theoretical results about the residual entropy and uniquely maximiz-
ing periodic point measures for an open and dense set of potentials in the Holder and Lipschitz
topologies [10, 11, 24, 28]. We observe, however, that these topologies are not compatible
with the supremum topology since open balls in the supremum topology are not bounded in
the Holder and Lipschitz topologies. Therefore, it does not appear possible to study these gener-
icity results from the computable analysis point of view. Consequently, the work in this paper
uses the supremum norm.

Our first goal is to characterize the computability of the function ¢ — hy 4. To do this,
we use two notions of computability for functions: computable functions and upper semi-
computable functions (also called right recursively enumerable or right computable functions).
We say that a function g : C(X,R) — R is computable if, for any input function ¢, the real
number g(¢) can be calculated to any prescribed accuracy. Upper semi-computability is a
weaker notion of computability, where, instead, there is an algorithm to compute a sequence g,
converging to g(¢) from above. In particular, for upper semi-computability, the bounds on the
convergence rate for g, — g(¢) are not included. We refer the reader to section 2.5 and [4, 13]
for details.

The first main theorem we prove in this paper shows that the residual entropy is semi-
computable, but not computable.

Theorem A. The function ¢ — hoy is upper semi-computable, but not computable on
C(X,R). Moreover, the map ¢ — hu 4 is continuous at ¢ if and only if hy 4, = 0.

In section 2.5, we introduce the definition for the function ¢ — A, to be computable at a
point ¢,. This definition provides a computable version of being continuous at a point. More-
over, if the map ¢ — h., restricted to a set S is computable and ¢, is in the interior of S, then
¢ — h 4 is computable at ¢,. With this definition in hand, a direct corollary of theorem A is:

Corollary 1.1.  The function ¢ — hy, is computable at ¢, if and only if hog 4, = 0.

The second goal of this paper is to study the computability of the zero-temperature mea-
sure and its entropy for locally constant potentials. We recall that ;4 € MM is an equilibrium
state of ¢ € C(X,R) if ; maximizes h,(f) + v(¢) among all v € M. If ¢ is Holder contin-
uous (and, in particular, if ¢ is locally constant), then the equilibrium state is unique and we
denote it by j1,,. We say i, 4 is the zero-temperature measure of ¢ if 1o , = limpgc g4
where the limit is taken in the weak * topology>. We recall that, for locally constant potentials,

3 We point out that, in the mathematical theory of the thermodynamic formalism, it is customary to consider the inverse
temperature 3 = 1/T (with T being the temperature of the system) and to take the limit 5 — oo. The notation that is
used for the inverse temperature in physics is § = &, where kg is Boltzmann’s constant, which can be taken to be
equal to one in an appropriate system of units.
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the zero-temperature measure exists [5]. Let LC(X, R) = UkeN LCi(X, R) denote the space of
locally constant potentials, where LC, (X, R) denotes the space of potentials that are constant on
cylinders of length k. Let m.(k) denote the cardinality of the set of cylinders of X of length k
(note that mc(k) < d*). Then we can identify LCy(X, R) with R"<® so that LCx(X,R) is a
Banach space when endowed with the standard norm.

We note that, for the purpose of studying zero-temperature measures and their associated
entropies, it suffices to consider the space LC,(X, R) N B(0, 1), where B(0, 1) is the closed unit
ball in R”®_ This reduction follows since 11, 5 = /i . forall v > 0. To illustrate some of the
difficulties when dealing with the computability of /. 4 and p, 4, we consider the following
basic example, see [5, 38]:

Example 1.2. Let X be the full shift on two symbols, i.e., X = {0, 1}", and let f: X — X
be the shift map. Let 0 < «;, ay be computable real numbers. Let ¢ € LC,(X, R) be given

. 1 [6%)
by the matrix <a2 0
i, xo = j}. We argue that neither A 4 nor y1, 4 are computable since they are not continuous
functions: if o; # an, then P 18 @ periodic point measure, and, in particular, 4, = 0. On
the other hand, if oy = ap, then p, is the unique measure of maximal entropy (i.e., the

> , where ¢, ; denotes the value of ¢ on the cylinder Cy(i j)d:ef{x X =

Parry measure) of the golden mean shift, i.e., the SFT with transition matrix A = G (1)>

Furthermore, A, ,(f) = log HT\E
To overcome these difficulties, we partition the space of potentials LC;(X, R) N B(0, 1) into
three sets with distinct computability properties, namely,

LC,(X,R)N E(O, 1) = O UZ/{k U Vi. (1)

We explicitly define the three sets and identify their properties:

(a) Oy is the set of uniquely maximizing potentials ¢ € LC(X,R) N B(0, 1). Moreover, the
unique maximizing measure of ¢ is a k-elementary periodic point measure. Additionally,
O is open and dense in LC(X, R) N B(0, 1).

(b) Ox Ul is the set of potentials ¢ € LCx(X,R) N B(0, 1) with hy s = 0. Therefore, Uy is
the set of potentials with more than one ergodic maximizing measure, all of which are
k-elementary periodic point measures*. Furthermore, for ¢ € Uy, the measure Moo 1S @
convex combination of these k-elementary periodic point measures. It follows that O, U4
is an open set in LCx(X, R) N B(0, 1).

(c) Vy is the set of potentials ¢ € LCx(X,R) N B(0, 1) with /.5 > 0. It follows that V is a
closed set in LCx(X, R) N B(0, 1).

The properties of the sets described in this partition follow from results in [38], where a
similar topological partition is considered. We note that the statement that O Ul is open is
not explicitly proven in [38], but its proof is analogous to the proof that Oy is open.

To be able to make statements about the computability of the sets Oy and Oy U Uy, we briefly
recall the notion of recursively open sets. Namely, we say an open set S is recursively open if
there exists a Turing machine which for each n € N produces a ball B, such that S = |, B,
(see section 2.5 for details). We prove the following result:

4We note that this condition implies /., = 0 for all ¢ € Uy, see [38].
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Theorem B. Let k € N be given. The following hold.:

(a) The maps ¢ +— [, 4 and ¢ — hy g are computable functions on O, C LCi(X,R). Fur-
thermore, the set (’);; is a recursively open set;

(b) The map ¢ — h 4 is a computable function on Oy Ul C LCu(X,R). For any ¢g € Uy,
the map ¢ v~ p, 4 is not continuous (and hence not computable) at ¢, in Oy Uy.
Furthermore, the set Oy, UU, is a recursively open set; and

(¢c) For any ¢g € Vi, neither the map ¢ — hy 4 nor the map ¢ — i, 4 are continuous (and
hence not computable) at ¢ in LCr(X, R).

We point out that in the statement of theorem B, the number & (i.e., the cylinder length on
which the potentials are constant) is given, and, in particular, is not determined by the Turing
machine that queries an oracle of the potential. One might suspect that either k can be calcu-
lated or that some of the results in theorem B generalize to LC(X, R) without specifying k.
In this direction, we recall that O = [ J, Oy denotes the set of locally constant potentials that
are uniquely maximizing. One might hope that O is a recursively open set, i.e., that member-
ship in O is semi-decidable. A first indication that this could not be true is given example 5.1
where it is shown that O is not open in LC(X, R). In fact, we have the following even stronger
result from proposition 5.2:

Theorem C. Let f: X — X be a transitive SFT with positive topological entropy. Then the
set O has no interior points in LC(X, R).

As noted above, theorem C indicates that, from the point of view of computable analysis,
there are significant differences between the cases of a given and of an arbitrary cylinder length.
On the other hand, theorem C is also of theoretical interest in ergodic optimization. This is,
in part, as it displays a sharp contrast between the locally constant case (in the supremum
topology) and the Lipschitz case (in the Lipschitz topology). In particular, for the latter case,
the set of potentials with a uniquely maximizing periodic point measure is open and dense in
the space of all Lipschitz potentials, see Contreras’ theorem [10].

1.3. Outline of the paper and summary of proofs

In section 2, we review some concepts from symbolic dynamics, the thermodynamic formal-
ism, and computational analysis. In section 3, we present the proof of theorem A. We construct
a sequence (/3,), with associated equilibrium measures (i, of 8,,¢ such that (,,,( f)), is a com-
putable sequence that converges from above to /4, 4. This construction is fairly straight-forward
in the case when the pressure function 3 — Pip(3¢) is differentiable. The situation is more
complicated, however, when ¢ is merely continuous due to the possibility of phase transitions
(which cannot be detected algorithmically). To overcome this difficulty, we apply techniques
from convex analysis to compute a sequence /,,,( f) that approximates h, 4. The claim that
@ > hy 4 18 continuous at ¢ if and only if /1, 45, = O follows from basic properties of the topo-
logical pressure and the fact that the set O of uniquely maximizing locally constant potentials
is dense in C(X, R).

In section 4, we prove theorem B. To show that the sets of potentials O, and Oy Ul can be
algorithmically detected, we approximate 1, (¢) to high accuracy for all k-elementary periodic
points x. In particular, we compute ¢,(¢) to identify those x’s that may maximize 1, (¢), see
propositions 4.1 and 4.2. Once the corresponding inequalities are established, /.4 and p. 4
can be identified from the general theory presented in section 2. The noncomputability results
of theorems B and C appear in sections 4 and 5. These results are based on similar approaches
where we construct small, explicit perturbations of ¢ and show that such perturbations remove
the potential from the appropriate set, see propositions 4.3 and 5.2.
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2. Settings and generalities

We introduce the relevant background material and obtain preliminary results. In particular, we
provide overviews of the pertinent results and definitions from shift spaces, zero-temperature
measures, ground states, locally constant potentials, and computability theory.

2.1. Shift maps

Let A= {0,...,d — 1} be a finite set called the alphabet. We endow AN = {x = (x,)>%, :
x, € A} with the product topology so that A" is a compact metrizable space. For example,
given 0 € (0, 1),

d(x,y) = dy(x,y) = o0 and - d(x,x) =0 @)

defines a metric that induces the product topology. The shift map f: AN — AN defined by
fixX)n = xp41isacontinuousd to 1 map. Givenad x d matrix A with valuesin {0, 1} (called the
transition matrix), we define X = X4 = {x € AN Ay = 1}, which is a closed f-invariant
subset of AN. We say f| x, 18 a subshift of finite type (SFT). For the remainder of this paper,
we assume that f: X — X is a transitive SFT, see, e.g., [21] for details.

For x € X, we write m(x) =x;...x,andcall T =7 ... 7, € AX a segment of length k.
Moreover, we denote the cylinder generated by 7 by Ci(T) = {x € X 1 x1 = 71, ..., X, = Tk},
which may be empty. Given x € X and k € N, we call Ci(x) = Ci(mr(x)) the cylinder of length
k generated by x. Given 7 € A¥, we denote the periodic point generated by 7 by Or(r) =
TL ... TkTL ... TkTi ... Tk - . ., provided Or(7) € X. We denote the set of all periodic points of
f with (prime) period n by Per,(f). Moreover, Per(f) = U@l Per,(f) denotes the set of all
periodic points of f. For x € Per,(f), we call 7, = x; ... x, the generating segment of x, i.e.,
T, 1s the minimal length segment such that x = Or(7,). Let k € N be fixed. We define the
k-cylinder support of x € Per,(f) by

Six) = {C(fi(x):i e NU{0}} = {Cu(fi(x)): i=0,....,n—1}. 3)

Moreover, we say that x € Per,(f) is a k-elementary periodic point if C,(f(x)) # Ci(f/(x)) for
alli,j=0,...,n— 1 withi # j. When k = 1, we simply say that x is an elementary periodic
point. We denote the set of all k-elementary periodic points by EPer*( f). We note that the k-
elementary periodic points were previously used (with other names) by Chazottes et al [7],
Jenkinson [17] and Ziemian [40]. We recall that m.(k) denotes the cardinality of the set of
cylinders of length k in X. It follows that the period of any k-elementary periodic point is
at most m.(k), and, thus, EPer(f) is finite. For x € Per,(f), we denote the unique invariant
measure supported on the orbit of x by p,, that is p, = %Z;’;& d iy For ¢ € C(X,R), we
obtain the formula

1 n—1 .
@) = > d(f'(). )
i=0

2.2. Topological pressure, ground states and zero-temperature measures

We briefly recall the relevant facts about the topological pressure, see, e.g., [35]. Letf: X — X
be a transitive SFT. The topological pressure of ¢ € C(X, R) is defined as

Piop(®) = sup (hu(f) + u(@)), )

pneM
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where h,(f) denotes the measure-theoretic entropy of .. Moreover, hp(f) = Piop(0) denotes
the topological entropy of f. We recall that if v € M satisfies Piop(¢p) = h,(f) + v(¢), then v
is an equilibrium state of ¢. We denote the set of equilibrium states of ¢ by ES(¢). Since the
entropy map v — h,(f) is upper semi-continuous, ES(¢) is nonempty. Furthermore, ES(¢) is
a compact and convex set whose extreme points are the ergodic equilibrium states.

We say € M is a ground state of the potential ¢ if there exists a sequence (3, — oo
and equilibrium states i, € ES(5,¢) such that p = lim,_, 1, Here, we think of 3 as the
inverse temperature of the system (see the discussion in section 1.2). Thus, ground states are
accumulation points of equilibrium states as the temperature approaches zero. We denote the
set of ground states of ¢ by GS(¢). By compactness, GS(¢) is nonempty.

Next, we consider the case where 3¢ has a unique equilibrium state p15 = f14, forall 8 > 0.
This case occurs, for example, when ¢ is Holder continuous. We say [t ¢ € M is the zero-
temperature measure of ¢ if y ., = limg .o 5. We note that, in general, the uniqueness of
the equilibrium states of 3¢ does not guarantee the existence of the zero-temperature measure,
see, e.g., [2, 8, 12].

2.3. Entropy of ground states

‘We continue to use the definitions from section 1.2. Let ¢ € C(X, R). For w € I(¢), we define
H(w)= Hy(w) = sup {h,(f) : p(¢) = w}

to be the localized entropy at w, see, e.g., [17, 22]. Since v — h,(f) is affine and upper semi-
continuous on M, we conclude that I is concave and upper semi-continuous and, therefore,
continuous. We recall that 3 (b,) coincides with the residual entropy /. 4 of the potential ¢.
‘We make use of the following two lemmas to understand the behavior of the entropy as 5 — oc:

Lemma 2.1. Let (83,), with 3, € RT be a strictly increasing sequence converging to oc.
Then, for any sequence of measures ({4,),, where 1, € ES(3,¢), we have:

(@) by — (@) < hiop(f)/B,. Moreover, the sequence (u,(¢)), is increasing with
lim,, .o Mn(¢) = bc‘);

(b) (hy, () is decreasing with lim,,_,, hy, ( f) = heo g; and

(¢) If p € GS(9), then hy,(f) = hoo g

Proof. Let ;o € M such that p(¢) = by and h,( f) = FH(by). Since p,, is an equilibrium
state of 3, ¢, it follows that i, (f) + Bupin(¢) = hu(f) + Bubs. Therefore, 5,(by — pin(¢)) <
hy, () < hop( f), and the first and last parts of statement (a) follow.

For the remaining part of statement (a), we observe that since y, and p, ., are equilib-
rium states for 3,¢ and 3, ¢, respectively, it follows that &, (f) + Bupn(@) = hy,, () +
Bn,un+l(¢) and hu,,+1(f) + 5n+1/in+1(¢) > hun(f) + ﬂn+1,un(¢)- Eliminating the entropies
from these inequalities leads to (3, | — B3,) (1, +1(®) — p,(¢)) = 0. Since the 3,’s are strictly
increasing, the final part of statement (a) follows.

The first part of statement (b) follows directly from statement (a) and the inequality
Ny, () + Bupin(@) = hy, 4 (f) + Bupins1(¢). For the second part of statement (b), since p,, is
an equilibrium state of /3,0, it follows that i, ( f) = F(1a(¢)). We recall that H(by) = ho 6.
Then, by statement (a) and the continuity of J{, the second part of statement (b) follows.

Finally, statement (c) follows from statement (b) and the upper semi-continuity of the
entropy map. (]
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Lemma 2.2. Let ¢y € C(X,R) with ho 3, = 0. Then, ¢ — hog 4 is continuous at ¢,

Proof. We recall that for all ¢ € C(X,R), H(by) = hs . Fix € > 0; by the continuity
of J(, when p(¢,) is sufficiently close to by, then h,( f) < H(uu(po)) < €. Moreover, if
|l — dglloc < 6, then, for all € M, |u(d) — (dy)| < 6, and, in particular, |by — by, | < 6.
Hence, if pu(¢) = by, then |u(¢o) — bg,| < 20. Therefore, if 0 is sufficiently small, then 4,,(f) <
¢. Then, by the definition of I, it follows that s, 4 < €, and the result follows. O

We show in proposition 3.5 that the converse to lemma 2.2 holds, i.e., that ¢ — hy 4 is
continuous at ¢, if and only if /1, ¢, = 0.

2.4. Locally constant potentials

For ¢ € C(X,R) and k € N, we define vari(¢) = sup{|p(x) — d)| : X1 = Yy, ...\ Xk = Vi)
We denote the set of potentials that are constant on cylinders of length & by LCy(X,R) =
{¢ € CX,R): vary(¢) = 0}. Moreover, LC(X,R) = | J, LCx(X, R) denotes the set of locally
constant potentials. Let ¢ € LCi(X,R). By using a block code argument, see, e.g., [6,
proposition 5.5], we may reduce the case k > 1 to the case k = 1.

We observe that since the periodic point measures are dense in JV(, see, e.g., [25], I(¢) can
be written in terms of the periodic points, i.e.,

I(¢) = conv {p,(¢) : x € Per(f)}. (6)

Furthermore, by decomposing the generating segment of each periodic point into the generat-
ing segments of finitely many k-elementary periodic points of X (see, e.g., [17, lemma 5]), it
follows from equation (6) that

1(¢) = conv { j1,(¢) : x € EPer*(f)} . (7)

We note that since EPer®( f) is finite, the closure is not needed in equation (7). Therefore, the
closure can also be omitted in equation (6).

Next, we characterize the decomposition of LC(X, R) = O, Ul UV, from equation (1)
in terms of the number and behavior of the elementary periodic points which achieve the
maximum value in /(¢). We define

EPerf, (¢) = {x € EPer*(f): ju(¢) = by } .
Definition 2.3. Letf: X — X be a transitive SFT.

(a) ¢ € Oy if EPer®_ (¢) contains a single k-elementary periodic orbit.

max
(b) Furthermore, ¢ € U if EPerf  (¢) = {x',...,x'} contains more than one k-elementary
periodic orbit and the k-cylinder support of different k-elementary periodic orbits are
distinct. In other words, Cx(x") # Ci(x) for all x', x/ € EPerX_ (#) with i # j.

(c) Finally, ¢ € V; if EPerf  (¢) = {x',...,x} contains more than one k-elementary peri-

odic orbit and the k-cylinder support of different k-elementary periodic orbits are not
distinct. More precisely, Ci(x') = Ci(x/) for some i,j € {1,...,0} withi # j.

Asmentionedin section 1.2, the properties of the partition LC; (X, R) = O, Ul UV follow
from [38]. Furthermore, [38] implies the following:

Proposition 2.4. Lerf: X — X be a transitive SFT. Then
(a) If ¢ € Oy and x € EPert (¢), then Hoos = Hy and hoo g = 0;
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(b) If p € Uy, then h, , = 0 and i, 4 is a convex combination of the periodic point measures
NG 00,0
corresponding to periodic orbits in EPerrI;aX(qS); and

(c) If ¢ € Vi, then i, is a measure of maximal entropy of a non-discrete (not necessarily
transitive) SFT Xpax = Xmax(¢) C X and ho gy > 0.

We recall that the SFT X,,,x in proposition 2.4(c) is given by the closure of the periodic
points x € Per(f) that maximize p,(¢). For more details, see [17, 38].

2.5. Computability theory for SFTs

Computability theory provides information about the feasibility and accuracy of computational
experiments when using approximate data. Without an accuracy guarantee, a computer exper-
iment might miss or misinterpret interesting behaviors. We provide an overview of the key
definitions and theorems. For a more thorough introduction to computability theory, see, e.g.,
[1, 3, 4, 6, 13, 29, 31, 37] and the references therein. We use different, but closely related,
definitions to those in [4, 13], see also [6]. Throughout this discussion, we use a bit-based com-
putation model, such as a Turing machine, as opposed to a real RAM (random access machine)
model [32] where these questions are trivial. One can think of the set of Turing machines
as a particular countable set of functions. We denote the output of a Turing machine ) on
input x by ¥(x). A point is computable if it can be algorithmically approximated to any desired
precision.

Definition 2.5 (cf[4, definition 1.2.1]). Letx € R™. An oracle approximating x is a function
1 such that on input n € N, 1)(n) € Q™ with [|)(n) — x|| < 27". Moreover, x is computable if
there is a Turing machine ) which is an oracle for x.

We note that solely using computability, equality is not decidable. More precisely, we
observe that when x is computable, we can only calculate x up to some error. Therefore, we
may conclude that x is in a small interval, but we cannot conclude which point in the interval
equals x. For more details, see [34, 39]. We say that a function is computable if its value at any
point can be computed to any requested precision.

Definition 2.6 (cf [4, definition 1.2.5]). LetS C R™. A function g : § — R is computable if
there is a Turing machine y so that for any x € S and any oracle v for x, (2, n) is a rational
number so that | (), n) — g(x)| < 27"

We also note that the definition of a computable function uses any oracle for x and applies
even when x is not computable, i.e., the oracle 1) does not need to be a Turing machine. More-
over, since the accuracy of g is only dependent on an approximation for x, we conclude that
computable functions are continuous, see, e.g., [4, theorem 1.5].

We also study functions which have a weaker notion of computability called upper semi-
computability. In this case, the approximations converge from above, but without an accuracy
guarantee.

Definition 2.7 (cf [13, definition 2.7]). Let S C R™. A function g : S — R is upper semi-
computable (also called right recursively enumerable or right computable) if there is a Turing
machine y so that forany n € N and x € S, and any oracle  for x, x (¢, n) is a rational number
such that the sequence (x (¢, n)), is nonincreasing and lim,,_,, x (¢, n) = g(x).

Similarly, we may define lower semi-computable functions. We observe that a function is
computable if and only if it is both upper and lower semi-computable, see, e.g., [4]. As an
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alternate weaker notion of computability, we introduce the definition of a function which is
computable at a given point, which is a computable version of pointwise continuity.

Definition2.8. LetS C R" beanopensetandletx € S. Supposethatg: S — Risa function
and x is a Turing machine such that for any oracle ¢ for x, x(¢, n) is a rational number. We
define /¢, to be the maximum ¢ to which x queries 1)(¢) when evaluating x (v, n).

The function g : S — R is computable at x if there exists a Turing machine y so that for any
oracle v for x, x(¢, n) is a rational number with the following property: for all y € S such that
there exists an oracle v’ for y that agrees with ¢ up to precision ¢, i.e., ¥(¢) = ¢'(£) for all

£ < 4y, then x (i, n) = x(¢',n) and |x(¢h, n) — g(y)| < 27"

We observe that this definition is existential and, in particular, does not include a decidability
statement. In other words, we do not assume that there exists a Turing machine which decides
if ¢ is computable at x € S.

Since one of our main theorems involves recursively open sets, we include its definition.

Definition 2.9 (cf [13, definition 2.4]). An open set S C R™ is a recursively open set (also
called a semi-decidable set or a lower-computable set) if there exists a Turing machine v such
that ) produces a (possibly infinite) sequence of pairs (z;, n;) so that z; € Q" is a rational vector
and n; € Z so that

S=JB(z.27).

In the remainder of this section, we assume that f is a transitive SFT and describe its
computability properties, see, e.g., [6] for further details.

Definition 2.10. Letx € X. An oracle for x is a function ¢ such that for any natural number
n, ¥(n) = x,. Moreover, x is computable if there is a Turing machine ) which is an oracle for
X.

‘We note that the periodic points of f are both computable and dense. Moreover, the cylinders
of length k and a periodic point in each cylinder can be computed algorithmically. We observe
that the locally constant potentials with rational values (denoted by LC(X, Q)) are dense in
C(X, R) with respect to the supremum norm. Since LC(X, Q) is in bijective correspondence
with Q"® it follows that each potential in LC(X, Q) can be represented by a pair (k, g) where

g€ Qe (O}

Definition 2.11. Suppose that ¢ € C(X,R). An oracle for ¢ is a function y such that on input
n, x(n) is a locally constant potential in LC(X, Q) such that || x(n) — ¢/~ < 27". Moreover, ¢
is computable if there is a Turing machine x which is an oracle for ¢.

We observe that if 6 from the product topology (see equation (2)) is a computable real
number, then the function for the distance between two points of X is a computable function
and X is a computable metric space, cf [13, definition 2.2]. In addition, C(X, R) also forms a
computable metric space, see, e.g., [6, 13].

In the definition for an oracle y of ¢ € C(X,R), since x(n) is a locally constant function,
there is some k, so that x(n) € LCy, (X, Q)\LCy,—1(X, Q). We observe, however, that there is
no bound on the size of &, in the definition of such an oracle. In fact, even if ¢ € LC(X, R), itis
possible that the sequence (k) diverges to infinity as n increases. We now show, however,
that when ¢ is locally constant, we can compute (from x) a sequence of potentials in LCy, (X, Q)
such that ¢, does not grow without bound.
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Lemma 2.12. There exists a Turing machine, which, given input n € N and an oracle x of
¢ € LC(X,R) produces ¢, € N and ¢, € LCy, (X, Q) with the following properties:

@) || — ulloe < 27" and
(b) If p € LCi(X,R), then {,, < k.

Proof. For a fixed n, let ¢, be the smallest cylinder length so that var, (x(n + 1)) < 27". We
observe that ¢, < k via the triangle inequality. We define 5,[ to be a locally constant function
in LCy, (X, Q) where the value in each cylinder is chosen to differ by at most 27"~! from the
values of x(n + 1) in that cylinder. (|

Since C(X,R) is a computable metric space, we consider computable functions whose
domains are subsets of C(X, R).

Definition 2.13. Let S C C(X,R). A function g : S — R is computable if there is a Turing
machine 7 so that for any function ¢ € S and oracle x for ¢, n(x, n) is a rational number with
InCx.n) — g(@)] <27

‘We note that the notions of an upper semi-computable function and computability at a point
carry over to the case of a function g: S — R for S C C(X,R). We leave the details to the
reader. We also observe that the computability of the function g in definition 2.13 is defined in
terms of the supremum norm. Since the supremum norm does not generate the same topology
as the Holder or Lipschitz norms, previous results on the Holder and Lipschitz norms cannot
be applied in this paper, see, e.g., [10, 11, 24, 28].

We recall that computability can also be extended to the space MM of invariant measures on X
via the Wasserstein—Kantorovich metric, see [ 13] for more details. All of the invariant measures
considered in this paper, however, are periodic point measures. For these measures, the full
theory of the computability of M is not needed and it is sufficient to use the computability
properties of the periodic points.

3. Upper semi-computability of the residual entropy

The goal of this section is to prove theorem A. We start with a discussion of the pressure
function for continuous potentials. These results are fairly standard in the Holder continuous
case, but they are more challenging for potentials which are only continuous. The difficulties
arise from the lack of uniqueness results for equilibrium states and, in particular, the possibility
of phase transitions. To overcome these challenges, we make use of several tools, including
methods from convex analysis, see, e.g., [30].

Let ¢ : X — R be a fixed continuous potential. We note that we do not assume the unique-

ness of the equilibrium states. We call 5 +— P(3) &ef Piop(89) the pressure function of ¢. The

pressure function is convex, see, €.g., [35], and, thus, it has left and right derivatives

P(3+6) ~ P(3)

0+P(B) = (ggi 5

Moreover, since i = h,(f) is upper semi-continuous, it follows from [17, proposition 1] and
[36, lemma 1] that

9-P(B) = min)u(ci)) and 0.P(f) = max pu(¢). ®)

HEES(Be HEES(B)

Furthermore, since ES(6¢) is a compact and convex subset of M, for all 0_P(f) < o <
04 P(p3), there exists 1, € ES(S¢) with p,(¢) = . In particular, the minimum and maximum
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in equation (8) are achieved. We observe that 3 — P((3) is differentiable at 3 if and only if
I3 &f {1(9) : p € ES(B)} is a singleton®. Moreover,

int 1(¢) = (a4, by) C | JIs- ©)

56R

see [17, corollary 2]. Since 3 — P(3) is convex, it is differentiable on R with the exception of
at most countably many points 8 € R. We define

hmax(B) = #&1&)5(@ hu(f) and  fiyin(B) = /zeIllilsl(IxIqu) hu(f)

Thus, equation (5) yields

P(B) = hmax(B) + BO-P(B) = hmin(B) + BOLP(B). (10)
Moreover, the convexity of the pressure function implies
0+ P(B1) < 0-P(B2) and  huin(B1) 2 hmax(52) Y

whenever 0 < 5, < f3,. We briefly discuss the case when P is differentiable at 8. In this

case equation (10) becomes P(5) = h(5) + BOP(B), where h([3) dghmx(ﬁ) = hmin(B) and

OP(B) def 0_P(B1) = 04 P()). Since the topological pressure is convex and computable, see

[6, 34], it is straight-forward to compute approximations to 8 +— OP((3) and 3 + h(3) on the
set of points where 3 — P(p) is differentiable. In particular, we conclude that if ¢ is a Holder
continuous potential given by an oracle, then the functions 3 +— h(3) and 3 — OP(/3) are com-
putable. Combining these observations with lemma 2.1, we conclude that theorem A holds for
Holder continuous potentials. To prove the general case, we make use of the following result
to include the possibility of phase transitions:

Proposition 3.1. Suppose ¢ >0 and let 0 < B, < ,. We define o= a(f,3,) =
(P(B,) — P(81))/(By — B,). Then, there exist 3, < 8 < [3, and u € ES(B¢) such that

P(B1) — Bror < hyu( f) < P(B2) — Brov. (12)

Proof. First, we observe that since ¢ > 0, the map 8 — P(53) is increasing. If 0L P(5,) =
0_P(f3,), then h(B) and OP(/3) are constant for 5, < 8 < f3,, s0 P|(3, 5,) is an affine function
of 5. Moreover, for all 8, < 5 < f3,, OP(8) = «. Finally, combining this with equation (10),
it follows that P(3,) — 8o = h(B) + (B, — B1)OP(B) = h(B) and P(53,) — Bra = h(f3) —
(B, — B1)OP(P) < h(B). Therefore, inequality (12) holds for all 5, < f < 3, and all u €
ES(8¢).

It remains to consider the case where 0. P(3,) < _P(83,). Since « is the slope of the
line segment joining (3, P(5,¢)) and (/3,, P(3,¢)), the convexity of the pressure function
implies that 01 P(83,) < a < O_P(B,). Thus, by equation (8), « € intI(¢). It now follows
from equation (9) that there exists 5 € R and i € ES(8¢) such that p(¢) = «. Moreover, by
equation (11), we may restrict 5 to 3, < 8 < 3,. Applying equation (5) yields

hu(f) = P(B) — Bu(¢) = P(B) — fa.
Finally, equation (12) follows since the pressure function is increasing. |

3 We note that the nondifferentiability points of the pressure function are phase transitions, i.e., points of coexistence
of multiple equilibrium states where each ergodic equilibrium state represents a phase.
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The following auxiliary lemma is used in the proofs of both theorems A and B. In the lemma,
we show that the endpoints of /(¢) = [ay, by] are computable points.

Lemma 3.2. The functions ¢ — a, and ¢ — by are computable on C(X, R).

Proof. We first note that the functions ¢ — a, and ¢ — b, are Lipschitz continuous with
Lipschitz constant 1 on C(X,R). Let ¢ € C(X,R) and let x be an oracle for ¢. We conclude
that [ay, — aym| < 27" and |by — by < 27". Therefore, it is enough to prove the statement
for locally constant potentials. Suppose that x(n) € LCy, (X, R). Then, by equation (7), it is
enough to approximate 1, (¢) for all k,-elementary periodic points x € X. We use formula (4)
to approximate 1, (¢) to any desired precision. Since there are only finitely many k,-elementary
periodic points, we can approximate a4 and by to any desired precision. (|

We are now ready to present the proof of theorem A using the computability of the topo-
logical pressure, lemma 2.1, and proposition 3.1. We begin with a technical lemma that forms
the central argument of the main theorem.

Lemma 3.3. Let ¢ € C(X,R) with ¢ > 0 be given by an oracle 1. Suppose that rational
numbers 0 < B, < 3, are given. There exists a Turing machine x so that x(n,)) is a rational
number such that there exists® a 8 with 3, < 8 < 3, and ;1 € ES(B3¢) such that |x(n, ) —
h ()] <27

Proof. We observe that since the pressure function 8 — Pip(8¢) is continuous, as 5, — 3,
the upper and lower bounds of inequality (12) approach each other. Therefore, if we can find
B1 and (3} so that 5, < B{ < 85 < 3, and the upper and lower bounds of inequality (12) are
within 27", any rational number satisfying the inequalities of inequality (12) can be used to
approximate 4, (f).

We recall that the pressure function 8 — Pyp(8¢) is computable, see [6, 34]. There-
fore, the upper and lower bounds in inequality (12) are also computable. We consider a
sequence (3{,,, f,,,) of pairs of rational numbers so that 3, < 3{,,< ,,, < 3, and 35, —
31 . decreases to zero as m — oc. By approximating the upper and lower bounds of inequality
(12) sufficiently well for each m, we may compute an m so that the upper and lower bounds of
inequality (12), when applied to 3/, and 3;,, are within 27" O

Next, we present the proof of theorem A, which is broken into the following two statements:
Theorem 3.4. The function ¢ — he 4 is upper semi-computable on C(X, R).

Proof. Suppose that ¢ € C(X,R) is given by an oracle x. We can compute a lower bound
q of ¢ by computing a lower bound of x(n). We observe that ES(5¢) = ES(8(¢ — ¢)) and
¢ — q > 0. By applying lemma 3.3 to a strictly increasing sequence (/3,), converging to oo,
we compute a sequence of entropies &, ( f) for u, € ES(8(¢ — ¢)) with 3, < 8 < 3,,,. Then,
by applying lemma 2.1, we conclude that these entropies approach the residual entropy from
above. O

Next, we characterize the continuity of the residual entropy.

Proposition 3.5. The function ¢ — ho 4 is continuous at ¢y € C(X,R) if and only if
hoopy = 0.

Proof. Let ¢y € C(X,R). If hy 4, = 0 then ¢ — h 4 is continuous at ¢, by lemma 2.2.
Assume now A, 4, > 0. We recall the definition of the set of uniquely maximizing locally con-
stant potentials O = J, Oy from section 1.2. We observe that since Oy is dense in LC,(X, R),

6'We note that the lemma does not require the computability of /3, only its existence.
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it follows that O is dense in LC(X, R). Since O consists of the locally constant potentials with a
uniquely maximizing periodic point, for all ¢ € O, hy, 4 = 0. Finally, since LC(X, R) is dense
in C(X, R), we conclude that the map ¢ — A 4 is not continuous at ¢,,. O

Finally, we use the previous two results to prove corollary 1.1
Corollary 3.6. The function ¢ — hu 4 is computable at ¢ if and only if hs 4, = 0.

Proof. If h. 4, > 0, then by proposition 3.5, the map ¢ — hy 4 is not continuous at ¢y,
so the function cannot be computable at ¢,. On the other hand, suppose that /., 4, = 0. By
theorem 3.4, there is a Turing machine x so that for any oracle v of ¢y, (x (¢, m)),, is a sequence
of rational numbers decreasing to zero. By taking m,, sufficiently large, x (¢, m,) < 27". Let
¢, be the largest precision to which the oracle v is queried within x and let ¢’ € C(X,R)
be a function such that there exists an oracle v for ¢’ that agrees with v up to precision
£,. Then x(¢p, m,) = x(¢',m,) is an upper bound on A, .. Since the entropy is nonnegative,
Ix(t),m,) — hy ~| < 27" and the function ¢ — ha, is computable at ¢,. |

4. Computability of zero temperature measures for locally constant
potentials: the case of bounded cylinder length

In this section, we prove theorem B. We assume that  in equation (2) is a computable real
number. Moreover, we assume, whenever necessary, that ¢ € LCx(X, R) is a potential given
by an oracle.

We observe that by using lemma 3.2, we can compute a superset of EPer’ _(¢). In particular,
for x € EPer*(f), we can approximate 14,(¢) using formula (4). Then, EPerIfm(d)) is a subset of
those k-elementary points for which the approximations of j:,(¢) and by permit the possibility
of equality. By increasing the accuracy of these approximations, the computed superset of
EPer’ (¢) shrinks. By studying the number and k-cylinder supports of this superset, we may
identify potentials in Oy or Oy U Uy. In particular, we conclude that there are Turing machines
Yo, and g, 1y, Which take a potential as input and terminate if and only if ¢ € O or ¢ €

O UU,, respectively.
Proposition 4.1. The sets O, and O, UUy are recursively open sets.

Proof. We use the Turing machines ¢o, and ¥o, 1,4, identified above. If ¢ € O, then there
is a positive gap between the approximation to b and the second-largest value of p,(¢) for a
k-elementary periodic point y. Similarly, if ¢ € O, U, then there is a gap between the approx-
imation to b, and the largest j1,(¢) of a k-elementary periodic point x which is not included in
the superset of EPer’_ (¢) constructed above. Perturbations of ¢ by no more than half these
gaps remain within Oy and Oy UU;, respectively. By using more accurate approximations,
we can identify more potentials and refine the radii of the constructed balls, so that, in the

limit, the constructed open sets cover O or Oy Ul O

We now discuss the computability of the entropy and the zero-temperature measure. These
propositions are the main computability statements of theorem B.

Proposition 4.2. The map ¢ — hw is computable on Oy UlUy. Moreover, the map ¢
oo, 18 computable on O.

Proof. Suppose that ¢ € O, UU;. Since the entropy of all zero-temperature measures of
potentials in Oy U Uy is zero, which is computable, the entropy function is computable. Suppose
now that we know that ¢ € Oy. By inspecting the proof of proposition 4.1, we find that for all ¢/
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produced by small perturbations in the proof, the same k-elementary orbit x maximizes u(¢").
Therefore, for every ¢/ in the ball, the zero-temperature measure is i, = i, 4. This measure
is computable since the supporting k-elementary periodic point is computable. (]

We now complete the proof of theorem B by showing that the functions ¢ — ., , and
¢ — hy  are not continuous, and, hence, not computable on the complement of the points in
proposition 4.2.

Proposition 4.3. The map ¢ — L, is not continuous at any ¢y € Uy UVi. Moreover, the
map ¢ — h g is not continuous at any ¢o € Vy. In particular, the corresponding maps are
not computable at ¢,.

Proof. Suppose that ¢y € Vi, then h, g, > 0. The proof of proposition 3.5 shows that, when
restring to LC(X, R), the residual entropy map is not continuous, and, hence, not computable
at ¢,. Additionally, using the density of Oy, there is an infinite sequence (¢, )nen in O Whose
limit is ¢, . Since there are only finitely many k-elementary periodic points, by passing to a sub-
sequence, we may assume that there is a k-elementary periodic point x so that iy = [t 4, for
all n. If the zero-temperature measure map were continuous in the Wasserstein—Kantorovich
metric, then jio g, would be ., but this is not possible since the entropy of a periodic
point measure is 0. Thus, the map ¢ — ., is not continuous, and, hence, not computable
at ¢,.

To show that the map ¢ — p,, is not continuous at ¢y € Uy, we find two sequences of
potentials converging to ¢, where the corresponding sequences of zero-temperature measures
have different limits. In particular, we construct two sequences of potentials (¢, ,), and (¢2.,),
where, for all n, pioog,, = pr and pioog,, = iy With x and y distinct k-elementary periodic
points. Since ¢y € U, there are two k-elementary periodic points x,y € EPer’  (¢) with dis-
joint k-cylinder support. Thus, there exists a k-cylinder C(7) in the support of x, but not in the
support of y. Similarly, there is a k-cylinder C(7’) that is not in the support of x, but is in the
support of y. By (slightly) increasing ¢, on C(7) or C(7"), we can make EPerX_ (¢) consist of a
single k-elementary periodic point x or y. Thus, the function ¢ — 1., 4 is not continuous, and,
hence, not computable at ¢,,. ‘ O

5. Computability of zero temperature measures for locally constant
potentials: the case of unbounded cylinder length

It is natural to ask whether proposition 4.1 requires k to be given or if the statements can be
generalized to the sets O = | J, O and O UU, where U = | J, Uy. We give a negative answer
to this question by showing the fact that the sets Oy and O, Ul are recursively open does not
extend to @ and O UY. In particular, we prove, in theorem C, that O has no interior points in
LC(X,R). We begin with an illustrative example where O is not open and which provides the
motivation for the proof of theorem C.

Example 5.1. Consider the SFT with alphabet {0, 1,2,3} and transition matrix given in
figure 1. Let ¢ € LC,(X, R) be the potential whose value on cylinders C,(01) and C»(10) is
2, while its value on any other cylinder of length 2 is 1. In other words, ¢ is defined by the
following matrix:

—_—_ N O
S o oN
SO O
SO O =
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o3
0111 /\//
1000 lel o

A= 0
1000 \\
1000

o2

Figure 1. The transition matrix and corresponding directed graph illustrating the allow-
able transitions between states.

For each n € N, we define a potential ¢, € LCy,12(X,R) which is a perturbation of ¢. For a
segment 7 we denote by #,(7) and #;(7) the number of 2’s or 3’s appearing in 7, respectively.
We define

2
2+ . W€ C2(01) U Ca(10), #a(mopsa(w)) + #3(mapga(w)) = 1

¢(w)  otherwise

On(w) =

In other words, ¢,(w) = ¢(w) unless T = my,+2(w) begins with 01 or 10 and contains either
(exactly one 2 and no 3’s) or (exactly one 3 and no 2’s). We see that [|¢ — ¢, | = 2. Moreover,
EPer? (¢) = EPer’.2(¢) consists of the single 2-elementary periodic orbit of x = Or(01).
We observe that both ¢ and ¢, are constant on the orbit of x, so i, (¢) =2 = pu,(b,).

On the other hand, EPerﬁf‘aj[z(qS,,) contains at least three (2n + 2)-elementary periodic
orbits: the orbits generated by (01)"02, (01)"03, and (01)"02(01)"03. Here, (01)" repre-
sents the sequence of length 2n consisting of 01 repeated n times. Let z; = Or((01)"02),
22 = O0r((01)"03), and z3 = Or((01)"02(01)"03). We observe that 1i,,(¢,) =2 + ﬁ > 2 for
i = 1,2, 3. On the other hand, we observe that yi,(¢) = 2 — ——

n+l1°
Putting this together, we note that since EPer?,, (¢) consists of a single periodic orbit, ¢ €
O, with hyy =0 and p 4, = .. On the other hand, since z;, z», and z3 have overlapping
cylinders, ¢, € Vau42 With‘hm,@" > 0. We, therefore, conclude that since ¢, — ¢, O is not
open in the supremum norm topology on LC(X, R), so, in particular, O is not a recursively

open set. We observe, however, that by lemma 2.2, ho 4, — 0 as n — oo.

This example shows that, in general, O is not open in LC(X, R). Moreover, we note that, in
our example, the maximal (2n + 2)-elementary periodic orbits of ¢, do not include the maximal
2-elementary periodic orbits of ¢. In other words, the set of maximizing elementary periodic
orbits may change considerably under perturbations once the cylinder length is not fixed.

Using this example as a guide, we show that the set 2/ UV is dense in LC(X, R), where
V = |J; Vi This shows that the proof of proposition 4.1 does not directly extend to the sets O
and O UU.

Proposition 5.2. Let f: X — X be transitive SFT with positive topological entropy. Then,
the set U UV is dense in LC(X, R) with respect to the supremum norm topology.

Proof. Let ¢ € O. We show that in every neighborhood of ¢ there exists ¢ € U/ U V. Since
O is dense, the density of 2/ UV follows.

Let k € N be such that ¢ € O, and let x € EPerlfm(qﬁ) correspond to the unique maximal
k-elementary periodic orbit for ¢ with period ¢, and generating segment 7,. We now consider
periodic points of the form z,, = O(7}"y), where 7" denotes the m-times concatenation of 7
and y is a segment of length ¢,. By transitivity and positive topological entropy of f we may

assume that y, # x; for some i € {1,..., min{/y, ,}}.
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In the following, we fix the segmenty and vary m > 2. Let ¢ = {(m) be the smallest cylinder
length so that z,, is ¢-elementary periodic. We observe that (m — 1)¢, < £ since the (m — 1){,-
cylinders starting at the first two copies of 7, in z,, are identical. On the other hand, ¢ < mt, + ¢,
is a consequence of the construction of z,,. We restrict our attention to cylinders of length
¢ throughout the remainder of this proof. The fact that x is a k-elementary periodic point
with period ¢, implies that |S;(x)| = £,, see equation (3). Moreover, since z,, is ¢-elementary
periodic with period ml, + £, |S¢(z,,)| = ml, + £,. We define potentials ¢_ , as follows:

{¢<w) te Cw) € Sizn)\Six)
$-o(w) = , :
P(w) otherwise
We observe that || ¢ — ¢ ||« = €. By construction, /i, (qﬁal’) = (1,(¢). On the other hand, since
[Se(z)\Se(x)| = (m — 1), + £,, it follows that

(m — D)l + 0,

ittty © S Hen (9e) S (@) + 2

Hz, (@) +

Furthermore, since z,, begins with m copies of 7y, for 0 < i < ml, — k, Ce(f'(zn)) € Si(x). Let
m = {m _ bt J Then, z,, = O(T)?’/T,ﬁ"fmly) and

Ly

m'l, (m—m)l, + ¢,

Pz (P) = mm(@ + ml, 1 0,

Hogmnl ) (©)-

For fixed € > 0, we observe that as m (and hence m’) increases,

fhz (D) = pi, (@) + & and  piz, (@) = pix().

Therefore, for any fixed € > 0, there exists an m so that ., (¢z¢) > fix(¢e0) = p1x(¢). For the
remainder of the proof, fix such ¢, m and /.

Finally, we consider the family of potentials ¢,,, where 0<t<e. Let fp=
sup {t: x € EPerl, (¢¢)}. We observe that #y > 0 since x € EPer}, (¢o/) and O, is

open. On the other hand, o < ¢ since x ¢ EPer}, (¢-¢). At to, EPerl,, (/) must contain

max
at least two elementary periodic orbits, x and some other orbit. Therefore, ¢, ¢ O and

|¢ — ¢ryllo0 =t < . Therefore, ¢y, 0 € U UV, and, by allowing ¢ decreasing to zero, the
conclusion follows. (]
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