
Nonlinearity
           

PAPER

Computability at zero temperature*

To cite this article: Michael Burr and Christian Wolf 2020 Nonlinearity 33 6157

 

View the article online for updates and enhancements.

You may also like
Yuri Leonidovich Ershov (on his 60th
birthday)
S S Goncharov, I A Lavrov and V D
Mazurov

-

The geometric approach to quantum
correlations: computability versus reliability
Tommaso Tufarelli, Tom MacLean, Davide
Girolami et al.

-

Vladimir Andreevich Uspensky
(27/11/1930–27/6/2018)
S. I. Adian, N. N. Andreev, L. D.
Beklemishev et al.

-

This content was downloaded from IP address 130.127.112.225 on 06/05/2022 at 16:00

https://doi.org/10.1088/1361-6544/ab9c71
/article/10.1070/RM2000v055n06ABEH000354
/article/10.1070/RM2000v055n06ABEH000354
/article/10.1088/1751-8113/46/27/275308
/article/10.1088/1751-8113/46/27/275308
/article/10.1070/RM9875
/article/10.1070/RM9875


London Mathematical Society Nonlinearity

Nonlinearity 33 (2020) 6157–6175 https://doi.org/10.1088/1361-6544/ab9c71

Computability at zero temperature
∗

Michael Burr1 and Christian Wolf2

1 School of Mathematical and Statistical Sciences, Clemson University, Clemson
SC, 29634, United States of America
2 Department of Mathematics, The City College of New York, New York, NY,
10031, United States of America

E-mail: burr2@clemson.edu and cwolf@ccny.cuny.edu

Received 23 October 2019, revised 4 June 2020
Accepted for publication 12 June 2020
Published 6 October 2020

Abstract
We investigate the computability of thermodynamic invariants at zero tem-
perature for one-dimensional subshifts of finite type. In particular, we prove
that the residual entropy (i.e., the joint ground state entropy) is an upper
semi-computable function on the space of continuous potentials, but it is not
computable. Next, we consider locally constant potentials for which the zero-
temperature measure is known to exist. We characterize the computability of
the zero-temperaturemeasure and its entropy for potentials that are constant on
cylinders of a given length k. In particular, we show the existence of an open
and dense set of locally constant potentials for which the zero-temperaturemea-
sure can be computationally identified as an elementary periodic point measure.
Finally, we show that our methods do not generalize to treat the case when k is
not given.

Keywords: zero-temperaturemeasures, residual entropy, ground states, entropy,
thermodynamic formalism, computability

Mathematics Subject Classification numbers: Primary 37D35, 37E45, 03D15,
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1. Introduction

1.1. Motivation

It is a natural and important question to understand which mathematical invariants can (in
principle) be derived by computer experiments. In particular, since computer-based approxi-
mations are often used to gain insight into theoretical questions, estimates on the quality and
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accuracy of computational results may be needed to have confidence in any conjectures drawn
from such experiments. The answers to these questions (and the corresponding estimates) are
naturally linked to questions about mathematical proofs and models. In fact, these answers lie
at the boundary of mathematics, computer science, and their applications.

We provide some answers concerning the computability of basic thermodynamic invariants
at zero temperature. In particular, we study the computability of the residual entropy (which
coincides with the entropy of the ground states of the system) on the space of continuous
potentials for subshifts of finite type (SFTs). We show that the residual entropy is an upper
semi-computable function of the potentials, but it is not computable. One complication that
arises is that continuous potentialsmay have phase transitions, which do not occur in theHölder
continuous case. Since, in general, phase transitions cannot be detected algorithmically, see,
e.g., [34, 39], we are required to develop a new approach which is based on techniques from
convex analysis and the thermodynamic formalism.

We also consider the computability of the zero-temperature measure for locally constant
potentials. The existence of this measure was originally established by Brémont [5] by using
methods from analytic geometry (for existence proofs using methods from dynamical sys-
tems, see [7, 23]). For potentials that are constant on cylinders of a given length k, we provide
explicit characterizations of the sets of potentials for which the zero-temperaturemeasure or its
entropy are computable.We explicitly describe an open and dense subsetOk of locally constant
potentials for which the zero-temperature measure is a computable periodic point measure.
As a counterpart to these results, we show that oncewe consider the space of all locally constant
potentials (i.e., without fixing the cylinder length k), the set O =

⋃
k Ok has empty interior. In

particular, this shows that our results do not directly generalize to the case where k is not given.
There are several recent papers that study invariant sets, topological entropy, and other

invariants from the computable analysis point of view. These papers include results about
the computability of certain specific measures (e.g., maximal entropy and physical measures),
see [1, 13, 14] and the references therein. Furthermore, there are papers proving results on
the numerical computation of invariant sets, entropy, and dimension, see, e.g., [9, 19, 20]
and the references therein. There are also studies concerning the computation of the topo-
logical entropy or pressure for one and multi-dimensional shift maps, see, e.g., [15, 16, 26,
27, 33, 34]. In our recent paper with Schmoll [6], we derive results about the computability
of generalized rotation sets and localized entropies. In particular, our results hold for SFTs.
We note that the results in [6] only consider the case of positive temperature, while the
more delicate case of zero temperature is considered in this paper. To the best of our knowl-
edge, this paper is the first attempt to study the computability of thermodynamic invariants at
zero-temperature.

1.2. Statement of results

Let f : X→ X be a subshift of finite type (SFT) over an alphabet with d elements and let M
be the set of f-invariant Borel probability measures on X endowed with the weak ∗ topology.
With this topology, M is a compact, convex, and metrizable topological space. We use the
standing assumption that f is transitive and has positive topological entropy. We consider the
Banach space (C(X,R), ‖·‖∞), where ‖·‖∞ denotes the supremum norm. For φ ∈ C(X,R) and
μ ∈ M, we write μ(φ) =

∫
φdμ and define

I(φ) = {μ(φ) : μ ∈ M} .

It follows, from the compactness and convexity ofM, that I(φ) is a compact interval [aφ, bφ].
We defineMmax(φ) = {μ ∈ M : μ(φ) = bφ}. If μ ∈ Mmax(φ), then we say μ is a maximizing
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measure for φ. Moreover, we say φ ∈ C(X,R) is uniquely maximizing if Mmax(φ) is a sin-
gleton. We note that the study of maximizing measures is one of the central objectives in the
area of ergodic optimization. We refer the reader to the survey article [18] for a state-of-the-art
presentation of this subject. We call

h∞,φ = sup{hμ( f ) : μ ∈ Mmax(φ)}

the residual entropy of the potential φ. The residual entropy coincides with the entropy of the
ground states of the potentialφ (see section 2.3 for details). In particular, if the zero-temperature
measure μ∞,φ of φ exists (see below and section 2.2 for the definition of zero-temperature
measures), then h∞,φ coincides with the entropy of μ∞,φ.

There are several recent theoretical results about the residual entropy and uniquelymaximiz-
ing periodic point measures for an open and dense set of potentials in the Hölder and Lipschitz
topologies [10, 11, 24, 28]. We observe, however, that these topologies are not compatible
with the supremum topology since open balls in the supremum topology are not bounded in
theHölder andLipschitz topologies. Therefore, it does not appear possible to study these gener-
icity results from the computable analysis point of view. Consequently, the work in this paper
uses the supremum norm.

Our first goal is to characterize the computability of the function φ �→ h∞,φ. To do this,
we use two notions of computability for functions: computable functions and upper semi-
computable functions (also called right recursively enumerable or right computable functions).
We say that a function g : C(X,R)→ R is computable if, for any input function φ, the real
number g(φ) can be calculated to any prescribed accuracy. Upper semi-computability is a
weaker notion of computability, where, instead, there is an algorithm to compute a sequence qn
converging to g(φ) from above. In particular, for upper semi-computability, the bounds on the
convergence rate for qn → g(φ) are not included. We refer the reader to section 2.5 and [4, 13]
for details.

The first main theorem we prove in this paper shows that the residual entropy is semi-
computable, but not computable.

Theorem A. The function φ �→ h∞,φ is upper semi-computable, but not computable on
C(X,R). Moreover, the map φ �→ h∞,φ is continuous at φ0 if and only if h∞,φ0 = 0.

In section 2.5, we introduce the definition for the function φ �→ h∞,φ to be computable at a
point φ0. This definition provides a computable version of being continuous at a point. More-
over, if the map φ �→ h∞,φ restricted to a set S is computable and φ0 is in the interior of S, then
φ �→ h∞,φ is computable at φ0. With this definition in hand, a direct corollary of theorem A is:

Corollary 1.1. The function φ �→ h∞,φ is computable at φ0 if and only if h∞,φ0 = 0.

The second goal of this paper is to study the computability of the zero-temperature mea-
sure and its entropy for locally constant potentials. We recall that μ ∈ M is an equilibrium
state of φ ∈ C(X,R) if μ maximizes hν( f )+ ν(φ) among all ν ∈ M. If φ is Hölder contin-
uous (and, in particular, if φ is locally constant), then the equilibrium state is unique and we
denote it by μφ. We say μ∞,φ is the zero-temperature measure of φ if μ∞,φ = limβ→∞ μβφ,
where the limit is taken in the weak ∗ topology3. We recall that, for locally constant potentials,

3We point out that, in the mathematical theory of the thermodynamic formalism, it is customary to consider the inverse
temperature β = 1/T (with T being the temperature of the system) and to take the limit β →∞. The notation that is
used for the inverse temperature in physics is β = 1

kBT
, where kB is Boltzmann’s constant, which can be taken to be

equal to one in an appropriate system of units.
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the zero-temperature measure exists [5]. Let LC(X,R) =
⋃
k∈N LCk(X,R) denote the space of

locally constant potentials, where LCk(X,R) denotes the space of potentials that are constant on
cylinders of length k. Let mc(k) denote the cardinality of the set of cylinders of X of length k
(note that mc(k) � dk). Then we can identify LCk(X,R) with Rmc(k), so that LCk(X,R) is a
Banach space when endowed with the standard norm.

We note that, for the purpose of studying zero-temperature measures and their associated
entropies, it suffices to consider the space LCk(X,R) ∩ B(0, 1), where B(0, 1) is the closed unit
ball inRmc(k). This reduction follows since μ∞,φ = μ∞,αφ for allα > 0. To illustrate some of the
difficulties when dealing with the computability of h∞,φ and μ∞,φ, we consider the following
basic example, see [5, 38]:

Example 1.2. Let X be the full shift on two symbols, i.e., X = {0, 1}N, and let f : X→ X
be the shift map. Let 0 < α1,α2 be computable real numbers. Let φ ∈ LC2(X,R) be given

by the matrix

(
α1 α2

α2 0

)
, where φi, j denotes the value of φ on the cylinder C2(i j)def={x : x1 =

i, x2 = j}. We argue that neither h∞,φ nor μ∞,φ are computable since they are not continuous
functions: if α1 	= α2, then μ∞,φ is a periodic point measure, and, in particular, h∞,φ = 0. On
the other hand, if α1 = α2, then μ∞,φ is the unique measure of maximal entropy (i.e., the

Parry measure) of the golden mean shift, i.e., the SFT with transition matrix A =

(
1 1
1 0

)
.

Furthermore, hμ∞,φ( f ) = log 1+
√
5

2 .

To overcome these difficulties, we partition the space of potentials LCk(X,R)∩ B(0, 1) into
three sets with distinct computability properties, namely,

LCk(X,R)∩ B(0, 1) = Ok ∪̇ Uk ∪̇ Vk. (1)

We explicitly define the three sets and identify their properties:

(a) Ok is the set of uniquely maximizing potentials φ ∈ LCk(X,R) ∩ B(0, 1). Moreover, the
unique maximizing measure of φ is a k-elementary periodic point measure. Additionally,
Ok is open and dense in LCk(X,R)∩ B(0, 1).

(b) Ok ∪̇ Uk is the set of potentials φ ∈ LCk(X,R)∩ B(0, 1) with h∞,φ = 0. Therefore, Uk is
the set of potentials with more than one ergodic maximizing measure, all of which are
k-elementary periodic point measures4. Furthermore, for φ ∈ Uk, the measure μ∞,φ is a
convex combination of these k-elementary periodic pointmeasures. It follows thatOk ∪̇ Uk
is an open set in LCk(X,R) ∩ B(0, 1).

(c) Vk is the set of potentials φ ∈ LCk(X,R)∩ B(0, 1) with h∞,φ > 0. It follows that Vk is a
closed set in LCk(X,R) ∩ B(0, 1).

The properties of the sets described in this partition follow from results in [38], where a
similar topological partition is considered. We note that the statement that Ok ∪̇ Uk is open is
not explicitly proven in [38], but its proof is analogous to the proof that Ok is open.

To be able to make statements about the computability of the setsOk andOk ∪̇ Uk, we briefly
recall the notion of recursively open sets. Namely, we say an open set S is recursively open if
there exists a Turing machine which for each n ∈ N produces a ball Bn such that S =

⋃
n Bn

(see section 2.5 for details). We prove the following result:

4We note that this condition implies h∞,φ = 0 for all φ ∈ Uk, see [38].
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Theorem B. Let k ∈ N be given. The following hold:

(a) The maps φ �→ μ∞,φ and φ �→ h∞,φ are computable functions on Ok ⊂ LCk(X,R). Fur-
thermore, the set Ok is a recursively open set;

(b) The map φ �→ h∞,φ is a computable function on Ok ∪̇ Uk ⊂ LCk(X,R). For any φ0 ∈ Uk,
the map φ �→ μ∞,φ is not continuous (and hence not computable) at φ0 in Ok ∪̇ Uk.
Furthermore, the set Ok ∪̇ Uk is a recursively open set; and

(c) For any φ0 ∈ Vk, neither the map φ �→ h∞,φ nor the map φ �→ μ∞,φ are continuous (and
hence not computable) at φ0 in LCk(X,R).

We point out that in the statement of theorem B, the number k (i.e., the cylinder length on
which the potentials are constant) is given, and, in particular, is not determined by the Turing
machine that queries an oracle of the potential. One might suspect that either k can be calcu-
lated or that some of the results in theorem B generalize to LC(X,R) without specifying k.
In this direction, we recall that O =

⋃
k Ok denotes the set of locally constant potentials that

are uniquely maximizing. One might hope that O is a recursively open set, i.e., that member-
ship in O is semi-decidable. A first indication that this could not be true is given example 5.1
where it is shown that O is not open in LC(X,R). In fact, we have the following even stronger
result from proposition 5.2:

Theorem C. Let f : X→ X be a transitive SFT with positive topological entropy. Then the
set O has no interior points in LC(X,R).

As noted above, theorem C indicates that, from the point of view of computable analysis,
there are significant differences between the cases of a given and of an arbitrary cylinder length.
On the other hand, theorem C is also of theoretical interest in ergodic optimization. This is,
in part, as it displays a sharp contrast between the locally constant case (in the supremum
topology) and the Lipschitz case (in the Lipschitz topology). In particular, for the latter case,
the set of potentials with a uniquely maximizing periodic point measure is open and dense in
the space of all Lipschitz potentials, see Contreras’ theorem [10].

1.3. Outline of the paper and summary of proofs

In section 2, we review some concepts from symbolic dynamics, the thermodynamic formal-
ism, and computational analysis. In section 3, we present the proof of theoremA.We construct
a sequence (βn)n with associated equilibriummeasures μn of βnφ such that (hμn( f ))n is a com-
putable sequence that converges fromabove to h∞,φ. This construction is fairly straight-forward
in the case when the pressure function β �→ Ptop(βφ) is differentiable. The situation is more
complicated, however, when φ is merely continuous due to the possibility of phase transitions
(which cannot be detected algorithmically). To overcome this difficulty, we apply techniques
from convex analysis to compute a sequence hμn( f ) that approximates h∞,φ. The claim that
φ �→ h∞,φ is continuous at φ0 if and only if h∞,φ0 = 0 follows from basic properties of the topo-
logical pressure and the fact that the set O of uniquely maximizing locally constant potentials
is dense in C(X,R).

In section 4, we prove theorem B. To show that the sets of potentialsOk andOk ∪̇ Uk can be
algorithmically detected, we approximate μx(φ) to high accuracy for all k-elementary periodic
points x. In particular, we compute μx(φ) to identify those x’s that may maximize μx(φ), see
propositions 4.1 and 4.2. Once the corresponding inequalities are established, h∞,φ and μ∞,φ

can be identified from the general theory presented in section 2. The noncomputability results
of theorems B and C appear in sections 4 and 5. These results are based on similar approaches
where we construct small, explicit perturbations of φ and show that such perturbations remove
the potential from the appropriate set, see propositions 4.3 and 5.2.
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2. Settings and generalities

We introduce the relevant backgroundmaterial and obtain preliminary results. In particular, we
provide overviews of the pertinent results and definitions from shift spaces, zero-temperature
measures, ground states, locally constant potentials, and computability theory.

2.1. Shift maps

Let A = {0, . . . , d − 1} be a finite set called the alphabet. We endow AN = {x = (xn)∞n=1 :
xn ∈ A} with the product topology so that AN is a compact metrizable space. For example,
given θ ∈ (0, 1),

d(x, y) = dθ(x, y)
def
= θinf{n∈N : xn 	=yn} and d(x, x) = 0 (2)

defines a metric that induces the product topology. The shift map f :AN →AN defined by
f(x)n = xn+1 is a continuousd to 1map.Given a d × d matrixAwith values in {0, 1} (called the
transition matrix), we define X = XA = {x ∈ AN : Axn,xn+1 = 1}, which is a closed f-invariant
subset of AN. We say f |XA is a subshift of finite type (SFT). For the remainder of this paper,
we assume that f : X→ X is a transitive SFT, see, e.g., [21] for details.

For x ∈ X, we write πk(x) = x1 . . . xk and call τ = τ1 . . . τk ∈ Ak a segment of length k.
Moreover, we denote the cylinder generated by τ by Ck(τ ) = {x ∈ X : x1 = τ1, . . . , xn = τk},
which may be empty. Given x ∈ X and k ∈ N, we call Ck(x) = Ck(πk(x)) the cylinder of length
k generated by x. Given τ ∈ Ak, we denote the periodic point generated by τ by Or(τ ) =
τ1 . . . τkτ1 . . . τkτ1 . . . τk . . ., provided Or(τ ) ∈ X. We denote the set of all periodic points of
f with (prime) period n by Pern( f ). Moreover, Per( f ) =

⋃
n�1 Pern( f ) denotes the set of all

periodic points of f. For x ∈ Pern( f ), we call τ x = x1 . . . xn the generating segment of x, i.e.,
τ x is the minimal length segment such that x = Or(τx). Let k ∈ N be fixed. We define the
k-cylinder support of x ∈ Pern( f ) by

Sk(x) = {Ck( f i(x)) : i ∈ N ∪ {0}} = {Ck( f i(x)) : i = 0, . . . , n− 1}. (3)

Moreover, we say that x ∈ Pern( f ) is a k-elementary periodic point if Ck( f i(x)) 	= Ck( f j(x)) for
all i, j = 0, . . . , n− 1 with i 	= j. When k = 1, we simply say that x is an elementary periodic
point. We denote the set of all k-elementary periodic points by EPerk( f ). We note that the k-
elementary periodic points were previously used (with other names) by Chazottes et al [7],
Jenkinson [17] and Ziemian [40]. We recall that mc(k) denotes the cardinality of the set of
cylinders of length k in X. It follows that the period of any k-elementary periodic point is
at most mc(k), and, thus, EPerk( f ) is finite. For x ∈ Pern( f ), we denote the unique invariant
measure supported on the orbit of x by μx , that is μx =

1
n

∑n−1
i=0 δ f i(x). For φ ∈ C(X,R), we

obtain the formula

μx(φ) =
1
n

n−1∑
i=0

φ( f i(x)). (4)

2.2. Topological pressure, ground states and zero-temperature measures

We briefly recall the relevant facts about the topological pressure, see, e.g., [35]. Let f : X→ X
be a transitive SFT. The topological pressure of φ ∈ C(X,R) is defined as

Ptop(φ) = sup
μ∈M

(
hμ( f )+ μ(φ)

)
, (5)
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where hμ( f ) denotes the measure-theoretic entropy of μ. Moreover, htop( f ) = Ptop(0) denotes
the topological entropy of f. We recall that if ν ∈ M satisfies Ptop(φ) = hν( f )+ ν(φ), then ν
is an equilibrium state of φ. We denote the set of equilibrium states of φ by ES(φ). Since the
entropy map ν �→ hν( f ) is upper semi-continuous, ES(φ) is nonempty. Furthermore, ES(φ) is
a compact and convex set whose extreme points are the ergodic equilibrium states.

We say μ ∈ M is a ground state of the potential φ if there exists a sequence βn →∞
and equilibrium states μn ∈ ES(βnφ) such that μ = limn→∞ μn. Here, we think of β as the
inverse temperature of the system (see the discussion in section 1.2). Thus, ground states are
accumulation points of equilibrium states as the temperature approaches zero. We denote the
set of ground states of φ by GS(φ). By compactness, GS(φ) is nonempty.

Next, we consider the case where βφ has a unique equilibrium state μβ = μβφ for all β � 0.
This case occurs, for example, when φ is Hölder continuous. We say μ∞,φ ∈ M is the zero-
temperature measure of φ if μ∞,φ = limβ→∞ μβ . We note that, in general, the uniqueness of
the equilibrium states of βφ does not guarantee the existence of the zero-temperaturemeasure,
see, e.g., [2, 8, 12].

2.3. Entropy of ground states

We continue to use the definitions from section 1.2. Let φ ∈ C(X,R). For w ∈ I(φ), we define

H(w)= Hφ(w) = sup {hμ( f ) : μ(φ) = w}

to be the localized entropy at w, see, e.g., [17, 22]. Since ν �→ hν ( f ) is affine and upper semi-
continuous on M, we conclude that H is concave and upper semi-continuous and, therefore,
continuous. We recall that H(bφ) coincides with the residual entropy h∞,φ of the potential φ.
Wemake use of the following two lemmas to understand the behavior of the entropy as β →∞:

Lemma 2.1. Let (βn)n with βn ∈ R+ be a strictly increasing sequence converging to ∞.
Then, for any sequence of measures (μn)n, where μn ∈ ES(βnφ), we have:

(a) bφ − μn(φ) � htop( f )/βn. Moreover, the sequence (μn(φ))n is increasing with
limn→∞ μn(φ) = bφ;

(b) (hμn( f ))n is decreasing with limn→∞ hμn( f ) = h∞,φ; and
(c) If μ ∈ GS(φ), then hμ( f ) = h∞,φ.

Proof. Let μ ∈ M such that μ(φ) = bφ and hμ( f ) = H(bφ). Since μn is an equilibrium
state of βnφ, it follows that hμn( f )+ βnμn(φ) � hμ( f )+ βnbφ. Therefore, βn(bφ − μn(φ)) �
hμn( f ) � htop( f ), and the first and last parts of statement (a) follow.

For the remaining part of statement (a), we observe that since μn and μn+1 are equilib-
rium states for βnφ and βn+1φ, respectively, it follows that hμn( f )+ βnμn(φ) � hμn+1( f )+
βnμn+1(φ) and hμn+1( f )+ βn+1μn+1(φ) � hμn( f )+ βn+1μn(φ). Eliminating the entropies
from these inequalities leads to (βn+1 − βn)(μn+1(φ)− μn(φ)) � 0. Since the βn’s are strictly
increasing, the final part of statement (a) follows.

The first part of statement (b) follows directly from statement (a) and the inequality
hμn( f )+ βnμn(φ) � hμn+1( f )+ βnμn+1(φ). For the second part of statement (b), since μn is
an equilibrium state of βnφ, it follows that hμn( f ) = H(μn(φ)). We recall thatH(bφ) = h∞,φ.
Then, by statement (a) and the continuity ofH, the second part of statement (b) follows.

Finally, statement (c) follows from statement (b) and the upper semi-continuity of the
entropy map. �
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Lemma 2.2. Let φ0 ∈ C(X,R) with h∞,φ0 = 0. Then, φ �→ h∞,φ is continuous at φ0.

Proof. We recall that for all φ ∈ C(X,R), H(bφ) = h∞,φ. Fix ε > 0; by the continuity
of H, when μ(φ0) is sufficiently close to bφ, then hμ( f ) � H(μ(φ0)) < ε. Moreover, if
‖φ− φ0‖∞ < δ, then, for all μ ∈ M, |μ(φ)− μ(φ0)| < δ, and, in particular, |bφ − bφ0 | < δ.
Hence, ifμ(φ) = bφ, then |μ(φ0)− bφ0 | < 2δ. Therefore, if δ is sufficiently small, then hμ( f ) <
ε. Then, by the definition ofH, it follows that h∞,φ < ε, and the result follows. �

We show in proposition 3.5 that the converse to lemma 2.2 holds, i.e., that φ �→ h∞,φ is
continuous at φ0 if and only if h∞,φ0 = 0.

2.4. Locally constant potentials

For φ ∈ C(X,R) and k ∈ N, we define vark(φ) = sup{|φ(x)− φ(y)| : x1 = y1, . . . , xk = yk}.
We denote the set of potentials that are constant on cylinders of length k by LCk(X,R) =
{φ ∈ C(X,R) : vark(φ) = 0}. Moreover, LC(X,R) =

⋃
k LCk(X,R) denotes the set of locally

constant potentials. Let φ ∈ LCk(X,R). By using a block code argument, see, e.g., [6,
proposition 5.5], we may reduce the case k > 1 to the case k = 1.

We observe that since the periodic point measures are dense inM, see, e.g., [25], I(φ) can
be written in terms of the periodic points, i.e.,

I(φ) = conv {μx(φ) : x ∈ Per( f )}. (6)

Furthermore, by decomposing the generating segment of each periodic point into the generat-
ing segments of finitely many k-elementary periodic points of X (see, e.g., [17, lemma 5]), it
follows from equation (6) that

I(φ) = conv
{
μx(φ) : x ∈ EPerk( f )

}
. (7)

We note that since EPerk( f ) is finite, the closure is not needed in equation (7). Therefore, the
closure can also be omitted in equation (6).

Next, we characterize the decomposition of LCk(X,R) = Ok ∪̇ Uk ∪̇ Vk from equation (1)
in terms of the number and behavior of the elementary periodic points which achieve the
maximum value in I(φ). We define

EPer kmax(φ) =
{
x ∈ EPerk( f ) : μx(φ) = bφ

}
.

Definition 2.3. Let f : X→ X be a transitive SFT.

(a) φ ∈ Ok if EPer kmax(φ) contains a single k-elementary periodic orbit.
(b) Furthermore, φ ∈ Uk if EPer kmax(φ) = {x1, . . . , x�} contains more than one k-elementary

periodic orbit and the k-cylinder support of different k-elementary periodic orbits are
distinct. In other words, Ck(xi) 	= Ck(x j) for all xi, x j ∈ EPer kmax(φ) with i 	= j.

(c) Finally, φ ∈ Vk if EPerkmax(φ) = {x1, . . . , x�} contains more than one k-elementary peri-
odic orbit and the k-cylinder support of different k-elementary periodic orbits are not
distinct. More precisely, Ck(xi) = Ck(x j) for some i, j ∈ {1, . . . , �} with i 	= j.

Asmentioned in section 1.2, the properties of the partition LCk(X,R) = Ok ∪̇ Uk ∪̇ Vk follow
from [38]. Furthermore, [38] implies the following:

Proposition 2.4. Let f : X→ X be a transitive SFT. Then

(a) If φ ∈ Ok and x ∈ EPer kmax(φ), then μ∞,φ = μx and h∞,φ = 0;
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(b) If φ ∈ Uk, then h∞,φ = 0 and μ∞,φ is a convex combination of the periodic point measures
corresponding to periodic orbits in EPerkmax(φ); and

(c) If φ ∈ Vk, then μ∞,φ is a measure of maximal entropy of a non-discrete (not necessarily
transitive) SFT Xmax = Xmax(φ) ⊂ X and h∞,φ > 0.

We recall that the SFT Xmax in proposition 2.4(c) is given by the closure of the periodic
points x ∈ Per( f ) that maximize μx(φ). For more details, see [17, 38].

2.5. Computability theory for SFTs

Computability theory provides information about the feasibility and accuracy of computational
experiments when using approximate data. Without an accuracy guarantee, a computer exper-
iment might miss or misinterpret interesting behaviors. We provide an overview of the key
definitions and theorems. For a more thorough introduction to computability theory, see, e.g.,
[1, 3, 4, 6, 13, 29, 31, 37] and the references therein. We use different, but closely related,
definitions to those in [4, 13], see also [6]. Throughout this discussion, we use a bit-based com-
putation model, such as a Turing machine, as opposed to a real RAM (random access machine)
model [32] where these questions are trivial. One can think of the set of Turing machines
as a particular countable set of functions. We denote the output of a Turing machine ψ on
input x by ψ(x). A point is computable if it can be algorithmically approximated to any desired
precision.

Definition 2.5 (cf [4, definition 1.2.1]). Let x ∈ Rm. An oracle approximating x is a function
ψ such that on input n ∈ N, ψ(n) ∈ Qm with ‖ψ(n)− x‖ < 2−n. Moreover, x is computable if
there is a Turing machine ψ which is an oracle for x.

We note that solely using computability, equality is not decidable. More precisely, we
observe that when x is computable, we can only calculate x up to some error. Therefore, we
may conclude that x is in a small interval, but we cannot conclude which point in the interval
equals x. For more details, see [34, 39]. We say that a function is computable if its value at any
point can be computed to any requested precision.

Definition 2.6 (cf [4, definition 1.2.5]). Let S ⊂ Rm. A function g : S→ R is computable if
there is a Turing machine χ so that for any x ∈ S and any oracle ψ for x, χ(ψ, n) is a rational
number so that |χ(ψ, n)− g(x)| < 2−n.

We also note that the definition of a computable function uses any oracle for x and applies
even when x is not computable, i.e., the oracle ψ does not need to be a Turing machine. More-
over, since the accuracy of g is only dependent on an approximation for x, we conclude that
computable functions are continuous, see, e.g., [4, theorem 1.5].

We also study functions which have a weaker notion of computability called upper semi-
computability. In this case, the approximations converge from above, but without an accuracy
guarantee.

Definition 2.7 (cf [13, definition 2.7]). Let S ⊂ Rm. A function g : S→ R is upper semi-
computable (also called right recursively enumerable or right computable) if there is a Turing
machineχ so that for any n ∈ N and x ∈ S, and any oracleψ for x, χ(ψ, n) is a rational number
such that the sequence (χ(ψ, n))n is nonincreasing and limn→∞ χ(ψ, n) = g(x).

Similarly, we may define lower semi-computable functions. We observe that a function is
computable if and only if it is both upper and lower semi-computable, see, e.g., [4]. As an

6165



Nonlinearity 33 (2020) 6157 M Burr and C Wolf

alternate weaker notion of computability, we introduce the definition of a function which is
computable at a given point, which is a computable version of pointwise continuity.

Definition 2.8. Let S ⊂ Rm be an open set and let x ∈ S. Suppose that g : S→ R is a function
and χ is a Turing machine such that for any oracle ψ for x, χ(ψ, n) is a rational number. We
define �n to be the maximum � to which χ queries ψ(�) when evaluating χ(ψ, n).

The function g : S→ R is computable at x if there exists a Turing machine χ so that for any
oracle ψ for x, χ(ψ, n) is a rational number with the following property: for all y ∈ S such that
there exists an oracle ψ′ for y that agrees with ψ up to precision �n, i.e., ψ(�) = ψ′(�) for all
� � �n, then χ(ψ, n) = χ(ψ′, n) and |χ(ψ, n)− g(y)| < 2−n.

We observe that this definition is existential and, in particular, does not include a decidability
statement. In other words, we do not assume that there exists a Turing machine which decides
if ψ is computable at x ∈ S.

Since one of our main theorems involves recursively open sets, we include its definition.

Definition 2.9 (cf [13, definition 2.4]). An open set S ⊂ Rm is a recursively open set (also
called a semi-decidable set or a lower-computable set) if there exists a Turing machine ψ such
thatψ produces a (possibly infinite) sequence of pairs (zi, ni) so that zi ∈ Qm is a rational vector
and ni ∈ Z so that

S =
⋃
i

B
(
zi, 2

−ni
)
.

In the remainder of this section, we assume that f is a transitive SFT and describe its
computability properties, see, e.g., [6] for further details.

Definition 2.10. Let x ∈ X. An oracle for x is a functionψ such that for any natural number
n, ψ(n) = xn. Moreover, x is computable if there is a Turing machine ψ which is an oracle for
x.

We note that the periodic points of f are both computable and dense.Moreover, the cylinders
of length k and a periodic point in each cylinder can be computed algorithmically. We observe
that the locally constant potentials with rational values (denoted by LC(X,Q)) are dense in
C(X,R) with respect to the supremum norm. Since LCk(X,Q) is in bijective correspondence
withQmc(k), it follows that each potential in LC(X,Q) can be represented by a pair (k, q) where
q ∈ Qmc(k).

Definition 2.11. Suppose that φ ∈ C(X,R). An oracle forφ is a functionχ such that on input
n, χ(n) is a locally constant potential in LC(X,Q) such that ‖χ(n)− φ‖∞ < 2−n. Moreover, φ
is computable if there is a Turing machine χ which is an oracle for φ.

We observe that if θ from the product topology (see equation (2)) is a computable real
number, then the function for the distance between two points of X is a computable function
and X is a computable metric space, cf [13, definition 2.2]. In addition, C(X,R) also forms a
computable metric space, see, e.g., [6, 13].

In the definition for an oracle χ of φ ∈ C(X,R), since χ(n) is a locally constant function,
there is some kn so that χ(n) ∈ LCkn (X,Q)\LCkn−1(X,Q). We observe, however, that there is
no bound on the size of kn in the definition of such an oracle. In fact, even if φ ∈ LC(X,R), it is
possible that the sequence (kn)n∈N diverges to infinity as n increases. We now show, however,
that whenφ is locally constant, we can compute (fromχ) a sequence of potentials in LC�n(X,Q)
such that �n does not grow without bound.
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Lemma 2.12. There exists a Turing machine, which, given input n ∈ N and an oracle χ of
φ ∈ LC(X,R) produces �n ∈ N and φ̃n ∈ LC�n(X,Q) with the following properties:

(a) ‖φ− φ̃n‖∞ < 2−n and
(b) If φ ∈ LCk(X,R), then �n � k.

Proof. For a fixed n, let �n be the smallest cylinder length so that var�n(χ(n+ 1)) < 2−n. We
observe that �n � k via the triangle inequality. We define φ̃n to be a locally constant function
in LC�n(X,Q) where the value in each cylinder is chosen to differ by at most 2−n−1 from the
values of χ(n+ 1) in that cylinder. �

Since C(X,R) is a computable metric space, we consider computable functions whose
domains are subsets of C(X,R).

Definition 2.13. Let S ⊂ C(X,R). A function g : S→ R is computable if there is a Turing
machine η so that for any function φ ∈ S and oracle χ for φ, η(χ, n) is a rational number with
|η(χ, n)− g(φ)| < 2−n.

We note that the notions of an upper semi-computable function and computability at a point
carry over to the case of a function g : S→ R for S ⊂ C(X,R). We leave the details to the
reader. We also observe that the computability of the function g in definition 2.13 is defined in
terms of the supremum norm. Since the supremum norm does not generate the same topology
as the Hölder or Lipschitz norms, previous results on the Hölder and Lipschitz norms cannot
be applied in this paper, see, e.g., [10, 11, 24, 28].

We recall that computability can also be extended to the spaceM of invariantmeasures on X
via theWasserstein–Kantorovichmetric, see [13] formore details. All of the invariantmeasures
considered in this paper, however, are periodic point measures. For these measures, the full
theory of the computability of M is not needed and it is sufficient to use the computability
properties of the periodic points.

3. Upper semi-computability of the residual entropy

The goal of this section is to prove theorem A. We start with a discussion of the pressure
function for continuous potentials. These results are fairly standard in the Hölder continuous
case, but they are more challenging for potentials which are only continuous. The difficulties
arise from the lack of uniqueness results for equilibrium states and, in particular, the possibility
of phase transitions. To overcome these challenges, we make use of several tools, including
methods from convex analysis, see, e.g., [30].

Let φ : X → R be a fixed continuous potential. We note that we do not assume the unique-

ness of the equilibrium states. We call β �→ P(β)
def
= Ptop(βφ) the pressure function of φ. The

pressure function is convex, see, e.g., [35], and, thus, it has left and right derivatives

∂±P(β) = lim
δ→0±

P(β + δ)− P(β)
δ

.

Moreover, since μ �→ hμ( f ) is upper semi-continuous, it follows from [17, proposition 1] and
[36, lemma 1] that

∂−P(β) = min
μ∈ES(βφ)

μ(φ) and ∂+P(β) = max
μ∈ES(βφ)

μ(φ). (8)

Furthermore, since ES(βφ) is a compact and convex subset of M, for all ∂−P(β) � α �
∂+P(β), there exists μα ∈ ES(βφ) with μα(φ) = α. In particular, the minimum and maximum
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in equation (8) are achieved. We observe that β �→ P(β) is differentiable at β if and only if

Iβ
def
= {μ(φ) : μ ∈ ES(βφ)} is a singleton5. Moreover,

int I(φ) = (aφ, bφ) ⊂
⋃
β∈R

Iβ , (9)

see [17, corollary 2]. Since β �→ P(β) is convex, it is differentiable on R with the exception of
at most countably many points β ∈ R. We define

hmax(β) = max
μ∈ES(βφ)

hμ( f ) and hmin(β) = min
μ∈ES(βφ)

hμ( f ).

Thus, equation (5) yields

P(β) = hmax(β)+ β∂−P(β) = hmin(β)+ β∂+P(β). (10)

Moreover, the convexity of the pressure function implies

∂+P(β1) � ∂−P(β2) and hmin(β1) � hmax(β2) (11)

whenever 0 � β1 < β2. We briefly discuss the case when P is differentiable at β. In this

case equation (10) becomes P(β) = h(β)+ β∂P(β), where h(β)
def
= hmax(β) = hmin(β) and

∂P(β)
def
= ∂−P(β1) = ∂+P(β1). Since the topological pressure is convex and computable, see

[6, 34], it is straight-forward to compute approximations to β �→ ∂P(β) and β �→ h(β) on the
set of points where β �→ P(β) is differentiable. In particular, we conclude that if φ is a Hölder
continuous potential given by an oracle, then the functions β �→ h(β) and β �→ ∂P(β) are com-
putable. Combining these observations with lemma 2.1, we conclude that theorem A holds for
Hölder continuous potentials. To prove the general case, we make use of the following result
to include the possibility of phase transitions:

Proposition 3.1. Suppose φ � 0 and let 0 � β1 < β2. We define α = α(β1, β2) =
(P(β2)− P(β1))/(β2 − β1). Then, there exist β1 < β < β2 and μ ∈ ES(βφ) such that

P(β1)− β2α � hμ( f ) � P(β2)− β1α. (12)

Proof. First, we observe that since φ � 0, the map β �→ P(β) is increasing. If ∂+P(β1) =
∂−P(β2), then h(β) and ∂P(β) are constant for β1 < β < β2, so P|(β1,β2) is an affine function
of β. Moreover, for all β1 < β < β2, ∂P(β) = α. Finally, combining this with equation (10),
it follows that P(β2)− β1α = h(β)+ (β2 − β1)∂P(β) � h(β) and P(β1)− β2α = h(β)−
(β2 − β1)∂P(β) � h(β). Therefore, inequality (12) holds for all β1 < β < β2 and all μ ∈
ES(βφ).

It remains to consider the case where ∂+P(β1) < ∂−P(β2). Since α is the slope of the
line segment joining (β1,P(β1φ)) and (β2,P(β2φ)), the convexity of the pressure function
implies that ∂+P(β1) < α < ∂−P(β2). Thus, by equation (8), α ∈ int I(φ). It now follows
from equation (9) that there exists β ∈ R and μ ∈ ES(βφ) such that μ(φ) = α. Moreover, by
equation (11), we may restrict β to β1 < β < β2. Applying equation (5) yields

hμ( f ) = P(β)− βμ(φ) = P(β)− βα.

Finally, equation (12) follows since the pressure function is increasing. �

5We note that the nondifferentiability points of the pressure function are phase transitions, i.e., points of coexistence
of multiple equilibrium states where each ergodic equilibrium state represents a phase.
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The following auxiliary lemma is used in the proofs of both theoremsA andB. In the lemma,
we show that the endpoints of I(φ) = [aφ, bφ] are computable points.

Lemma 3.2. The functions φ �→ aφ and φ �→ bφ are computable on C(X,R).

Proof. We first note that the functions φ �→ aφ and φ �→ bφ are Lipschitz continuous with
Lipschitz constant 1 on C(X,R). Let φ ∈ C(X,R) and let χ be an oracle for φ. We conclude
that |aφ − aχ(n)| < 2−n and |bφ − bχ(n)| < 2−n. Therefore, it is enough to prove the statement
for locally constant potentials. Suppose that χ(n) ∈ LCkn (X,R). Then, by equation (7), it is
enough to approximate μx(φ) for all kn-elementary periodic points x ∈ X. We use formula (4)
to approximateμx(φ) to any desired precision. Since there are only finitely many kn-elementary
periodic points, we can approximate aφ and bφ to any desired precision. �

We are now ready to present the proof of theorem A using the computability of the topo-
logical pressure, lemma 2.1, and proposition 3.1. We begin with a technical lemma that forms
the central argument of the main theorem.

Lemma 3.3. Let φ ∈ C(X,R) with φ � 0 be given by an oracle ψ. Suppose that rational
numbers 0 � β1 < β2 are given. There exists a Turing machine χ so that χ(n,ψ) is a rational
number such that there exists6 a β with β1 < β < β2 and μ ∈ ES(βφ) such that |χ(n,ψ)−
hμ( f )| < 2−n.

Proof. We observe that since the pressure function β �→ Ptop(βφ) is continuous, as β2 → β1,
the upper and lower bounds of inequality (12) approach each other. Therefore, if we can find
β1

′ and β2
′ so that β1 � β1

′ < β2
′ � β2 and the upper and lower bounds of inequality (12) are

within 2−n, any rational number satisfying the inequalities of inequality (12) can be used to
approximate hμ( f ).

We recall that the pressure function β �→ Ptop(βφ) is computable, see [6, 34]. There-
fore, the upper and lower bounds in inequality (12) are also computable. We consider a
sequence (β1,m

′ , β2,m
′ ) of pairs of rational numbers so that β1 � β1,m

′ < β2,m
′ � β2 and β2,m

′ −
β1,m

′ decreases to zero as m→∞. By approximating the upper and lower bounds of inequality
(12) sufficiently well for each m, we may compute an m so that the upper and lower bounds of
inequality (12), when applied to β1,m

′ and β2,m
′ , are within 2−n. �

Next, we present the proof of theoremA, which is broken into the following two statements:

Theorem 3.4. The function φ �→ h∞,φ is upper semi-computable on C(X,R).

Proof. Suppose that φ ∈ C(X,R) is given by an oracle χ. We can compute a lower bound
q of φ by computing a lower bound of χ(n). We observe that ES(βφ) = ES(β(φ− q)) and
φ− q � 0. By applying lemma 3.3 to a strictly increasing sequence (βn)n converging to ∞,
we compute a sequence of entropies hμn( f ) forμn ∈ ES(β(φ− q)) with βn < β < βn+1. Then,
by applying lemma 2.1, we conclude that these entropies approach the residual entropy from
above. �

Next, we characterize the continuity of the residual entropy.

Proposition 3.5. The function φ �→ h∞,φ is continuous at φ0 ∈ C(X,R) if and only if
h∞,φ0 = 0.

Proof. Let φ0 ∈ C(X,R). If h∞,φ0 = 0 then φ �→ h∞,φ is continuous at φ0 by lemma 2.2.
Assume now h∞,φ0 > 0.We recall the definition of the set of uniquelymaximizing locally con-
stant potentialsO =

⋃
k Ok from section 1.2. We observe that since Ok is dense in LCk(X,R),

6We note that the lemma does not require the computability of β, only its existence.
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it follows thatO is dense in LC(X,R). SinceO consists of the locally constant potentials with a
uniquely maximizing periodic point, for all φ ∈ O, h∞,φ = 0. Finally, since LC(X,R) is dense
in C(X,R), we conclude that the map φ �→ h∞,φ is not continuous at φ0. �

Finally, we use the previous two results to prove corollary 1.1

Corollary 3.6. The function φ �→ h∞,φ is computable at φ0 if and only if h∞,φ0 = 0.

Proof. If h∞,φ0 > 0, then by proposition 3.5, the map φ �→ h∞,φ is not continuous at φ0,
so the function cannot be computable at φ0. On the other hand, suppose that h∞,φ0 = 0. By
theorem3.4, there is a Turingmachineχ so that for any oracleψ ofφ0, (χ(ψ,m))m is a sequence
of rational numbers decreasing to zero. By taking mn sufficiently large, χ(ψ,mn) < 2−n. Let
�n be the largest precision to which the oracle ψ is queried within χ and let φ′ ∈ C(X,R)
be a function such that there exists an oracle ψ′ for φ′ that agrees with ψ up to precision
�n. Then χ(ψ,mn) = χ(ψ′,mn) is an upper bound on hφ′ ,∞. Since the entropy is nonnegative,
|χ(ψ,mn)− hφ′,∞| < 2−n and the function φ �→ h∞,φ is computable at φ0. �

4. Computability of zero temperature measures for locally constant
potentials: the case of bounded cylinder length

In this section, we prove theorem B. We assume that θ in equation (2) is a computable real
number. Moreover, we assume, whenever necessary, that φ ∈ LCk(X,R) is a potential given
by an oracle.

We observe that by using lemma 3.2, we can compute a superset of EPer kmax(φ). In particular,
for x ∈ EPerk( f ), we can approximateμx(φ) using formula (4). Then, EPer kmax(φ) is a subset of
those k-elementary points for which the approximations of μx(φ) and bφ permit the possibility
of equality. By increasing the accuracy of these approximations, the computed superset of
EPer kmax(φ) shrinks. By studying the number and k-cylinder supports of this superset, we may
identify potentials inOk orOk ∪̇ Uk. In particular, we conclude that there are Turing machines
ψOk and ψOk ∪̇ Uk which take a potential as input and terminate if and only if φ ∈ Ok or φ ∈
Ok ∪̇ Uk, respectively.

Proposition 4.1. The sets Ok and Ok ∪̇ Uk are recursively open sets.

Proof. We use the Turing machines ψOk and ψOk ∪̇ Uk identified above. If φ ∈ Ok, then there
is a positive gap between the approximation to bφ and the second-largest value of μy(φ) for a
k-elementary periodic point y. Similarly, ifφ ∈ Ok ∪̇ Uk, then there is a gap between the approx-
imation to bφ and the largest μx(φ) of a k-elementary periodic point x which is not included in
the superset of EPer kmax(φ) constructed above. Perturbations of φ by no more than half these
gaps remain within Ok and Ok ∪̇ Uk, respectively. By using more accurate approximations,
we can identify more potentials and refine the radii of the constructed balls, so that, in the
limit, the constructed open sets coverOk orOk ∪̇ Uk. �

We now discuss the computability of the entropy and the zero-temperature measure. These
propositions are the main computability statements of theorem B.

Proposition 4.2. The map φ �→ h∞,φ is computable on Ok ∪̇ Uk. Moreover, the map φ �→
μ∞,φ is computable on Ok.

Proof. Suppose that φ ∈ Ok ∪̇ Uk. Since the entropy of all zero-temperature measures of
potentials inOk ∪̇ Uk is zero,which is computable, the entropy function is computable. Suppose
now that we know thatφ ∈ Ok. By inspecting the proof of proposition 4.1, we find that for all φ′

6170



Nonlinearity 33 (2020) 6157 M Burr and C Wolf

produced by small perturbations in the proof, the same k-elementary orbit x maximizes μ(φ′).
Therefore, for every φ′ in the ball, the zero-temperature measure is μx = μ∞,φ. This measure
is computable since the supporting k-elementary periodic point is computable. �

We now complete the proof of theorem B by showing that the functions φ �→ μ∞,φ and
φ �→ h∞,φ are not continuous, and, hence, not computable on the complement of the points in
proposition 4.2.

Proposition 4.3. The map φ �→ μ∞,φ is not continuous at any φ0 ∈ Uk ∪̇ Vk. Moreover, the
map φ �→ h∞,φ is not continuous at any φ0 ∈ Vk. In particular, the corresponding maps are
not computable at φ0.

Proof. Suppose that φ0 ∈ Vk, then h∞,φ0 > 0. The proof of proposition 3.5 shows that, when
restring to LCk(X,R), the residual entropy map is not continuous, and, hence, not computable
at φ0. Additionally, using the density of Ok, there is an infinite sequence (φn)n∈N in Ok whose
limit is φ0. Since there are only finitely many k-elementary periodic points, by passing to a sub-
sequence, we may assume that there is a k-elementary periodic point x so that μx = μ∞,φn for
all n. If the zero-temperature measure map were continuous in the Wasserstein–Kantorovich
metric, then μ∞,φ0 would be μx, but this is not possible since the entropy of a periodic
point measure is 0. Thus, the map φ �→ μ∞,φ is not continuous, and, hence, not computable
at φ0.

To show that the map φ �→ μ∞,φ is not continuous at φ0 ∈ Uk, we find two sequences of
potentials converging to φ0 where the corresponding sequences of zero-temperature measures
have different limits. In particular, we construct two sequences of potentials (φ1,n)n and (φ2,n)n
where, for all n, μ∞,φ1,n = μx and μ∞,φ2,n = μy with x and y distinct k-elementary periodic
points. Since φ0 ∈ Uk, there are two k-elementary periodic points x, y ∈ EPer kmax(φ) with dis-
joint k-cylinder support. Thus, there exists a k-cylinder C(τ ) in the support of x, but not in the
support of y. Similarly, there is a k-cylinder C(τ ′) that is not in the support of x, but is in the
support of y. By (slightly) increasing φ0 on C(τ ) or C(τ ′), we can make EPer kmax(φ) consist of a
single k-elementary periodic point x or y. Thus, the function φ �→ μ∞,φ is not continuous, and,
hence, not computable at φ0. �

5. Computability of zero temperature measures for locally constant
potentials: the case of unbounded cylinder length

It is natural to ask whether proposition 4.1 requires k to be given or if the statements can be
generalized to the sets O =

⋃
kOk and O ∪̇U , where U =

⋃
k Uk. We give a negative answer

to this question by showing the fact that the setsOk andOk ∪̇ Uk are recursively open does not
extend to O and O ∪̇U . In particular, we prove, in theorem C, that O has no interior points in
LC(X,R). We begin with an illustrative example where O is not open and which provides the
motivation for the proof of theorem C.

Example 5.1. Consider the SFT with alphabet {0, 1, 2, 3} and transition matrix given in
figure 1. Let φ ∈ LC2(X,R) be the potential whose value on cylinders C2(01) and C2(10) is
2, while its value on any other cylinder of length 2 is 1. In other words, φ is defined by the
following matrix:⎛⎜⎜⎝

0 2 1 1
2 0 0 0
1 0 0 0
1 0 0 0

⎞⎟⎟⎠
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Figure 1. The transition matrix and corresponding directed graph illustrating the allow-
able transitions between states.

For each n ∈ N, we define a potential φn ∈ LC2n+2(X,R) which is a perturbation of φ. For a
segment τ we denote by #2(τ ) and #3(τ ) the number of 2’s or 3’s appearing in τ , respectively.
We define

φn(w) =

⎧⎨⎩2+
2
n

w ∈ C2(01) ∪ C2(10), #2(π2n+2(w))+#3(π2n+2(w)) = 1

φ(w) otherwise
.

In other words, φn(w) = φ(w) unless τ = π2n+2(w) begins with 01 or 10 and contains either
(exactly one 2 and no 3’s) or (exactly one 3 and no 2’s).We see that ‖φ− φn‖∞ = 2

n . Moreover,
EPer2max(φ) = EPer2n+2

max (φ) consists of the single 2-elementary periodic orbit of x = Or(01).
We observe that both φ and φn are constant on the orbit of x, so μx(φ) = 2 = μx(φn).

On the other hand, EPer2n+2
max (φn) contains at least three (2n+ 2)-elementary periodic

orbits: the orbits generated by (01)n02, (01)n03, and (01)n02(01)n03. Here, (01)n repre-
sents the sequence of length 2n consisting of 01 repeated n times. Let z1 = Or((01)n02),
z2 = Or((01)n03), and z3 = Or((01)n02(01)n03). We observe that μzi (φn) = 2+ 1

n+1 > 2 for
i = 1, 2, 3. On the other hand, we observe that μzi (φ) = 2− 1

n+1 .

Putting this together, we note that since EPer2max(φ) consists of a single periodic orbit, φ ∈
O2 with h∞,φ = 0 and μ∞,φ = μx. On the other hand, since z1, z2, and z3 have overlapping
cylinders, φn ∈ V2n+2 with h∞,φn > 0. We, therefore, conclude that since φn → φ, O is not
open in the supremum norm topology on LC(X,R), so, in particular, O is not a recursively
open set. We observe, however, that by lemma 2.2, h∞,φn → 0 as n→∞.

This example shows that, in general,O is not open in LC(X,R). Moreover, we note that, in
our example, themaximal (2n+ 2)-elementaryperiodicorbits ofφn do not include themaximal
2-elementary periodic orbits of φ. In other words, the set of maximizing elementary periodic
orbits may change considerably under perturbations once the cylinder length is not fixed.

Using this example as a guide, we show that the set U ∪̇ V is dense in LC(X,R), where
V =

⋃
k Vk. This shows that the proof of proposition 4.1 does not directly extend to the setsO

and O ∪̇U .

Proposition 5.2. Let f : X→ X be transitive SFT with positive topological entropy. Then,
the set U ∪̇ V is dense in LC(X,R) with respect to the supremum norm topology.

Proof. Let φ ∈ O. We show that in every neighborhood of φ there exists φ′ ∈ U ∪̇ V . Since
O is dense, the density of U ∪̇ V follows.

Let k ∈ N be such that φ ∈ Ok, and let x ∈ EPer kmax(φ) correspond to the unique maximal
k-elementary periodic orbit for φ with period �x and generating segment τx . We now consider
periodic points of the form zm = O(τmx y), where τ

m
x denotes the m-times concatenation of τx

and y is a segment of length �y. By transitivity and positive topological entropy of f we may
assume that yi 	= xi for some i ∈ {1, . . . , min{�x, �y}}.
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In the following, we fix the segment y and varym � 2. Let � = �(m) be the smallest cylinder
length so that zm is �-elementary periodic. We observe that (m− 1)�x < � since the (m− 1)�x-
cylinders starting at the first two copies of τx in zm are identical.On the other hand, � � m�x + �y
is a consequence of the construction of zm. We restrict our attention to cylinders of length
� throughout the remainder of this proof. The fact that x is a k-elementary periodic point
with period �x implies that |S�(x)| = �x, see equation (3). Moreover, since zm is �-elementary
periodic with period m�x + �y, |S�(zm)| = m�x + �y. We define potentials φε,� as follows:

φε,�(w) =

{
φ(w)+ ε C�(w) ∈ S�(zm)\S�(x)

φ(w) otherwise
.

We observe that ‖φ− φε,�‖∞ = ε. By construction,μx
(
φε,�

)
= μx(φ). On the other hand, since

|S�(zm)\S�(x)| � (m− 1)�x + �y, it follows that

μzm (φ)+
(m− 1)�x + �y
m�x + �y

ε � μzm
(
φε,�

)
� μzm (φ)+ ε.

Furthermore, since zm begins withm copies of τx, for 0 � i < m�x − k, Ck( f i(zm)) ∈ Sk(x). Let
m′ =

⌊
m− �y+k

�x

⌋
. Then, zm = O(τm

′
x τm−m

′
x y) and

μzm (φ) =
m′�x

m�x + �y
μx(φ)+

(m− m′)�x + �y
m�x + �y

μO(τm−m
′

x y)
(φ).

For fixed ε > 0, we observe that as m (and hence m′) increases,

μzm (φε,�)→ μzm (φ)+ ε and μzm (φ)→ μx(φ).

Therefore, for any fixed ε > 0, there exists an m so that μzm (φε,�) > μx(φε,�) = μx(φ). For the
remainder of the proof, fix such ε, m and �.

Finally, we consider the family of potentials φt,�, where 0 � t � ε. Let t0 =
sup

{
t : x ∈ EPer�max

(
φt,�

)}
. We observe that t0 > 0 since x ∈ EPer�max

(
φ0,�

)
and O� is

open. On the other hand, t0 < ε since x /∈ EPer�max

(
φε,�

)
. At t0, EPer�max

(
φt0,�

)
must contain

at least two elementary periodic orbits, x and some other orbit. Therefore, φt0,� /∈ O and
‖φ− φt0,�‖∞ = t < ε. Therefore, φt0,� ∈ U ∪̇ V , and, by allowing ε decreasing to zero, the
conclusion follows. �

Acknowledgments

The authors thank the anonymous referees for many helpful suggestions, which greatly
improved the paper.

ORCID iDs

Michael Burr https://orcid.org/0000-0001-8921-4870
Christian Wolf https://orcid.org/0000-0002-7976-3574

References

[1] Binder I, BravermanM, Rojas C and YampolskyM 2011 Computability of Brolin–Lyubich measure
Commun. Math. Phys. 308 743–71

6173

https://orcid.org/0000-0001-8921-4870
https://orcid.org/0000-0001-8921-4870
https://orcid.org/0000-0001-8921-4870
https://orcid.org/0000-0002-7976-3574
https://orcid.org/0000-0002-7976-3574
https://orcid.org/0000-0002-7976-3574
https://doi.org/10.1007/s00220-011-1363-1
https://doi.org/10.1007/s00220-011-1363-1
https://doi.org/10.1007/s00220-011-1363-1
https://doi.org/10.1007/s00220-011-1363-1


Nonlinearity 33 (2020) 6157 M Burr and C Wolf

[2] Bissacot R, Garibaldi E and Thieullen P 2018 Zero-temperature phase diagram for double-well type
potentials in the summable variation class Ergod. Theor. Dynam. Syst. 38 863–85

[3] Brattka V, Hertling P andWeihrauch K 2008 A tutorial on computable analysis New Computational
Paradigms (Berlin: Springer) pp 425–91

[4] BravermanM and Yampolsky M 2009 Computability of Julia Sets (Algorithms and Computation in
Mathematics vol 23) (Berlin: Springer)

[5] Brémont J 2003 Gibbs measures at temperature zero Nonlinearity 16 419–26
[6] Burr M, Schmoll M and Wolf C 2020 On the computability of rotation sets and their entropies

Ergod. Theor. Dynam. Syst. 40 367–401
[7] Chazottes J, Gambaudo J-M and Ugalde E 2011 Zero-temperature limit of one-dimensional Gibbs

states via renormalization: the case of locally constant functions Ergod. Theor. Dynam. Syst. 31
1109–61

[8] Chazottes J and Hochman M 2010 On the zero-temperature limit of Gibbs states Commun. Math.
Phys. 297 265–81

[9] Collet P 2015 On the complexity of some geometrical objectsNonlinear Dynamics New Directions:
Theoretical Aspects ed H González-Aguilar and E Ugalde (Berlin: Springer) pp 29–45

[10] Contreras G 2016 Ground states are generically a periodic orbit Invent Math. 205 383–412
[11] Contreras G, Lopes A O and Thieullen P 2001 Lyapunov minimizing measures for expanding maps

of the circle Ergod. Theor. Dynam. Syst. 21 1379–409
[12] Coronel D and Rivera-Letelier J 2015 Sensitive dependence of gibbs measures at low temperatures

J. Stat. Phys. 160 1658–83
[13] Galatolo S, Hoyrup M and Rojas C 2011 Dynamics and abstract computability: computing invariant

measures Discrete Continuous Dyn. Syst. 29 193–212
[14] Gangloff S, Herrera A, Rojas C and Sablik M 2020 Computability of topological entropy: from

general systems to transformations on cantor sets and the intervalDiscrete Continuous Dyn. Syst.-
Ser. A 40 4259–86

[15] Hertling P and Spandl C 2008 Shifts with decidable language and non-computable entropy Discrete
Math. Theor. Comput. Sci. 10 75–93

[16] HochmanM andMeyerovitch T 2010 A characterization of the entropies of multidimensional shifts
of finite type Ann. Math. 171 2011–38

[17] Jenkinson O 2001 Rotation, entropy, and equilibrium states Trans. Am. Math. Soc. 353 3713–39
[18] Jenkinson O 2019 Ergodic optimization in dynamical systems Ergod. Theor. Dynam. Syst. 39

2593–618
[19] Jenkinson O and Pollicott M 2002 Calculating Hausdorff dimensions of Julia sets and Kleinian limit

sets Am. J. Math. 124 495–545
[20] Jenkinson O and Pollicott M 2004 Entropy, exponents and invariant densities for hyperbolic sys-

tems: dependence and computation Modern Dynamical Systems and Applications (Cambridge:
Cambridge University Press) pp 365–84

[21] Kitchens B 1998 Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts
(Berlin: Springer)

[22] Kucherenko T and Wolf C 2014 The geometry and entropy of rotation sets Isr. J. Math. 1999
791–829

[23] Leplaideur R 2005 A dynamical proof for the convergence of gibbs measures at temperature zero
Nonlinearity 18 2847–80

[24] Morris I D 2008 Maximizing measures of generic Hölder functions have zero entropy Nonlinearity
21 993–1000

[25] Parthasarathy K R 1961 On the category of ergodic measures Illinois J. Math. 5 648–56
[26] Pavlov R 2014 Shifts of finite type with nearly full entropy Proc. Lond. Math. Soc. 108 103–32
[27] Pavlov R and Schraudner M 2015 Entropies realizable by block gluing Zd shifts of finite type J.

d’Analyse Math. 126 113–74
[28] Anthony Q and Siefken J 2012 Ergodic optimization of super-continuous functions on shift spaces

Ergod. Theor. Dynam. Syst. 32 2071–82
[29] Rettinger R andWeihrauch K 2002 The computational complexity of some Julia setsElectron. Notes

Theor. Comput. Sci. 66 154–64
[30] Tyrrell R 1970 Convex Analysis (Princeton, NJ: Princeton University Press)
[31] Rojas C and Yampolsky M 2017 Computable geometric complex analysis and complex

dynamics Technical Report To appear in Handbook on Computability in Complex Analysis
(arXiv:1703.06459 [math.CV])

6174

https://doi.org/10.1017/etds.2016.57
https://doi.org/10.1017/etds.2016.57
https://doi.org/10.1017/etds.2016.57
https://doi.org/10.1017/etds.2016.57
https://doi.org/10.1088/0951-7715/16/2/303
https://doi.org/10.1088/0951-7715/16/2/303
https://doi.org/10.1088/0951-7715/16/2/303
https://doi.org/10.1088/0951-7715/16/2/303
https://doi.org/10.1017/etds.2018.45
https://doi.org/10.1017/etds.2018.45
https://doi.org/10.1017/etds.2018.45
https://doi.org/10.1017/etds.2018.45
https://doi.org/10.1017/s014338571000026x
https://doi.org/10.1017/s014338571000026x
https://doi.org/10.1017/s014338571000026x
https://doi.org/10.1017/s014338571000026x
https://doi.org/10.1007/s00220-010-0997-8
https://doi.org/10.1007/s00220-010-0997-8
https://doi.org/10.1007/s00220-010-0997-8
https://doi.org/10.1007/s00220-010-0997-8
https://doi.org/10.1007/s00222-015-0638-0
https://doi.org/10.1007/s00222-015-0638-0
https://doi.org/10.1007/s00222-015-0638-0
https://doi.org/10.1007/s00222-015-0638-0
https://doi.org/10.1017/s0143385701001663
https://doi.org/10.1017/s0143385701001663
https://doi.org/10.1017/s0143385701001663
https://doi.org/10.1017/s0143385701001663
https://doi.org/10.1007/s10955-015-1288-8
https://doi.org/10.1007/s10955-015-1288-8
https://doi.org/10.1007/s10955-015-1288-8
https://doi.org/10.1007/s10955-015-1288-8
https://doi.org/10.3934/dcds.2011.29.193
https://doi.org/10.3934/dcds.2011.29.193
https://doi.org/10.3934/dcds.2011.29.193
https://doi.org/10.3934/dcds.2011.29.193
https://doi.org/10.3934/dcds.2020180
https://doi.org/10.3934/dcds.2020180
https://doi.org/10.3934/dcds.2020180
https://doi.org/10.3934/dcds.2020180
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.1090/s0002-9947-01-02706-4
https://doi.org/10.1090/s0002-9947-01-02706-4
https://doi.org/10.1090/s0002-9947-01-02706-4
https://doi.org/10.1090/s0002-9947-01-02706-4
https://doi.org/10.1017/etds.2017.142
https://doi.org/10.1017/etds.2017.142
https://doi.org/10.1017/etds.2017.142
https://doi.org/10.1017/etds.2017.142
https://doi.org/10.1353/ajm.2002.0015
https://doi.org/10.1353/ajm.2002.0015
https://doi.org/10.1353/ajm.2002.0015
https://doi.org/10.1353/ajm.2002.0015
https://doi.org/10.1007/s11856-013-0053-4
https://doi.org/10.1007/s11856-013-0053-4
https://doi.org/10.1007/s11856-013-0053-4
https://doi.org/10.1007/s11856-013-0053-4
https://doi.org/10.1088/0951-7715/18/6/023
https://doi.org/10.1088/0951-7715/18/6/023
https://doi.org/10.1088/0951-7715/18/6/023
https://doi.org/10.1088/0951-7715/18/6/023
https://doi.org/10.1088/0951-7715/21/5/005
https://doi.org/10.1088/0951-7715/21/5/005
https://doi.org/10.1088/0951-7715/21/5/005
https://doi.org/10.1088/0951-7715/21/5/005
https://doi.org/10.1215/ijm/1255631586
https://doi.org/10.1215/ijm/1255631586
https://doi.org/10.1215/ijm/1255631586
https://doi.org/10.1215/ijm/1255631586
https://doi.org/10.1112/plms/pdt009
https://doi.org/10.1112/plms/pdt009
https://doi.org/10.1112/plms/pdt009
https://doi.org/10.1112/plms/pdt009
https://doi.org/10.1007/s11854-015-0014-4
https://doi.org/10.1007/s11854-015-0014-4
https://doi.org/10.1007/s11854-015-0014-4
https://doi.org/10.1007/s11854-015-0014-4
https://doi.org/10.1017/s0143385711000629
https://doi.org/10.1017/s0143385711000629
https://doi.org/10.1017/s0143385711000629
https://doi.org/10.1017/s0143385711000629
https://doi.org/10.1016/s1571-0661(04)80386-4
https://doi.org/10.1016/s1571-0661(04)80386-4
https://doi.org/10.1016/s1571-0661(04)80386-4
https://doi.org/10.1016/s1571-0661(04)80386-4
https://arxiv.org/abs/1703.06459


Nonlinearity 33 (2020) 6157 M Burr and C Wolf

[32] Shamos M I 1978 Computational geometry PhD Thesis Yale University
[33] Spandl C 2007 Computing the topological entropy of shifts Electron. Notes Theor. Comput. Sci. 167

131–55
[34] Spandl C 2008 Computability of topological pressure for sofic shifts with applications in statistical

physics J. Univers. Comput. Sci. 14 876–95
[35] Walters P 1981 An Introduction to Ergodic Theory (Graduate Texts in Mathematics vol 79) (Berlin:

Springer)
[36] Walters P 1992 Differentiability properties of the pressure of a continuous transformation on a

compact metric space J. Lond. Math. Soc. 46 471–81
[37] Weihrauch K 2000 Computable Analysis: An Introduction Texts in Theoretical Computer Science

(An EATCS Series) (Berlin: Springer)
[38] Wolf C and Yang Y 2019 A topological classification of locally constant potentials via zero-

temperature measures Trans. Am. Math. Soc. 372 3113–40
[39] Yap C 2007 Is it really zero? KIAS Magazine vol 34
[40] Ziemian K 1995 Rotation sets for subshifts of finite type Fundam. Math. 146 189–201

6175

https://doi.org/10.1016/j.entcs.2006.08.011
https://doi.org/10.1016/j.entcs.2006.08.011
https://doi.org/10.1016/j.entcs.2006.08.011
https://doi.org/10.1016/j.entcs.2006.08.011
https://doi.org/10.1112/jlms/s2-46.3.471
https://doi.org/10.1112/jlms/s2-46.3.471
https://doi.org/10.1112/jlms/s2-46.3.471
https://doi.org/10.1112/jlms/s2-46.3.471
https://doi.org/10.1090/tran/7659
https://doi.org/10.1090/tran/7659
https://doi.org/10.1090/tran/7659
https://doi.org/10.1090/tran/7659

	Computability at zero temperature
	1.  Introduction
	1.1.  Motivation
	1.2.  Statement of results
	1.3.  Outline of the paper and summary of proofs

	2.  Settings and generalities
	2.1.  Shift maps
	2.2.  Topological pressure, ground states and zero-temperature measures
	2.3.  Entropy of ground states
	2.4.  Locally constant potentials
	2.5.  Computability theory for SFTs

	3.  Upper semi-computability of the residual entropy
	4.  Computability of zero temperature measures for locally constant potentials: the case of bounded cylinder length
	5.  Computability of zero temperature measures for locally constant potentials: the case of unbounded cylinder length
	Acknowledgments
	ORCID iDs
	References


