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Abstract

The Eastern North American monarch butterfly, Danaus plexippus, is famous for its spec-

tacular seasonal long-distance migration. In recent years, it has also emerged as a novel

system to study how animal circadian clocks keep track of time and regulate ecologically

relevant daily rhythmic activities and seasonal behavioral outputs. However, unlike in Dro-

sophila and the mouse, little work has been undertaken in the monarch to identify rhythmic

genes at the genome-wide level and elucidate the regulation of their diurnal expression.

Here, we used RNA-sequencing and Assay for Transposase-Accessible Chromatin

(ATAC)-sequencing to profile the diurnal transcriptome, open chromatin regions, and tran-

scription factor (TF) footprints in the brain of wild-type monarchs and of monarchs with

impaired clock function, including Cryptochrome 2 (Cry2), Clock (Clk), andCycle-like loss-

of-function mutants. We identified 217 rhythmically expressed genes in the monarch brain;

many of them were involved in the regulation of biological processes key to brain function,

such as glucose metabolism and neurotransmission. Surprisingly, we found no significant

time-of-day and genotype-dependent changes in chromatin accessibility in the brain.

Instead, we found the existence of a temporal regulation of TF occupancy within open chro-

matin regions in the vicinity of rhythmic genes in the brains of wild-type monarchs, which is

disrupted in clock deficient mutants. Together, this work identifies for the first time the rhyth-

mic genes and modes of regulation by which diurnal transcription rhythms are regulated in

the monarch brain. It also illustrates the power of ATAC-sequencing to profile genome-wide

regulatory elements and TF binding in a non-model organism for which TF-specific antibod-

ies are not yet available.

Author summary

With a rich biology that includes a clock-regulated migratory behavior and a circadian

clock possessing mammalian clock orthologues, the monarch butterfly is an unconven-

tional system with broad appeal to study circadian and seasonal rhythms. While
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clockwork mechanisms and rhythmic behavioral outputs have been studied in this spe-

cies, the rhythmic genes that regulate rhythmic daily and seasonal activities remain largely

unknown. Likewise, the mechanisms regulating rhythmic gene expression have not been

explored in the monarch. Here, we applied genome-wide sequencing approaches to iden-

tify genes with rhythmic diurnal expression in the monarch brain, revealing the coordina-

tion of key pathways for brain function. We also identified the monarch brain open

chromatin regions and provide evidence that regulation of rhythmic gene expression does

not occur through temporal regulation of chromatin opening but rather by the time-of-

day dependent binding of transcription factors in cis-regulatory elements. Together, our

data extend our knowledge of the molecular rhythmic pathways, which may prove impor-

tant in understanding the mechanisms underlying the daily and seasonal biology of the

migratory monarch butterflies.

Introduction
Organisms have evolved daily and seasonal rhythms in behavior, physiology and metabolism

that are driven by biological clocks to adapt to a temporally dynamic environment. The East-

ern North American migratory monarch butterfly, Danaus plexippus, has emerged as a new

system to study circadian clocks and their role in regulating daily and seasonal biology [1,2].

The sequencing of its genome [3], along with the development of CRISPR/Cas9-mediated

reverse-genetics to generate monarch clock gene knockouts [4–6], have unlocked the potential

of the monarch for studying animal clockwork mechanisms. Yet, in contrast to conventional

model organisms like the fruit fly and the mouse, the identity of the genes expressed rhythmi-

cally over the course of the day and their cis-regulatory regions in the brain, the anatomical

site driving daily rhythms in locomotor activity, remain unknown in the monarch system.

Migratory monarchs are famous for their iconic seasonal long-distance migration and the

use of a sun compass that allows both fall migrants and spring remigrants to navigate to their

respective destinations [7–13]. Circadian clocks are part of the monarch navigational toolkit as

they time-compensate the sun compass output in the brain, enabling migrants and remigrants

to maintain a fixed flight direction throughout the day [7–9,11,12]. These clocks may also con-

tribute to the seasonal induction of the migratory physiology and behavior and the timing of

their migration [2]. The molecular oscillator that drives monarch circadian rhythms has been

deciphered and relies, similar to other eukaryotes, on a transcriptional-translational core feed-

back loop running with a period of ~24 hours. Interestingly, the monarch possesses a hybrid

clock that contains a mammalian-like core feedback loop and a Drosophila-like entrainment

pathway [14]. Heterodimers of the transcription factors CLOCK(CLK):BMAL1 drive the

rhythmic transcription of the cryptochrome 2 (cry2), period (per), and timeless (tim) genes

[14,15]. Upon translation, CRY2, PER, and TIM form complexes that translocate back into

the nucleus where CRY2, the orthologue of the mammalian CRY1 transcriptional repressor,

inhibits CLK:BMAL1-mediated transcription [5,6,14,15]. Photic entrainment of the clock is

similar to that found in the fruit fly, occurring through the circadian blue-light photoreceptor

CRYPTOCHROME 1 (CRY1) and the CRY1-TIM pathway [14,16–18].

The molecular circadian clock does not just regulate the expression of core clock compo-

nents. It also drives the rhythmic expression of thousands of transcripts in a tissue-specific

manner such that physiological functions are tuned to optimally perform at the most appropri-

ate time of the day. The genes rhythmically expressed in light:dark or constant dark conditions

and the transcription factors (TFs) that regulate their rhythmic expression have been identified
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in different tissues of several organisms from insects to mammals [19–29]. However, their

identity remains unknown in the monarch.

Given the potential of the monarch as a new genetic model to study how circadian clocks

regulate daily and seasonal physiological and behavioral outputs, we aimed in this study at 1)

identifying genes expressed rhythmically and under the control of circadian core clock com-

ponents over the 24-hour light:dark cycle in the monarch brain, 2) identifying the cis-regula-
tory elements that contribute to rhythmic gene expression, and 3) characterizing the effect of

clock disruption on cis-regulatory element accessibility and on the putative TFs that bind to

them.

Results

Profiling of the diurnal transcriptome identifies rhythmic expression of
core clock genes and clock output genes in the monarch butterfly brain

To determine the genes expressed rhythmically in the brain that may regulate physiological

and behavioral rhythms in the monarch butterfly, we profiled genome-wide gene expression

in the brains of wild-type adults collected every 3 hours in a 15-hr light:9-hr dark (LD) cycle

using RNA-sequencing, with two independent replicates per time point. LD conditions were

chosen instead of constant dark conditions because they reflect natural environments that

drive diurnal rhythms of monarch activity and the 15:9 LD regime was used because it is the

ecologically relevant photoperiod experienced by summer reproductive monarchs, and the

condition under which we maintain our colony in the laboratory. Expression levels for each

gene were examined for rhythmic variation using RAIN [30] and MetaCycle [31], and genes

with a maximum/minimum fold-change� to 1.3 and an adjusted p value (i.e., corrected for

multiple testing)� 0.05, as defined by either method, were considered rhythmic (see Methods

for details). Using these criteria, we identified 431 rhythmic genes with peaks of expression dis-

tributed throughout day and night in the monarch brain (Fig 1A; S1 and S2 Tables). To deter-

mine whether the rhythmic expression of these genes was dependent on core clock genes, we

also profiled genome-wide temporal expression patterns every 6 hours in 15:9 LD cycle in the

brains of two monarch knockout strains bearing a non-functional circadian clock, lacking

either a functional circadian activator CLK or a functional circadian repressor CRY2 [4,5]. An

analysis of differential rhythmicity between rhythmic gene expression in wild-type and gene

expression in clock-deficient mutants using DODR [32] revealed that the expression of most

rhythmic genes in wild-type monarchs was affected in Cry2 and Clk knockouts, and that this
effect was significantly higher than background (calculated using genes arrhythmically

expressed in brains of wild-type) (Fig 1B). Consequently, only genes with an adjusted p-value

cutoff of� 0.05 were considered in subsequent analysis. Under these stringent conditions, the

expression of 126 and 163 rhythmic genes was respectively affected in Cry2 and Clk knockouts
(Fig 1B; S3 and S4 Tables), 72 of which overlapped in both datasets (Fig 1C; S5 Table). Interest-

ingly, while the expression of the rhythmic genes differentially regulated in Cry2 knockouts
peaked throughout the day, the genes differentially regulated in Clk knockouts mostly peaked

during the first half of the light phase (Fig 1C).

Among the rhythmic genes identified, we found the CLK:BMAL1 direct target core clock

genes Per and Tim, which exhibited similar profiles to those previously shown by qPCR in

wild-type monarch brains [5], as well as Cry2 (Fig 1D). Some clock genes such as vrille (Vri)
and clockwork orange (Cwo), whose products respectively function in Drosophila as a regulator
of clk expression [33,34] and as a repressor of CLK-mediated activation [35–38], were also

rhythmically expressed (Fig 1D). The rhythmicity and phase of Per, Tim, Cry2, Vri and Cwo
expression in the brain of wild-type monarchs was confirmed by qRT-PCR on independent
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samples (S1 Fig), validating our RNA-seq data. The mRNA levels of other known clock genes

did not however show cyclic expression in the monarch brain. This includes Clk and Bmal1,
the blue-light photoreceptor Cry1, and the homologue of par domain protein 1 (Pdp1) that is
required for behavioral rhythmicity in Drosophila [39] (Fig 1D).

Fig 1. Twenty four-hour rhythms in mRNA abundance in the brain of monarch butterflies. A) Top, Heatmaps showing the
relative RNA levels for genes rhythmically expressed in brains of wild-type, and their corresponding expression in brains of Cry2 and
Clk knockout monarchs, all entrained in 15:9 light:dark (LD) cycles. Z-scores of reads per base pair coverage are shown and plotted
as heatmaps. Each column represents a single time point for a single replicate sampled over a 24-hour LD cycle starting at Zeitgeber
Time (ZT) 1 in wild-type or ZT4 in Cry2 and Clk knockouts. Two biological replicates are plotted consecutively. mRNAs are
arranged by phase in wild-type and their order along the vertical axis is conserved for Cry2 and Clk knockouts. White bars: light;
black bars: dark. See S1 and S2 Tables for additional details. B) Left, Cumulative distributions of genes as a function of -Log10 of
adjusted p-values (adjP) for differential rhythmicity in gene expression between wild-type and Cry2 knockouts (top) and between
wild-type and Clk knockouts (bottom). AdjP were obtained from p-values of the robust DODR [32] and corrected for multiple
testing using the Benjamini-Hochberg method. Cumulative distributions for genes arrhythmic in wild-type (AR; black lines) are
shown as a control. Dashed lines represent adjP = 0.05. Right, Heatmaps showing the relative RNA levels for genes rhythmically
expressed in brains of wild-type found to be differentially expressed in brains of Cry2 knockouts (top) and Clk knockouts (bottom).
See S3 and S4 Tables for details. C) Phase plots showing the phase distribution of rhythmic mRNAs differentially regulated in Cry2
and Clk knockouts identified in B (top andmiddle, respectively) and their overlap (bottom). D) RNA-seq temporal gene expression
profiles of core clock genes in brains of wild-type, Cry2 knockouts and Clk knockouts. For each gene and each genotype, the two
biological replicates are plotted consecutively. Black line: wild-type; red line: Cry2 knockout; blue line: Clk knockout. mRNA
expression levels are expressed in reads per kilobase of transcript per million reads mapped (RPKM). Per, period; Cry2, cryptochrome
2; Tim, timeless; Vri, vrille; Cwo, clockworkorange; Clk, clock; Cry1, cryptochrome 1; Pdp1, par domain protein 1; Bmal1, brain and
muscle Arntl-like 1. White bars: light; black bars: dark. See S1 Fig for qRT-PCR validation.

https://doi.org/10.1371/journal.pgen.1008265.g001
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If the rhythmic expression of core clock genes was solely controlled by the rhythmic activa-

tion of CLK:BMAL1, these genes would be predicted to be expressed at constitutively low lev-

els in the absence of transcriptional activation (i.e., in Clk knockouts) and at constitutively
high levels in the absence of transcriptional repression (i.e., in Cry2 knockouts). As expected,
we found that all clock genes rhythmically expressed in wild-type brains were expressed at

constitutive low levels in the brain of Clk knockouts (Fig 1D). However, in the brains of Cry2
knockouts, only Per and Cwo were found expressed at constitutive high levels (Fig 1D); Vri
was expressed at constitutively low levels and Tim at mid-levels (Fig 1D), suggesting a complex

regulation of their expression, either through the action of other factors on the regulation of

their transcription or via post-transcriptional events.

Similar to rhythmic transcriptome analysis in brains of two other insects, Drosophila and
the mosquito Anopheles gambiae [21,40–42], we found that rhythmic genes in the monarch

brain belong to diverse biological processes that include transmembrane transport, several

metabolic processes, and regulation of DNA binding (S2 Fig; S6 Table). KEGG pathway

enrichment analysis further revealed that besides circadian rhythms, glycolysis, the biosynthe-

sis of amino acids, carbohydrate metabolism, and other metabolic pathways were among the

most enriched rhythmic pathways in the monarch brain (S2 Fig; S7 Table).

Genes involved in glucose metabolism show coordinated rhythmic
expression in the monarch brain

Rhythmic expression of genes involved in metabolic pathways are thought to temporally

orchestrate metabolic processes over the course of the 24-hour day [43,44]. In the monarch

brain, we found that many genes encoding key enzymes and regulatory proteins involved in

glucose metabolism, which is essential to fuel basic brain physiology, were expressed rhythmi-

cally (Fig 2A and 2B). Two trehalose transporters, Tret1-1 and Tret1-2, which act in glial cells

to uptake trehalose (the main metabolite supplying energy in insects) and provide the brain

with energy and protection from neurodegeneration [45], were rhythmically expressed with a

peak of expression during the day (Fig 2B and 2C). To provide the brain with energy and nur-

ture neurons, trehalose must be metabolized through glycolysis, which is toxic in neurons [46]

but essential in glia [45]. Consistent with the idea that glial glycolysis is rhythmically regulated

upon conversion of trehalose to glucose, several genes involved in glycolysis were also rhyth-

mically expressed with peaks of expression within a 4-hr window in the middle of the day (Fig

2B and 2C). These included genes encoding (i) the enzyme involved in the rate-limiting step of

glycolysis, 6-phosphofructokinase (Pfk-1), and (ii) other enzymes in the glycolytic pathway

such as phosphoglucose isomerase (Pgi), aldolase (Ald), triose phosphate isomerase (Tpi),
glyceraldehyde 3 phosphate dehydrogenase 2 (Gapdh2), phosphoglycerate kinase (Pgk), and
enolase (Eno) (Fig 2A and 2B). Interestingly, genes encoding two regulatory proteins, 6-phos-

phofructo-2-kinase/Fructose 2,6 biphosphatase (Pfk-2/FBPase-2), which activates Pfk-1 to

increase the glycolytic rate, and pyruvate dehydrogenase kinase (Pdk), which inhibits the activ-

ity of pyruvate dehydrogenase blocking the entry of pyruvate into the TCA cycle, were found

to cycle in phase with one another (Fig 2B and 2C). These results strongly suggest that pyruvate

catabolism is inhibited in phase with the regulation of glycolysis in glia.

Among genes expressed rhythmically with a peak of expression in the middle of the day, we

also found three mRNAs of key players of glycogenesis/glycogenolysis, glycogen synthase

(GlyS) and 1,4-alpha-glucan branching enzyme (AGBE), which generate highly branched gly-

cogen molecules to store glucose for quick energy use, and glycogen phosphorylase, the rate-

limiting step in glycogenolysis (Fig 2A, 2B and 2C). Interestingly, phosphoglucose mutase

(Pgm), which links glycolysis to glycogenesis (Fig 2A), also cycled in a phase similar to those of
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genes regulating both pathways (Fig 2B and 2C). Finally, a gene involved in de novo synthesis
of trehalose, trehalose 6-phosphate synthase (Tps1) was also rhythmically expressed in the mon-

arch brain with a peak of expression during the day (Fig 2A, 2B and 2C), suggesting a possible

local rhythmic synthesis of trehalose.

Importantly, the rhythmicity of the genes encoding key enzymes in glycolysis and glycogen-

esis appeared to be under the regulation of core clock components as their daily rhythms were,

for the most part, disrupted in the brains of Cry2 and Clk knockouts (S3 Fig). Together, our
data provide evidence of a tight coordination in the temporal expression of genes involved in

glucose metabolism in the insect brain, likely optimizing the timing at which energy substrates

are produced to fuel the neurons and sustain their daily activities.

Daily control of gene expression of neurotransmitters and GPCR signaling

Brain neuronal activity and communication within neural networks, which ultimately regu-

lates physiology and behavior, occur via neurotransmission and G- protein coupled receptor

Fig 2. Coordinated rhythmic expression of key genes of the trehalose, glucose and glycogen metabolism pathways in
the monarch brain. A) Key steps in trehalose transport and synthesis, glycolysis/gluconeogenesis, glycogenesis/glycogenolysis,
and pyruvate processing pathways, and enzymes expressed rhythmically in the monarch brain (shown in color and bolded
arrows). Tret1, trehalose transporter (Tret1-1, DPOGS215159; Tret1-2, DPOGS215160); Tps1, trehalose-6-phosphate synthase
(DPOGS212595); Pgi, phosphoglucose isomerase (DPOGS210295); Pfk-2/FBPase-2, 6-phosphofructo-2-kinase/fructose 2,6
biphosphatase (DPOGS215489); Pfk-1, 6-phosphofructokinase (DPOGS203810); Ald, aldolase (DPOGS206959); Tpi, triose phosphate
isomerase (DPOGS200089); Gapdh2, glyceraldehyde 3 phosphate dehydrogenase 2 (DPOGS215460); Pgk, phosphoglycerate kinase
(DPOGS213064); Eno, enolase (DPOGS207764); Pdk, pyruvate dehydrogenase kinase (DPOGS210186); GlyS, glycogen synthase
(DPOGS214402); AGBE, 1,4-alpha-glucan branching enzyme (DPOGS215494); GlyP, glycogen phosphorylase (DPOGS205027); Pgm,
phosphoglucose mutase (DPOGS209508). B) Temporal expression profiles of the corresponding enzymes in the brain of wild-type
monarchs in 15:9 LD. Two biological replicates are plotted consecutively. White bars: light; black bars: dark. See S1 Fig for qRT-PCR
validation. C) Phase plot showing the expression of the genes in B in 1-hour bins.

https://doi.org/10.1371/journal.pgen.1008265.g002
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(GPCR) signaling. In Drosophila and mammals, circadian rhythms are regulated by a number

of neurotransmitters, neuropeptides and corresponding receptors that are under circadian

clock control to temporally relay information across the clock network [47–51]. Not surpris-

ingly, genes involved in cholinergic, glutamatergic, GABAergic and GPCR signaling were also

found rhythmically expressed in the monarch brain (Fig 3). However, we noted interesting fea-

tures of regulation of gene expression consistent with a temporal separation of chemically

antagonistic processes.

mRNAs encoding acetylcholinesterase (AChE), the enzyme that breaks down acetylcholine

(ACh) released by presynaptic terminals to decrease Ach signaling [52], and the choline trans-

porter, which transports choline in the presynaptic terminal for the synthesis of ACh, were

expressed rhythmically in anti-phase to one another (Fig 3A). Rhythms of choline transporter

Fig 3. Diel rhythmic expression of genes involved in cholinergic, glutamatergic, and GABAergic
neurotransmission, and GPCR signaling in the monarch brain. A) The neurotransmitter acetylcholine (ACh),
synthesized from acetyl-CoA and choline, is released by presynaptic terminals to modulate the activity of target
neurons [52]. In the synaptic cleft, acetylcholinesterase (AChE) breaks down ACh into acetate and choline, which is
transported back into the presynaptic terminal through choline transporters. Antiphase rhythmic expression of AChE
(DPOGS202609) and choline transporter-like (DPOGS213114) in 15:9 LD is shown. White bars: light; black bars: dark.
B) Glutamate (Glu), the major excitatory neurotransmitter in the brain, is synthesized from glutamine (Gln) by
glutaminase, and can be converted into alpha-ketoglutarate, an intermediary metabolite in the tricarboxylic acid cycle,
by glutamate oxaloacetate transaminase (GOT). Glu is released by glutamatergic neurons to increase the neuronal
excitability of post-synaptic neurons via glutamate receptors (GluR). Excess glutamate at the synapse is recycled by
glial cells. Glu is taken up by these cells through an excitatory amino acid transporter (Eaat) and converted to Gln,
which is then transported back into neurons [100]. In GABAergic neurons, the neurotransmitter GABA is synthesized
from glutamate and released into the synaptic cleft where it inhibits the neuronal activity of post-synaptic neurons
through its action on GABA receptors (GABAR). Rhythmic temporal expression of GOT1 (DPOGS202178), GABAR
(DPOGS204494) and Eaat2 (DPOGS202815) are shown. C) Rhythmic control of a G-protein coupled receptor
(GPCR) of unknown function (DPOGS205549) in the monarch brain. See S1 Fig for qRT-PCR validation.

https://doi.org/10.1371/journal.pgen.1008265.g003
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were abolished in the brains of Cry2 and Clk knockouts (S4A Fig), and those of AchE were

abolished in the brains of Cry2 knockouts (S4A Fig). These data suggest a temporal partition-

ing of the synthesis and degradation of ACh over the course of the day that could be controlled

by the circadian clock.

Genes involved in the recycling and reception of the neurotransmitters glutamate and -

aminobutyric acid (GABA), which are known to drive circadian rhythms in Drosophila and
mammals [53,54], were also found rhythmically expressed in the monarch brain. In neurons,

glutamate levels can be decreased through its conversion to alpha-ketoglutarate by the enzyme

glutamate oxaloacetate transaminase (GOT) (Fig 3B). We found that mRNA levels of GOT

cycled in the monarch brain, with a peak of expression during the day (Fig 3B), and that the

rhythms were disrupted in clock-deficient monarch strains (S4B Fig). Glutamate and GABA

modulate the neuronal excitability of post-synaptic neurons through their respective action on

glutamate receptors and GABA receptors (GABAR). Extracellular glutamate at the synapse is

recycled by increased glial activity of glutamate transporters (excitatory amino acid transport-

ers; EaaT) [55]. Interestingly, GABAR and EaaT2mRNA levels were also rhythmic in the mon-

arch brain (Fig 3B) and significantly disrupted in Cry2 and Clk knockouts, with the exception
of GABAR in Cry2 knockout where significance was not reached despite an apparent loss of

rhythm (S4B Fig). Together, these data suggest that the circadian clock may rhythmically regu-

late neuronal excitability by modulating both the expression of genes involved in glutamate

clearance at the synapse and of GABA receptors. Finally, we also found daily rhythms in

mRNA levels of a G-coupled protein receptor (GPCR) of unknown function (Fig 3C) that are

abolished in Cry2 and Clk knockouts (S4C Fig), suggesting that it could be involved in modu-

lating circadian behaviors.

Chromatin accessibility measured by ATAC-seq is not clock-dependent in
the monarch brain

Similar to Drosophila [27], rhythmic genes cycled in the monarch brain with phases of expres-

sion distributed throughout the day (Fig 1A). How the expression of these rhythmic genes is

temporally orchestrated is however not fully understood. As shown in flies and mice, both

transcriptional and post-transcriptional processes contribute to the generation of rhythmic

mRNA levels [56–60]. Transcriptional regulatory mechanisms such as rhythmic accessibility

of DNA regulatory elements [22] or rhythmic activities of distinct TFs [61–64] have been

shown to control diurnal rhythms in transcription and could also contribute to the generation

of different phases of gene expression in the monarch brain.

To investigate whether rhythmic chromatin accessibility plays a role in the control of rhyth-

mic gene expression in the monarch, we profiled open chromatin regions using ATAC-seq in

the brains of wild-type monarchs and of two mutants deficient in circadian activation (Clk
knockout and Cyc-like, a Bmal1 mutant lacking the C-terminal transactivation domain that

mimics the Drosophila cycle gene [6]) at Zeitgeber Time 04 (ZT04; i.e., 4 hours after lights on)
and at ZT16, with two independent replicates per time point (Fig 4). ZT04 was chosen as the

day time point because it corresponds to the trough of Per and Tim RNA expression levels and

thus the likely time at which transcription is activated for these genes, and ZT16 was chosen as

the night time point such that the two would be separated by 12 hours. Across all samples,

13,555 to 23,222 ATAC-seq peaks were identified throughout the genome (S8 Table). These

numbers are within the same order of magnitude as that obtained inDrosophila, which harbors
a comparable genome size (~138 Mb forDrosophila versus ~249 Mb for monarch) [65]. We

also found good replicate concordance of the ATAC-seq peaks between biological replicates

(Fig 4A and S5A Fig; R2 ranging from 0.76 to 0.85). As expected, Tn5 tagmentation of purified
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Fig 4. ATAC-seq captures chromatin accessibility in brains of wild-type monarchs and monarchs impaired for clock function.
A) Correlation plot of two biological replicates showing normalized read counts in wild-type at ZT04. Correlation plots for all
conditions tested are shown in S5A Fig. Correlations varied from 0.76 to 0.85. B) Visualization of ATAC-seq signal between
genotypes and time points at scaffold DPSCF300015 showing no substantial gross change in chromatin accessibility in adult brain.
ATAC-seq peaks from biological replicates are merged. WT, wild-type; Clk KO, Clk knockouts; Cyc-like, Bmal1mutants lacking the
C-terminal transactivation domain [6]. C) Representative ATAC-seq tracks in genomic regions of clock genes (timeless and
clockwork orange) showing the lack of differential ATAC-seq peaks between time points and genotypes. D) ATAC-seq signal within
consensus ATAC-seq peaks was compared between all samples using Pearson’s correlation to cluster samples. Replicates are noted as
numbers following each genotype and time point. F: female; M: male. E) Venn diagrams representing lack of differences in ATAC-
seq signal within consensus genome-wide ATAC-seq peaks (top) and ATAC-seq peaks associated to rhythmic genes differentially
regulated in Clk knockouts (bottom) between ZT04 and ZT16 in wild-type brains and between genotypes at ZT04 (fold-change

Diurnal genomics in the monarch butterfly brain
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naked genomic DNA from brain did not display characteristic ATAC-seq peaks (Fig 4B).

These results strongly indicate that ATAC-seq can reliably and reproducibly measure chroma-

tin accessibility in the monarch brain. Visual inspection of the ATAC-seq peaks from different

genotypes and time-of-day revealed broadly similar profiles of chromatin accessibility (Fig 4B),

even in regions associated to clock genes that display robust rhythms of expression (Fig 4C; see

Fig 1D for mRNA expression patterns). A hierarchical clustering of consensus ATAC-seq

peaks for all genotypes and time points also showed that they were strongly correlated with one

another (Fig 4D). The lack of significant differences in ATAC-seq peaks was further validated

by quantifying differential Tn5 integration signals using DESeq2 [66] with Log2 fold-change>

0.3785 and FDR< 0.05 as thresholds. Even at this relatively low fold-change cutoff, less than

0.64% of ATAC-seq peaks genome-wide or associated with rhythmic genes differentially regu-

lated in Clk knockouts were found to be significantly altered between time-of-day (ZT04 vs.

ZT16) and genotypes (wild-type vs. clock impaired mutants) (Fig 4E; S9 Table). While a lack of

statistically significant differences is not evidence of absence of differences, previous reports

showing that ATAC-seq is sensitive enough to identify differences in chromatin accessibility in

Drosophila [67] support the idea that there is no significant temporal regulation of significant

opening/closing of the chromatin in the monarch brain. To further characterize our ATAC-seq

datasets, we mapped the genomic location of each ATAC-seq peak and found that genome-

wide peaks were enriched by ~ 3 to 4-fold in promoter regions (Fig 4F). A similar enrichment

was found for peaks in the promoter regions of genes rhythmically expressed in the brain and

differentially regulated in Clk knockouts (Fig 4F). Many genome-wide peaks were also found in

introns and intergenic regions, as well as in exons and transcription termination sites (S5B Fig),

likely representing the full set of enhancer elements in the monarch brain.

Clock-dependent temporal regulation of transcription factor occupancy in
brains of wild-type monarchs

The lack of cyclic chromatin accessibility as measured by ATAC-seq does not exclude the pos-

sibility that the DNA regulatory elements within ATAC-seq peaks could be involved in driving

rhythmic gene expression through the rhythmic binding of TFs. In addition to identifying

chromatin accessibility, ATAC-seq can also be used to reveal DNA footprints, i.e. genomic

regions protected from Tn5 integration because of DNA-bound proteins like TFs [68,69] (Fig

5A). To test whether rhythms in TF occupancy within DNA regulatory elements in promoters

and enhancers could underlie rhythmic gene expression, we performed a footprinting analysis

within the open chromatin of 339 ATAC-seq peaks associated with the 163 rhythmic genes dif-

ferentially regulated in Clk knockouts using the Wellington TF footprinting algorithm [70].

We detected 202 and 125 statistically significant footprints in brains of wild-type monarchs at

ZT04 and at ZT16, respectively (p-value� 10−10; FDR� 0.01). Of these, 130 and 53 were

respectively specific to ZT04 and to ZT16 (Fig 5B). Most of these time point-specific footprints

exhibited footprint signals below the statistical threshold at the other time point rather than

being completely absent. This therefore suggested that the depth of TF footprints could be reg-

ulated in a time-of-day dependent manner in monarch brains. To test this idea, we averaged

the signal of footprints specific to a given time point and compared it to the average signal

cutoff> 1.3). The complete list of cross-comparisons is provided in S9 Table. F) Log2 fold enrichment of ATAC-seq peaks within
different genomic regions in the monarch genome (top) and within rhythmic genes differentially regulated in Clk knockouts
(bottom) for each genotype at ZT04 and at ZT16. Except for intergenic regions, genomic features are defined within -1Kb of the
transcription start site (TSS) and +1Kb of the transcription termination site (TTS). Fold enrichment is calculated as the number of
peaks per genomic regions/total number of peaks relative to the length of the genomic regions/total length.

https://doi.org/10.1371/journal.pgen.1008265.g004
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Fig 5. The depth of transcription factor (TF) footprints is temporally regulated in brains of wild-type monarchs
and dependent on circadian activators. A)Within an accessible regulatory chromatin region, putative TF footprints
may be detected as a narrow region that is locally protected from Tn5 integration. The identity of the TFs is inferred
from binding motifs present in the DNA sequences of the footprints. B) ATAC-seq signals centered on the footprints
detected within accessible chromatin of rhythmic genes differentially expressed in Clk knockouts in wild-type at ZT04
and at ZT16, as well as in the same regions in Clk knockouts and Cyc-likemutants. ATAC-seq peaks are grouped by
the time of day at which the peaks are found to be specific in wild-type (ZT04 versus ZT16). C) Average profiles of
Tn5 integrations centered on footprints specific to ZT04 or to ZT16 in wild-type, and in the same regions in Clk
knockouts and Cyc-likemutants at both time points. Profiles were smoothed using a 3-bp rolling average. D) Box plots
representing values of inverse footprint occupancy score (FOS) calculated for the footprints specific to wild-type at
ZT04 (top) and specific to wild-type at ZT16 (bottom) in wild-type, Clk knockouts and Cyc-likemutants at ZT04 and at
ZT16. Groups with different letters are statistically different. P< 0.05, Kruskal-Wallis test followed by Dunn test; ns:
no statistically significant difference. E) Distribution of motif classes enriched in TF footprints specific to ZT04 (white)
and ZT16 (gray) in wild-type. The number of each motif class was normalized to the number of all motif classes in
TF footprints and expressed as a percentage. Motif classes are shown by order (from left to right) based on their
occurrence in (1) both groups (white and gray bars), (2) ZT04 only, and (3) ZT16 only.

https://doi.org/10.1371/journal.pgen.1008265.g005
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observed at the other time point (Fig 5C and 5D). Averaged footprint signal and quantification

confirmed a time-of-day dependent regulation of TF binding. For TF footprints specific to

ZT04, we observed a significant increase in footprint depth at ZT04 relative to ZT16 (Fig 5D)

that appeared to be caused by both increased Tn5 integration in regions directly flanking the

footprint and decreased Tn5 integration within the footprint (Fig 5C). These results suggest

that TF binding at ZT04 may occupy their DNA binding sites with a longer residence time and

may also increase to some extent chromatin accessibility in their immediate surrounding

regions. In contrast, TF footprints specific to ZT16 did not exhibit a significant increase in

footprint depth at ZT16 compared to ZT04 (Fig 5C and 5D). To verify that time-of-day depen-

dent TF binding is clock-dependent, we measured the footprint signal at the same genomic

regions in brains of Clk knockouts and Cyc-likemutants at ZT04 and ZT16 (Fig 5B, 5C and

5D). We found that the time-of-day differences in TF footprint signal specific to ZT04

observed in wild-type monarch brains were abolished in Cyc-likemutants, in which the foot-

print signal was not significantly different than the signal observed at ZT16 in wild-type (Fig

5C and 5D). Although the signal in Clk knockouts was not significantly different to the one
observed at ZT16 in wild-type, there was a significant difference between time points, with a

moderate increase at ZT16 compared to ZT04 (Fig 5C and 5D). Together, these data suggest

that the time-of-day differences in TF binding found in wild-type monarch may underlie

rhythmic gene expression. Furthermore, the differences in footprint signal between ZT04 and

ZT16 suggested that distinct classes of TFs could differentially bind DNA at different times of

the day. To identify these TF classes, we performed a motif enrichment analysis in footprints

found specifically at ZT04 and at ZT16 in brains of wild-type monarchs. The analysis revealed

a large number of predicted TF families preferentially binding at both and either time points

(Fig 5E). Among the predicted TF classes, the bHLH, forkhead, HTH and MADS TF families

appeared as among the most overrepresented in footprints at ZT04 in comparison to those at

ZT16. These data suggest that TFs belonging to these families could be responsible for the

increased DNA accessibility observed in footprints at ZT04.

Discussion
Numerous studies over the past 15 years have profiled daily and circadian transcriptional

rhythms in various organisms and tissues [19–29]. Most genome-wide rhythmic gene expres-

sion studies performed to identify cycling mRNAs in the insect brain have however largely

relied either on the use of whole heads [19,21,25–29], from which mRNAs derive mainly from

the compound eyes, or on the use of specific subsets of clock neurons in the brain [40,71]. To

date, a single study has profiled the circadian and daily transcriptome in the Drosophila brain
[72]. With 217 robust rhythmic mRNAs whose expression was affected in Cry2 and Clk knock-
outs, our daily transcriptome in the monarch brain provides a useful complement to that of

Drosophila for future comparative approaches.

Consistent with previous reports [5,11,14], Per and Tim were identified in our RNA-seq

study as core clock genes that cycle robustly in the monarch brain, validating the quality of the

RNA-seq datasets. Our study extended the set of core clock genes with robust rhythms to Vri,
Cwo, and to the mammalian-like circadian repressor Cry2, although the latter cycled with

lower amplitude. While all cycling core clock genes were expressed at constitutive low levels

in Clk knockouts, as anticipated in the absence of activation, their expression in Cry2 knock-
outs ranged from low to high levels, suggesting a complex regulation of their expression.

Although the mechanistic underpinnings are not yet understood, this phenomenon is not

without precedent as the levels of CLK-CYC direct targets in tim and per Drosophilamutants

are also intermediate [25]. In contrast to the above-mentioned core clock genes, neither the
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circadian activators Clk and Bmal1, the blue-light photoreceptor Cry1, or Pdp1 were expressed
rhythmically in the monarch brain. Because the brain is a heterogeneous tissue, it is possible

that these genes could be expressed both in non-clock cells and in a subset of clock cells in

which they could oscillate. Alternatively, post-transcriptional and/or post-translational mecha-

nisms may be responsible for their rhythmic function. Future studies using in situ hybridiza-

tion in the brain and/or a population of homogeneous clock cells, such as the DpN1 monarch

cell line containing a light-driven clock [14], could help distinguish between these possibilities.

A number of genes relevant to brain physiology were also found to be rhythmic in brains of

wild-type monarchs. Similar to a study in the Antarctic krill [73], our data revealed a temporal

regulation of key enzyme-encoding genes involved in glucose, trehalose and glycogen metabo-

lism; however, the expression of these genes appeared to be coordinated in the monarch,

peaking within a 7-hr window in the middle of the day. Although our data do not provide

information on the rhythmic production of glycolytic metabolites, they indicate that fuel pro-

duction in the brain is under tight rhythmic regulation at the level of gene expression, and

likely increased during the monarch active phase. Pronounced rhythms in the abundance of

metabolites and metabolic fluxes have however been recently proposed to emerge from phase

lags rather than from coordinated expression of key enzymes and/or of regulatory proteins at

the transcriptional levels [74]. This does not seem to be the case for glucose metabolism in the

monarch brain because the genes that respectively encodes the main regulatory proteins Pfk-2

(which stimulates glycolysis) and Pdk (which blocks the entry of pyruvate into the TCA cycle)

cycle in phase with one another. One interesting possibility could be that instead of being con-

verted to acetyl-CoA, pyruvate is converted into lactate and alanine in brain glial cells, which

once secreted, are taken up by neurons to fuel the neuronal TCA cycle and to generate the

ATP needed for synaptic transmission, as previously shown in Drosophila [45]. If this is the
case, the coordination of rhythmic gene expression in glial glucose metabolism could be a

mechanism to fuel the neurons during the active phase of the monarch, i.e. during the day.
Likewise, glycolysis and glycogenesis appeared to be temporally coordinated through phos-

phoglucose mutase. Because this enzyme acts in glycogenesis when glucose levels are high and

in glycogenolysis when glucose levels are low, the temporal coordination of these pathways

may serve as a homeostatic mechanism ensuring proper, rhythmic fuel production even in

period of fasting. Importantly, we found that the rhythms of almost all of the genes involved in

glucose metabolism were abolished in Cry2 and Clkmonarch mutants with impaired clock

function. Together with a report showing circadian regulation of metabolic genes in Drosoph-
ila heads [75], our data indicate that the circadian clock likely plays an important role for regu-

lating daily rhythm of glucose metabolism and glucose homeostasis in the insect brain.

By revealing anti-phase rhythms of expression of key genes involved in the transport/syn-

thesis and degradation of Ach, which are dependent on the presence of both circadian activa-

tor and repressor, our data support the idea that the circadian clock also plays a role in

temporally separating chemically antagonistic processes. Like ACh, GABA is a widespread

neurotransmitter in the insect brain, and similar to Drosophila [71], a GABA receptor is

expressed rhythmically in the monarch brain. Together, our findings that both cholinergic and

GABAergic signaling are rhythmic and dependent on a functional circadian clock may suggest

the existence of a more complex neuronal clock network than the four clock cells described in

each hemisphere of the pars lateralis [14,76]. Developing CRISPR/Cas9-assisted methods to

tag neurons in vivo would facilitate a comprehensive mapping of the neuronal clock network

in the monarch brain.

Our study also establishes ATAC-seq as an applicable method for the discovery of both

genome-wide accessible chromatin regions and TF binding in a non-traditional model organ-

ism for which species-specific antibodies against TFs are not available. Although thousands of
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genome-wide regulatory elements were identified in the monarch brain with ATAC-seq, a sur-

prising result was the absence of a significant temporal change in chromatin accessibility

between day and night, as well as between wild-type and clock impaired mutants. This was sur-

prising because diurnal changes in chromatin accessibility measured by DNase-seq have

recently been reported in the mouse liver [22]. The different nature of tissues sampled could

account for this difference. If so, our data would support the idea that the chromatin accessibil-

ity landscape in the adult brain could be fully programmed and not sensitive to changes in

light:dark conditions. Alternatively, the contrasting results between our study and the study in

the mouse liver could stem from differences in sensitivity between ATAC-seq and DNase-seq

approaches. Although DNase-seq could be a more sensitive approach to quantify diurnal

changes in chromatin accessibility, applying it to samples like the insect brain may not be

achievable due to the large amount of material required. Regardless of the reasons underlying

the lack of diurnal changes in chromatin accessibility in our study, performing a TF footprint-

ing analysis in accessible chromatin regions associated with genes rhythmically expressed

revealed time-of-day regulation of TF occupancy in the brain of wild-type monarchs. Interest-

ingly, time-of-day dependent TF occupancy was completely abolished in Cyc-likemutants that

lack the transactivation domain necessary for CLK:BMAL1-mediated transcriptional activa-

tion [6]. The situation found in Clkmutants was slightly different in that time-of-day depen-

dent TF occupancy was impaired, but the impairment consisted of a reversed trend compared

to TF occupancy in wild-type. Because the CLK partner BMAL1 is present in this mutant, it

is possible that in absence of a functional CLK, BMAL1 heterodimerizes with another bHLH-

PAS domain-containing protein to activate transcription in a different phase than that of CLK:

BMAL1. The juvenile hormone (JH)-receptor methoprene-tolerant (MET) could be a candi-

date, as it has been shown to form a heterodimer with BMAL1 in mosquitoes to activate the

circadian transcription of JH-induced genes [77]. In addition, a motif enrichment analysis

within open chromatin regions associated with rhythmic genes differentially expressed in Clk
mutants revealed a large number of predicted TF families preferentially binding at either time

point, indicative of the complexity of circadian regulation of gene expression in the monarch

brain. Among the predicted TF classes, the bHLH, forkhead, HTH and MADS TF families

appeared among the most overrepresented in footprints at ZT04 in comparison to those at

ZT16. These data suggest that TFs belonging to these families could be responsible for the

increased DNA accessibility observed in footprints at ZT04 in brains of wild-type monarchs,

consistent with the reported pioneer activities of bHLH and forkhead TFs [78,79]. Together,

these data show that ATAC-seq can be used in non-traditional organisms to not only identify

open chromatin regions but also predict dynamic TF binding. It is of particular importance

because the overall lack of species-specific antibodies against TFs in non-model organisms

continues to preclude the systematic use of chromatin-immunoprecipitation to comprehen-

sively identify TF binding sites.

Taken all together, our results represent the first analysis of daily transcriptome, DNA regu-

latory elements, and time-of-day dependent TF occupancy in the monarch butterfly brain.

Given the central role of circadian clocks in the seasonal migration of this iconic insect, our

datasets will be valuable resources to further our understanding of the molecular basis of sea-

sonality and of migratory behavior.

Methods

Maintenance of monarch butterflies

Wild-type, Cry2 knockout, Clk knockout and Cyc-likemutant monarch butterflies were raised

in the laboratory on semi-artificial diet under 15-hour light, 9-hour dark (15:9 LD) conditions
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in Percival incubators at 25˚C and 70% humidity, as previously described [4–6]. 15:9 LD was

used because it is the ecologically relevant photoperiod experienced by summer reproductive

monarchs, and the condition under which we maintain our colony in the laboratory. Adults

were housed in glassine envelopes in the same lighting and temperature conditions, and were

manually fed a 25% honey solution daily.

RNA-sequencing experiments

Adult monarchs were entrained for a minimum of 7 days after eclosion in 15:9 LD cycles at

25˚C and brains free of eye photoreceptors were dissected under a microscope in 0.5X RNA

later (Ambion) to prevent RNA degradation, and stored at -80˚C until use. For wild-type mon-

archs, three pooled brains were collected in two replicates at ZT1, ZT4, ZT7, ZT10, ZT13,

ZT16, ZT19, and ZT22. Three pooled brains of Cry2 and Clk knockouts were each collected in

two replicates at ZT4, ZT10, ZT16, and ZT22. For each sample, total RNA was extracted using

RNeasy Mini kit (Qiagen), polyA+ RNA was isolated from 2 μg of total RNA with NEBNext

Oligo d(T) magnetic beads (New England Biolabs), and libraries were prepared using the

NEBNext Ultra Directional RNA Library Prep kit for Illumina and NEBNext Multiplex Oligos

(New England Biolabs) and amplified with 12 PCR cycles, following the manufacturer’s rec-

ommendations. Library quality and size distribution was verified on a Bioanalyzer, libraries

were quantified by real-time quantitative PCR, and 16 libraries were mixed in equimolar ratios

for multiplexing and sequenced on a Hi-seq 2500 (Illumina) using 50bp single end reads.

RNA-sequencing data processing

The resulting sequencing files were checked for quality control and demultiplexed by the

Texas A&M AgriLife Genomics and Bioinformatics Facility. Reads were mapped to the mon-

arch genome (assembly v3; [80]) using TopHat2 [81] with parameters “—read-realign-edit-

dist 2 -g 1 —b2-sensitive”. On average, ~88% of the reads were mapped uniquely to the

genome even in absence of rRNA depletion (S10 Table). The total number of reads, mapped

reads and mapping rate for each library are summarized in S10 Table. After mapping, gene

expression levels were quantified in the brains of wild-type monarchs, Cry2 knockouts and Clk
knockouts at each time point and for each replicate using Cufflinks [82,83]. Only genes with

three or more reads per kilo base per million mapped reads (RPKM) in at least one time point

were classified as expressed and further considered for subsequent analysis.

Identification of cycling mRNAs

To identify cycling mRNAs in the brain of wild-type monarchs, RAIN [30] and MetaCycle

[31] were used with parameters “period = 24, deltat = 3, nr.series = 2” for RAIN and “adjust-

Phase =“predictedPer”, combinePvalue =“fisher”, timepoints = seq(1, 46, by = 3), minper = 24,

maxper = 24” for MetaCycle. To consider oscillations determined by either method, the result-

ing p-values from RAIN and MetaCycle were combined using the minP method [84] and

adjusted for multiple testing using the Benjamini-Hochberg (BH) procedure to control for

false discovery rate (FDR). Genes were considered rhythmically expressed when meeting

the following criteria: (1) adjusted p-value� 0.05, and (2) fold-change (maximal/minimal

RPKM expression values within a time series)� 1.3. Of the 15,130 genes in the monarch

genome, ~ 69% (10,412) were expressed in the brain of wild-type monarchs, and ~4% (431) of

these were determined as being rhythmically expressed. To determine if the oscillations of the

rhythmic genes identified in wild-type were altered in Cry2 and Clk knockouts, a differential
rhythmicity analysis was performed using robust DODRmethod [32]. After adjusting the p-

values using the BH procedure, 126 and 163 genes rhythmically expressed in wild-type were
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respectively found to be differentially expressed in Cry2 and Clk knockouts. Phases were esti-
mated using the R package for harmonic regression [85]. Heatmaps and phase plots were

respectively generated using the R packages gplots [86] and ggplot2 [87]. Gene ontology (GO)

terms for biological processes and KEGG pathway enrichment analysis were performed using

Metascape (http://metascape.org; [88]) against the expressed genes in the wild-type monarch

brains as background. Sequencing data are available at https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE122447 (Accession number GSE122442).

Real-time qPCR

Brains from adult wild-type monarch butterflies entrained to seven 15:9 LD cycles after eclo-

sion were dissected every 3-hours over a 24-hour day starting at ZT1. Dissections were per-

formed in 0.5X RNA later (Ambion) to prevent RNA degradation, and brains free of eye

photoreceptors were immediately frozen and stored at -80˚C until use. Total RNA was

extracted using an RNeasy Mini kit (Qiagen), treated with RQ1 DNase (Promega), and ran-

dom hexamers (Promega) were used to prime reverse transcription with Superscript II Reverse

Transcriptase (Thermo Scientific), all according to the manufacturers’ instructions. Quantifi-

cations of gene expression were performed on a QuantStudio 6 Flex Real-Time PCR System

(Thermo Scientific) using iTaq Universal SYBR Green Supermix (Bio-Rad), as previously

described [4]. Monarch Per, Tim, and Rp49 expression levels were quantified using previously

validated primers [4]. Monarch Cry2, Vri, Cwo, GOT1, GPCR, AGBE, Tps1, and Eno expres-
sion levels were quantified using the following primers: Cry2F, 5’-TGGCTCTCATGCTCGT
CTTTC-3’; Cry2R, 5’-ACCGCACTGGACAGTAGCAAT-3’; VriF, 5’-CGGACAGCGTAAGC
AGAGAGA-3’; VriR, 5’-TCCCAGTAACCGTCGTCCTT-3’; CwoF, 5’-GCGCGCGCGCTTC
AC-3’; CwoR, 5’-TCGATGCAGGGTTGGAAGTT-3’; GOT1F, 5’-CACAACCCCACAGGCA
TAGA-3’; GOT1R, 5’-CCATGACATCAGCGATCTTCTC-3’; GPCRF, 5’-GGGTACGAGCGG
TATAGACATTG-3’; GPCRR, 5’- CTGCAAAGGACACTGGTCGAT-3’; AGBEF, 5’-CGGAT
GGCTCGCATCAA-3’; AGBER, 5’-TTTGTCGCCTTCATGCTTACA-3’; Tps1F, 5’-GACGGC
GGGAAAAACAGA-3’; Tps1R, 5’-GCCTTGAGGAACGCCTTCA-3’; EnoF, 5’-GACTGTCGA
CCGGCCAGAT-3’; EnoR, 5’-ATTTGGCGAGACGCTCAGA-3’. The near 100% efficiency of

each primer set was validated by determining the slope of Ct versus dilution plot on a 3 x 104

dilution series. Individual reactions were used to quantify each RNA level in a given cDNA

sample, and the average Ct from duplicated reactions within the same run was used for quanti-

fication. The data for each gene at a given time-point were normalized to Rp49 as an internal

control, and normalized to the mean of one sample within a set for statistics. P-values were cal-

culated using one-way ANOVA in R.

ATAC-sequencing experiments

Adult monarchs were entrained for a minimum of seven days after eclosion in 15:9 LD cycles

at 25˚C and brains free of eye photoreceptors were dissected in ice-cold ringer’s solution.

Three pooled brains of wild-type, Clk knockout, and Cyc-likemutant monarchs were each col-

lected in two replicates at ZT04 and at ZT16. Each sample was resuspended twice in 600 μl of
NP-40 lysis buffer (10mM Tris-HCl at pH 7.5, 10 mMNaCl, 3 mMMgCl2, and 0.1% NP-40).

Crude nuclei were prepared by gently homogenizing the brains in an ice-cold 2-ml Dounce

homogenizer with two strokes of a loose-fitting pestle. After centrifugation, the pellet was

directly subjected to transposition by Tn5 transposase for 30 min at 37˚C using the Nextera

DNA Library Preparation kit (Illumina), and the tagmented DNA was then purified using a

Zymo DNA Clean & Concentrator-5 kit, all according to a previously published protocol [69].
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To generate a control naked DNA library, 1 ng of genomic DNA extracted with phenol/chlo-

roform from six pooled wild-type brains was also subjected to transposition by Tn5 transpo-

sase and the tagmented DNA was purified following the same procedures. Barcoded libraries

were PCR amplified, each using a common custom primer and a unique custom Nextera bar-

coded primer, as in [69]. For each library, after an initial round of five PCR cycles, the optimal

number of PCR cycles needed to stop amplification prior to saturation was estimated by real-

time quantitative PCR. Five to ten additional PCR cycles were then performed bringing the

total number to 10 (for control DNA) and to 15 cycles (for other samples), and the libraries

were purified using a Qiagen MinElute PCR purification kit. Library quality and size distribu-

tion was assessed on a Bioanalyzer, libraries were quantified by real-time quantitative PCR and

mixed in equimolar ratios before sequencing on a single lane of Hi-seq 2500 (Illumina) using

50bp single end reads.

ATAC-sequencing data processing: Identification, quantification,
annotation and differential analysis of ATAC-seq peaks

The resulting sequencing files were checked for quality control and demultiplexed by the

Texas A&M AgriLife Genomics and Bioinformatics Facility. After removing the adapter

sequence using fastx clipper (hannonlab.cshl.edu/fastx_toolkit/) with options “-Q33 -n -v”, the

clipped reads were mapped to the monarch genome (v3; [80]) using Bowtie2 [89] with param-

eters “—phred33—local”. Unmapped reads and mapped reads with mapping quality below 10

after sorting with SAMtools version 0.1.19 [90] were discarded. Mapped reads were adjusted

such that those aligned to the positive strand and negative strand were shifted by +4 bp and –5

bp, respectively, as described in [69].

ATAC-seq peaks were called using MACS2 [91] with parameters “-q 0.01—nomodel—shift

-100—extsize 200—keep-dup all”, using reads from naked DNA as control. For each genotype

and time point, consensus peaks between biological replicates were generated by merging

peaks with overlapping coordinates, using HOMER [92]. Pairwise comparison of the biologi-

cal replicates was performed by quantifying the density of reads contained within consensus

peaks in each replicate, using HOMER [92]. To compare replicates from all genotypes and

time points to one another, peaks from all libraries were merged into a set of 37,642 consensus

peaks. Read densities were quantified in each sample, and correlation was determined using

the Pearson correlation coefficient [93]. Given that high level of reproducibility was found

between biological replicates, ATAC-seq peaks from replicate libraries of wild-type, Clk knock-
outs and Cyc-likemutants at ZT04 and at ZT16 were merged by calling peaks on combined

replicates using MACS2 [91] with the same parameters as described above. The peaks called,

which ranged from 13,555 to 23,222, were used in subsequent analysis. With the exception of a

few peaks that could not be annotated because they were located in scaffolds containing no

annotated genes, all peaks in the genome were assigned using HOMER [92] based on their

locations relative to a gene as follows: (1) promoter-TSS if present within –1kb to +100 bp of

the transcription start site (TSS), (2) TTS if within -100 bp to +1kb of the transcription termi-

nation site (TTS), (3) exon if within any exon, (4) intron if within any intron, or (5) intergenic.

Peaks associated with genes rhythmically expressed in wild-type and differentially expressed in

Clk knockouts were determined from these annotations. Differential peak analysis between

conditions was performed on sets of overall merged genome-wide peaks and peaks associated

with genes rhythmically expressed in wild-type and differentially expressed in Clk knockouts
using HOMER [92] and its R package DESeq2 [66] wrapper with cutoff thresholds for FDR

of< 0.05 and log2 fold-change of> 0.3785 and< -0.3785. To visualize ATAC-seq peaks, big-

Wig files normalized to 10 million reads were generated from BAM files and visualized using
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the Integrative Genomics Viewer (IGV; [94,95]). Sequencing data are available at https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122447 (Accession number GSE122445).

Transcription factor footprinting of ATAC-seq peaks

Occupied TF DNA binding sites within ATAC-seq peaks associated with genes rhythmically

expressed in wild-type and differentially expressed in Clk knockouts were identified in the

brains of wild-type monarchs at ZT04 and at ZT16 using the Wellington TF footprinting algo-

rithm in pyDNase [70] with p-value< 10−10 and FDR< 0.01. This program uses the imbal-

ance in the reads aligned to the positive and negative strands surrounding the protein-DNA

interactions to accurately predict which binding sites are protected from Tn5 integrations.

Footprints specific to either time point were identified using BEDTools [96]. Footprints from

each group were further analyzed in wild-type, Clk knockouts and Cyc-likemutants at ZT04

and at ZT16 using the dnase_to_treeview.py script in pyDNase [70] to obtain Tn5 integration

counts from the center of the footprints flanked by 100 bp on either side. Visualization was

performed by generating heatmaps using Java Treeview [97]. To determine the effect of clock

disruption on time-of-day dependent footprints, average profiles were generated from the

average of Tn5 integration counts for each bp of the 200 bp regions. Data smoothing was

applied using 3-bp rolling averages.

To compare the depth of footprints found to be specific to ZT04 or specific to ZT16 in

wild-type between wild-type, Clk knockouts and Cyc-likemutants at ZT04 and at ZT16, a foot-

print occupancy score (FOS) was quantified using the formula (C + 1)/L + (C + 1)/R [98]. C
corresponds to the average of Tn5 integrations within the central region of the footprints

where a transcription factor is directly engaged, while L and R correspond to the average of

Tn5 integrations respectively on the left and right flanking regions on each side of the foot-

prints. Since Wellington footprinting algorithm identified footprints with 11–25 nucleotides

in length and flanked by 35 nucleotides on each side [70], the average of Tn5 cuts on both posi-

tive and negative strands corresponding to these lengths were used in the calculations. Data

were represented as inverse FOS such that higher inverse FOS values indicate stronger foot-

prints, i.e. a higher difference between the central and flanking regions of footprints. Inverse

FOS values were visualized through box plots using ggplot2 [87] and the statistical analysis was

performed using the base R function kruskal.test and the R package dunn.test [99].

Enrichment of motif classes in TF footprints within rhythmic genes
differentially expressed in Clk knockouts
Motif enrichment analysis was performed on TF footprints (FPs) located within peaks of genes

rhythmically expressed in wild-type but differentially expressed in Clk knockouts that were
specific to either ZT04 or ZT16 in wild-type monarch brains using findMotifsGenome script

in HOMER [92] with parameters “-size given -mask”. For each motif, a fold-change> 1.5 was

used as a measure of enrichment. Fold-change was expressed as the proportion of a given

motif in FPs associated with rhythmically expressed genes over background, divided by its cor-

responding proportion in genome-wide FPs over background. Genome-wide FPs were identi-

fied using the combined 22,004 FPs at ZT04 and 14,101 FPs at ZT16. Background sequences

were randomly selected from a pool of sequences that (1) did not contain sequences in which

FPs were found, (2) did not contain repeats sequences, and (3) whose length and GC-content

matched those of input FPs. Sequence-biases and plant-specific motifs were filtered out from

the analysis. Enriched known motifs were assigned to the corresponding FPs using HOMER’s

findMotifsGenome script [92] with option “-find<motif matrix file>”. In cases where several

TFs belonging to the same class (i.e., TFs with similar DNA binding domains) were identified
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to occupy the same FP, only one was retained for further analysis. The percentage of motif

classes and their distribution was calculated for FPs specific to ZT04 and to ZT16 in wild-type

monarch brains.

Supporting information
S1 Table. Rhythmic genes identified by either RAIN or MetaCycle with adjusted p-value
(adjP)� 0.05 and fold-change (maximum/minimum expression values)� 1.3.

(DOCX)

S2 Table. RPKM values of genes identified by either RAIN or MetaCycle to be rhythmic in

wild-type monarchs, and the corresponding RPKM values in Cry2 and Clk knockouts.
(XLSX)

S3 Table. Rhythmic genes in wild-type differentially expressed in Cry2 knockouts with
adjusted p-value (adjP)� 0.05 from robust DODRmethod.

(DOCX)

S4 Table. Rhythmic genes in wild-type differentially expressed in Clk knockouts with
adjusted p-value (adjP)� 0.05 from robust DODRmethod.

(DOCX)

S5 Table. Rhythmic genes in wild-type that are differentially expressed both in Cry2 knock-
outs and Clk knockouts with adjusted p-value (adjP1 for wild-type vs. Cry2 knockouts, and
adjP2 for wild-type vs. Clk knockouts)� 0.05 from robust DODRmethod.

(DOCX)

S6 Table. Enriched Gene Ontology (GO) terms of biological processes for rhythmic genes

in wild-type differentially expressed in (A) Cry2 knockouts and (B) Clk knockouts.
(DOCX)

S7 Table. Enriched KEGG pathways for rhythmic genes in wild-type differentially

expressed in (A) Cry2 knockouts and (B) Clk knockouts.
(DOCX)

S8 Table. Number of ATAC-seq peaks identified for individual and merged replicates in

wild-type, Clk knockouts (KO) and Cyc-likemutants (mut) at ZT04 and at ZT16. R: biolog-

ical replicate.

(DOCX)

S9 Table. Differential ATAC-seq peak analysis.Higher Tn5 integration depicts a Log2 fold-

change> 0.3785 (fold-change> 1.3) and FDR< 0.05.

(DOCX)

S10 Table. RNA-seq summary for wild-type, Cry2 knockouts, and Clk knockouts. R: biolog-
ical replicate.

(DOCX)

S1 Fig. Validation of rhythmic gene expression of candidate genes by qRT-PCR. Diurnal

expression of core clock genes (top) and a few other rhythmic candidate genes (bottom) in

brains of wild-type monarchs entrained in 15:9 LD conditions. Values are mean ± SEM of six

animals. Horizontal bars, day (white) and night (black). P-values, one-way ANOVA. Per,
period; Cry2, cryptochrome 2; Tim, timeless; Vri, vrille; Cwo, clockworkorange; AGBE,
1,4-alpha-glucan branching enzyme; Tps1, trehalose-6-phosphate synthase; Eno, enolase;
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GOT1, glutamate oxaloacetate transaminase; GPCR, G-protein coupled receptor of unknown
function.
(TIF)

S2 Fig. Enriched Gene Ontology terms (GO) of biological processes (A) and KEGG path-

ways (B) of rhythmic genes. GO and KEGG pathways for genes with rhythmic expression

levels in wild-type but differentially expressed in Cry2 and Clk knockouts, identified by Metas-

cape at p<0.01, are shown in red and blue, respectively.

(TIF)

S3 Fig. Temporal expression profiles of enzymes involved in key steps of the glycolysis, tre-

halose and glycogen metabolism pathways in brains of wild-type monarchs, Cry2 knock-
outs and Clk knockouts entrained in 15:9 LD. For each gene and each genotype, two

biological replicates are plotted consecutively. Black line: wild-type; red line: Cry2 knockouts;
blue line: Clk knockouts. mRNA expression levels are expressed in reads per kilobase of tran-

script per million reads mapped (RPKM). Tret1, trehalose transporter (Tret1-1 and Tret1-2);
Tps1, trehalose-6-phosphate synthase; Pgi, phosphoglucose isomerase; Pfk-2/FBPase-2, 6-phos-
phofructo-2-kinase/fructose 2,6 biphosphatase; Pfk-1, 6-phosphofructokinase; Ald, aldolase; Tpi,
triose phosphate isomerase; Gapdh2, glyceraldehyde 3 phosphate dehydrogenase 2; Pgk, phospho-
glycerate kinase; Eno, enolase; Pdk, pyruvate dehydrogenase kinase; GlyS, glycogen synthase;
AGBE: 1,4-alpha-glucan branching enzyme; GlyP, glycogen phosphorylase; Pgm, phosphoglucose
mutase. p-values were obtained from p-values of the robust DODR [32] and corrected for mul-

tiple testing using the Benjamini-Hochberg method.

(TIF)

S4 Fig. Temporal expression profiles of genes encoding proteins involved in cholinergic

(A), glutamatergic and GABAergic (B) neurotransmission, and GPCR signaling (C) in

brains of wild-type monarchs, Cry2 knockouts and Clk knockouts entrained in 15:9 LD.

For each gene and each genotype, two biological replicates are plotted consecutively. Black

line: wild-type; red line: Cry2 knockouts; blue line: Clk knockouts. mRNA expression levels are

expressed in reads per kilobase of transcript per million reads mapped (RPKM). p-values were
obtained from p-values of the robust DODR [32] and corrected for multiple testing using the

Benjamini-Hochberg method.

(TIF)

S5 Fig. Chromatin accessibility measured by ATAC-seq in brains of wild-type monarchs

and monarchs impaired for clock function. A) Scatter plots showing the ATAC-seq signal

correlation between biological replicates at ZT04 and at ZT16 in brains of wild-type, Clk
knockout and Cyc-likemutant monarchs. B) Distribution of ATAC-seq peaks in the monarch

genome (left) and within -1Kb of the transcription start site (TSS) and +1Kb of the transcrip-

tion termination site (TTS) of rhythmic genes differentially regulated in Clk knockouts (right)
in all genotypes at ZT04 and at ZT16.

(TIF)
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