1 2	CO-OCCURRING WYOMING CONIFERS DISPLAY DISTINCT CLIMATE-GROWTH RELATIONSHIPS
3 4 5	LAURA A. DYE ^{1*} , JESSIE K. PEARL ² , LAURA SMITH ³ , BETHANY COULTHARD ¹ , CORI BUTKIEWICZ ⁴ , ZANE COOPER ⁵ , JIM DEGRAND ⁶ , JARED FRIEDMAN ⁵ , INGA HOMFELD ¹ , HILARY HOWARD ⁷ , LEROY IRONCLOUD ⁸ , and SHANNON WRAY ⁹
6	¹ Department of Geosciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
7	² United States Geological Survey, Earthquake Science Center, Seattle, WA 98104, USA
8 9	³ Department of Geography, University of Tennessee, Knoxville, TN 37996, USA
10 11 12	⁴ Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI 53706, USA
13 14 15	⁵ Department of Natural Resources Management and Environmental Sciences, California Polytechnic State University, San Luis Obispo, San Luis Obispo, CA 93407, USA
16	⁶ Department of Geography, Ohio State University, Columbus, OH 43210, USA
17 18 19	⁷ Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA
20	⁸ Stevens High School, Rapid City, SD 57702, USA
21 22 23 24	⁹ Department of Environmental Resource Management, Pennsylvania State University, State College, PA 16801, USA
25	* Corresponding author: dyel1@unlv.nevada.edu

26 ABSTRACT

2728

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

The North American Dendroecological Field Week (NADEF) is an intensive dendrochronologybased research workshop, funded by the National Science Foundation. The 2019 Introductory Group at NADEF developed two precisely-dated tree-ring width chronologies for *Pinus contorta* (Lodgepole Pine) and *Pinus flexilis* (Limber Pine) at Wolf Knob, WY, located within the Greater Yellowstone Ecosystem (GYE)'s Shoshone National Forest. Wolf Knob is a semi-arid, south- to southwest-facing, high-elevation site, making it an ideal location to examine the climate sensitivity of annual tree-ring width increments. Here, we show that two co-located conifer species exhibit distinct climate-growth relationships and therefore may be facing distinct threats in the face of regional climate change. *Pinus flexilis* is much more drought-stressed than *Pinus contorta*, exhibiting stronger overall correlations with both cool- and warm-season precipitation as well as snow meltwaters, whereas *Pinus contorta* exhibits only relatively weak correlations with precipitation and temperature during the late summer. The differing seasonal climate sensitivities of these two co-located *Pinus* species is likely due to microsite conditions and distinct species climate responses, both providing local insight for selecting tree-ring snow proxies in the GYE and further highlighting the importance of site and individual selection in dendroclimatology and dendroecology.

44

45

Keywords: Greater Yellowstone Ecosystem, Lodgepole pine, Limber pine, dendroclimatology, fire regimes.

47

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

48 INTRODUCTION

As one of the largest and least fragmented ecosystems located within Earth's temperate zone, the Greater Yellowstone Ecosystem (GYE) is of distinct ecological importance and is particularly susceptible to climatic shifts (Rice et al. 2012), where warming temperatures (Sepulveda et al. 2015) pose cascading effects on the desiccation of soils and vegetation, fire regimes, as well as ecosystem and wildlife health (Pederson et al. 2010). Comprised of ~22 million acres, the GYE provides rich biodiversity, abundant water resources, and is a sanctuary for the largest concentration of wildlife in the contiguous U.S. (NPS 2016). Consistent with much of the western U.S., the GYE is faced with shifting trends in temperature and precipitation in response to anthropogenic greenhouse gas emissions. In recent decades, the GYE has experienced a -.16°C/decade increase in mean annual temperature (Chang and Hansen 2015), manifested as warming winters and hotter summers (Sepulveda et al. 2015), lengthening of summer droughts (Westerling et al. 2006), reduced snowpack (Tercek et al. 2015), and decreased summer stream discharge (Leppi et al. 2012). Taken together, these climatic shifts have begun redefining disturbance regimes throughout the region, including increased forest fire activity (Westerling et al. 2006) and severity (Whitlock et al. 2003), vulnerability to insect disturbances (Raffa et al. 2008; Bentz et al. 2010), and vertical advancement of tree line (Grace et al. 2002; Hinton 2020), ultimately leading to a higher likelihood of forest mortality and forest type transition (Van Mantgem et al. 2009; Logan et al. 2010). One way to benchmark modern climate and ecological shifts is to use long-term tree-ring records to reconstruct past climate and ecological disturbance (Fritts 1976). In high-elevation (>2400 m) semi-arid forest communities, such as those within the GYE, annual tree-ring increments are often

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

highly sensitive to environmental conditions and forest dynamics, such as climate, disturbance, and competition (Hinton 2020). A rich history of broad-scale paleoclimate and paleoecological work exists within the GYE and surrounding Rocky Mountain region, including records derived from lake sediments (Fall et al. 1995), pollen (Lynch 1998; Whitlock 1993), terrestrial sediments (Pierce et al. 2004), diatoms (Bracht et al. 2008), ice cores (Naftz et al. 2002), and other proxy records (Krause et al. 2015; Krause and Whitlock 2013; Mensing et al. 2012; Whitlock et al. 2003) that provide a multi-millennial context for past environmental conditions. Tree-ring based climatological (Wise 2010; Graumlich et al. 2003; Gray et al. 2007) and ecological (Romme and Despain 1989; Littell 2002; Higuera et al. 2011, Rinaldi et al. 2021) reconstructions provide the highest-resolution (annual) context for changes within the GYE over the past two millennia. While these records have contributed to the development of a palaeoclimatological and paleoecological framework of the GYE, very few climate-sensitive, high-elevation tree-ring datasets exist within the region (Hinton 2020). High-elevation forest communities are most sensitive to shifting temperature and precipitation patterns (Diaz et al. 2003), thus in a region where much of the elevation remains > 2200 m, high-resolution records which capture recent environmental shifts are needed. The goal of this study is to evaluate the potential of *Pinus contorta* (Lodgepole pine) and Pinus flexilis (Limber pine) for future climate reconstructions in the region. To do this we develop multi-centennial chronologies from these two co-located conifer species, and quantify and compare climate responses between the species

MATERIALS & METHODS

Site Selection

The GYE is a semi-arid region that spans from 1400 to over 4200 m in elevation situated in northwest Wyoming, and is host to multiple habitat types including those dominated by *Pinus contorta* and *Pinus flexilis* (Figure 1). Average annual temperature (precipitation) within the SNF range from 8 degrees C (254 mm/year) at low elevations (~ 1402 m) to -12 degrees C (1525 mm/year) at high elevations (~4221 m; Rice *et al.* 2012).

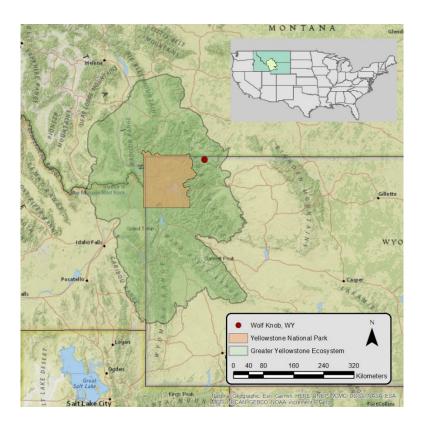


Figure 1. Location of Wolf Knob study site (44.946°N, 109.6497° W).

We selected our study site, Wolf Knob (located within the SNF), based on its relatively high altitude (2682 m), sheer south/southwest facing slopes, and rocky cliff characteristics. Based on

the dendrochronological principle of limiting factors (Fritts 1976), we anticipated the shallow, rocky soils on this high elevation granitic gneiss outcrop to host mature, climate sensitive trees that may have survived lowland fires.

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

102

103

104

Tree-Ring Data and Chronology Development

Two or three cores from 26 Pinus flexilis and 24 Pinus contorta trees were taken with an increment borer following standard dendrochronological procedures (Stokes and Smiley 1968). The sampled trees are within approximately 30 meters of the summit elevation (2682 m) on the south/southwest-facing slope at Wolf Knob. We selected mature trees that exhibited few signs of disturbance from insects or fire, minimal canopy competition, and DBH larger than juvenile, understory trees (>15 cm) (Fritts 1976). We recorded the locations of each sampled tree with a GPS, as well as a measurement of diameter at breast height (DBH). Samples were stored in paper straws and transported to the A.L. Mickelson Field station in Cody, WY, where they were mounted on wooden mounting boards and surfaced with progressively finer sandpaper until a fine polish was achieved and uni-cellular rings were visible under the microscope. Total ring widths were scanned at 2400 dpi using a high-resolution scanner and measured at 0.001 mm precision using either a Velmex measuring stage and Tellervo measurement software (Brewer 2014) or the visual analysis program CooRecorder (Cybis Elektronik 2010). Due to difficult ringwidth patterns, these two measurement techniques were used interchangeably (Stockton et al. 2011); when narrow or faint ring-width patterns were undetectable with the high-resolution core images, we proceeded with the Velmex measuring stage. Annual growth increments were

crossdated using the skeleton plot and list methods (Fritts 1976; Yamaguchi 1991), and

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

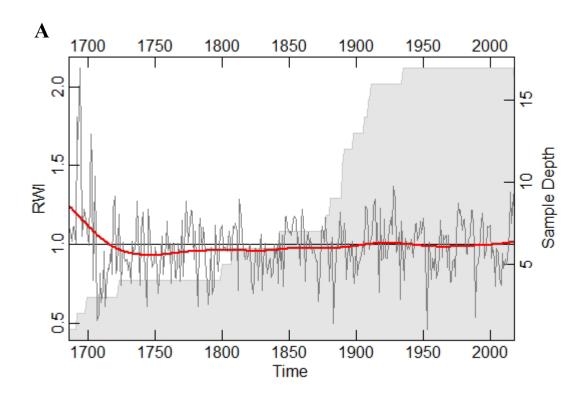
146

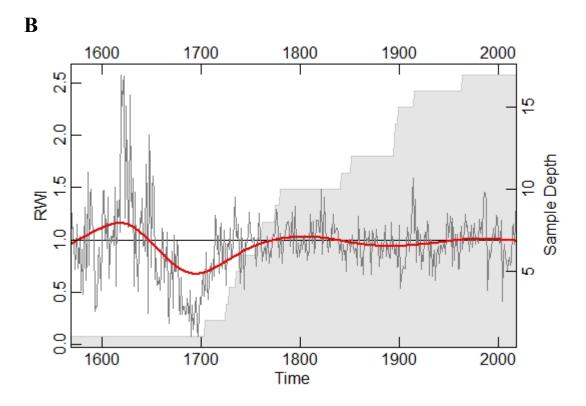
crossdating was confirmed statistically using the program COFECHA (Holmes 1983). As part of the NADEF program, all members of the Introductory Group participated in crossdating. Thus, crossdating of each core was confirmed by at least two independent scientists. Previously crossdated *Pinus contorta* samples from the Between Two Knobs site (44.931, -109.640; Gentry et al. 2017) were utilized as a reference in the crossdating process. Tree-ring measurement series were detrended (Cook 1985) with a two-thirds smoothing spline using the Dendrochronology Program Library (dplR) package (Bunn et al. 2008) in R programming language (R Core Team 2020), and standardized using a bi-weight robust mean to estimate the final chronology (Cook and Kairiukstis 1990). We selected this detrending method based on its ability to remove non-climatic growth trends yet preserve more common forest dynamics (Cook and Peters 1981). We calculated a suite of diagnostic statistics to evaluate the quality of the chronologies, including inter-series correlation (Fritts 1976), Expressed Population Signal (EPS; Briffa 1999), mean sensitivity (Fritts 1976), and mean total r-bar (Briffa 1999; Table 1). EPS is a statistical measure used to evaluate how well the sample size captures the hypothetical population growth signal (Wigley et al. 1984). Lastly, autocorrelation function tests (Blackman-Turkey method; Percival and Walden 1993) were conducted for each chronology to classify the spectral and autocorrelation properties of these sites. Climate-growth relationships To determine which, if any, climate parameters have a significant relationship to *Pinus flexilis* and Pinus contorta growth at Wolf Knob, we calculated full and partial correlation coefficients between each chronology and local precipitation (nearest grid point taken from Global Precipitation Climate Centre gridded precipitation product; GPCC v7.0; Schneider et al. 2016) and temperature (nearest grid point taken from Climate Research Unit; CRU v4.01; Harris et al. 2014), datasets using the seasonal correlation (SEASCORR) procedure developed by Meko et al. (2011).

We tested individual monthly and seasonal precipitation and temperature records integrating 1, 3, 9, and 12 months, within a 14-month window starting in the September prior to the growth year and ending in October when conifer growth typically becomes dormant (Vaganov *et al.* 2006). Significance was estimated using exact simulation (Percival and Constantine 2006). Additionally, to determine if the *Pinus flexilis* and *Pinus contorta* chronologies have a significant relationship with snowpack, Pearson's correlation tests were conducted with 50-year moving windows between each chronology with regional reconstruction of mean Snow Water Equivalent (SWE) developed by Coulthard *et al.* (2019), modeled SWE (Coulthard *et al.* 2019), as well as winter (sum of prior December, January and February) precipitation (nearest grid point taken from GPCC v7.0; Schneider *et al.* 2016), over the common periods between the two records of 1730-1980, 1900-2015, and 1892-2016, respectively. Bonferroni corrections and autocorrelation adjustments were made for all series being compared, to ensure the relationships were not spurious (Snedecor and Cochran 1989).

161 RESULTS

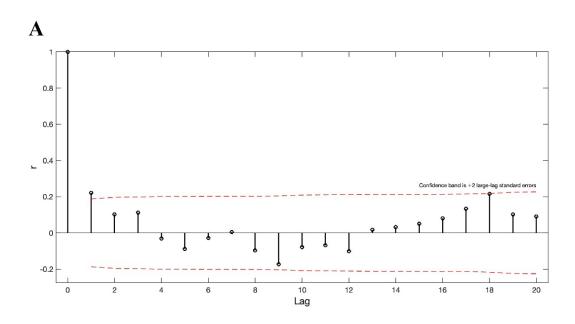
Final Chronology


The final chronologies (Figure 2) are comprised of 17 *Pinus contorta* (A) and 17 *Pinus flexilis* (B) cores, with an expressed population signal (EPS) > 0.67 for each (Table 1). Difficult ring-width patterns (e.g. locally absent rings, ring suppression, lack of anatomical marker years) prevented statistically robust crossdating of all the collected cores, therefore only the samples with precise calendar years were included in the final chronologies. The *Pinus contorta* chronology has temporally consistent EPS values hovering near 0.68 (Table 1) and a larger number of cores


extending into the early 1700s than *Pinus flexilis* (Figure 2 A). The *Pinus flexilis* chronology only
has 2 cores which extend earlier than 1700, but higher and temporally consistent EPS values
(Figure 2 B). Both chronologies have inter-series correlation values over 0.5 and exhibit a shift in
(tree-ring width) variance in the early portion of the record, where sample depth drops < 5 samples
(Table 1; Figure 2).

174

Species	Trees	Cores	# cores included in final chronology	Age Range	Series Inter- correlation	Mean Sensitivity	Mean rbar	Mean EPS	EPS >0.80
Pinus contorta	26	54	17	1686-2018	0.502	0.237	0.243	0.689	1894- 2018
Pinus flexilis	24	50	17	1569-2018	0.570	0.261	0.326	0.816	1869- 2018


175 **Table 1.** Summary chronology statistics for *Pinus contorta* and *Pinus flexilis*.

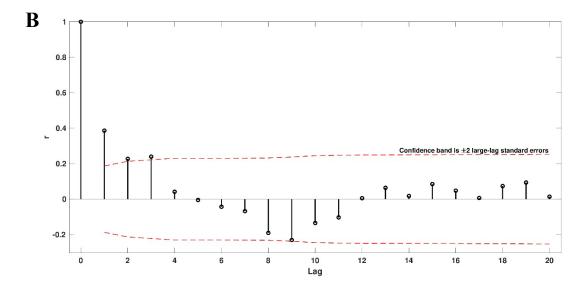
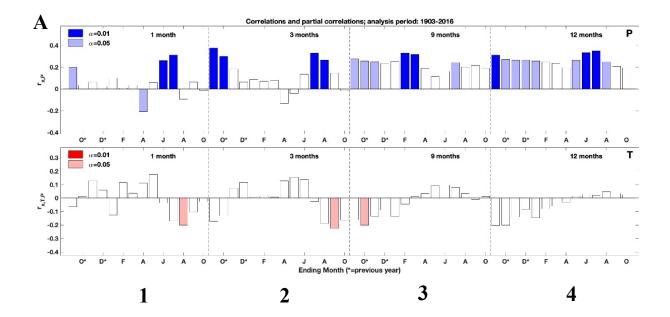


Figure 2. Final detrended chronology with the fitted two thirds spline for (A) *Pinus contorta* and (B) *Pinus flexilis*.

The *Pinus contorta* chronology has significant (p < 0.05) positive autocorrelation structure on the order of 1 (Figure 3 A), whereas the *Pinus flexilis* chronology has persistent autocorrelation structure on the order of 3 (Figure 3 B).



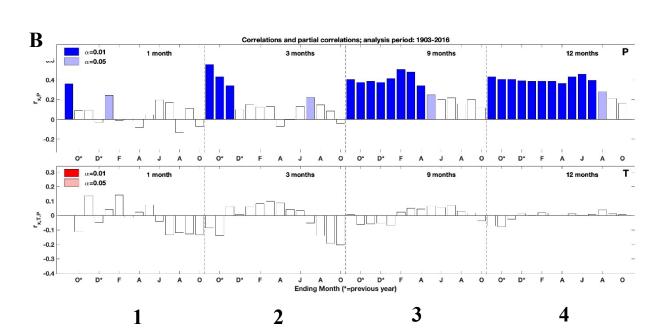


Figure 3: Autocorrelation function plots of the (A) *Pinus contorta* and (B) *Pinus flexilis* and chronologies. Red dashed lines indicate large-lag standard error at the 95% confidence level (Anderson 1976) and r (y-axis) represents the strength of the autocorrelation structure between year t and number of lags (x-axis).

Climate-growth relationships

Results of the climate correlation analysis suggest the strongest monthly or seasonal correlation with precipitation is the same for both species in prior-year summer (July-September), although the correlation of *Pinus contorta* to summer precipitation is much weaker than that of *Pinus flexilis* (Figure 4 A and B, Panel 2). The two species' responses to cool-season precipitation are markedly different, however. *Pinus contorta* is only weakly and inconsistently (over time) correlated with precipitation during cool months and seasons (Figure 4 A), whereas *Pinus flexilis* exhibits strong and consistent correlations with cool-season precipitation variables (Figure 4 B, Panels 3-4). Only *Pinus contorta* is statistically significantly (p<0.05) correlated with temperature, a weak negative relationship that is restricted to the current late-summer (July-September) in both the prior and current years (Figure 4A, panels 1, 2, and 3).

Figure 4. Seasonal correlations and partial correlations using the procedure of Meko *et al.* (2011) of the (A) *Pinus contorta* and (B) *Pinus flexilis* chronologies. The top row in each figure (blue bars) shows correlations between the chronology and monthly and seasonal precipitation. The bottom row on each figure (red bars) shows the partial correlations between the chronologies with monthly and seasonal temperature. The four panels separated by vertical dashed lines are, from left to right for the month indicated: the month ending in the month indicated, the three months ending in the month indicated, the 9 months ending in

the month indicated. Significance levels are determined by exact simulation (Meko *et al.* 2011; Percival and Constantine 2006).

Of the correlations between the chronologies with reconstructed SWE, modeled SWE, and GPCC winter precipitation, only the *Pinus flexilis* and reconstructed SWE exhibit a statistically significant (p < 0.05) relationship that is weaker over the full common data period (r = 0.17, 1730-1980), but stronger over the last 60 decades (r = 0.45, 1930-1980, Figure 5).

Figure 5. Line plot of the five-year running mean of reconstructed SWE (thick blue line) and *Pinus flexilis* chronology (thick black line) over the 1730-1980 period. Standardized annual values for reconstructed SWE and *Pinus flexilis* chronology are plotted in the thin blue and black lines, respectively.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

231 DISCUSSION

At Wolf Knob, both *Pinus contorta* and *Pinus flexilis* appear to be subject to a significant level of climatological and/or other growth stress, and as a result exhibited a substantial amount of locally absent rings and perplexing ring width patters that presented challenges for crossdating. Therefore, the final chronologies presented here only include the well-dated core samples, to ensure our analyses are derived on precise chronological information. The requirement of both species for enhanced precipitation in the late summer, as well as the negative response of *Pinus contorta* to warm temperatures during that same season, is consistent with late summer drought-stress observed in many western US forests (Williams et al. 2013), although this response is weaker in *Pinus contorta* than in *Pinus flexilis*. Meanwhile, the strong positive correlation between *Pinus flexilis* and cool-season precipitation is a typical water-year drought response exhibited by North American moisture-limited conifer species that rely on snow meltwaters to precondition spring soil moisture availability (Fritts 1971; St. George 2014). This reliance on cool-season precipitation is underscored further by the *Pinus flexilis* relationship to SWE documented in this study. In short, despite co-occurring at the same site, the two species exhibit different forms and magnitudes of drought stress. Weaker correlations with precipitation indicate *Pinus contorta* is not as strongly water-limited as *Pinus flexilis*, and this is also consistent with *Pinus contorta's* lack of reliance on cool-season precipitation and a sensitivity to rainfall availability only during the late summer, likely only during abnormally long warm/dry growing seasons. Meanwhile strong correlations with precipitation indicate *Pinus flexilis* is relatively more water-limited, relying heavily on snow meltwaters during the early growing season in addition to late summer rainfall at

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

the end of the growing season. In both cases, sustained drought conditions may limit the tree's vital growth-controlling structures (stems, buds, needles, roots) in subsequent years, and thus they may depend on both current and/or prior year precipitation for adequate growth, (Fritts 1971; Coulthard *et al.* 2020).

We attribute these contrasting moisture-stress responses to be a result of differing microsite growing locations of each species: the majority of the *Pinus contorta* individuals persisted on flat, less rocky outcrops, while majority of the *Pinus flexilis* individuals tended to prefer the more exposed cliff faces, with shallow and poorly developed soils, where moisture-limitation is typically strongest (Steele et al. 1983). Given that both species examined here may be strongly correlated with cool-season precipitation and SWE (Coulthard et al. 2020), and/or late summer precipitation/temperature (Williams et al. 2013) at other sites throughout western North America, our findings underscore the importance of not only site selection but also microsite and individual selection for dendroclimatological sampling. Our findings also contribute to identifying SWEsensitive tree-ring proxies in this region, which is of growing importance given the imminent threat of warming-induced snowpack declines in the North American Cordillera (Pederson et al. 2011) and the projection of a largely snow free (April 1) GYE by 2075 (Chang and Hansen 2015). In this case, we found that *Pinus flexilis* growing in more moisture-stressed microsite conditions serve may serve as SWE proxies while similarly long-lived *Pinus contorta* tree at the same site are not sensitive to SWE.

CONCLUSION

Taken together, these chronologies unveil a multi-centennial history of the GYE climate, and specifically for high-elevation forest communities in northwestern Wyoming. The differing

climate sensitivities seen in these two *Pinus* species underscores the pertinence of declining snowpack, and increasing summer temperatures and drought conditions to high-elevation *Pinus flexilis* and *Pinus contorta* forest communities, respectively. Our findings suggest that each species will likely be faced with dissimilar climate change risks and may even alter their vulnerabilities. For instance, a trend in declining snowpack in the GYE may negatively impact *Pinus flexilis* while *Pinus contorta* may be more resilient to these shifts. Taken together, these high-elevation colocated *Pinus* species prove potentially useful in teasing out species sensitivities to a changing GYE climate, as well as provide forewarning into shifting forest dynamics.

ACKNOWLEDGEMENTS

This project was funded by the National Science Foundation's Geography and Spatial Sciences Program; award # 1759694. A special thank you to the NADEF organizers and the staff of the Northwest College A.L. Mickelson Station, for their hard work and commitment to the ongoing years of this program. We would also like to thank the Introductory group leaders, Dr. Jessie Pearl and Laura Smith, for their guidance, encouragement, and dedication in teaching our group the fundamentals of Dendrochronology.

291 REFERENCES

- Altman J., P. Fibich, J. Dolezal, and T. Aakala, 2014. TRADER: a package for Tree Ring Analysis
- of Disturbance Events in R. *Dendrochonologia* 32: 107-112.
- Anderson, O.D., 1976. On two convex autocorrelation regions for moving average processes.
- 295 Biometrika 63(3): 681-683.
- Anderson, M.D., 2003. *Pinus contorta var. latifolia*. In: Fire Effects Information System, U.S.
- 297 Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences
- 298 Laboratory. Available online at: https://www.fs.fed.us/database/feis/plants/tree/pinconl/all.html.
- Bentz, B.J., J. Régnière, C.J. Fettig, E.M. Hansen, J.L. Hayes, J.A. Hicke, R.G. Kelsey, J.F.
- Negrón, and S.J. Seybold, 2010. Climate change and bark beetles of the western United States and
- 301 Canada: direct and indirect effects. *BioScience* 60(8): 602-613.
- 302 Bracht, B.B., J.R. Stone, and S.C. Fritz, 2008. A diatom record of late Holocene climate variation
- in the northern range of Yellowstone National Park, USA. Quaternary International 188(1): 149-
- 304 155.
- Brewer, P.W., 2014. Data management in dendroarchaeology using tellervo. *Radiocarbon 56*(4):
- 306 S79-S83.
- 307 Briffa, K.R., 1999. *Interpreting high-resolution proxy climate data—the example of*
- 308 dendroclimatology. In Analysis of climate variability 77-94, Springer, Berlin, Heidelberg.
- Brown, S.R., A. Baysinger, P.M. Brown, J.L. Cheek, J.M. Diez, C.M. Gentry, T.A. Grant III, J.M.
- 310 St. Jacques, D.A. Jordan, M.L. Leef, and M.K. Rourke, 2020. Fire history across forest types in
- 311 the southern Beartooth Mountains, Wyoming. *Tree-Ring Research* 76(1): 27-39.
- Bunn, A., M. Korpela, F. Biondi, F. Campelo, P. Mérian, F. Qeadan, C. Zang, D. Pucha-Cofrep,
- and J. Wernicke, 2008. A dendrochronology program library in R (dplR). Dendrochronologia
- 314 26(2): 115-124.
- Chang, T. and A. Hansen, 2015. Historic and projected climate change in the Greater Yellowstone
- 316 Ecosystem. Yellowstone Science 23(1): 14-19.
- Cook, E.R. and K. Peters, 1981. The smoothing spline: a new approach to standardizing forest
- interior tree-ring width series for dendroclimatic studies. *Tree-Ring Bulletin* 41:45-53.
- 319 Cook, E.R., 1985. A time series analysis approach to tree ring standardization. PhD dissertation,
- 320 University of Arizona, Tucson.
- 321 Cook, E.R. and L.A. Kairiukstis, 1990. Methods of dendrochronology: applications in the
- 322 *environmental sciences*. Springer Science and Business Media.

- 323 Coulthard, B. L., G.T. Pederson, and K.J. Anchukaitis, 2019. The Spatial Footprint and Frequency
- of Historic Snow Droughts in Yellowstone. *Yellowstone Science* 27(1): 24-26.
- 325 Coulthard, B.L., K.J. Anchukaitis, G.T. Pederson, E. Cook, J. Littell, and D.J. Smith, 2020.
- 326 Snowpack signals in North American tree rings. *Environmental Research Letters*.
- Diaz, H.F., M. Grosjean, and L. Graumlich, 2003. Climate variability and change in high elevation
- regions: past, present and future. Climatic change 59(1): 1-4.
- 329 Elektronik, Cybis, 2010. CDendro and CooRecorder.
- Fall, P.L., P.T. Davis, and G.A. Zielinski, 1995. Late quaternary vegetation and climate of the
- Wind River Range, Wyoming. *Quaternary Research* 43(3): 393-404.
- Fritts, H.C., 1971. Dendroclimatology and dendroecology. *Quaternary Research* 1(4): 419-449.
- Fritts, H. C, 1976. Tree rings and climate. New York: Academic Press.
- Gentry, C., G. Harley, S. Maxwell, A. Hefner, T. Mitchell, N. Mustoe, R. Rachman, J. Scott, J.
- 335 Spriggs, W. Struble, J. Waldron, and M. Ward, 2017. Comparing site specific chronologies of
- 336 Lodgepole pine and Engelmann spruce in the Shoshone National Forest, Wyoming. Final Report,
- 337 27th Annual North American Dendroecological Fieldweek (NADEF), Cody, Wyoming.
- 338 https://sites.google.com/view/nadef/past-fieldweeks/2017.
- George, S.S., 2014. An overview of tree-ring width records across the Northern Hemisphere.
- 340 Quaternary Science Reviews 95: 132-150.
- Grace, J., F. Berninger, and L. Nagy, 2002. Impacts of climate change on the tree line. *Annals of*
- 342 *Botany* 90(4): 537-544.
- Graumlich, L.J., M.F. Pisaric, L.A. Waggoner, J.S. Littell, and J.C. King, 2003. *Upper*
- 344 *Yellowstone River flow and teleconnections with Pacific basin climate variability during the past*
- 345 three centuries. Climate Variability and Change in High Elevation Regions: Past, Present & Future
- 346 245-262. Springer, Dordrecht.
- 348 Gray, S.T., L.J. Graumlich, and J.L. Betancourt, 2007. Annual precipitation in the Yellowstone
- National Park region since AD 1173. *Quaternary Research* 68(1): 18-27.
- Harpold, A.A., M. Dettinger, and S. Rajagopal, 2017. Defining snow drought and why it matters.
- 352 Eos 98.

350

- Harris, I.P.D.J., P.D. Jones, T.J. Osborn, and D.H. Lister, 2014. Updated high-resolution grids of
- 355 monthly climatic observations—the CRU TS3. 10 Dataset. *International journal of climatology*
- 356 34(3): 623-642.

- Higuera, P.E., C. Whitlock, and J.A. Gage, 2011. Linking tree-ring and sediment-charcoal records
- 358 to reconstruct fire occurrence and area burned in subalpine forests of Yellowstone National Park,
- 359 USA. The Holocene 21(2): 327-341.
- 360 Hinton, O.J., 2020. The Dendroclimate Response of Trees in the Greater Yellowstone Ecosystem,
- 361 *USA*. PhD dissertation, California State University, Fullerton.
- Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement.
- Johnson, K.A., 2001. Pinus flexilis. In: Fire Effects Information System. U.S. Department of
- 364 Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
- 365 Available online at: https://www.fs.fed.us/database/feis/plants/tree/pinfle/all.html.
- Krause, T.R. and C. Whitlock, 2013. Climate and vegetation change during the late-glacial/early-
- 367 Holocene transition inferred from multiple proxy records from Blacktail Pond, Yellowstone
- 368 National Park, USA. Quaternary Research 79(3): 391-402.
- Krause, T.R., Y. Lu, C. Whitlock, S.C. Fritz, and K.L. Pierce, 2015. Patterns of terrestrial and
- 370 limnologic development in the northern Greater Yellowstone Ecosystem (USA) during the late-
- 371 glacial/early-Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology 422: 46-
- 372 56.
- 373 R. Lee, J. McGee, K. McNiel, J. Axelson, A. Csank, 2018. Reconstructing Historical
- 374 Choristoneura Freemani Outbreaks Using Pseudotsuga Menziesii in the Greater Yellowstone
- Region, Wyoming, U.S.A. Final Report, 27th Annual North American Dendroecological
- Fieldweek (NADEF), Cody, Wyoming. https://sites.google.com/view/nadef/past-fieldweeks/2018.
- Leppi, J.C., T.H. DeLuca, S.W. Harrar, and S.W. Running, 2012. Impacts of climate change on
- August stream discharge in the Central-Rocky Mountains. *Climatic Change* 112(3): 997-1014.
- 379 Littell, J.S., 2002. Determinants of fire regime variability in lower elevation forests of the northern
- 380 Greater Yellowstone Ecosystem. PhD dissertation, Montana State University-Bozeman, College of
- 381 Agriculture.
- Littell, J.S., G.T. Pederson, S.T. Gray, M. Tjoelker, A.F. Hamlet, and C.A. Woodhouse, 2016.
- 383 Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific
- Northwest, USA. *Journal of the American Water Resources Association* 52(5): 1121-1141.
- Logan, J.A., W.W. Macfarlane, L. and Willcox, 2010. Whitebark pine vulnerability to climate-
- driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem. Ecological
- 387 *Applications* 20(4): 895-902.
- Lynch, E.A., 1998. Origin of a park–forest vegetation mosaic in the Wind River Range, Wyoming.
- 389 *Ecology* 79(4): 1320-1338.

- Meko, D.M., R. Touchan, and K.J. Anchukaitis, 2011. Seascorr: A MATLAB program for
- 391 identifying the seasonal climate signal in an annual tree-ring time series. *Computers &*
- 392 *Geosciences* 37(9): 1234-1241.
- Mensing, S., J. Korfmacher, T. Minckley, and R. Musselman, 2012. A 15,000 year record of
- vegetation and climate change from a treeline lake in the Rocky Mountains, Wyoming, USA. *The*
- 395 *Holocene* 22(7): 739-748.
- Naftz, D.L., D.D. Susong, P.F. Schuster, L.D. Cecil, M.D. Dettinger, R.L. Michel, and C. Kendall,
- 397 2002. Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind
- River Range, Wyoming, United States. *Journal of Geophysical Research: Atmospheres* 107(D13):
- 399 ACL-3.

- 401 Nowacki, G.J. and M.D. Abrams, 1997. Radial-growth averaging criteria for reconstructing
- 402 disturbance histories from presettlement-origin oaks. *Ecological Monographs* 67(2): 225-249.
- 403 IPCC, 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III
- 404 to the fifth assessment report of the Intergovernmental Panel on Climate Change, edited by:
- 405 Pachauri, R.K., M.R. Allen, V.R. Barros, J. Broome, W. Cramer, R. Christ, J.A. Church, L.
- 406 Clarke, Q. Dahe, P. Dasgupta, and N.K. Dubash.
- 407 Pederson, G.T., L.J. Graumlich, D.B. Fagre, T. Kipfer, and C.C. Muhlfeld, 2010. A century of
- dos climate and ecosystem change in Western Montana: what do temperature trends portend?.
- 409 *Climatic change* 98(1): 133-154.
- 410 Pederson, G.T., S.T. Gray, C.A. Woodhouse, J.L. Betancourt, D.B. Fagre, J.S. Littell, E. Watson,
- B.H. Luckman, and L.J. Graumlich, 2011. The unusual nature of recent snowpack declines in the
- North American Cordillera. Science 333(6040): 332-335.
- 413 Percival, D.B. and Constantine, W.L., 2006. Exact simulation of Gaussian time series from
- 414 nonparametric spectral estimates with application to bootstrapping. Statistics and Computing
- 415 16(1): 25-35.
- 416 Percival, D. B., and A.T. Walden, A. T., 1993. Spectral analysis for physical applications. New
- 417 York, NY: Cambridge University Press.
- 418 Pierce, J.L., G.A. Meyer, and A.T. Jull, 2004. Fire-induced erosion and millennial-scale climate
- change in northern ponderosa pine forests. *Nature* 432(7013): 87-90.
- 420 R Core Team (2020). R: A language and environment for statistical computing. R Foundation for
- 421 Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Raffa, K.F., B.H. Aukema, B.J. Bentz, B.J., A.L. Carroll, J.A. Hicke, M.G. Turner, and W.H.
- Romme, 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification:
- 424 the dynamics of bark beetle eruptions. *Bioscience* 58(6): 501-517.

- 425 Rice, J., A. Tredennick, and L.A. Joyce, 2012. Climate change on the Shoshone National Forest,
- Wyoming: a synthesis of past climate, climate projections, and ecosystem implications. Gen. Tech.
- 427 Report. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort
- 428 Collins, CO RMRS-GTR-264: 60.
- 429 Rinaldi, B.N., R.S. Maxwell, T.M. Callahan, R.L. Brice, K.J. Heeter, and G.L. Harley, 2021.
- 430 Climate and ecological disturbance analysis of Engelmann spruce and Douglas fir in the greater
- 431 Yellowstone ecosystem. *Trees, Forests and People* 3: 100053.
- Romme, W.H. and D.G. Despain, 1989. Historical perspective on the Yellowstone fires of 1988.
- 433 *BioScience* 39(10): 695-699.
- 434 GPCC full data reanalysis version 7.0, 2016. Research data archive at the National Center for
- 435 Atmospheric Research, Computational and Information Systems Laboratory, edited by: Schneider,
- 436 U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese.
- 437 Sepulveda, A.J., M.T. Tercek, R. Al-Chokhachy, A.M. Ray, D.P. Thoma, B.R. Hossack, G.T.
- 438 Pederson, A.W. Rodman, A.W. and T. Olliff, 2015. The shifting climate portfolio of the Greater
- 439 Yellowstone Area. *PloS one* 10(12): e0145060.
- Snedecor, G.W. and W.G. Cochran, 1989. Statistical methods, 8th Edition. Iowa State University
- 441 Press 54: 71-82.
- Speer, J.H., 2010. Fundamentals of tree-ring research. University of Arizona Press.
- Steele, R., S.V. Cooper, D.M. Ondov, D.W. Roberts, and R.D. Pfister, 1983. Forest habitat types
- of eastern Idaho-western Wyoming. Gen. Tech. Rep. INT-144. Ogden, UT: US Department of
- 445 Agriculture, Forest Service, Intermountain Forest and Range Experiment Station 122: 144.
- Steele, R., 1990. Pinus flexilis James limber pine. Silvics of North America 1: 348-354.
- Maxwell, R.S., J.A. Wixom, A.E. Hessl, 2011. A comparison of two techniques for measuring and
- 448 crossdating tree rings. *Dendrochronologia* 29(4): 237-243.
- Stokes, M. A. and T. L. Smiley, 1968. *Introduction to tree-ring dating*. University of Chicago.
- 450 Tercek, M., A. Rodman, and D. Thoma, 2015. Trends in Yellowstone snowpack. *Yellowstone*
- 451 *Science* 23(1): 20-27.
- 452 Vaganov, E.A., M.K. Hughes, and A.V. Shashkin, 2006. *Growth dynamics of conifer tree rings:*
- 453 images of past and future environments. Springer Science & Business Media.
- Van Mantgem, P.J., N.L. Stephenson, J.C. Byrne, L.D. Daniels, J.F. Franklin, P.Z. Fulé, M.E.
- Harmon, A.J. Larson, J.M. Smith, A.H. Taylor, and T.T. Veblen, 2009. Widespread increase of
- 456 tree mortality rates in the western United States. *Science* 323(5913): 521-524.

- Westerling, A.L., H.G. Hidalgo, D.R. Cayan, and T.W. Swetnam, 2006. Warming and earlier
- 458 spring increase western US forest wildfire activity. *science* 313(5789): 940-943.
- Whitlock, C., 1993. Postglacial vegetation and climate of Grand Teton and southern Yellowstone
- 460 National Parks. *Ecological Monographs* 63(2): 173-198.
- Whitlock, C., S.L. Shafer, and J. Marlon, 2003. The role of climate and vegetation change in
- shaping past and future fire regimes in the northwestern US and the implications for ecosystem
- 463 management. Forest ecology and management 178(1-2): 5-21.
- Wigley, T.M., K.R. Briffa, and P.D. Jones, 1984. On the average value of correlated time series,
- with applications in dendroclimatology and hydrometeorology. *Journal of Applied Meteorology*
- 466 and Climatology 23(2): 201-213.
- Williams, A.P., C.D. Allen, A.K. Macalady, D. Griffin, C.A. Woodhouse, D.M. Meko, T.W.
- Swetnam, S.A. Rauscher, R. Seager, H.D. Grissino-Mayer, and J.S. Dean, 2013. Temperature as a
- potent driver of regional forest drought stress and tree mortality. *Nature climate change* 3(3): 292-
- 470 297.
- Wise, E.K., 2010. Tree ring record of streamflow and drought in the upper Snake River. Water
- 472 Resources Research 46(11).
- 473 Yamaguchi, D. K., 1991. A simple method for cross-dating increment cores from living trees.
- 474 Canadian Journal of Forest Research 21(3):414–416.
- 475 Yellowstone National Park. 2016. Yellowstone Resources and Issues Handbook: 2016.
- 476 Yellowstone National Park, WY.