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ABSTRACT 26 
 27 
The North American Dendroecological Field Week (NADEF) is an intensive dendrochronology-28 

based research workshop, funded by the National Science Foundation. The 2019 Introductory 29 

Group at NADEF developed two precisely-dated tree-ring width chronologies for Pinus contorta 30 

(Lodgepole Pine) and Pinus flexilis (Limber Pine) at Wolf Knob, WY, located within the Greater 31 

Yellowstone Ecosystem (GYE)’s Shoshone National Forest. Wolf Knob is a semi-arid, south- to 32 

southwest-facing, high-elevation site, making it an ideal location to examine the climate sensitivity 33 

of annual tree-ring width increments. Here, we show that two co-located conifer species exhibit 34 

distinct climate-growth relationships and therefore may be facing distinct threats in the face of 35 

regional climate change. Pinus flexilis is much more drought-stressed than Pinus contorta, 36 

exhibiting stronger overall correlations with both cool- and warm-season precipitation as well as 37 

snow meltwaters, whereas Pinus contorta exhibits only relatively weak correlations with 38 

precipitation and temperature during the late summer. The differing seasonal climate sensitivities 39 

of these two co-located Pinus species is likely due to microsite conditions and distinct species 40 

climate responses, both providing local insight for selecting tree-ring snow proxies in the GYE and 41 

further highlighting the importance of site and individual selection in dendroclimatology and 42 

dendroecology. 43 

 44 

Keywords: Greater Yellowstone Ecosystem, Lodgepole pine, Limber pine, dendroclimatology, fire 45 

regimes. 46 
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INTRODUCTION 48 

As one of the largest and least fragmented ecosystems located within Earth’s temperate zone, the 49 

Greater Yellowstone Ecosystem (GYE) is of distinct ecological importance and is particularly 50 

susceptible to climatic shifts (Rice et al. 2012), where warming temperatures (Sepulveda et al. 51 

2015) pose cascading effects on the desiccation of soils and vegetation, fire regimes, as well as 52 

ecosystem and wildlife health (Pederson et al. 2010). Comprised of ~22 million acres, the GYE 53 

provides rich biodiversity, abundant water resources, and is a sanctuary for the largest 54 

concentration of wildlife in the contiguous U.S. (NPS 2016).  55 

Consistent with much of the western U.S., the GYE is faced with shifting trends in temperature 56 

and precipitation in response to anthropogenic greenhouse gas emissions. In recent decades, the 57 

GYE has experienced a -.16°C/decade increase in mean annual temperature (Chang and Hansen 58 

2015), manifested as warming winters and hotter summers (Sepulveda et al. 2015), lengthening of 59 

summer droughts (Westerling et al. 2006), reduced snowpack (Tercek et al. 2015), and decreased 60 

summer stream discharge (Leppi et al. 2012). Taken together, these climatic shifts have begun 61 

redefining disturbance regimes throughout the region, including increased forest fire activity 62 

(Westerling et al. 2006) and severity (Whitlock et al. 2003), vulnerability to insect disturbances 63 

(Raffa et al. 2008; Bentz et al. 2010), and vertical advancement of tree line (Grace et al. 2002; 64 

Hinton 2020), ultimately leading to a higher likelihood of forest mortality and forest type 65 

transition (Van Mantgem et al. 2009; Logan et al. 2010).  66 

One way to benchmark modern climate and ecological shifts is to use long-term tree-ring records 67 

to reconstruct past climate and ecological disturbance (Fritts 1976). In high-elevation (>2400 m) 68 

semi-arid forest communities, such as those within the GYE, annual tree-ring increments are often 69 
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highly sensitive to environmental conditions and forest dynamics, such as climate, disturbance, 70 

and competition (Hinton 2020). A rich history of broad-scale paleoclimate and paleoecological 71 

work exists within the GYE and surrounding Rocky Mountain region, including records derived 72 

from lake sediments (Fall et al. 1995), pollen (Lynch 1998; Whitlock 1993), terrestrial sediments 73 

(Pierce et al. 2004), diatoms (Bracht et al. 2008), ice cores (Naftz et al. 2002), and other proxy 74 

records (Krause et al. 2015; Krause and Whitlock 2013; Mensing et al. 2012; Whitlock et al. 75 

2003) that provide a multi-millennial context for past environmental conditions. Tree-ring based 76 

climatological (Wise 2010; Graumlich et al. 2003; Gray et al. 2007) and ecological (Romme and 77 

Despain 1989; Littell 2002; Higuera et al. 2011, Rinaldi et al. 2021) reconstructions provide the 78 

highest-resolution (annual) context for changes within the GYE over the past two millennia. While 79 

these records have contributed to the development of a palaeoclimatological and paleoecological 80 

framework of the GYE, very few climate-sensitive, high-elevation tree-ring datasets exist within 81 

the region (Hinton 2020). High-elevation forest communities are most sensitive to shifting 82 

temperature and precipitation patterns (Diaz et al. 2003), thus in a region where much of the 83 

elevation remains > 2200 m, high-resolution records which capture recent environmental shifts are 84 

needed.  The goal of this study is to evaluate the potential of Pinus contorta (Lodgepole pine) and 85 

Pinus flexilis (Limber pine) for future climate reconstructions in the region. To do this we develop 86 

multi-centennial chronologies from these two co-located conifer species, and quantify and 87 

compare climate responses between the species 88 

 89 

  90 
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MATERIALS & METHODS 91 

Site Selection 92 

The GYE is a semi-arid region that spans from 1400 to over 4200 m in elevation situated in 93 

northwest Wyoming, and is host to multiple habitat types including those dominated by Pinus 94 

contorta and Pinus flexilis (Figure 1). Average annual temperature (precipitation) within the SNF 95 

range from 8 degrees C (254 mm/year) at low elevations (~ 1402 m) to -12 degrees C (1525 96 

mm/year) at high elevations (~4221 m; Rice et al. 2012).  97 

 98 

Figure 1. Location of Wolf Knob study site (44.946°N, 109.6497° W). 99 

We selected our study site, Wolf Knob (located within the SNF), based on its relatively high 100 

altitude (2682 m), sheer south/southwest facing slopes, and rocky cliff characteristics. Based on 101 
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the dendrochronological principle of limiting factors (Fritts 1976), we anticipated the shallow, 102 

rocky soils on this high elevation granitic gneiss outcrop to host mature, climate sensitive trees that 103 

may have survived lowland fires.  104 

 105 

Tree-Ring Data and Chronology Development 106 

Two or three cores from 26 Pinus flexilis and 24 Pinus contorta trees were taken with an 107 

increment borer following standard dendrochronological procedures (Stokes and Smiley 1968).  108 

The sampled trees are within approximately 30 meters of the summit elevation (2682 m) on the 109 

south/southwest-facing slope at Wolf Knob. We selected mature trees that exhibited few signs of 110 

disturbance from insects or fire, minimal canopy competition, and DBH larger than juvenile, 111 

understory trees (>15 cm) (Fritts 1976). We recorded the locations of each sampled tree with a 112 

GPS, as well as a measurement of diameter at breast height (DBH). Samples were stored in paper 113 

straws and transported to the A.L. Mickelson Field station in Cody, WY, where they were 114 

mounted on wooden mounting boards and surfaced with progressively finer sandpaper until a fine 115 

polish was achieved and uni-cellular rings were visible under the microscope.  116 

Total ring widths were scanned at 2400 dpi using a high-resolution scanner and measured at 0.001 117 

mm precision using either a Velmex measuring stage and Tellervo measurement software (Brewer 118 

2014) or the visual analysis program CooRecorder (Cybis Elektronik 2010). Due to difficult ring-119 

width patterns, these two measurement techniques were used interchangeably (Stockton et al. 120 

2011); when narrow or faint ring-width patterns were undetectable with the high-resolution core 121 

images, we proceeded with the Velmex measuring stage. Annual growth increments were 122 

crossdated using the skeleton plot and list methods (Fritts 1976; Yamaguchi 1991), and 123 
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crossdating was confirmed statistically using the program COFECHA (Holmes 1983). As part of 124 

the NADEF program, all members of the Introductory Group participated in crossdating. Thus, 125 

crossdating of each core was confirmed by at least two independent scientists. Previously 126 

crossdated Pinus contorta samples from the Between Two Knobs site (44.931, -109.640; Gentry et 127 

al. 2017) were utilized as a reference in the crossdating process. Tree-ring measurement series 128 

were detrended (Cook 1985) with a two-thirds smoothing spline using the Dendrochronology 129 

Program Library (dplR) package (Bunn et al. 2008) in R programming language (R Core Team 130 

2020), and standardized using a bi-weight robust mean to estimate the final chronology (Cook and 131 

Kairiukstis 1990). We selected this detrending method based on its ability to remove non-climatic 132 

growth trends yet preserve more common forest dynamics (Cook and Peters 1981). We calculated 133 

a suite of diagnostic statistics to evaluate the quality of the chronologies, including inter-series 134 

correlation (Fritts 1976), Expressed Population Signal (EPS; Briffa 1999), mean sensitivity (Fritts 135 

1976), and mean total r-bar (Briffa 1999; Table 1). EPS is a statistical measure used to evaluate 136 

how well the sample size captures the hypothetical population growth signal (Wigley et al. 1984). 137 

Lastly, autocorrelation function tests (Blackman-Turkey method; Percival and Walden 1993) were 138 

conducted for each chronology to classify the spectral and autocorrelation properties of these sites.  139 

Climate-growth relationships 140 

To determine which, if any, climate parameters have a significant relationship to Pinus flexilis and 141 

Pinus contorta growth at Wolf Knob, we calculated full and partial correlation coefficients 142 

between each chronology and local precipitation (nearest grid point taken from Global 143 

Precipitation Climate Centre gridded precipitation product; GPCC v7.0; Schneider et al. 2016) and 144 

temperature (nearest grid point taken from Climate Research Unit; CRU v4.01; Harris et al. 2014), 145 

datasets using the seasonal correlation (SEASCORR) procedure developed by Meko et al. (2011). 146 
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We tested individual monthly and seasonal precipitation and temperature records integrating 1, 3, 147 

9, and 12 months, within a 14-month window starting in the September prior to the growth year 148 

and ending in October when conifer growth typically becomes dormant (Vaganov et al. 2006). 149 

Significance was estimated using exact simulation (Percival and Constantine 2006). Additionally, 150 

to determine if the Pinus flexilis and Pinus contorta chronologies have a significant relationship 151 

with snowpack, Pearson’s correlation tests were conducted with 50-year moving windows between 152 

each chronology with regional reconstruction of mean Snow Water Equivalent (SWE) developed 153 

by Coulthard et al. (2019), modeled SWE (Coulthard et al. 2019), as well as winter (sum of prior 154 

December, January and February) precipitation (nearest grid point taken from GPCC v7.0;  155 

Schneider et al. 2016), over the common periods between the two records of 1730-1980, 1900-156 

2015, and 1892-2016, respectively. Bonferroni corrections and autocorrelation adjustments were 157 

made for all series being compared, to ensure the relationships were not spurious (Snedecor and 158 

Cochran 1989).  159 

 160 

RESULTS 161 

Final Chronology 162 

The final chronologies (Figure 2) are comprised of 17 Pinus contorta (A) and 17 Pinus flexilis (B) 163 

cores, with an expressed population signal (EPS) > 0.67 for each (Table 1). Difficult ring-width 164 

patterns (e.g. locally absent rings, ring suppression, lack of anatomical marker years) prevented 165 

statistically robust crossdating of all the collected cores, therefore only the samples with precise 166 

calendar years were included in the final chronologies. The Pinus contorta chronology has 167 

temporally consistent EPS values hovering near 0.68 (Table 1) and a larger number of cores 168 
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extending into the early 1700s than Pinus flexilis (Figure 2 A). The Pinus flexilis chronology only 169 

has 2 cores which extend earlier than1700, but higher and temporally consistent EPS values 170 

(Figure 2 B). Both chronologies have inter-series correlation values over 0.5 and exhibit a shift in 171 

(tree-ring width) variance in the early portion of the record, where sample depth drops < 5 samples 172 

(Table 1; Figure 2).  173 

 174 

Species Trees Cores # cores 
included in 
final 
chronology 

Age Range Series Inter-
correlation 

Mean 
Sensitivity  

Mean 
rbar 

Mean 
EPS 

EPS 
>0.80 

Pinus 

contorta 

26 54 17 1686-2018 0.502 0.237 0.243 0.689 1894-

2018 

Pinus 

flexilis  

24 50 17 1569-2018 0.570 0.261 0.326 0.816 1869-

2018 

Table 1. Summary chronology statistics for Pinus contorta and Pinus flexilis. 175 

 176 
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 178 

A 

B 
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Figure 2. Final detrended chronology with the fitted two thirds spline for (A) Pinus contorta and 179 
(B) Pinus flexilis.  180 

 181 

The Pinus contorta chronology has significant (p < 0.05) positive autocorrelation structure on the 182 

order of 1 (Figure 3 A), whereas the Pinus flexilis chronology has persistent autocorrelation 183 

structure on the order of 3 (Figure 3 B). 184 

 185 

 186 

A 
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 187 

Figure 3:  Autocorrelation function plots of the (A) Pinus contorta and (B) Pinus flexilis and 188 
chronologies. Red dashed lines indicate large-lag standard error at the 95% confidence level 189 
(Anderson 1976) and r (y-axis) represents the strength of the autocorrelation structure between 190 
year t and number of lags (x-axis). 191 

 192 

Climate-growth relationships  193 

Results of the climate correlation analysis suggest the strongest monthly or seasonal correlation 194 

with precipitation is the same for both species in prior-year summer (July-September), although 195 

the correlation of Pinus contorta to summer precipitation is much weaker than that of Pinus flexilis 196 

(Figure 4 A and B, Panel 2). The two species’ responses to cool-season precipitation are markedly 197 

different, however. Pinus contorta is only weakly and inconsistently (over time) correlated with 198 

precipitation during cool months and seasons (Figure 4 A), whereas Pinus flexilis exhibits strong 199 

and consistent correlations with cool-season precipitation variables (Figure 4 B, Panels 3-4).  Only 200 

Pinus contorta is statistically significantly (p<0.05) correlated with temperature, a weak negative 201 

relationship that is restricted to the current late-summer (July-September) in both the prior and 202 

current years (Figure 4A, panels 1, 2, and 3). 203 

B 
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 204 

 205 

 206 

 207 
Figure 4. Seasonal correlations and partial correlations using the procedure of Meko et al. (2011) 208 
of the (A) Pinus contorta and (B) Pinus flexilis chronologies. The top row in each figure (blue 209 
bars) shows correlations between the chronology and monthly and seasonal precipitation. The 210 
bottom row on each figure (red bars) shows the partial correlations between the chronologies with 211 
monthly and seasonal temperature. The four panels separated by vertical dashed lines are, from left 212 
to right for the month indicated: the month ending in the month indicated, the three months ending 213 
in the month indicated, the 9 months ending in the month indicated, and the 12 months ending in 214 

A 

1 2 3 

4 1 2 3 

4 

B 
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the month indicated. Significance levels are determined by exact simulation (Meko et al. 2011; 215 
Percival and Constantine 2006).  216 
 217 
 218 
Of the correlations between the chronologies with reconstructed SWE, modeled SWE, and GPCC 219 

winter precipitation, only the Pinus flexilis and reconstructed SWE exhibit a statistically 220 

significant (p < 0.05) relationship that is weaker over the full common data period (r = 0.17, 1730-221 

1980), but stronger over the last 60 decades ( r=0.45, 1930-1980, Figure 5).   222 

 223 

Figure 5. Line plot of the five-year running mean of reconstructed SWE (thick blue line) and 224 
Pinus flexilis chronology (thick black line) over the 1730-1980 period. Standardized annual values 225 
for reconstructed SWE and Pinus flexilis chronology are plotted in the thin blue and black lines, 226 
respectively. 227 

 228 

 229 

 230 
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DISCUSSION 231 

At Wolf Knob, both Pinus contorta and Pinus flexilis appear to be subject to a significant level of 232 

climatological and/or other growth stress, and as a result exhibited a substantial amount of locally 233 

absent rings and perplexing ring width patters that presented challenges for crossdating. Therefore, 234 

the final chronologies presented here only include the well-dated core samples, to ensure our 235 

analyses are derived on precise chronological information. 236 

The requirement of both species for enhanced precipitation in the late summer, as well as the 237 

negative response of Pinus contorta to warm temperatures during that same season, is consistent 238 

with late summer drought-stress observed in many western US forests (Williams et al. 2013), 239 

although this response is weaker in Pinus contorta than in Pinus flexilis. Meanwhile, the strong 240 

positive correlation between Pinus flexilis and cool-season precipitation is a typical water-year 241 

drought response exhibited by North American moisture-limited conifer species that rely on snow 242 

meltwaters to precondition spring soil moisture availability (Fritts 1971; St. George 2014). This 243 

reliance on cool-season precipitation is underscored further by the Pinus flexilis relationship to 244 

SWE documented in this study.  245 

In short, despite co-occurring at the same site, the two species exhibit different forms and 246 

magnitudes of drought stress. Weaker correlations with precipitation indicate Pinus contorta is not 247 

as strongly water-limited as Pinus flexilis, and this is also consistent with Pinus contorta’s lack of 248 

reliance on cool-season precipitation and a sensitivity to rainfall availability only during the late 249 

summer, likely only during abnormally long warm/dry growing seasons. Meanwhile strong 250 

correlations with precipitation indicate Pinus flexilis is relatively more water-limited, relying 251 

heavily on snow meltwaters during the early growing season in addition to late summer rainfall at 252 
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the end of the growing season. In both cases, sustained drought conditions may limit the tree’s 253 

vital growth-controlling structures (stems, buds, needles, roots) in subsequent years, and thus they 254 

may depend on both current and/or prior year precipitation for adequate growth, (Fritts 1971; 255 

Coulthard et al. 2020).  256 

We attribute these contrasting moisture-stress responses to be a result of differing microsite 257 

growing locations of each species: the majority of the Pinus contorta individuals persisted on flat, 258 

less rocky outcrops, while majority of the Pinus flexilis individuals tended to prefer the more 259 

exposed cliff faces, with shallow and poorly developed soils, where moisture-limitation is 260 

typically strongest (Steele et al. 1983). Given that both species examined here may be strongly 261 

correlated with cool-season precipitation and SWE (Coulthard et al. 2020), and/or late summer 262 

precipitation/temperature (Williams et al. 2013) at other sites throughout western North America, 263 

our findings underscore the importance of not only site selection but also microsite and individual 264 

selection for dendroclimatological sampling. Our findings also contribute to identifying SWE-265 

sensitive tree-ring proxies in this region, which is of growing importance given the imminent 266 

threat of warming-induced snowpack declines in the North American Cordillera (Pederson et al. 267 

2011) and the projection of a largely snow free (April 1) GYE by 2075 (Chang and Hansen 2015). 268 

In this case, we found that Pinus flexilis growing in more moisture-stressed microsite conditions 269 

serve may serve as SWE proxies while similarly long-lived Pinus contorta tree at the same site are 270 

not sensitive to SWE.  271 

CONCLUSION 272 

Taken together, these chronologies unveil a multi-centennial history of the GYE climate, and 273 

specifically for high-elevation forest communities in northwestern Wyoming. The differing 274 
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climate sensitivities seen in these two Pinus species underscores the pertinence of declining 275 

snowpack, and increasing summer temperatures and drought conditions to high-elevation Pinus 276 

flexilis and Pinus contorta forest communities, respectively. Our findings suggest that each species 277 

will likely be faced with dissimilar climate change risks and may even alter their vulnerabilities. 278 

For instance, a trend in declining snowpack in the GYE may negatively impact Pinus flexilis while 279 

Pinus contorta may be more resilient to these shifts. Taken together, these high-elevation co-280 

located Pinus species prove potentially useful in teasing out species sensitivities to a changing 281 

GYE climate, as well as provide forewarning into shifting forest dynamics. 282 

 283 
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