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Abstract

Eastern oysters in the northern Gulf of Mexico are facing rapid environmental changes
and can respond to this change via plasticity or evolution. Plasticity can act as an
immediate buffer against environmental change, but this buffering could impact the
organism's ability to evolve in subsequent generations. While plasticity and evolution
are not mutually exclusive, the relative contribution and interaction between them re-
mains unclear. In this study, we investigate the roles of plastic and evolved responses
to environmental variation and Perkinsus marinus infection in Crassostrea virginica by
using a common garden experiment with 80 oysters from six families outplanted at
two field sites naturally differing in salinity. We use growth data, P. marinus infection
intensities, 3' RNA sequencing (TagSeq) and low-coverage whole-genome sequenc-
ing to identify the effect of genotype, environment and genotype-by-environment
interaction on the oyster's response to site. As one of first studies to characterize
the joint effects of genotype and environment on transcriptomic and morphologi-
cal profiles in a natural setting, we demonstrate that C. virginica has a highly plastic
response to environment and that this response is parallel among genotypes. We also
find that genes responding to genotype have distinct and opposing profiles compared
to genes responding to environment with regard to expression levels, Ka/Ks ratios
and nucleotide diversity. Our findings suggest that C. virginica may be able to buffer
the immediate impacts of future environmental changes by altering gene expression
and physiology, but the lack of genetic variation in plasticity suggests limited capacity

for evolved responses.
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1 | INTRODUCTION Scheiner, 2004; West-Eberhard, 2003). This variation can act as an
immediate buffer against environmental challenges, although it is
Organisms can respond to environmental change through plasticity not expected to produce additional change over successive gener-
or evolution (Hoffmann & Sgro, 2011; Parmesan, 2006; Seebacher ations beyond the range achieved in the initial response (Seebacher
et al., 2015). Plasticity describes the variation in phenotypes pro- et al.,, 2015). In contrast, evolution is a multigenerational process

duced from a single genotype within a single generation (DeWitt & by which allele frequencies of a population change over time as a
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result of differential survival and reproductive success among gen-
otypes. Although plasticity and evolution are not mutually exclu-
sive (plasticity itself can evolve, Via & Lande, 1985), their relative
contributions and the interactions between them in populations re-
sponding to environmental change remains unclear (Forsman, 2015;
Ghalamnor et al., 2007; Hendry, 2016; Jong, 2005; Price et al., 2003;
Wund, 2012).

One approach to quantifying the relative contributions of plas-
ticity and genetic variation to phenotypic responses to environmen-
tal change is comparative transcriptomics (DeBiasse & Kelly, 2016).
Transcriptomics can be used to better understand plastic and evo-
lutionary responses to changing environments because transcrip-
tomes, along with physiological traits, are phenotypes resulting from
the combination of the genotype (G, genetic variation in expression),
environment (E, plasticity, the environmental effect on expression)
and genotype-by-environment interaction (GxE, genetic variation in
plasticity) (Koch & Guillaume, 2020; Levine et al., 2011; Rockman,
2008; Zhou et al., 2012) (Figure 1). Integrating measurements of
gene expression and physiology for organisms exposed to different
environments allows us to clarify how much of the organism's re-
sponse is determined by the environment (E) versus the variation
between genotypes in their response to the environment (GxE).

This study focuses on responses to environmental change in
the eastern oyster, Crassostrea virginica, along the northern Gulf of
Mexico (nGOM). Previous transcriptomic studies have found that
C. virginica alters its gene expression in response to environmental
variation and disease state (Jones et al., 2019; Proestou & Sullivan,
2020). In the nGOM, salinity is one of the main environmental vari-
ables affecting the distribution and performance of this species (La
Peyre et al., 2009; Parker, 1960; Rybovich et al., 2016). Although
oysters inhabit a broad range of salinities, these conditions are also
expected to change rapidly in the coming decades. Populations are
currently exposed to salinities ranging from 4 to 35 psu, and local sa-
linity regimes are expected to change rapidly due to anthropogenic
alterations to coastal hydrology and intensification of storm events,
along with changes in rainfall patterns (Bishop et al., 2019; Cayan
et al., 2010; Das et al., 2012).

Salinity also interacts with biotic pressures in this region, with
negative effects of salinity being greater at the lowest salinities and
biotic pressures being greatest at higher salinities (Chu et al., 1993;
Leonhardt et al., 2017). Perkinsus marinus is the cause of a lethal dis-
ease, commonly known as dermo, in the eastern oyster and is most
prevalent at salinities greater than 10-12 psu (Andrews, 1988; Chu
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& Greene, 1989; Ragone Calvo et al., 2003). Previous research has
shown C. virginica alters the expression of genes related to immune
function in response to being challenged with P. marinus (Proestou
& Sullivan, 2020; Tanguy et al., 2004; Wang et al., 2010). However,
there remains a major gap in our understanding of how genotype,
environment and GxE interaction influences the immune response
to this parasite.

To investigate the roles of plastic and evolved responses to envi-
ronmental change and P. marinus infection in C. virginica, we employed
a space for time substitution (Pickett, 1989) and used a common gar-
den experiment with 80 oysters from six families outplanted at two
field sites naturally differing in salinity regimes. Our objective was
to determine the relative contribution of plasticity, evolution and the
evolution of plasticity in C. virginica's response to changes in salinity
and P. marinus infection intensity. To accomplish this, we combined
measurements of growth, P. marinus infection and 3’ RNA sequenc-
ing (TagSeq) to identify the effect of genotype, environment and
genotype-by-environment interaction on the oyster's response to
environmental variation. Additionally, we assessed the sequence evo-
lution for genes showing plastic or evolved responses using genomic
data from an ongoing low-coverage whole genome project comparing
20 oysters from nine populations in the nGOM (K. A. Sirovy et al.,
2020). As one of the first studies to characterize the joint effects of
genotype and environment on gene expression profiles in a natural
setting, our study provides insights into the highly plastic and geneti-
cally limited response of C. virginica to environmental variation.

2 | MATERIAL AND METHODS

2.1 | Oyster conditioning and outplanting

In May 2016, we collected adult C. virginica oysters by dredging
at three Louisiana, USA, estuaries: Vermilion Bay (29°36'39.99"N,
92°3'19.70"W), Sister Lake (29°12'50.70"N, 90°56'3.12"W), and
Calcasieu Lake (29°51'00"”N, 93°18'40"W) (Table S1). The adults
were transported to the Louisiana Department of Wildlife and
Fisheries Michael C. Voisin (MCV) Oyster Hatchery in Grand Isle,
LA (29°14'20.3"N, 90°00'11.2”"W), and placed into off-bottom
mesh cages for acclimation. In October 2016, after 6 months of ac-
climation, the oysters were spawned at the MCV oyster hatchery.
Unintentionally, only one population was used for the crosses and

the specific population used was not recorded, but oysters from
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all three of these collection sites are genetically similar (Johnson &
Kelly, 2020). The hatchery performed a 3 male x 2 female cross from
this single population, resulting in six full-sib families.

After the oyster larvae were set, the spat stage was reared in
an upwelling system until reaching >15 mm mean shell height, at
which point the oysters were individually tagged and outplanted
in one of three adjustable long-line mesh bags at both the Grand
Isle Hatchery farm and near the Louisiana Universities Marine
Consortium (LUMCON) (29°15'12.6"N, 90°39'45.9"W) on February
20, 2017. The hatchery did not sort oysters based on family of origin,
resulting in an uneven number of individuals from each family being
outplanted (see Supplemental Material: Oyster_data.csv). The out-
plant sites naturally differ in salinity regimes, with LUMCON repre-
senting a low-salinity site and Grand Isle representing a medium- to
high-salinity site. Oysters were assessed for mortality and cleaned
of epibionts approximately every 3 months over a 14-month period.
Temperature and salinity conditions were measured by the closest
USGS monitoring station (USGS 073802516 Barataria Pass at Grand
Isle, LA) or by the consortium itself for LUMCON (Figure S1). The
mean (+SD) temperature and salinity during the 14-month outplant
was 23.0 (+6.2)°Cand 11.2 (+5.6) psu at LUMCON and 22.4 (+5.9)°C
and 20.7 (+6.5) psu at Grand Isle.

2.2 | Sample collection

On April 24, 2018, at the end of the 14-month outplant, 40 of the
tagged individuals were sampled at each site. Shell height was meas-
ured from shell umbo to distal edge using a digital caliper (Mituyoto
USA). For gene expression analysis, an ~0.5-cm? piece of gill tissue
was dissected in the field from each individual and preserved with
Invitrogen RNAlater. The remaining tissue was blotted and placed in
a preweighed 50-ml test tube to measure wet meat weight. Perkinsus
marinus infection intensities were evaluated by adding 0.22 pm fil-
tered seawater (20 psu) at a concentration of ~0.4 g mI™* and homog-
enizing the oyster tissue in each 50-ml test tube. One millilitre of the
oyster homogenate was used to measure the number of P. marinus
parasites per gram of oyster wet tissue using the whole-oyster pro-
cedure (La Peyre et al., 2018).

2.3 | Morphometrics and infection intensity

We compared final height, wet meat weight and infection intensi-
ties between sites and families. We used the Shapiro-Wilk normality
test (Royston, 1982; Shapiro & Wilk, 1965) to determine if the height,
weight and infection intensity data followed a normal distribution.
Oyster height and weight data were normally distributed after square-
root transformation (Shapiro-Wilk test p > .05). The height and weight
data were fitted with a linear mixed-effect model with bag as a ran-
dom factor using the R package me4 (Bates et al., 2015). A two-way
ANOVA was performed using the car package for both height and
weight (p < .05) (Fox & Weisberg, 2011). The infection intensity data

were not normally distributed and were therefore analysed using the
nonparametric Kruskal-Wallis Rank Sum test (p < .05) (Hollander et al.,
2013; Kruskal & Wallis, 1952). Perkinsus marinus infection intensities
differed greatly by outplant site (Figure 2), so to reduce environmental
noise we also analysed infection intensity at each site separately using
the Kruskal-Wallis test (p < .05). To examine pairwise multiple compar-
isons we used the post hoc Dunn's test with the Benjamini-Hochberg
correction (p < .05) (Benjamini & Hochberg, 1995).

2.4 | Gene expression analysis; sampling and
initial processing

Total RNA was extracted using an E.Z.N.A. Total RNA Kit | (Omega
BIO-TEK; VWR catalogue no. 101319) following the manufacturer's
instructions. The yield and quantity were initially assessed using a
NanoDrop 2000 spectrophotometer. Total RNA extracted from
the 80 individuals was sent to the University of Texas at Austin's
Genomic Sequencing and Analysis Facility where RNA quality con-
trol was confirmed using a 2100 Agilent Bioanalyzer on a Eukaryote
Total RNA Nano chip and libraries were produced using the Tag-
sequencing approach (Meyer et al., 2011). The resulting 80 libraries
were sequenced equally across two lanes of an lllumina HiSeq 2500
platform, with 100-bp single-end reads.

Sequencing reads were trimmed of adapter sequences using TRIM-
momaric (version 0.39) (Bolger et al., 2014) and base pairs with quality
scores below 30 were removed (Table S2). The trimmed reads were
mapped to the C. virginica reference genome (Gémez-Chiarri et al.,
2015) with known haplotigs removed (https://github.com/jpuritz/
OysterGenomeProject/tree/master/Haplotig_Masked_Genome)
using the single pass option for sTAR RNA-SEQ ALIGNER (version 2.6.0a)
(Dobin et al., 2013). Reads were mapped to gene features with the
options (--quantMode GeneCounts --outFilterScoreMinOverLread
0.50 --outFilterMatchNminOverLread 0.50) specified to adjust for
poly-A tail contamination. A count matrix was generated from the
ReadsPerGene.out.tab output from star (Data S1). Genotypes for
each individual were called using anGsp (version 0.931) to produce
an identity-by-state matrix. The filters used for assigning identity-
by-state scores included removing sites with allele frequency lower
than 0.05, requiring a minimum read mapping quality score of 30, a
minimum base mapping quality above 20, and removing single nu-
cleotide polymorphisms (SNPs) with a p-value >2e-6. These filters
allow for high stringency and align with previously published work
that has used ANGsD to assess genotypes in wild populations (Sturm
et al., 2020). Genotype clusters were identified by plotting the first
two axes from a distance-based redundancy analysis with the cap-
scale function in the R program vecan (version 2.5-6).

2.5 | Gene expression analysis; EDGer and PCoA

In light of the growing evidence that negative-binomial distributions
perform poorly on published RNA-seq data (Assefa et al., 2018;
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FIGURE 2 Measuring the effect of outplant, dam and sire on final shell height (mm), wet meat weight (g) and Perkinsus marinus infection
intensity (counts per gram [In]). Significant effects are bolded with an asterisk (p < .05)

Benidt & Nettleton, 2015; Hawinkel et al., 2020), we decided to use
three distinct statistical approaches to ensure robustness. The first
approach incorporates traditional assumptions (negative-binomial
distribution) to assess pairwise changes in gene expression associ-
ated with genotype (sire and dam) and environment (outplant site)
using the package ebcer (version 3.24.2) (Robinson et al., 2010). We
used the command (filterByExpr) to filter our genes and the remain-
ing read counts were normalized using a trimmed mean of M-values
(TMM) normalization method (Robinson & Oshlack, 2010). Broad
changes in gene expression were first assessed using a principal
coordinate analysis (PCoA) conducted using the R program vecan
with euclidean distances calculated from log, +1-transformed nor-
malized counts obtained from the cpm() function in ebcer. Pairwise
differential expression was measured using the genewise negative
binomial generalized linear model implemented in the Epcer function
glmQLFit and significantly differentially expressed genes (DEGs)
were identified based on FDR rates calculated using Benjamini-
Hochberg method (Benjamini & Hochberg, 1995). Functional en-
richment of DEGs was tested using a Fisher's Exact Test (p < .05).

All Fisher's Exact Tests were conducted using the scripts originally
developed by Wright et al. (2015) and available at: https://github.
com/z0on/GO_MWU/blob/master/GO_MWU.R. This method uses
a binary input (DEGs =1, non-DEGs =0) to calculate if there is en-
richment in the DEGs across three gene ontology (GO) categories:
Molecular Function (MF), Biological Processes (BP) and Cellular
Component (CC).

2.6 | Gene expression analysis; PERMANOVA

The second approach used a PERMANOVA to identify genes as-
sociated with genotype, environment or GxE interaction on
both total gene expression as well as on a per-gene basis. The
PERMANOVA is a nonparametric test and thus offers a comple-
mentary method to offset the negative-binomial assumptions from
eDGER (Anderson, 2014). For both PERMANOVAs, log-transformed
counts were evaluated using the R function ‘adonis2’ within the
VEGAN package (version 2.5-6). The PERMANOVA examined the
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effect of gene expression ~ sire + dam + outplant + bag + sire * out-
plant + dam * outplant with 10° permutations (total expression) or
9999 permutations (per-gene expression) (p < .05). The difference
in the number of permutations between the total expression and
per-gene analysis is the result of the higher computational require-
ments for the per-gene analysis. For the per-gene PERMANOVA,
the p-values were corrected for multiple comparisons using the
Benjamini-Hochberg method (Benjamini & Hochberg, 1995). To re-
duce environmental noise, we also ran a PERMANOVA for each site
separately to identify genes associated with shell height and infec-
tion. This was done because the two sites differ greatly in infection
intensities and salinity regime. Functional enrichment of significant

genes was tested using a Fisher's Exact Test (p < .05).

2.7 | Gene expression analysis; WGCNA

The third approach used to assess changes in gene expression was
a weighted gene co-expression network analysis (WGCNA). In con-
trast to the previous two approaches, a WGCNA uses correlation
networks to find clusters of genes with highly correlated expres-
sion patterns (Langfelder & Horvath, 2008). For all WGCNAs we
restricted the number of genes to remove lowly expressed features
retaining only samples with greater than five counts per million in
80% of all samples. WGCNA was run using the 11,214 genes that
passed this filter, a soft-threshold of 16, a minimum module size of
30 and a signed adjacency matrix, and was correlated to sire (a bi-
nary variable for sire 1, 2 and 3), dam (a binary variable for dam 1
and 2) and outplant (a binary variable for Grand Isle or LUMCON). To
reduce environmental noise, we also applied a WGCNA for height
and infection at each site separately. Functional enrichment of sig-

nificant modules was tested for using a Fisher's Exact Test (p < .05).

2.8 | Characterizing DEGs and WGCNA modules;
expression levels, Ka/Ks ratios and nucleotide
diversity (Pi)

To test whether DEGs or genes from significant WGCNA modules
showed distinctive patterns in terms of expression levels, we used
the average log-transformed counts (cpm) from EDGER as our count
matrix. Genes identified from ebcer, PERMANOVA or WGCNA were
analysed separately. We compared the expression levels of genes
correlated to genotype, environment or infection intensity to the
average expression level for all genes using the bootstrap version
of the Kolmogorov-Smirnov (KS) test (p < .05) (R function ‘ks.boot’
from package MATCHING version 4.9-7).

We estimated the nonsynonymous to synonymous substitution
(Ka/Ks) ratios for each gene using data from an ongoing project
where we have collected low-coverage whole genome data for 20
oysters from each of nine populations (n = 180) in the nGOM span-
ning from Port Isabel, Texas, to Lake Fortuna, Louisiana (K. A. Sirovy
et al., in preparation) (Table S3). DNA libraries were sequenced on an

lllumina HiSegX platform, with 150-bp paired-end reads. Sequencing
reads were trimmed of adapter sequences using TRIMMOMATIC (version
0.39) (Bolger et al., 2014) and base pairs with quality scores below 30
were removed. The trimmed reads were mapped to the C. virginica
reference genome (Gémez-Chiarri et al., 2015) using swa (Burrow's
Wheeler Aligner) (Li & Durbin, 2009) followed by removal of dupli-
cates and indexing using picArD TooLs software (https://github.com/
broadinstitute/picard). We estimated the number of SNPs using the
GATK pipeline (version 4.0.2.1) and annotated those SNPs using sNPEFF
(Cingolani et al., 2012). Ka/Ks ratios were then calculated based on
the VCF outputs from snperr using a script available online at https://
github.com/MerrimanLab/selectionTools/blob/master/extrascrip
ts/kaks.py. Ka/Ks scores were filtered to keep values above 0 and
below 3 to limit bias from outliers and significant contrasts were
tested down to a ratio of 1.

We generated the nucleotide diversity (Pi) for the coding + in-
tron, upstream and downstream region using reduced represen-
tation bisulphite sequencing data for the same 80 oysters (K. M.
Johnson et al., 2020). SNPs were called using the program Bs-sNPER
while requiring a minimum heterozygous SNP frequency of 0.1; a
minimum homozygous SNP frequency of 0.85; --minimum base
quality of 15; a minimum depth of covered reads of 10; a maximum
depth of covered reads of 1,000; a minimum mutation reads of 2; a
minimum mutation rate of 0.02; and a Minimum read mapping value
of 20 (Gao et al., 2015). These settings follow default conditions and
are established to provide high quality SNPs from reduced represen-
tation bisulphite-converted sequence data. The VCFs were normal-
ized, indexed and converted to BCFs using scrrooLs (version-1.10.2).
Nucleotide diversity was then calculated using the program vcrrooLs
(version-0.1.14) with 1000-bp windows and a step size of 1000 bp.

To assess the nucleotide diversity and Ka/Ks levels for DEGs
identified by ebcer, PERMANOVA or for significant WGCNA mod-
ules, we used a series of permutation tests to compare the mean
nucleotide diversity (Pi) or Ka/Ks ratio of the genes and modules
correlated to genotype, environment or infection intensity against
the genome-wide average. Then, using the same number of sig-
nificant genes or genes within a WGCNA module, the nucleotide
diversity and Ka/Ks values were shuffled in R using the sample func-
tion to generate a new difference in means and this was repeated
10,000 times to generate a null distribution. This allowed us to test
if the mean difference for the significant genes or modules was sig-
nificantly different from the mean difference in the permuted list
(p < .05). Finally, by taking the mean of the absolute value of the
permuted list we were able to calculate a p-value based on the num-
ber of times the permuted value was greater/less than the observed
value.

Nucleotide diversity and Ka/Ks ratios were also compared to
average expression levels which had been binned using the R func-
tion ‘decile’ within the package statmMeasures (version 1.0). A Kruskal-
Wallis test was performed comparing the nucleotide diversity or Ka/
Ks values with the 10 gene expression bins, followed by a Dunn's
test with the Benjamini-Hochberg correction (p < .05) (Benjamini &
Hochberg, 1995).
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RESULTS

3.1 | Morphometrics and infection intensity

To better understand the role of environment and genotype on
oyster performance, we measured the final height (n = 80), wet
meat weight (n = 66) and P. marinus infection intensity (n = 61)
for outplanted oysters (Figure 2). Overall, environment had the
strongest effect on shell height, wet meat weight and P. marinus
infection intensity when both sites were included in the linear
fixed-effect model, although a bag effect for infection intensity
was also observed (Figure 2; Table S4). Dam showed a smaller but
still significant effect on infection intensities when both sites were
included (Figure 2; Table S4). Sire showed a significant effect on
height in the model with both sites (Figure 2; Table S4) along with
a significant effect on infection intensity when testing Grand Isle
independently (Table S5). Dunn's test did not find any particular
sire driving these patterns (p > .05). There were no effects de-
tected in the analysis looking at LUMCON separately, although
there was a nearly significant effect of sire on infection intensity
(p = .07) (Table S6). We did not observe any interactive effects
of outplant-by-sire or outplant-by-dam on oyster size or infection
intensity. Infection intensities were both higher and more variable
at the Grand Isle site (Figure 2).

3.2 | Summary statistics of TagSeq

Transcriptome sequencing using TagSeq produced a total of 408 mil-
lion reads, with 5.1 million reads per sample (range: 3,273,930-
8,756,037). Trimming led to a final read count of 4.92 million per
sample, which is sufficient for the TagSeq method (Meyer et al.,
2011). Star mapping resulted in 91.00% of reads mapping to the
reference genome (uniquely mapped reads and multimapped reads
averaged 66.83% and 24.17%, respectively). Filtering mapped reads
based on expression resulted in a total of 21,388 genes kept for all

downstream analyses.
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3.3 | Gene expression analyses; PCoA,
epGeR and PERMANOVA

PCoA revealed a large effect of outplant site on gene expression
and a smaller but still significant effect of dam and sire (Figure 3).
The PERMANOVA incorporating total gene expression identified a
significant effect of outplant (p = 1e-06), sire (p = 4e-06) and dam
(p = 7e-05), with no effect of bag (p = .14), and no interactive effects
on gene expression (Table S4).

Genes responding to environment were identified using both epcer
and a PERMANOVA testing on a per-gene basis. For EDGER, we compared
the gene expression profiles of individuals from LUMCON versus Grand
Isle and detected 4525 genes (1871 up-regulated and 2654 down-
regulated) responding to environment. In contrast, the PERMANOVA
identified 7454 genes associated with environment, with 4222 of those
genes overlapping with the epcer results (Figure S2). GO enrichment de-
tected five (MF) and 13 (BP) categories shared between the two analy-
ses including translation initiation factor activity, carbohydrate biosynthetic
process and cofactor binding (Table 1; Table S7).

Next, we tested for genes associated with genotype. For EDGER,
we compared the expression between dams or sires regardless
of outplant site. This resulted in 3410 genes responding to geno-
type, 1201 associated with dam and 2955 associated with sire. The
PERMANOVA identified 4566 genes responding to genotype, with
2532 of those genes overlapping with epbcer (Figure S2). Functional
enrichment only detected a single gene ontology, zinc ion binding,
which came from the PERMANOVA results.

There were 858 and 1426 genes that overlapped between en-
vironment and genotype for epcer and PERMANOVA, respectively;
512 of these genes overlapped between the two analyses. Only one
GO enrichment, glutamate biosynthetic process, was detected for the
PERMANOVA results. Although many genes overlapped between
environment and genotype (G + E), we did not detect any genes
responding to genotype-by-environment interaction (GxE). We also
used the PERMANOVA to test for a correlation between gene ex-
pression and height or infection at either outplant site, but we did

not detect any genes correlated with either of these two variables.
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TABLE 1 Top enriched GO terms identified by all three analyses (epcer, PERMANOVA and WGCNA) for genes responding to environment

GO category GO term Data set Analysis Response GOID

MF Translation initiation factor activity Full All three Environment GO0:0003743

MF Transferase activity Full All three Environment G0:0008168;
GO0:0016741

MF Cofactor binding Full All three Environment G0:0048037

BP Carbohydrate biosynthetic process Full All three Environment GO0:0006094;
G0O:0006006

BP Nucleic acid-templated transcription Full All three Environment G0:0006351;
GO:0097659

BP RNA processing Full All three Environment G0:0006396

BP RNA metabolic process Full All three Environment G0:0016070

BP Monosaccharide metabolic process Full All three Environment G0:0019318;
G0:0005996

MF Structural constituent of ribosome LUMCON Only WGCNA Infection GO0:0003735

BP Cellular amide metabolic process LUMCON Only WGCNA Infection G0:0043603;
GO:0006518

CcC Ribonucleoprotein complex LUMCON Only WGCNA Infection G0:1990904

Note: GO terms identified by WGCNA for infection are also listed.

34 | WGCNA

The WGCNA was used to detect groups of genes responding similarly
to environment, genotype, height or infection. A gene co-expression
matrix was generated with modules that represent similarly ex-
pressed genes. We found that when examining both sites (n = 80),
10 out of 14 total modules were significantly correlated with out-
plant (Figure S3). However, there were no modules associated with
dam or sire. Functional enrichment revealed 24 (MF), 44 (BP) and 22
(CC) gene ontologies associated with environment, including 17 on-
tologies that overlapped with encer and PERMANOVA. The overlap-
ping ontologies consisted of nucleic acid-templated transcription, RNA
processing and monosaccharide metabolic process (Table 1; Table S7).

To reduce environmental noise, we also applied a WGCNA for gen-
otype (n = 40), height (n = 40) and infection (n = 24 for LUMCON and
n = 39 for Gl), analysing each site separately (Figure S3). For Grand Isle,
we detected five modules associated with genotype and no modules
correlated to height or infection. For LUMCON, there were two mod-
ules correlated with infection, but no modules associated with height or
genotype. GO enrichment did not detect any categories associated with
genotype at Grand Isle. Enrichment for genes correlated to infection at
LUMCON revealed three (MF), six (BP) and eight (CC) gene ontologies
comprising structural constituent of ribosome, ribonucleoprotein complex

biogenesis and cellular amide metabolic process (Table 1; Table S7).
3.5 | Characterizing differentially expressed genes;
expression levels

Genes responding to genotype from all three analyses had lower
mean expression levels compared to background levels (Figure 4a),

with one exception for the “red” module from WGCNA which showed
elevated levels associated with sire 3 (Table S8). In contrast, genes
associated with environment had elevated expression levels
(Figure 4B). Genes that were shared between environment and
genotype were also elevated relative to background expression lev-
els (Figure S4). The two modules correlated with infection rates at
LUMCON also showed increased expression levels (Table S8).

3.6 | Characterizing differentially expressed genes;
Ka/Ks ratios

We calculated Ka/Ks values for 10,914 genes after filtering. Genes
associated with genotype from all three analyses had elevated Ka/
Ks ratios compared to background levels (Figure 4c; Table S8). In con-
trast, genes responding to environment showed lower Ka/Ks values
with the exception of a WGCNA module “midnightblue” which had
elevated ratios (Figure 4d; Table S8). For genes that were differen-
tially expressed due to both environment and genotype, Ka/Ks was
lower, but this was only significant based on the PERMANOVA re-
sults (Figure S4). The WGCNA “tan” module correlated with infection
at LUMCON showed increased Ka/Ks values (Table S8). Finally, we
compared Ka/Ks ratios against expression levels and found a nega-

tive correlation between Ka/Ks and gene expression (Figure 5a).
3.7 | Characterizing differentially expressed genes;
nucleotide diversity (Pi)

Nucleotide diversity was calculated for coding + intron
(16,520 genes), upstream (5766 genes) and downstream (6044 genes)
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regions. Genes associated with genotype for all three analyses had
decreased nucleotide diversity in the upstream and coding region
compared to background levels (Figure 4e,g; Table S8). In contrast,
genes responding to environment had increased nucleotide diversity

among all regions (Figure 4f,h). Differences in the upstream region
for both environment and genotype genes were only significant
based on the PERMANOVA analysis, but the epcer results shared a
similar pattern but were not significantly different from background
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both the coding and upstream region (p < .05) (Table S8). Finally, we
compared nucleotide diversity against expression levels and found

a positive correlation between diversity (Pi) and gene expression

DISCUSSION

We present one of the first studies to combine transcriptomics and
physiology to characterize the reaction norms of families reared
in a common garden at two field sites in a wild animal. This ex-
perimental design allowed us to assess the influence of plastic and
evolved responses on gene expression and physiology. By using a
comprehensive approach with three unique transcriptomic analy-
ses combined with growth data and P. marinus infection intensities,
we were able to identify the effect of genotype (G), environment
(E) and genotype-by-environment interaction (GxE) on the oyster's
response to environmental variation. Our RNAseq analyses (EDGER,
PERMANOVA and WGCNA) mainly agree in finding a larger number
of genes responding to environment rather than genotype, as well
as a lack of GxE interaction (Figure S2). Additionally, results of all
three analyses are in agreement and indicate that genes differing
by genotype have opposing characteristics in terms of expression
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FIGURE 5 Violin plots showing average expression levels
across all 80 oysters plotted against (a) Ka/Ks ratios, (b) nucleotide
diversity (log) (Pi) of coding region + introns and (c) nucleotide
diversity (log) (Pi) of the upstream region. Expression levels are
plotted from lowest to highest [Colour figure can be viewed at
wileyonlinelibrary.com]

levels. Genes that were shared between environment and genotype
did not differ from background levels (Figure S4). Interestingly, the
two WGCNA modules correlated with infection showed opposing
patterns, with genes in the “pink” module having elevated diversity
and the genes in the “tan” module having decreased diversity in

levels, Ka/Ks ratios and nucleotide diversity as compared to genes
responding to environment. Overall, we found that C. virginica has
a highly plastic response to environment; however, that plasticity is

largely uniform across genotypes (Figure 1b).

4.1 | Highly plastic, yet genotypically similar
response for growth and infection

We demonstrate that C. virginica exhibits high plasticity for growth
and P. marinus infection resistance in response to environment and
that plasticity is largely parallel among genotypes (Figures 1b and
2). We did find a small effect of sire on final shell height and dam on
infection intensity, but we did not detect any GxE interaction. The
research focused on GxE in bivalves is divided, with some studies
finding very little GxE in response to environmental change (Evans
& Langdon, 2006; Kvingedal et al., 2008), while other studies find
extensive GxE (Hughes et al., 2017; Proestou et al., 2016; Rawson
& Hilbish, 1991). Our study suggests that C. virginica's response to
environmental variation among sites falls into this first group of
studies, lacking genetic variation in its plastic response to environ-
mental change. However, it is possible that we did not have a broad
enough range of genotypes to capture GxE or that differences in
plastic responses between genotypes was a result of alternatively
spliced isoforms which are not captured using the TagSeq method.
Regardless, our ability to detect differences between genotypes
suggests that if GxE is present it is smaller than G in this setting.
With regard to infection intensity, the prevalence of P. marinus in-
fection was positively correlated with salinity. The range of infec-
tion intensities was much larger at the higher salinity site, probably
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allowing us to detect an effect of sire, although this could be the
result of a bag effect (Figure 2). Together, our findings suggest that
C. virginica may be able to buffer the immediate impacts of changing
conditions through changes in gene expression, although they may
be limited to the range achieved in the initial response, as the lack
of genetic variation in plasticity suggests limited capacity for evolu-

tionary change in this setting.

4.2 | Influence of genotype versus environment on
gene expression

Of the 21,388 genes used in this study, 21%-35% (EDGER-
PERMANOVA) were differentially expressed in a plastic manner
while 16%-21% of the genome showed differences in mean expres-
sion among genotypes, regardless of environment. Genes respond-
ing to environment versus genotype had distinct profiles with regard
to gene expression, Ka/Ks ratios and nucleotide diversity. Genes as-
sociated with genotype had low expression levels, high Ka/Ks ratios
and low nucleotide diversity in both the coding and the upstream
region. Environment genes displayed the exact opposite character-
istics, showing high expression levels, low Ka/Ks ratios and high nu-
cleotide diversity in coding and upstream regions.

Why would genes responding to environment versus genotype
have opposing profiles? We found that gene expression levels are
positively correlated with nucleotide diversity, but negatively cor-
related with Ka/Ks ratios (Figure 5). The negative correlation with
Ka/Ks is expected since mutations in highly expressed genes are
often subject to stronger purifying selection because these genes
are more likely to have an important role in housekeeping functions
(Carneiro et al., 2012) and are expected to be constrained by a higher
sensitivity to changes in downstream protein folding (Drummond
et al., 2005; Park et al., 2013). However, the positive correlation
between expression levels and nucleotide diversity (Pi) in the face
of strong purifying selection is surprising. One possible explana-
tion is that gene expression itself has a mild mutagenic effect which
could elevate nucleotide diversity (Lynch et al., 2016). Alternatively,
methylation has been shown to be positively correlated with gene
expression in this same set of oysters (Johnson et al., 2020) and
this epigenetic signature is known to have large mutagenic effects
(Gonzalgo & Jones, 1997; Pfeifer, 2006) which may also lead to an
increase in nucleotide diversity. Overall, these findings suggest that
genes responding to environment are more important to the perfor-
mance of C. virginica, and genes associated with genotype are under
a more relaxed selection process.

GO analysis gave us the ability to discover biologically relevant
categories for genes associated with environment and genotype.
RNA metabolic process and organic cyclic compound biosynthetic
process were among the environmental GO terms we detected
and both have been found in previous studies comparing C. vir-
ginica exposed to changing temperature and salinity (Jones et al.,
2019). Additionally, there were several GO terms for environment
that were associated with glutamate metabolisms which have been

shown to help regulate osmotic stress through proline accumulation
in copepods and Chinese mitten crabs (Wang et al., 2012; Willett &
Burton, 2003). Even more interesting than any particular GO terms
was that the DEGs associated with environment were enriched for
over 100 categories while genes associated with genotype had just
one significant grouping. This pattern is surprising as the number of
DEGs for genotype and environment are relatively large and simi-
lar. The large number of DEGs associated with genotype indicates
that C. virginica has a high capacity to evolve differences in mean
expression of these genes. However, the lack of enriched GO terms
for genotype suggests that selection has not targeted any specific
biological category, but rather a broad array of functions. The large
number of DEGs associated with environment suggests a high ca-
pacity for plasticity, and the 100+ enriched categories suggests that
these functions are biologically relevant for the performance of this
oyster across environments and are thus more likely to be involved
with responses to future environmental change.

Lastly, we looked at genes responding to both genotype and en-
vironment, as these genes are potential drivers for the evolution of
plasticity. GxE is present whenever the reaction norms of at least two
genotypes are not parallel. We used a PERMANOVA test to exam-
ine reaction norms for gene expression and found that all genotypes
had parallel transcriptomic responses across environments, indicat-
ing the absence of GXE. Our gene expression results, in agreement
with our physiology data, suggest that C. virginica has a highly plastic
response to environmental changes, but that response appears to be
generalized across genotypes which may limit the organism's ability

to evolve plasticity to future environmental stressors (Figure 1b).

4.3 | Gene expression; not a major driver of
growth or infection intensity

Although we found that genotype influences growth and infection,
this influence does not appear to be driven by gene expression.
WGCNA detected two modules associated with infection at Grand
Isle, suggesting that the expression patterns of genes within these
modules are significantly correlated with both growth and infection.
GO enrichment found that these genes are involved in processes
regulating translation and peptide formation, although there were
no categories that had an explicit connection with immune response.
Since RNA sequencing only captures a snapshot in time, our failure
to detect a large effect of gene expression on growth and infection
may be due to sampling mRNA at a time that was not relevant to
these traits. For example, in contrast to our findings, Proestou and
Sullivan (2020) found distinct expression profiles for acute versus
acclimatory responses to P. marinus infection, although this was
mainly dependent on time after exposure. Proestou and Sullivan
(2020) included three time points (36 hr, 7 days and 28 days after
exposure), and found that the majority of differential expression
took place on day 28. This highlights the potential for our study to
have simply missed sampling at a time that was relevant for gene
expression. One last caveat is that the genotype could also influence
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size and infection via protein coding differences rather than through
changes in expression. The lack of studies focused on protein coding
differences in the eastern oyster represents a major gap for future

investigation.

44 |
(GxE)

Lack of genotype-by-environment interaction

The absence of genetic variation in plasticity for gene expression,
growth and infection is not surprising since GxE has commonly
been found to vary across studies (Gibbons et al., 2017; Harder
et al., 2020; Kirk et al., 2018). There are many hypotheses for why
GxE may vary between systems, which are thoroughly detailed
in the review by Saltz et al. (2018). One potential hypothesis to
explain variation in GxE is that genotypic groups with higher ge-
netic variance should show greater GxE than genotypes with lower
genetic variance. This is because more genetic variation increases
the chance of containing genotypes which have unusual reaction
norms and thus more GxE. Our results do not support this hy-
pothesis because although we were able to detect a large number
of genes responding to genotype, this did not correspond to any
GxE. Additionally, one can also argue that an increase in an envi-
ronmental effect will also correspond to an increase in GxE (Saltz
et al., 2018). The reasoning behind this is that the more plastic a
genotype is, the more opportunity there is to generate an unusual
reaction norm as compared to a genotype that changes minimally
between environments. However, again our results do not support
this hypothesis as we detected a large number of genes responding
to environment, but not GxE.

One potential reason for the lack of GxE is that response to
environmental heterogeneity is important, and so selection has
removed genetic variation in the slopes of the reaction norms for
genes responding to site. This is consistent with our finding that
genes responding to environment have lower Ka/Ks (under stron-
ger purifying selection) whereas the genes responding to genotype
have higher Ka/Ks, suggesting more relaxed selection (Figure 4c,d).
Alternatively, as the genotypes in this study were limited to six full-
sib families from a single population of oysters, it is possible that the
genotype range is too narrow for the detection of GXE. With that
said, our ability to detect such a large number of genes responding to
genotype and environment gives us more confidence in this negative
result. Ultimately, we need more studies reporting GxE in order to
start thoroughly addressing why there is variation in the evolution

of plasticity across systems.

5 | CONCLUSIONS

Our study demonstrates that C. virginica exhibits a highly plastic,
but genotypically parallel transcriptomic and physiological response
to changes in outplant site. This suggests that C. virginica may be
able to immediately buffer future environmental changes by altering

gene expression and physiology, although this may limit the oyster's
capacity to evolve plasticity. Since this study focused on a single
population, future research is essential to confirm that this lack of
GxE holds across multiple populations spanning several environ-
mental gradients. Furthermore, we show that the combination of
transcriptomics and physiology data with a natural common garden
design can be beneficial for quantifying the relative contributions of
plasticity and genetic variation. This study provides a framework for
partitioning the effects of genotype, environment and genotype-by-
environment interactions using transcriptomics. Future studies are
needed to better understand the relative contributions of plastic-
ity, evolution and evolution of plasticity on phenotypic change in

response to changing environments.
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