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ARTICLE INFO ABSTRACT

Keywords: Tropical ecosystems are expected to experience climate warming, with predicted increases in drying and heat
amphibian extremes in the coming years. Understanding how these changes will affect terrestrial vertebrates such as am-
beha.vmral response phibians is limited. The Tropical Responses to Altered Climate Experiment in the Luquillo Experimental Forest in
density northeastern Puerto Rico allows us to study how the tropical forest responds to warming within a replicated plot
Puerto Rico . . . . .

space use design. From September 2018 to August 2019, we used mark-recapture sampling to investigate how the spatial

population ecology of the common coqui frog (Eleutherodactylus coqui) is impacted by experimentally increasing
surface temperatures by 4 °C above ambient. We compared estimates of baseline detection, space use, and the
density of frogs in control and warmed plots. Coqui space use and population density did not differ between
control and warmed plots. However, coqui detection probabilities were higher in warmed plots, suggesting an
increased level of activity relative to individuals in the control (unwarmed) plots. Frog detection increased in
all plots with increased precipitation. Our results suggest that, at least in the short-term, the density of an eco-
logical generalist frog like E. coqui does not change as a response to increased surface temperatures. However,
short-term responses to warming such as changes in behavior may lead to changes in population dynamics in the
long-term. Our research highlights the need to consider mutiple repsonses in order to understand the effects of
climate warming on tropical vertebrates.

spatial capture-recapture

1. Introduction resentative and informative predictions of how species will respond to

climate change [64].

The pattern of increasingly rich diversity of life as we move from the
poles to the equator, or latitudinal diversity gradient, has been demon-
strated across a range of biomes and taxonomic groups, including the
vertebrates [27,39,46]. In high diversity regions near the equator, global
warming is expected to result in novel, hotter climates, with an increased
incidence of heat extremes [56]. Although a large body of literature
has accumulated gaining insight into how species respond to climate
warming (reviewed by [63,66,67]), these findings are primarily based
on correlational data rather than experimental manipulations, thus lim-
iting our ability to rule out confounding factors and apply the findings
across other taxa or regions [17,36]. More recently there has been a
call to better incorporate aspects of species’ ecology, such as space use,
behavior, and movement, into mechanistic models to allow more rep-

Many ecological responses of species to climate change have been
documented across taxa. Changes in phenology and shifts in distribution
have occurred worldwide across a wide range of taxa, including marine,
freshwater and terrestrial groups [45,63]. The studies that best illustrate
these changes are long-term and involve common, wide-ranging species,
such as the Wood Frog (Lithobates sylvatica [55]), Rusty Blackbird (Euph-
agus carolinus [41]), and numerous tree species in the eastern U.S. [32].
Documenting the mechanisms that inform us of why these changes occur
is more difficult because they must be observed over shorter time scales.
For instance, individuals may respond to increased temperatures by al-
tering microhabitat use in the short term, leading to population-level
changes such as shifting distributions in the long term [45]. Understand-
ing how behavioral responses to increased temperature lead to emergent
population level processes will help us to examine more immediate di-
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rect effects of climate change, which may be through mismatched timing
with food sources and habitat for a species [45].

The activity and performance of ectothermic vertebrates such as
amphibians are affected by surface temperatures [13]. Therefore, it is
not surprising that climate warming has resulted in shifts in the phe-
nology of breeding events and reduction in body sizes ([22,55]; re-
viewed by [37]) and changes in anuran vocalizations [43], plus a host
of indirect consequences [7,23,37]. Recent research has highlighted the
poor potential of ectotherms to adapt via thermal tolerance plasticity
[24,30], with small-sized organisms showing a positive relationship be-
tween ability to thermally acclimate and latitude [51]. Indeed, many
amphibians in the lowland tropical Andes are less tolerant of warming
than montane species [10]. Instead of plasticity and acclimation, other
mechanisms must dominate to assist ectotherms in adjusting to climate
warming, such as shifts in behavior or physiology [23]. Although much
work has identified thermal maxima of different amphibian species in a
laboratory setting [6,65] including Eleutherodactylus coqui [5,11], little
is known about how amphibians respond to increased surface tempera-
tures in-situ.

The Tropical Responses to Altered Climate Experiment (TRACE)
plots, established in September 2016, offer a unique opportunity to
study how tropical species respond to increased surface temperatures
expected with climate warming. Within the six-plot study, three plots
are heated to 4 °C above ambient temperatures using infrared heaters
and three are unheated controls. To study the spatial ecology of am-
phibians in plots of a determined size, the ideal focal species would
need to meet several characteristics, including being highly philopatric
and having a small home range size. Fortunately, the common coqui
frog (Eleutherodactylus coqui) meets these requirements [34,69]. Here,
we use spatial capture-recapture methods to estimate baseline detec-
tion, space use, and density of coqui frogs within the TRACE plots. Our
goal is to examine whether these aspects of the spatial ecology of this
species differ between warmed and control plots. We predict that in-
creased evaporative water loss caused by warmer temperatures in the
heated plots will reduce coqui frog baseline detection, space use, and
density relative to unheated, control plots.

2. Methods
2.1. Study species

The common coqui frog (Eleutherodactylus coqui) is ubiquitous
throughout Puerto Rico, occurring in wet to dry forests as well as human-
dominated areas, in low and high elevations [34]. It rests in understory
vegetation by day and has been reported to move an average of 3.0 m
(dry season) to 4.5 m (wet season) per night mainly to forage [69]. Pop-
ulation declines of coqui frogs (E. coqui and its congeners) have been
attributed to prolonged dry periods as well as infection with chytrid
fungus [7,38], both direct and indirect consequences of climate change.
The common coqui is native to Puerto Rico but introduced to Hawaii,
Costa Rica, the Virgin Islands and other locations [31]. The IUCN Redlist
category for E. coqui is least concern and its population is listed as in-
creasing [31].

2.2. Study area and environmental variables

In September 2016, six plots were established in the Luquillo Experi-
mental Forest (LEF) in northeastern Puerto Rico (18.32630, —65.72995)
at 100 m in elevation (Fig. 1A; see [35] for details on experiment instal-
lation). The plots are in secondary forest, regenerated from pasture in
the 1950s [35], and the forest is characterized as subtropical wet for-
est according to the Holdridge Life Zone System [29]. The LEF under-
goes a regular disturbance regime including hurricanes, droughts and
landslides [71], allowing unique opportunities to study the resilience of
tropical forest to these disturbances along with the novel disturbance
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of climate warming [49]. Mean annual temperature is 24° C, with lit-
tle variation (4° C) between months and mean annual precipitation is
3500 mm per year [18].

Each plot (12 m? in area) consisted of a hexagonal array of six alu-
minum poles (labeled A-F) with each pole approximately 2.3 m apart
(Fig 1). Plots were located a minimum of 10 m apart, within a 50 x 60 m
area. Three plots (temperature treatment plots) were warmed 24 h a day
using infrared heaters set to 4 °C above ambient temperatures of the
average understory vegetation temperature (measured continuously by
infrared thermometers) in the three unheated, control plots [35]. Thus,
the warmed plots automatically adjusted to 4 °C above the control plots
as daily temperature fluctuated in the control plots [35]. The infrared
heaters were positioned at 3.6 m above the soil surface, which is ap-
proximately 2 m above the mean height of the understory vegetation.
Infrared heaters work by warming the surfaces of vegetation; the warm-
ing of the air occurs because of the heat that is re-radiated back off of
the surfaces. The nocturnal habitat of E. coqui generally includes tree
trunks, branches, epiphytes or leaves between 0.5-3.0 m in the forest
understory [58], so the warming included many surfaces that frogs uti-
lize.

The USDA Forest Service Sabana Field Research Station has a meteo-
rological station located near the TRACE field site [20]. We used hourly
rainfall data to estimate the cumulative precipitation within a 24-hour
period before the start of each survey occasion (19:00). We selected cu-
mulative precipitation before survey events, rather than other measures
of precipitation, because moisture is a primary factor determining ac-
tivity in E. coqui [57,58] and we wanted to evaluate the effect of this
abiotic factor on frog activity across the sites.

2.3. Data collection

From September 2018 to August 2019, we surveyed each plot for
frogs on 22 occasions and encountered frogs in all plots on each date,
except for one occasion when no frogs were encountered in plot 6 (Ap-
pendix 1). Infrared heaters were turned off for safety reasons before
surveys began and were turned on after completion. We used time-
constrained (15 min) visual encounter methods to search each plot for
frogs between 19:00 and 21:00. We rotated the order of plots each sur-
vey occasion to reduce influence of timing on frog captures. A minimum
of two weeks occurred between survey occasions to reduce potential be-
havioral responses to disturbance as seen in other amphibians [26,40].
Surveys were conducted by two observers, one person searching for
frogs on the outside of the plot which included a 0.5 m strip around
the outside of the experimental hexagon, and the other person search-
ing the inside of the hexagon (see Fig 1). We captured all observed frogs
and recorded the capture location defined as the nearest pole (or poles
when captured between two poles; Fig 1). Once captured, we marked
each new individual using visible implant elastomers (VIE), a widely
used and safe method for amphibians [3,21], in four possible locations
(near each limb) to create unique frog identifications for each frog. We
identified recaptured individuals using UV light to observe the unique
code. Each frog was measured to determine size (snout-to-vent length
to nearest 0.1 cm), mass (using a digital scale to nearest 0.01 g) and
sex (males were identified by the presence of a vocal sac or if vocaliz-
ing when captured). After measuring and marking were complete, we
returned frogs to the location where they were captured, generally the
following day.

2.4. Spatial capture-recapture analysis

Our capture-mark-recapture protocol generated spatial encounter
histories for all detected individuals, i.e., the spatial location (nearest
pole) and occasion (survey) for each individual was known. We em-
ployed spatial capture-recapture methods (SCR) to jointly estimate the
parameters of both a spatially explicit encounter probability model and
a density model [52]. The first is the observation model, a 2-parameter
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Fig. 1. On left, a hexagonal plot (12 m?) in the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest. Photo by Maxwell
Farrington, Nov. 2018. On right, the array of 25 uniquely identified trap locations (blue) within each plot.

detection function (i.e., parameters for detection and spatial decay of
detection over space), and the second is the state model estimating the
number and distribution of (latent) activity centers. SCR methods are
hierarchical models specifically designed to analyze data from repeated
sampling of individuals over a period of demographic closure to estimate
detectability, space use, and density. These methods are becoming well-
established in the herpetological literature [15,25,42,60] because they
are robust and reduce potential biases in estimates of amphibian density
and abundance from traditional capture-recapture models based solely
on how individuals are encountered by sampling, disregarding spatial
explicitness.

In particular, SCR methods account for individual movement and
heterogeneity in detection probability by incorporating information
about the spatially explicit nature of sampling, how individuals are dis-
tributed in space, and how they use space [44,53]. The location where
each frog was encountered in a plot was converted into an array con-
sisting of 25 uniquely identified trap locations; 24 trap locations located
0.5 m outward and 0.5 m inward of the aluminum hexagonal array, and
1 trap location in the middle of the array (Fig. 1, blue). The spatial en-
counter model describes the individual detection probability, p[x,s], as
a decreasing function of the distance between trap locations (x) and the
individual’s activity center (s):

Yijkls; ~ Bernoulli(p[x;,s;1) Eq. (1)

—d(x/-,s,-)2
202

p[x;, ;] = po X exp (1)

where yj;, indicates whether an individual i was detected at pole j in
occasion k, s; is the estimated activity center of individual i, x; is the lo-
cation of trap j, and d(x;,s;) is the Euclidean distance between trap j and
activity center s;. In this model, p, is the baseline detection probability,
or the probability of detecting an individual at its activity center, and ¢ is
the spatial scale parameter that characterizes the decline in detectability
with distance from an activity center. The detection probability can be
interpreted as a proxy for activity as in spatial capture-recapture analy-
ses of the red-back salamander (Plethodon cinereus; [25,60]). To account
for behavioral responses to capture events, we included a behavioral
response parameter in all models that allowed capture probability to
change after the initial capture.

SCR methods include a density model describing the number and
location of individual activity centers. Here we assume activity centers
are distributed uniformly over a state-space S. The state-space repre-
sents the area of interest defined by a sufficiently large buffer around
the trapping array containing the activity center of all individuals with
non-negligible detection probabilities, and is discretized at a resolution

small enough to approximate continuous space relative to the species’
movement and the trap arrangement. As is standard for maximum like-
lihood SCR methods, we defined S as the center points of a grid with
a 7 m buffer around a convex hull of the hexagonal array, each point
representing the center points of equally sized 0.5 x 0.5 m pixels (total
area = 289.8 m?). Buffer selection was carried out by fitting the null
SCR model with incrementally larger buffers ranging from 1 to 10 m
until model parameters reached an asymptote as a function of buffer
size. We selected the smallest buffer size (7 m) at the asymptote to min-
imize computational demand while ensuring density estimates were not
biased by the size of S.

Our main interest was to expand our understanding of the environ-
mental drivers of activity, space use, and density by fitting a set of com-
peting models with all combinations of covariate effects that represent
the alternative hypotheses we wished to test. First, we tested site effects
on these variables to determine whether site (i.e., plot) was a significant
factor explaining the observed variation (Appendix 2). As there were no
significant site effects, we did not include this covariate in the model list.
To account for variation in activity, we included a temperature treat-
ment effect and the linear and quadratic effect of cumulative precipi-
tation 24 hour prior to each survey occasion as covariates on baseline
detection probability p,. The quadratic effect of precipitation was added
because the response of amphibians to precipitation is often nonlinear,
instead optimal detection may be associated with intermediate rainfall
and be lower with little or high cumulative rainfall [57]. To account
for variation in movement and density, we included temperature treat-
ment effects as a covariate on space use ¢ and density D. Covariates
were scaled to have a mean of 0 and a 1-unit standard deviation (i.e.,
z-score standardization). Considering all factor combinations among p,,
o, and D resulted in a total of 18 models (Appendix 2). We analyzed
these models in R [48] using the package oSCR [61] and conducted
AIC-based model selection following Burnham and Anderson [8] and
Arnold [1]. We interpreted a difference of > 2 AIC values to indicate
that two models differed in their support. Models within 2 AIC values
of the best model were further examined for number of parameters and
log-likelihood. Models with an extra parameter but same log-likelihood
to that of the top model were considered non-competitive. We consid-
ered the effect of covariates (i.e., beta coefficient) to be strong if the 95%
confidence intervals (CI) did not overlap 0 and to be weak if otherwise.

3. Results

We captured a total of 858 frogs across all survey occasions
(143 + 7.71 [average + SE] per plot). Control plots had a lower number
of captures (132 + 2.08) than warmed plots (154 + 13.12; Fig. 2). The
number of frogs captured per occasion ranged from 1 to 15 individuals
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Fig. 2. Captures per plot across sampling occasions. Gray represents control plots. Yellow represents warmed plots.
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Fig. 3. Cumulative precipitation 24 h prior to the survey occasion.

per plot, and the maximum number of captures of a single individual
was 10. Of all captures, 488 (56.88%) were unique or new individu-
als and the remaining 370 individuals were recaptures, resulting in a
43.12% recapture rate across plots.

Cumulative precipitation in the 24-hour period before survey occa-
sions varied from O to 298.8 mm (Fig. 3). Rainfall occurred throughout
the survey period, with occasions 2 and 4, in October and November,
exhibiting the most cumulative precipitation prior to the survey date.
Four surveys, in September, February, May and June, had no cumula-
tive precipitation prior to the survey date.

We found support for treatment- and precipitation-specific differ-
ences in frog baseline detection probability, where the model account-
ing for temperature treatment effects and 24 h cumulative precipitation
best explained the observed variation in detection (cumulative model
weight = 0.23; Table 1). Uncertainty in the models was present and re-
lated to whether there is variation in density or detection by treatment
(model 2 in Table 1). Regardless, the top model, with constant space
use and density is more competitive, with a lower log-likelihood value.

0 100 200 3000 100 200 300
Cumulative precipitation (mm)

Fig. 4. Treatment-specific baseline detection probability of the coqui frog as
a function of 24-h cumulative precipitation. Lines and shaded areas represent
model predictions across temperature treatments and 95% CI, respectively.

Specifically, we found support for a positive effect of treatment (mean
+ SE: Pyarmea = 0.203 + 0.102), suggesting that detectability, which we
use as a proxy for surface activity, is weak but higher in the treatment
than in the control plots, and a strong positive effect of cumulative pre-
cipitation (Pprecip = 0.102 + 0.033; Fig. 4), suggesting activity is higher
when conditions are wet. The increase in detection with cumulative pre-
cipitation was additive, i.e., was consistent across sites. Our model also
predicted an increase in detection after initial capture (positive behav-
ioral response: f, = 1.229 + 0.135; Table 2) which may explain the
high recapture rate in this study. We found no covariate effects on the
spatial scaling parameter ¢ and on density, suggesting no warming ef-
fects or precipitation effects on the extent of space use or density. The
spatial scaling parameter ¢ was 0.637 + 0.065 m and the estimated
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Variability in baseline detection (p,) of the coqui frog (Eleutherodactylus coqui) as a function of tem-
perature treatment and cumulative precipitation. The ~1 notation represents null or an intercept- only
model with no covariate effect. Acronyms are LogL = log likelihood, K = number of model parameters,
AIC = Akaike’s Information Criterion, and Q = model weights. Only top 10 ranked models presented.

The superscript 2 represents the quadratic effect.

detection (p,) space use (o) density (D) logL K AIC AAIC Q

~b + treatment + precip ~1 ~1 3658 6 7328 0.00 0.23
~b + precip ~1 ~treatment 3659 6 7330 1.70 0.10
~b + treatment + precip + precip? ~1 ~1 3658 7 7330 1.70 0.10
~b + precip ~treatment ~1 3659 6 7330 1.90 0.09
~b + treatment + precip ~1 ~treatment 3658 7 7330 2.00 0.09
~b + precip ~1 ~1 3660 5 7330  2.00 0.09
~b + treatment + precip ~treatment ~1 3658 7 7330 2.00 0.09
~b + precip + precip? ~1 ~treatment 3659 7 7332 3.40 0.04
~b + precip + precip? ~treatment ~1 3659 7 7332 3.60 0.04
~b + treatment + precip + precip? ~1 ~treatment 3658 8 7332 3.70 0.04

Table 2

Regression coefficients of the top
model describing the variability
in baseline detection (p,), space
use (¢), and density D of the
coqui frog (Eleutherodactylus co-
qui) as a function of temperature
treatment and cumulative pre-
cipitation. The covariates were
scaled to have a mean of 0 and
a 1-unit standard deviation (i.e.,
z-score standardization).

Factors Estimate SE
Detection p,

Byinercepy ~ —4920  0.110
) 1.229 0.135
Bywarmeay ~ 0-203 0.102
B precip) 0.102 0.033
Space use ¢

Bowarmeay ~ 0.637 0.065
Density D

Bpgarmey  —0.985  0.100

density was 1.49 + 0.149 frogs/m? (Table 2). The estimated population
level 95% home range radius and its associated area can be calculated
from the detection function, which is an implied model of space use, as
Ig5 = a\/@ and A 45 = 712, respectively [42,60], and were 4.63 m and
67.3 m?, respectively.

4. Discussion

Climate warming in the tropics is expected to raise surface temper-
atures and result in more temperature extremes [56]. In Puerto Rico,
these abiotic changes will likely reduce carbon storage and tree growth
resulting in alterations in forest community composition and structure
[14]. The TRACE experimental design allows us to directly compare the
spatial ecology of populations of E. coqui in warmed and control plots
allowing a snapshot of what we can expect with climate warming. Arti-
ficial warming and cumulative precipitation caused E. coqui to increase
activity but did not alter its density or space use compared to control
plots. The short time period from when artificial warming started to
when frog survey data were collected may be sufficient to elicit a be-
havioral response in E. coqui, but insufficient to detect changes in space
use and density. Use of SCR methods by incorporating space use into
our estimates of density allowed us to gain novel insights about how E.
coqui uses space and whether such space use is influenced by warming
using an experimental design. We demonstrated the ability to simulta-
neously account for variable and imperfect detection in order to draw
inferences about the latent state variable density, allowing us to ask

questions about the effects of warming on density. These insights im-
prove our understanding of detection, space use and density of E. coqui
in comparison to what we would have gained from traditional capture-
recapture analyses.

An increase in detection probability or activity is contrary to our
expectation that coqui frogs would reduce activity in warmed plots, po-
tentially to reduce exposure to dry conditions and avoid desiccation.
During periods of time with little precipitation, the warmed plots have
lower soil water content than the control plots [49]. The causal mecha-
nisms for increased activity deserve more attention.

There are several behavioral causal mechanisms that could explain
the pattern of increased frog activity in warmed plots. First, frogs may
be trapped in a feedback loop whereby warmer temperatures increase
metabolic rates [19], which results in greater energetic demands, and
as a consequence, more activity to acquire prey to meet those demands.
Ultimately this feedback loop could result in increased stress and lower
immune function and cause increased exposure to potential predators.
These responses could have indirect consequences on demographic rates
over time, as frogs redirect energy and resources from growth and devel-
opment to increased activity. It is unlikely that E. coqui are increasing ac-
tivity to forage, since they are known to be sit-and-wait predators [62].
Although the majority of short-distance frog movements in a night are
related to prey acquisition, long-distance movements are between daily
retreat sites and nocturnal perching sites [69]. Greater frog activity in
warmed plots may be the result of increased detection of individuals as
they climb into the canopy to escape the heat. Large-sized coquis, es-
pecially adult females and non-calling males are known to climb into
the canopy, some to heights of 18.5 m, to forage [69]. The number of
arthropods increases with height above the ground [58], which may fur-
ther increase motivation to forage in the canopy. Individuals may leave
retreat sites and climb above the height of the infrared heaters to reduce
exposure to increased temperatures, then return to diurnal retreat sites
near the forest floor. Greater frog activity in warmed plots may also be
an artefact of the methodology used in sampling the frog populations.
Turning off the infrared heaters during each survey event may have the
unintended consequence of providing a reprieve from the heat for the
frogs. Even with a temporary reprieve from the heat, the drier condi-
tions remain in the warmed plots; therefore, frogs may be more active
in an effort to access microhabitats with tolerable thermal and hydric
limits as found with Geocrinia alba [28].

Alternatively, changes in prey availability may cause frogs to change
their behavior in warmed plots. Patterns in space use by E. coqui are
dominated by foraging opportunities, as vocalizing individuals generally
remain stationary [69]. Yet, as sit and wait predators, it is unlikely that
individuals would change this behavior based on prey availability. But
undoubtedly, more movement would occur if the sit and wait strategy
is not yielding foraging opportunities. Currently, there is no indication
that invertebrate herbivore density changes in warmed plots, as foliar
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damage of understory woody seedlings and herbivore morphotype rich-
ness did not differ between control and warmed plots [2]. However, a
more direct measurement of invertebrate density is needed in the TRACE
plots in order to better understand the causal mechanism of increased
frog activity in warmed plots. In general, long-term study of arthropods
in the LEF indicate that populations respond to hurricane disturbance
but show no clear patterns in response to climate warming [54].

Coqui frog detection and density are influenced by the density and
structure of understory vegetation, as they use vegetation for retreat
and calling sites [59]. If changes occur in understory vegetation in the
warmed plots, we would expect changes in coqui frog detection and
density either because of increased ability to detect frogs if vegetation
density is lower, or increased habitat for frogs if vegetation density is
higher. However, data suggest that understory cover, richness and di-
versity do not differ between warmed and control plots in the TRACE
experiment [33]. These trends may change when examined over a longer
time period, yet currently do not lend support as a causal mechanism
for differences in frog activity. However, the absence of change in un-
derstory vegetation does support our findings for a lack of a difference
in coqui density and space use between warmed and control plots.

Tropical ectotherms are expected to be affected by climate warming
more severely than their temperate counterparts because they may be
already close to their critical thermal maxima [12,30]. It is important to
consider that there is species-specific variability in vulnerability to in-
creasing temperatures [12]. Therefore, the threshold at which temper-
ature begins to affect activity, density and space use varies by species.
Since E. coqui is a common, widespread species, occurring across all
of Puerto Rico, from wet to dry forest [34,50], it may be less vulnera-
ble to increased temperatures than some of its congeners which prefer
cooler habitat higher in elevation, such as E. richmondi, E. gryllus and
E. portoricensis [9,34]. It is also important to consider that temperature
sensitivity may vary within populations of a species. Recent results indi-
cate that lowland E. coqui have a narrower operative warming tolerance
than highland conspecifics, suggesting they are thermoconformers and
that climate warming may affect populations differently (Delgado and
Burrowes, unpublished data).

Density estimates at our plots (1.49 + 0.149 frogs/m?2) are lower
than invasive populations of E. coqui in Hawaii (2.55 + 1.74 frogs/m?
averaged across 3 years and 8 plots and estimated using closed capture-
recapture models [4,68]). In Puerto Rico, other studies have found lower
estimates of density, ranging from 0.01 to 0.40 adult frogs/m? across
sites [16,57,59,70] and up to 2.05 frogs/m? when both adults and ju-
veniles are considered [58]. These authors used both mark-recapture
methods (Jolly method; [58]) and direct counts to estimate population
density and stress the influence of season and habitat on their estimates.
Variability in methods used to estimate density complicates our ability
to make direct comparisons between locations and years.

The coqui frog home range size reported here is higher than those
reported in the literature. On average, we estimated a 95% home range
size of 67.3 m?, while published estimates generally report sizes less
than 25 m? [34,47,69]. As for density estimates, effectively compar-
ing home range estimates across studies is challenging because multi-
ple methodologies have been used for both data collection and analysis
(e.g. one-night monitoring, traditional mark-recapture). The methods
we employ here are robust and allow estimation of home ranges with
less bias and higher precision. Thus, it is imperative to compare our
estimate with that of other populations using spatially explicit analyses.

Our results highlight the importance of considering short-term re-
sponses to warming. Behavioral changes at the individual level, such as
increased activity as we observed, may preclude changes at the popu-
lation level over longer time frames, such as shifting distributions [45].
Physiological and behavioral mechanisms underlying responses to cli-
mate warming ultimately influence species interactions which culmi-
nate in performance of individuals and dynamics of populations [23].
Although experimental manipulations at the scale of the TRACE project
do have limitations, in-situ experiments are the only way to verify if
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what we observe in a lab applies in nature. Use of technologies, such as
minitransmitters, could offer clear insight into how energy budgets dif-
fer for frogs while in diurnal retreats as well as during nocturnal periods
in control and warmed plots. Further work should seek to evaluate sup-
port for various short-term behavioral mechanisms, explore sublethal
effects of warming on energy budgets and examine long-term trends in
coqui frog response to climate warming.
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