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1 INTRODUCTION

Given a dataset with multiple attributes, it is a challenge to combine the values of multiple attributes to arrive
at a rank. In many applications, especially in databases with numeric attributes, a weight vector w is used to
express user preferences through a linear combination of the attributes (i.e., }; w[i]A;). Finding flights based on
a linear combination of criteria such as price and duration [12], diamonds based on depth and carat [35], and
houses based on price and floor area [35] are a few examples.

The difficulty is that the concept of “best” lies in the eyes of the beholder. Various users may consider different
attributes more important and, hence, arrive at very different rankings. In the absence of explicit user preferences,
the system can remove dominated items and offer the remaining Pareto-optimal [11] set as representlng the
desirable items in the dataset. Such a skyline (or the set of convex hull points) is the smallest s
that is guaranteed to contain the top choice of a user based on any monotonic (or linear, resp.) ranking function.
Since the introduction of skylines to the database community [13], a large body of work has been conducted

especially when there are multiple attributes. Hence, several researchers have tackle
finding a small subset of the data for further consideration.
One elegant way to find a smaller subset is to define the notion of regret fo

) minimizing set [8, 51] problem
objects in dataset based on a
e regret-ratio of the subset for f

is especially true when attribute Values af
a made-up scale. Considering the regret
for ranking applications. To see a specific ¢

ExampLE: Each year, Wine S tor pubhshe a list of top wines reviewed over the past 12 months This annual
list honors successful wi
ibutes rating, vintage year, and price. Wine ratings are in the scale of
wine with the highest rating is "Clos des Papes Chateauneuf-du-Pape" whose

(after normalizing each attribute to the same scale). In this case, an item satisfying the small regret-ratio of 0.05
falls in the middle of the ranked list, i.e., half of the wines in the dataset approximate the top choice better than
that item according to the aforementioned ranking function. ]

Although ordinary users may not have a good sense of actual scores, they almost always understand the
notion of rank. Therefore, as an alternative to the regret-ratio, we consider items’ positions in the ranked list and

Uhttp://top100.winespectator.com/lists/
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propose the rank-regret measure to quantify an item’s distance from the top of the list. We define the rank-regret
of a subset of the data to be k, if it contains at least one of the top-k objects of any possible ranking function.
Since items in a dataset are usually not uniformly distributed by score, solutions that minimize regret-ratio
do not typically minimize rank-regret. In this paper, we seek to find the smallest subset of the given dataset
that has a rank-regret of k. We call this subset a k-rank-regret representative of the database. The 1-rank-regret
representative of a database (for linear ranking functions) comprises the points on the convex hull: guaranteed to
contain the top choice of any linear ranking function. The number of points on the convex hull is usually very
large: almost the entire dataset when there are five or more dimensions [8, 37]. By choosing a value of k larger
than 1, we can drastically reduce the size of the rank-regret representative set, while guaranteemg everyone has
a choice in their top-k even if not the absolute top choice.

EXAMPLE (CONT.): As explained earlier, a small difference in regret ratio can actually result
rank. On the other hand, consider a subset that satisfies the rank-regret of 6. Such a subset sh
the top 6 (i.e., top 6%, in other words) wines based on rating, which serves as a good a
"Cantina del Pino Barbaresco Ovello" (with rating of 97) is such a good repr

Before moving to our technical contributions, we would like to underscore
and scores: neither should be regarded as the absolute winner. There a
meaningful, but there are also those where ranks matter more. One maj
that the act of “ranking” has a notion of direct competition at its
with scores. Consider, as two well-known applications, credit s¢
used to evaluate the creditworthiness of an individual and are.j

ity rankings. Credit scores are
ow others perform. Therefore

score stands in comparison with other universitie
rank-regret is the proper measure for uniyersity r

Rank-regrets have the advantage of be
various dimensions can have drasticall

while the ratio-regret of a su
to a rather limited extent beca
is the best way. With anot

normahzat on is only one possible way to scale and it is not clear at all why it
thoughts one would realize that the root cause is still the fact that the

st one good choice for every user.

its connection to the notion of e-net in computational geometry and initialize the study of

instance/optimal e-nets.

(3) We give an algorithm to find an optimal k-rank-regret representative in 2D space efficiently.

(4) When the dimensionality is 3 or above, finding an optimal k-rank-regret representative is NP-hard. We
present polynomial time algorithms for discovering near-optimal rank regret representatives under different
approximation schemes. We also formally separate the case of d < 3 (where d is the dimensionality) from
d > 4 in terms of what type of polynomial efficiency is achievable.

(5) We design a space partition algorithm that returns a k-rank-regret representative of a small size based on a
non-trivial rank-sum lemma.
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dimension | max rank regret | representative size time source
any fixed d k O(% logn) O(% logn) Theorem 4
2 k OPT O(nk) Theorem 7
2 2+ 0)k < OPT O(nlogn) Theorem 12
3 (1+6)k o(oP1) O(nk?) Theorem 13
3 k O(OPT) O(nk>/?) Theorem 15
d>4 k O(OPT) O(nld/21}1d/21+1) | Theorem 15
d>3 k OPT NP-hard Section 4.1
d>4 O(k) O(OPT) no fixed-para near- | Theorem 14
linear algorithms 4
(see Section 5.5)

Note 1: n is the dataset size, d is the dimensionality, and OPT is the minimum size of k-rank
representatives.
Note 2: O(.) hides a polylog n factor.

Table 1. Summary of formal results

(6) We develop a randomized algorithm that utilizes the knowledge of quel
representative with probabilistic guarantees.

(7) We conduct extensive experimental evaluation based on real
efficiency of our techniques.

Table 1 gives an overview of the formal results in this paper;.
A short version of this paper appeared in [9]. Compared to that pgeliminary work, the current paper presents
a more comprehensive treatment of the k-rank-reg The new contributions include bullets (2), (3),

The rest of the paper is organized as follow 2formally defines the k-rank-regret problem in the primal
and dual spaces. Section 3 clarifies its relevs
proves the NP-hardness on d > 3. Section 5
leverages a query distributigs i

nets. Section 4 settles the problem optimally in 2D space and

context.

2.1 Formulation in the Primal Space

Define P as a set of points in R, where d > 2 is a constant integer. We will refer to each point in P as an object,
reserving the term “point” for general points in R?; for the same reason, we reserve the symbol o for objects and
p for general points in R¥. For a point p € R%, p[i] (1 < i < d) denotes its coordinate on dimension i. We will
sometimes treat p as a d-dimensional vector p = (p[1], ..., p[d]) where p[i] = p[i].

A weight vector is a d-dimensional vector w = (w[1], ..., w[d]) where w[i] > 0 for each i € [1,d]. The w-score
of an object o0 € P is the dot product w - 0. The w-rank of o, denoted as rank,, (0), equals r if exactly r — 1 objects in
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Fig. 1. The input set P for our running example

P have higher w-scores than o. The t-set of w, denoted as P,, (t), contairt s in P with w-ranks 1,2,..,1,

respectively. Denote by % the set of all possible weight vectors.
For a non-empty subset S C P, define its w-rank regret under

and its maximum rank regret as

S is a k-rank-regret representative of P if

PrOBLEM 1 (k-RANK REG

¢ ret RR,, (S) = 3 namely, the w-rank of o4, Wthh is smaller than that of os. Later
3, i.e., S is a 3-rank-regret representative of P. Furthermore, P admits no smaller
O

2.2 Formulation in the Dual Space

Next, we provide another formulation under the point-plane duality transformation [25] and establish its equiva-
lence to Problem 1. Define

Mayzo = {w € W | wld] # 0}.

Compared to %', #[4)+0 leaves out the weight vectors w with w[d] = 0 that turn out to be unimportant:

LEmMA 1. Forany S C P, MRR(S) (defined in (1)) is exactly maXy ey, ., RRw (S)-

ACM Trans. Datab. Syst.
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(0,0) =20 (24,0)

hi:y=x—24

Fig. 2. The dual lines in 2D space for the input P in Figure 1

The proof can be found in the appendix. Define
Wiaer = (w e ¥ | wld] = 1).

For any object, its w-rank remains the same when w is scaled by

the same k-set as w’ = (%, s %, 1). Hence, it suffices to ¢

or. Thus, every w € #d)z0 has
[d]=1, Where the weight vectors
are said to be canonical henceforth. ,

Under point-plane duality, each object o = (o[1], ..., o[d]) ' ¢s a dual plane

ExampLE: Consider, again, t
planes (which are lines in 2
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—01[1] - x[1] — 01[2], which is x[2] = —(—1) - x[1] — 24. In Figure 2, x[1] and
dimensions, respectively. This explains why h; is represented by the equation

dimension d and passes the point (q[1], ..., g[d — 1], —0). Consider the n intersections between {4 and the planes
in H. For each plane h € H, define its g-rank, denoted as rank, (h), as r if exactly r — 1 intersections have smaller
coordinates on dimension d than the intersection between £4 and h. The t-set of q, denoted as Hy(t), includes the
planes in H with g-ranks 1, 2, ..., t, respectively.

ExAMPLE (CONT.): The dimensionality d of the dual space is 2. Hence, the query space 2 in Figure 2 is one
dimensional (= d — 1), because of which we will simplify the vector representation q into a real value g. Consider

the query g = 20. Line £, is the vertical line x = 20, namely, the line parallel to dimension d = 2 (i.e., y-axis) and

ACM Trans. Datab. Syst.
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passing the point (g[1], —o0) = (20, —0c0). The lines in H intersect £, in the bottom-up order of hg, hs, hy, b3, h1, hy
(see Figure 2). The g-ranks of hg, hs, ha, hs, hy, and h;, are, therefore, 1, 2, ..., 6, respectively. O

It is rudimentary to verify the following one-one correspondence between #[4-; and 2:

ProrosiTION 1. Fix any canonical weight vector w € #[q)=1. Set q = (w[1], ..., w[d — 1]). For any object o € P
with dual plane h € H, rank,, (0) = rankg(h).

ExaMPpLE (cONT.): Consider the canonical weight vector w = (20, 1); recall that w is canonical if and only if
w[2] = 1. As mentioned in an earlier example, the w-ranks of o4, 05, 04, 03, 01, and o0y are 172, 3, 4, 5, and 6,
respectively. These are identical to the g-ranks (where ¢ = 20) of their corresponding dual planes, namely,
he, hs, hy, hs, hy, hy, respectively (see the previous example for how the g-ranks are computed /

Given a non-empty subset 8§ C H, we define its g-rank regret as

RR4(8) = r}:ug rankg ()

€

and accordingly the maximum rank regret of § as

MRR'(S) = max RRq(S)

PrROBLEM 2 (DUAL VERSION OF PROBLEM 1). Given a set H of
non-empty 8 C H with the smallest size satisfying MRR'($)

Problems 1 and 2 are equivalent:
LeEMMA 2. ForanyS C P, MRR(S) = MRR'(8),

PROOF. Let us first prove MRR(S) </M
Lemma 1, there is a w* € #[q)»0 satisfyi

ExampLE: Consider the set P = {py, p2, ps, pa} of 2D points shown in Figure 3. S = {py,ps} is a 1/2-net. Let us

examine the (on-negative) halfspace 2x + y > —2 (with boundary line /). Because (i) the halfspace covers 3 points

(p1, P2, ps) in P and (ii) 3 is greater than 4 - (1/2) = 2, the 1/2-net definition demands that the halfspace should

contain at least one point in S, which is indeed the case (actually, both points in S fall in the halfspace). O
The lemma below reveals a connection between e-nets and rank regret representatives:

LEMMA 3. A subset S of P is a k-rank-regret representative of P if and only if S is a (k/n)-net of P.
Proor. THE IF DIRECTION: Consider an arbitrary weight vector w = (w[1], ..., w[d]). Let o € P be an object

with w-rank k; specially, if no such objects exist (due to ties in scores), define o as an object that has the largest

ACM Trans. Datab. Syst.



1:8 « Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

Fig. 3. lllustration of e-net

algorithm net-extreme-skyline (P)
1. sample a set Sg4m of O(% log n) points from P with replacement
2. EXT(Ssam) < the extreme set of S,
3. S « the skyline of EXT(Ssqm)

4. return S

- = w - 0. At least k objects o’ € P satisfy w -0’ > 7.
Thus, the halfplane w - p > 7 covers at nd, by definition of (k/n)-net, must contain an object
0"’ € S. The w-rank of 0”’, therefore, is a

TuE ONLY-IF DIRECTION: Consider any
be the inequality of h. Set w = (c[1], ..., c[

in the k-set of w. The w-scor:

space h covering at least k objects of P. Let Zflzl ¢i - pli] = cai
Being a k-rank-regret representative, S must contain an object o

scores strictly higher than g 1g a contradiction). It thus follows that o is covered by h. This means that S is a
(k/n)-net. O

Obtaining an e-ne 2, As proved in [38], by random sampling O( log n) points from P with replacement
(assumig d constant), we obtain a set Sy, of points that is a (k/n)-net with probability at least
1 - 1/n%. Combi with Lemma 3 yields:

THEOREM 4. We can compute in O(3 logn) time a subset S C P of size O(y logn) that is a k-rank-regret
representativé'of P with probability at least 1 — 1/n?.

Instance optimal e-nets. Lemma 3 gives an alternative interpretation of Problem 1: its goal is to find the smallest
e-net (where € = k/n) on the given P, namely, an instance optimal e-net of P. Even at d = 2, 1/€ is a known
worst-case lower bound on the e-net size (a higher lower bound of Q(7 log ) holds for d > 4; see [44]). Hence,
when measured by the worst-case quality, n/k is the best possible, and Theorem 4 is already near optimal. However,
n/k is a pessimistic estimate on the size of the smallest (k/n)-net for every P. As shown in the experiments, we
can find (k/n)-nets whose sizes are considerably smaller than n/k on real-world data.

ACM Trans. Datab. Syst.
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Heuristics. In practice, we may shrink the sample set Sg,,, described earlier to produce a smaller k-rank-regret
representative. The first idea is to keep only the extreme set of S5, — denoted as EXT(Sgq,) — namely, the set of
objects on the convex hull boundary of Sg;,,. We can shrink S, even further by resorting to skylines [13]. Given
two distinct objects 0,0” € EXT(Ssm), we say that o dominates o’ if o[i] > o’[i] on all i € [1,d]. The skyline of
EXT(Ssam) is the set of objects in EXT(S,p,) that are not dominated by other objects in EXT(Ssqm)- The skyline
serves as a k-rank-regret representative. We refer to the above method as net-extreme-skyline (NES), as shown in
Figure 4.

4 EXACT ALGORITHMS

Section 4.1 will point out the relationships between the proposed k-rank-regret problem and the'exi
minimizing set problem, and establish the former’s NP-hardness for d > 3. Section 4.2 will explait
Problem 1 in polynomial time for d = 2.

ting k-regret
how to solve

4.1 Connections to Regret-Ratio Minimizing Sets

In this subsection, each object o € P is assumed to have positive coordinates o i an be achieved
by shifting the coordinate system appropriately. Accordingly, the score of an obj on-negative under
any weight vector w.

Define gain,, (P, k) as the lowest w-score of the objects in the k-set . a subset S C P, Chester et al.

[22] defined its k-regret ratio under w as

max{0, gain

k-regratio , (S) =

and its maximum k-regret ratio as

k-reg tio

In the k-regret minimizing set problem, gi
S with |S| = s to minimize k-regratio(S).
MRR(S) (see (1)) has a con

et minimizing set problem can be settled in O(n?) time [16] (where O(.) hides a polylogn
en be settled in O(n?) time. By Lemma 5, it suffices to find the smallest s € [1, n] such
C P of size s achieves k-regratio(S) = 0. Since k-regratio(S) monotonically decreases when
|S| increases,«we can discover the desired s with binary search, which requires solving O(log n) instances of the
k-regret minimizing set problem. In the next subsection, we will present an algorithm with a more appealing
time complexity of O(nk).

When d = 3, Agarwal et al. [3] proved the NP-hardness of the following problem: given a size threshold

€ [1,n], decide whether there is an S with |S| = s and 2-regratio(S) = 0. This implies that the 3D version
Problem 1 is NP-hard even when k = 2. To see why, if we could find in polynomial time an S C P satisfying
MRR(S) < k with the smallest |S|, we could settle the above decision problem by comparing |S| to s (by Lemma 5).
The NP-hardness at d = 3 indicates that Problem 1 is NP-hard for all d > 3.

ACM Trans. Datab. Syst.
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4.2 A Faster 2D Algorithm

4.2.1 Levels. In general, let H be a set of n planes in R?. Fix an arbitrary point p € R¢ and a plane h that does not
pass p. We say that p is above h if we must move p towards the negative direction of dimension d for p to touch h;
otherwise, p is below h. The level of p is the number of planes in H below p. The I-level (I € [0, n]) is the set of all
points in R? whose levels are exactly [, and the (< [)-level is the set of all points in R? whose levels are at most [.

n he hy ho
6 4 hs

5

s

Fig. 5. lllustration of levels. Each number indicates the level of the correspondin
the striped area is the 3-level.

ray area is the (< 2)-level, while

) planes — a.k.a., lines — which are taken
t where the number is placed. The gray area

represents the (< 2)-level, the striped area repre eve and their union is the (< 3)-level. O
In 2D space, the (< k)-level induced by A verlapping polygons (see Figure 5) whose edges we
refer to as boundary edges. There are O(n ges [5, 23] and they can be computed in O(nk) time [32].

See Figure 6 for an illustration.

4.2.2  Algorithm. We can re
H of lines in the dual spac
point (g, —o0) at the bott

subset 8§ C H hits
that hits all queri

Recall that the gray area of Figure 6 corresponds to the (< 2)-level defined by the set of

Assuming k = 3, the rays shot from points (g1, —o0) and (g2, —0) are p; and p,, respectively.

8 = {hy, hy, ha}hits gy, but does not hit g;, meaning that § contains at least a line in the 3-set of gy, but nothing in

that of g,. Hence, § is not a solution to Problem 2. An optimal solution is 8§ = {h3, hy} (it hits all queries). Optimal

solutions are not unique; e.g., 8 = {hy, hs} is another example. m]

Next, we explain how to solve Problem 2 in O(nk) time. Define an envelop chain as a sequence C of line
segments o1, 02, ..., o|c| such that:

lines in Figure

e every segment of C is in the (< k — 1)-level and is part of a line in H, i.e., the segment’s support line;
e C is connected, namely, o; and 0;,; share an endpoint for all i € [1, |C| — 1];
e C is x-monotone, namely, any vertical line in R? can intersect with at most one segment in C;

ACM Trans. Datab. Syst.
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hy

o

-

e C is concave, namely, the support line of o; has a larger slope t oi+1 (equivalently, we need to
make a right turn in walking from o; onto ¢;11).

ction of C onto the x-axis gives an interval
endpoint and right endpoint of oy and o¢|,

The length of an envelop chain C = 01, 02, ..., 0|
[x1, x2] (specifically, x; and x; are the x-coordi
respectively). Let H[C] be the set of supp

LEMMA 6. Let C* be an envelop chain m length whose x-projection covers the entire 2 = [0, c0).

Then, H[C*] is an optimal solution to Proble

Proor. It is obvious that
will prove that every optim

Thits all possible queries and, hence, is a legal solution to Problem 2. Next, we
ion 8 to Problem 2 defines an envelop chain C with H[C] = 8 such that the
¢s the correctness of the lemma.

The upper boun 0)-level of 8 must be an envelop chain C. Furthermore, every h € 8§ must
contribute an edge el; otherwise, h is completely above C, because of which 8 \ {h} must still hit
all the queries,giving a diction to the optimality of S. C is thus the envelop chain promised. m]

ExaMmPLE (cONT.}; In Figure 6, no envelop chains of length 1 have an x-projection covering 2. On the other hand,
the x-projection of C = AF, FP covers 2. Hence, H[C] = {h3, h4} must be an optimal solution (this corresponds to
{ps, psa} in Figiire 1). |

We are now ready to clarify our algorithm for computing C*. The algorithm, summarized in Figure 7, combines
a dynamic programming strategy of [22] with ideas specific to our context. Let e be a boundary edge in the
(£ k — 1)-level of H (Lines 1- 3), p be the right endpoint of e, and p[1] be the x-coordinate of p. Define minlen(e)
as the smallest length of all envelop chains C such that

o the last segment of C contains e;
o the x-projection of C covers [0, p[1]].

ACM Trans. Datab. Syst.
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algorithm 2D-exact (H)
compute the (< k — 1)-level induced by H
E « the set of (directed) boundary edges in the (< k — 1)-level
sort, in ascending order, the edges in E using their right endpoints’ x-coordinates
for each e € E (in the sorted order) do
if the x-projection of e covers coordinate 0 then minlen(e) « 1
else
p < the left endpoint of e
IN(p) « the incoming edges of p in E
for each e’ € IN(p)
if ¢’ and e are on the same line in H then w(e’) <« minlen(e’)
else if e’ has a greater slope than e then w(e’) « minlen(e’) + 1
else w(e’) « oo
minlen(e) < ming ey w(e')
. e" « a terminal edge e € E with the smallest minlen(e)
. C* « an optimal envelop chain whose last segment contains e*
/* the x-projection of C* covers [0, o) and |C*| = minlen(e)*/
.return C*

VXN AW

el e
ik W= o

—_
(o)}

Fig. 7. The 2D exact algoyith

such that (i) BD contains CD and (ii) the x-projection of C covers
y the monotone chain C = AF, FP; this C is an optimal solution to
O
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e are on the same line in H (Line 10);
e has a greater slope than e (Line 11) ;
e (Line 12).

Then, minlen(e) equals the minimum contribution of all e’ € IN(p) (Line 13).

If m is the total number of boundary edges in the (< k — 1)-level, it is now straightforward to compute the
minlen(e) of all those edges e in O(m) time by dynamic programming. This produces the value of OPT. It is
standard to construct an optimal solution C* from the above dynamic programming process using the same time
complexity. As all the boundary edges can be found in O(m) = O(nk) time (Section 4.2.1), we have arrived at:

THEOREM 7. When d = 2, Problem 2 (hence, Problem 1) can be settled in O(nk) time.

ACM Trans. Datab. Syst.



On Finding Rank Regret Representatives « 1:13

5 A THEORY ON APPROXIMATION ALGORITHMS

This section will present algorithms for solving Problem 1 with strong approximation guarantees. Section 5.1
first illustrates our high-level objectives in terms of approximation quality and running time. Then, Section 5.2
will introduce the shallow cutting technique, which we apply to design 2D and 3D algorithms in Sections 5.3 and
5.4, respectively. Sections 5.5 and 5.6 are dedicated to dimensionalities 4 and higher.

5.1 Overview of Our Approximation Schemes

Denote by OPT the size of an optimal k-rank-regret representative of the input P. In terms of result quality, our
goal is to compute a c; k-rank-regret representative of size c; - OPT where 1 < ¢; = (~)(1) and 1 s.c, = (5(1) If an
algorithm can always return such representatives, we call it a bi-criteria approximation algorithm. Even better,
if an algorithm guarantees ¢; = 1 and ¢; > 1, we refer to it as a size-approximation algorithm; similarly, if an
algorithm guarantees ¢; > 1 and c; = 1, we refer to it as a regret-approximation algorithm. ”

The k-rank-regret representative problem is NP-hard when d > 3 (Section 4.1). T
barrier, we want to design bi-criteria algorithms finishing in f (k) - O(n) time, where

mputation
: ¢ function
fical significance
because users prefer small values of k in real-world applications. In particular, w ylog n) (we believe

ithms is bounded by O(n).

Motivated by this, we say that a bi-criteria approximation algorith
running time is bounded by f(k) - O(n). This name suggests that i
computation time is “near-linear” (i.e., O(n)). We will strive to d
will turn out, they exist for dimensionalities d = 2 and 3 b
could be made in computational geometry). For d > 4, t
requirement and, instead, aim to design bi-criteria alggri

rithms whenever possible. As it
* 4 (unless major breakthroughs
“will drop the fixed-parameter near-linear
terminate in polynomial time (for arbitrary k).

5.2 Shallow Cutting

A simplex in R? is a d-dimensional conve
is a triangle, a 3D simplex is a tetrahedron,*
at the bottom of R?, namely, the vertex’s
respectively. A 2D prism ha
whose lower vertex is at th
vertex has z-coordinate #

‘d + 1 vertices. A 1D simplex is an interval, a 2D simplex
in R is a special d-dimensional simplex that has a vertex
coordinate is —oco. Figure 8 shows an example for d = 2 and 3,
ape of an irfinitely extending trapezoid, which can be thought of as a triangle
of R%. Likewise, a 3D prism can be thought of as a tetrahedron whose lower

Fig. 8. 2D and 3D prisms

Let H be a set of n planes in R?. Fix some integer k € [0, n] and a constant A > 0. A (A, k/n)-shallow-cutting of
H is a set = of prisms satisfying:

e Every prism in = is covered by the (< (1 + A)k)-level;
e The union of all prisms in = covers the (< k)-level;
e Each prism A € = intersects with O(1 + k) planes in H, which constitute the conflict set of A, denoted as Ha.

ACM Trans. Datab. Syst.



1:14 « Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shanggi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

ly, ¢

Fig. 9. A (1,1/3)-shallow cutting in 2D space. All the lines come from Figure 6. The gr: -level, the striped

area is a part of the 3-level, and the closed white region is a part of the 4-level.

cutting = wheren = 6,k = 2,
prisms covers the (< 2)-level,
les hy, hs, and hg. |

ExampLE: To further illustrate the above concepts, Figure 9 shows a (4,
and A = 1. E consists of the four prisms Ay, ..., A4 as shown. The i
but is also contained in the (< 4)-level. The conflict set Hp,, for:

LEmMma 8 ([1, 20]). Whend = 2 and 3, for any A > 0 an
O(n/(1 + k)) non-overlapping prisms and all the conflict

5.3 A 2D Algorithm

We will describe a regret-approximatio
subset S C P that is a ck-rank-regret repr

v s0lve Problem 1 with d = 2. Our goal is to find a small
entat rec = 2+ 6 and § > 0 can be an arbitrarily small constant.

We will work on the corresponding ins e of Problem 2. Here, the input is a set H of n lines in R?, from
which we want to extract 8 to make sure RR,(8) < ck for every query q € 2. The query space 2 is
[0, 00). Accordingly, we will represent each query simply as a real-value q > 0.

y qliery q € [0, o) and the vertical line £, passing the point (g, —0). Let h be
n point between h and £,. Recall that rank, (k) (i.e., the g-rank of h) equals 1

A rank-sum lemma.
aline in H and p be

The above will be subsumed by Lemma 16 which, however, requires a more sophisticated argument. Under-
standing the proof of Lemma 9 will make it easier to follow that of Lemma 16. Let us first see an illustration
in Figure 9. Line hs has g;-rank 2 and g;-rank 2 (see q; and g in the figure). The lemma assures us that A5 has
g-rank at most 3 for any q € [q1, q2].

Proor. Given a query g, define (i) p4 as the intersection point between h and £, and (ii) p4 as the downward-
shooting ray that emanates from but does not include p,. Let S, be the set of lines in H intersecting with p,.
|Sg,| = rankg, (k) — 1 and |Sg,| = rankg, (h) — 1. We will prove that, for any g € [q1, 2], any line b’ € S; must
belong to either Sg, or Sg,. This indicates |Sy| < |Sg, | + |Sg,|, from which the lemma follows.
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Pas
p‘h
(g, ~o0) query space 2
B S
(g1, —0) (g2, —00)

Fig. 10. Proof of Lemma 9

(or £4,, resp.), as shown in Figure 10. Assume
that h” belongs to neither Sg, nor Sg,, w, , and pg, must be on or above h. Hence, the entire
segment py py, must be on or above h. T

h" €S,
The algorithm. Figure 12

r that Lemma 8 also produces the conflict set of each prism A,
ing with A (Line 1).

For each line h € H,
prism A (or Ay, respy) i

intersects w
LEMMA 10.

Proor. Let A; and A, be the two prisms that define 7,. By the fact that g € 7}, we can find queries q1, g2 € Zj,
such that (i) 0 < q1 < ¢ < g2, and (ii) the x-projection of A; (or A;) covers q; (or g, resp.). Suppose that
{4, intersects h at point p;. Since p, is inside Aj, the level of p; must be at most (1 + §/2)(k — 1) because
the entire A; is in the (< (1 + §/2)(k — 1))-level of H (definition of shallow cutting; see Section 5.2). Hence,
rankg, (h) < (1+6/2)(k — 1) + 1 < (1 + §/2)k. Similarly, rankg, (h) < (1 + §/2)k. The claim then follows from
Lemma 9. |

Denote by 8" an optimal solution to Problem 2. We observe:
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algorithm 2D-shallow-cutting (H)
1. obtain a (§/2, (k — 1)/n)-shallow cutting E on H and, thus, the conflict sets {Hy CH | A € E}
2. T <0

3. forh e Hdo

4. generate the interval 7}, for h (from the leftmost and rightmost prisms intersecting h)

5. I «— T U{ly}

6. find a minimum subset J C 7 such that the union of the intervals in J covers .2

7. S«—lheH | I, e T}

8

. return §

Fig. 12. The 2D shallow cutting algorithm

LEMMA 11. The union of I, for all the h € 8* covers 2.

PrROOF. Assume, on the contrary, that the union fails to include a query g
aline h € 8" whose g-rank is at most k. Let p be the intersection point betw
indicates that the level of p is at most k — 1. Now, consider the prism A
assert that p must fall inside A; otherwise, p falls outside the union of a] :

giving a contradiction.

Define 7 = {I; | h € H} (Line 5). We find a subset J C
union of all the intervals in J covers 2 (Line 6). The e
return 8 = {h € H | I, € J } as our final result (Li

isms intersecting h. Hence, the total time spent for this purpose is
risms’ conflict sets, which is O(}% - (1 + k)) = O(n). The problem of
interval covering problem, which can be optimally settled in O(nlog n)
m]

found in time proportional to
proportional to the total si

discovering J from I
time (see, e.g., [9]).

repetitive.

THEOREM 13. Ford = 3, we can compute in O(nk?) time a subset $ C H of size at most OPT - O(log n) whose
maximum rank regret is at most (1 + 8)k, where 8 > 0 can be an arbitrarily small constant.

Remark. Theorem 13 is mainly of theoretical interest. Its primary purpose is to prove the existence of fixed-
parameter near-linear algorithms in 3D space. The algorithm in Theorem 13, unfortunately, is a bit sophisticated
and may not be suitable for practical implementation (for this reason, we will omit it in the experiments). In
Sections 6 and 7, we will develop alternative algorithms for 3D space.
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5.5 Hardness of Dimensions d > 4

In this subsection, we will prove that no fixed-parameter near-linear algorithms exist for d > 4 subject to a
conjecture on a well-known problem in computational geometry.

An object 0 € P is an extreme point of P if it is a vertex of the convex hull of P. The extreme point problem,
where the goal is to report all the extreme points of P, has been extensively studied. The first major result was
a 1993 algorithm due to Matousek [48] that has running time O(n?~2/(14/21+1)+€) n his 1996 paper [18], Chan
pointed out that the time can be improved to O(n?=%/([4/21+1)) In the same paper, Chan gave an output-sensitive
algorithm with time O(n + (n- OUT)~1/(Id/21+1)) where OUT is the number of extreme points. For d = 4, the
bound is O(n + (n - OUT)*/*), which still remains the best today.

In this subsection, we will prove:

THEOREM 14. Let OPT be the size of an optimal k-rank-regret representative of P. Suppose
algorithm <7 that, for some value c = O(polylog n), can compute a (ck)-rank-regret repr
in f(k) - O(n) time in 4D space where function f (k) satisfies f (k) = O(polylog n) for k
exists an algorithm solving the 4D extreme point problem in O(n + OUT*/?) tim

there exists an
of size.O(OPT)
Then, there

O(n + OUT*?) compares more favorably with Chan’s bound O(n + (n - OUT)
result. An impossibility result in 4D space trivially holds for d > 5 as we

d make an exciting

S* of objects each maximizing the score of at least one weight

S* is only a subset of X because we have restricted each y
w[1], ..., w[4]. By requiring each w[i] (i € [1,4]) to be pgsitive dr egative independently, we obtain 2* = 16
instances of Problem 1, all on the same P. Denote by j ) the optimal 1-rank-regret representative of

Let us run JZ% on each of the 16 instan
or all j € [1, 16]. Furthermore, the O(OPT)-output-size

ke total running time of .7 in solving all the instances is

the j-th instance. Since ¢ = 1, it must ho
requirement of &/ guarantees |S;| = ISj .

£(1)-O(n) = O(n).
Set S = Sl USZ U...uU Slé.

%x|5|— (x}aaxw |) O(1X1) = O(0UT)

y running Chan’s algorithm on S. This gives an overall algorithm to compute

Proof for ¢ > 1. We can extend the argument to any ¢ = O(polylog n). The crucial idea is to create a new dataset
each object (of P) ¢ times. The argument then proceeds as before except that &/ should be
applied to the 16 instances on P’. The property S* C S; is now rephrased as: for every object 0 € 57, at least one
of its copies exists in S;. To understand why, note that there must be a weight vector w such that o has w-rank 1
in P. Thus, if none of the ¢ copies of o is in S;, the best w-rank (in P’) of the objects in S; under w is at least ¢ + 1,
contradicting the fact that the algorithm must have a maximum rank regret ¢ - k = c. The rest of the argument
then runs through with no difficulty. This completes the proof of Theorem 14.

5.6 Algorithms for Dimensions d > 4

Next, we explain how to obtain a polynomial-time size-approximation algorithm for Problem 1 when d > 4.
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A hitting-set approach. Recall that the k-set P,, (k) of a weight vector w contains the objects in P with ranks at
most k. A subset S C P hits a k-set P,, (k) if S N P,, (k) # (. Problem 1 essentially aims to find the smallest subset
hitting all the k-sets.

Although the number of weight vectors is infinite, the number of distinct k-sets is finite because different
weight vectors may end up having the same k-set. Let K be the collection of all the (distinct) k-sets {K1, ..., K}
where s = |K|. Problem 1 then becomes a hitting set problem: find the smallest subset S C | J;_; K; such that
SN K; # 0 for every i € [1,s]. The standard greedy algorithm runs in time O(sk) and guarantees a subset S of
size at most OPT - (1 + Inn).

There is considerable work on bounding the number s of k-sets. Currently, the best bound is O(nk!/?) [26]
for d = 2, O(nk®?) for d = 3 [57], and in general O(n'?/2/k14/21=¢ca) for fixed d > 4 [4], where cq is a tiny
constant that tends to 0 very quickly as d grows. We must also account for the time to enumergie
Enumeration can be done in O(nk + sk) expected time [32] in 2D, O(nk? + sk) expected ti
O(nld/21 14121 4 sk expected time [49] in fixed d-dimensional space with d > 4.

The above discussion gives:

THEOREM 15. For any constant d > 2, we can compute in O(nt@/2Jk14/21 4 ¢
size at most OPT - (1 + In n) whose maximum rank regret is at most k, where s is
is bounded by O(nk®/?) ford = 3 and by O(nt4/21k14/21) ford > 4.

It is interesting to compare the 3D result of Theorem 15 to that 13. The time complexity of

time bound. On the other hand, Theorem 15 produces si
ratio on size is 1; see Section 5.1), whereas Theorem 13 ca
rank regret.

on algorlthms (i-e., the approximation
)(1) approximation ratios on size and

Remark. The hitting set instance menti
veighting algorithm of [36] for geometric hitting set, we
log OPT) at the cost of slightly higher computation time.

~~

it has size k.2 As far as the hitting set approach is concerned, it suffices to consider the
s [4, 7, 26, 57]. Let us introduce the k-set graph G(V, E) where:

e Ehasan edge between two k-sets (a.k.a. vertices) K; and K; if and only if |K; N K3| = k — 1.

G(V, E) is connected, namely, it has a single connected component.

Figure 13 shows an algorithm for generating Kcjeqn incrementally by performing a BFS (breadth first search)
on G. After finding an arbitrary clean k-set (Line 1), the algorithm adds it to a queue (Line 2) and continues the
traversal until the queue is empty (Line 3). At every iteration, the algorithm removes a k-set K (i.e., a vertex in G)
from the queue (Line 4) and generates another set K’ of size k by replacing exactly one object o € K with an

2The size may be greater than k due to a tie in score among multiple objects.
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algorithm enum-kset (P)
Kelean = {K}, where K is an arbitrary clean k-set
Enqueue(K)
while queue is not empty do
K = Dequeue()
foro € K do
foro’ €e P\ K do
K’ =KU {0} \ {o}
if K’ ¢ Kjean and K’ is a valid k-set then
. add K’ to Kijean; Enqueue(K’)
10. return Kejean

A A A ol o o

Fig. 13. The k-set enumeration algorithm

algorithm random-kset(P)

1. K=0
repeat
2. generate a weight vector w following D

3. obtain the k-set P,, (k)
4, if P,, (k) ¢ K then add P,, (k) to K

/* note: if P, (k) € K, we say that w is captured */
5. until slen = O(log n) queries are captured in a row
6. return K

object o’ € P\ K (Lines 5-7). If K’ does not
so, K’ is a neighbor vertex of K in G and,
finishes, the final K jeq, is r (Line 1
Deciding whether K’ is a an be done through linear programming. Specifically, the answer is yes if and

oO-w—-7T2>g
3. Yoe P\K" o-w-17=<—g
The above program never returns a negative g (because setting w = 0 and 7 = g = 0 gives a feasible solution).
The required w and 7 exist if and only if the returned g is positive.

6 LEVERAGING A KNOWN QUERY DISTRIBUTION

In this section, we assume a known distribution D for the user-specified weight vector w and present a simple
algorithm to complement Theorem 15.

ACM Trans. Datab. Syst.



1:20 - Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shanggi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

Recall that the main deficiency of Theorem 15 lies in enumerating all the k-sets. The random-kset algorithm
in Figure 14 alleviates the issue by utilizing the knowledge of D. At the beginning, the algorithm initializes an
empty K (Line 1), which at the end will contain the k-sets found. In each iteration, it samples a weight vector w
from D and retrieves its k-set P,, (k) (Lines 2-3). If P,, (k) is already in K, we say that w is captured; otherwise,
we add P,, (k) to K (Line 4). The algorithm terminates after the current K captures slen weight vectors in a row
(Line 5). The K returned at Line 6 is then fed to the hitting set approach to compute the final representative 8.

By setting slen = (Inn)/In % ~ % In n, the following holds with probability at least 1 — 1/n:

Pry,.p[SNPy(k)#0] = 1-96. (4)

To see why, suppose that (4) is not true, namely, Pr,,.p[8 N P,, (k) = 0] > &. Remember that 8 hits all the k-sets
in the K returned by random-kset. Thus, 8 N P,, (k) = 0 implies P,, (k) ¢ K. By combining all
that K fails to capture a w drawn from D with probability at least §. However, in that case,
K to capture slen independent weight vectors continuously should be very slim. Ind
most 1/n under our choice of slen.

7 A SPACE PARTITION ALGORITHM

This section will present a heuristic algorithm for finding a k-rank-regre
The algorithm is built on a rank sum lemma that generalizes Lemma 9 ap

7.1 A Rank Sum Lemma in Arbitrary Dimensions

We will consider Problem 2. Recall that the input is a set
(d — 1)-dimensional vectors q such that q[i] > 0 for ever
every query q, S contains a plane h satisfying ra

The rest of this subsection serves as a proof o

LEMMA 16. Fix an arbitrary plane h €

IA

d
(Z rankqi(h)) —(d-1). (5)

i=1

(q[1], ..., q[d#1], —0) at the bottom of the dual space R¢. Denote by g4 the line parallel to dimension d and
passing (q[1], ..., q[d — 1], —o0). Define (i) p4 as the intersection point between h and €4, and (ii) p4 as the open
downward-shooting ray that emanates from pg but does not include p4. Let S4 be the set of lines in H intersecting
with pg. [Sq,| = rankg (h) — 1 and [Sg,| = rankg, (h) — 1. We will prove that, for any q on the segment q,q,, any
plane b’ € S4 must belong to either Sy, or Sg,. This indicates |Sq| < [Sq, | + |Sq, |, from which the lemma will
follow.

Let pg (or pg ) be the intersection point between h” and £g, (or {g,, resp.); Figure 15 illustrates this for d = 3.
Assume that h" belongs to neither 5S¢ nor Sg,, which means that p; and pg, must be on or above h. Hence,
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query space 2

Fig. 15. Proof of Proposition 2

the entire segment p; pg must be on or above h. Therefore, the g-rank,
contradicting b’ € S. ”

be lower than that of A,

PROPOSITION 3. Fix an arbitrary plane h € H. Consider any m
that is a convex combination of q,, q, ..., q,,, rankg(h) < (X1

at q is a convex combination of q,, q,, ...,
satisfying >}, a; = 1.

Let us write q as ),[2, a;q; where oy
0 < @,y < 1 (otherwise, the claim holds by

simplex A can be expressed as a convex combination of the d vertex vectors of A.

7.2 Algorithm

Our algorithm attacks Problem 2 and takes a set H of planes in the dual space as the input.

Rectangle protection. Let R be a hyper-rectangle in the query space 2 and q,, q,, .., g,a-1 be the query vectors
at the corners of R. Consider an arbitrary plane h € H. Define ry, ..., 4 as the d greatest values in

{rankg, (h),rankg, (h), ..., rankg , , (h)}.
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algorithm space-partition (H)
§=0
Enqueue(2)
while queue is not empty do
R = Dequeue( ) /* R is a rectangle in 2 */
if R is protected by a plane in § then continue
if 3 a plane h € H that protects R then
add h to § (if multiple such h’s exist, add the one with the lowest aggregated rank on R)
else
split R into two rectangles of the same size on the dimension where R has the
longest extent; call Enqueue on both two rectangles
9. return §

NSk

*®

Fig. 16. The space-partition algorithm

We say that h protects R if
(6)

The sum Zf;l r; is the aggregated rank of h on R.
LemMa 17. If h protects R, h has a q-rank at most k

lex that is defined by d corners of R. Let those

flzl ranky, (h)) — (d —1). By the definition of 4, ..., 74,

4 ri—(d-1)<k+(d-1)~-(d-1) =k, where
O

Proor. Any point q in R must be covered by
corners be q’;,q’,, .., and ¢’ ;. By Lemm
we know Zle rankgs (h) < Z?:l ri. The
the second inequality used (6).

protected by a plane in H. Thé space partition algorithm in Figure 16 starts with an empty & (Line 1) and a queue
storing only one rectan e., 2 itself. In each iteration, the algorithm removes a rectangle R from the queue
(Lines 3-4) and checks R 1s protected by a plane in § (Line 5). If not, it adds to 8 a plane h € H that
protects R (Lines
dimension wh Tongest extent and enqueue both. When the queue is empty, every possible query

When £ is finite, the algorithm is guaranteed to terminate due to two observations. First, each split creates
strictly smaller rectangles. Second, when a rectangle R contains only one query g, the plane h € H with g-rank 1
definitely protects R (in this case, r; = r; = ... = rq = 1 and, hence, (6) holds). 2 is finite in practice because a
weight representation has a bounded precision (e.g., 64 bits) in a computer.

8 EXPERIMENTS

After providing the algorithms and rigorous theoretical analysis, in this section we present comprehensive
experiments to evaluate our proposal in practical scenarios. To do so, using real datasets, we first provide a
proof-of-concept experiment that highlights the motivation of finding rank-regret representatives. We will then
turn our attention to evaluating the performance of different algorithms under various settings.
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8.1 Experiments Setup

Datasets. We used real datasets in the experiments. All values were normalized into the range [0, 1] and discretized
into granularity of 0.01.

e BlueNile (BN) dataset®: Blue Nile is the largest online diamond retailer in the world. We collected its catalog
that contained 116,300 diamonds at the time of our collection. We considered the scalar attributes Carat,
Depth, LengthWidthRatio, Table, and Price. For all attributes, except Price, higher values were preferred.
The value of diamonds is sensitive to these measurement such that small changes in scores may mean a lot
in terms of the quality of the jewel. For example, while the listed diamonds at Blue Nile range from 0.23
carat to 20.97 carat, minor changes in the carat affect the price. We considered two similar diamonds, where
one was 0.5 carat in weight and the other was 0.53 carat. Even though all other measure ¢ similar, the

and Table. The phenomenon that slight changes in the scores may dramaticall

rank) of the items highlights the motivation of rank-regret.
o US Department of Transportation (DoT) flight dataset*: This database is wit
oving the records
with missing values, the dataset contains 457,892 records, for all fl d by the 14 US carriers
in the last months of 2017; we consider the scalar attributes Deg# i-Out, Actual-elapsed-time,
Arrival-Delay, Air-time, and Distance for our experiments

As mentioned, BN and DoT datasets are 5D and 6D in their énti
(where d € [2,5] for BN and d € [2, 6] for DoT) of each datéset'’h
mentioned earlier.

Algorithms Evaluated. We will evaluate all t
Specifically, we will present two sets of ex
(MD) where d > 3, involving the followir
o net-extreme-skyline (2D, MD): Prop
further shrinks the siz
using a sample size o
1-1/n. /

oposed in this paper under different settings.
'two dimensional (2D) and multi-dimensional cases

n 3, this algorithm uses sampling to construct an e-net. It
moving the dominated items. Following Theorem 4 and Lemma 3,
algorithm returns a k-representative set with probability at least

(2 + &)k-representative of size at most OPT, where § > 0 can be an arbitrarily small
n) time. The value of § was set to 1, i.e., the regret approximation ratio was 3.

size at most OPT - O(log OPT) by first enumerating the k-sets and modeling the problem as an instance of
hitting set. We will see in our experiments that this algorithm is expected to perform well when k is small.
e rand-k-set (2D, MD): Due to the high complexity of enumerating the k-sets, the randomized algorithm in
Section 6 serves as a practical alternative for enumerating the k-sets. Algorithm rand-k-set is the same as
the k-set algorithm, except that the former uses the randomized algorithm for enumerating the k-sets. The
distribution D was set to uniformity for rand-k-set, which essentially says that we aimed to capture all

3www.bluenile.com/diamond-search?
4www.transtats.bts.gov/DL_SelectFields.asp?
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dimension | BN dataset | DoT dataset
d=2 19 13
d=3 69 56
d=14 206 168
d=5 553 445
d=6 - 1012

Table 2. The sizes of extreme points at various dimensions

0.01.
o space-partitioning (2D, MD): The space-partitioning algorithm works based on the r.
in Section 7.1. As will be shown in the experiments, this algorithm is expected t

is not excessively small.
We preceded each of the above methods with a preprocessing step to sh
defined in Section 3, an object o dominates another one o’ if o[i] > o'[i
includes every object o€ P that is dominated by at most k — 1 other objec

—

“set of any weight vector
e can solve Problem 1 on its
k-skyband instead, which is usually much smaller For any ﬁxed
O(n) time [58].

ree measures: (i) time, (ii) representative
/ m, while representative size and rank-regret
measures evaluate how effective the algorithm i i and compact representatives.

8.2 Performance Evalua

Having provided the proo

the upcoming experiments, the number of extreme points is usually several times the size of the rank-regret
representative’we find. This further strengthens our motivation and supports the necessity of developing efficient
algorithms for discovering (small) rank-regret representatives.

2D, varying k. Henceforth, we will follow the paradigm explained in Section 8.1, namely, in every experiment,
we will study the impact of one parameter, while fixing the other parameters to their default values.

The value of k greatly impacts the ability to reduce the size of the rank-regret representative. For example,
when k = 1, all the items on the boundary of the convex hull appear in the representative. As the value of k
increases, it gives us the freedom to have more choices for every ranking function, hence more opportunity to
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Fig. 21. BM; , : Fig. 22. DoT, 2D: impact of varying k on output rank regret
find items th ver large portions of the ranking functions. Besides the size of the representative, the running

time of the algﬂ%rlthms may also depend on the choice of k. Therefore, as the first 2D experiment, we vary the
value of k while fixing other parameters to their default values. The results are provided in Figures 17 to 22.
Figures 17 and 18 show the time taken by each algorithm to find a representative. First, one can observe that
the k-set algorithm was significantly slower than all other algorithms and its running time rapidly increased as
the value of k increased. The reason for the algorithm’s bad running time is that it requires enumerating all the
k-sets before solving a hitting set problem. Therefore, the running time of the algorithm significantly depends on
the number of k-sets. The number of k-sets, on the other hand, depends on the value of k. As observed in the
experiments on both the BN and DoT datasets, the increase in the value of k resulted in a significant increase in
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Fig. 28. DoT, 2D: impact of varying n on output rank regret

funning times as bad as k-set, still rand-k-set had a worse running time and it got worse as k
increased. The main reason why rand-k-set outperformed k-set in the running time is that, compared to the
graph enumeration approach for finding the k-sets, rand-k-set used a more efficient randomized algorithm for the
same purpose. We also note that, at least theoretically, rand-k-set may miss the k-sets of certain weight vectors,
resulting in a potentially smaller number of k-sets in some cases. Among other algorithms, the exact 2D algorithm,
even though initially fast, took noticeably more time than the others as k increased. Net-extreme-skyline (labeled
nes in the legend) had a stable running time (but not the fastest) for different values of k. The shallow-cutting
and space-partitioning algorithms (labeled sc and sp in the legend) had similar running time and both were

ACM Trans. Datab. Syst.



On Finding Rank Regret Representatives « 1:27

significantly faster than all other algorithms across all values of k. We note that shallow-cutting is an algorithm
specifically designed for 2D, while space-partitioning works for arbitrary dimensionalities.

Figures 19 and 20 show the size of the output (representative set) found by each algorithm, while Figures 21
and 22 show the rank-regret of the output. Please note that the exact algorithm guarantees to the optimal set (i.e.,
minimum size), while the output of the other algorithms is approximate. Among the approximation algorithms,
net-extreme-skyline consistently returned the largest sets but its output always satisfied the rank-regret of k. The
outputs of all other algorithms were very close to optimality, a strong indication that they are effective in finding
compact sets. The k-set and space partitioning algorithms always guarantee the rank-regret of k, rand-k-set and
net-extreme-skyline ensure the guarantee with very high probability, and shallow cutting was parameterized
for a 3-approximate assurance on rank-regret. By comparing the exact algorithm with all othiér algorithms in
Figures 21 and 22, one can notice that, interestingly, except shallow-cutting, the output of all algorithms satisfied
the rank-regret of k. In fact, the same is nearly true for shallow-cutting whose rank regret w s bounded
by k, except in a single case (BN, k = 64), /

2D, varying the dataset size (n). Rank regret representatives are compact r s that are intended to
be significantly smaller than the dataset size. The connection to e-nets (Secti 1 upper-bound on
the size of the representative set which, however, needs to be 1/k of the ori . Therefore, our earlier
results in Figures 19 and 20 suggest that traditional sampling approaches; ,  e-net are not necessarily

orst case. Despite this negative
imistic on real data. To further
demonstrate these phenomena, in the next experiment, w. ed set size, while observing the algorithms
performance, rank-regret, and the output size for each a

The results are provided in Figures 23 to 28. For :
60%, 80%, and 100% of the data. First, as in Flgures
value of n increased. Among different al
the least. Figures 25 and 26 show the out
rank-regret of the generated results obta
output of net-extreme-skyline had the ma
size of the exact algorithm). rmore, all algorithms returned representatives achieving a rank-regret of k,
except shallow-cutting, which anteed 3-approximation. These observations imply that all algorithms except
shallow-cutting found ; t10ns A perhaps more important observatlon is that even though the
theoretical lower boun
factor smaller than th
handful r

unning time of the algorithms was stable as the
the longest running time and shallow-cutting had
and DoT datasets, while Figures 27 and 28 show the

MD, varying k. evaluating the 2D solutions, we now turn our attention to MD where d > 3. In the
upcoming experiments, we study the impact of varying the value of k on the performance of different MD
algorithms. Figures 29 to 34 show the results across different settings for the BN and DoT datasets.

First, looking at the running time of the algorithms in Figures 29 and 30, net-extreme-skyline was the fastest
across different cases, while k-set did not scale well with k. An interesting observation, however, is that while the
running time of k-set and rand-k-set monotonically increased with k, that of space-partitioning actually decreased
as k went up. The reason for the increase in the running time of k-set and rand-k-set is that (assuming k < n/2)
the number of k-sets escalates as k increases. This forces both algorithms to spend more time enumerating the
k-sets and solving the hitting set problem. For larger k, however, the space-partitioning algorithm finds more
opportunity to prune the search space, simply because it essentially looks for common elements in larger sets,

ACM Trans. Datab. Syst.



1:28 « Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shanggi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

> k-set -©-nes rand-k-set ~-sp %= k-set -©-nes rand-k-set --sp
104 104 7
g 108 5//A ERL.
Z e E//A R ol
= 100G - =
Ef 2 10!
= 100 g
g 1 (€] & < & S 2 100 </ o ——=K
=10~ 2 7
102 107! ‘
1 2 4 8 16 32 64 1 2 4 8
k k
Fig. 29. BN, MD: impact of varying k on time Fig. 30. DoT, MD: impact of varying
B k-set nes Yrand-k-set [ SP B k-set nes Prand-k-
80

representative size
representative size

>~ o E

16 32

—
o b
Ny

%= k-set -©-nes rand-k-set --sp X~ k-set -©-nes rand-k-set --sp

50
40
§ 32 50
P 30 ¥ 40 )4
2 20 % 30 ‘
2 =20 =
10 10 A
18 16
1 2 4 8 16 32 64
k

Fig. 3 AD: i arying k on rank regret Fig. 34. DoT, MD: impact of varying k on rank regret

which are the k results (which are supersets of the results of smaller k). These observations together indicate
that (rand-)k-get and space partitioning are complimentary algorithms for finding rank-regret representatives in
different settings.

Next, we studied the output size (Figures 31 and 32) and rank-regret (Figures 33 and 34) for the BN and DoT
datasets. Recall that, in theory, the space partitioning and k-set algorithms guarantee the rank-regret of k, while
rand-k-set and net-extreme-skyline guarantee the same with very high probability. However, in all settings across
the two datasets, every algorithm managed to find k-rank representatives. The net-extreme-skyline algorithm,
in spite of being fast, failed to find compact representatives, especially as k increases. The rand-k-set and k-set
algorithms generated the smallest outputs, and their representative sizes decreased as k increased. In particular,
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Fig. 40. DoT, MD: impact of varying d on rank regret

p

of rank-regret’representatives.

MD, varying the number d of dimensions. In this experiment, we evaluate different MD algorithms for
different values of d. The results are provided in Figures 35 to 40.

Let us first look into the running time of the algorithms across different settings (Figures 35 and 36). The k-set
algorithm failed to scale beyond four dimensions because the exact (graph-traversal) algorithm in Section 5.6
for enumerating the k-sets did not finish within the time budget (20,000 seconds). In contrary, the rand-k-set
algorithm (being efficient in finding the k-sets) scaled much better with respect to d. The time performance of
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the space-partitioning algorithm worsened as d became larger, due to the curse of dimensionality, i.e., significant
enlargement in the search space. The net-extreme-skyline had the best time performance but, as discussed next,
it failed to find compact representatives. Figures 37 and 38 show the output size, and Figures 39 and 40 show
the rank-regret of the generated output for the BN and DoT datasets. Similar to the previous experiments, all
algorithms were able to ensure the rank-regret of k = 8 across different settings. Evidently, the representative
sets of net-extreme-skyline were fairly large, especially as d increased, while (rand-)k-set managed to secure

small representatives in all cases.

ACM Trans. Datab. Syst.



On Finding Rank Regret Representatives « 1:31

MD, varying the dataset size n. Finally, we conclude our experiments by studying the impact of varying the
dataset size on the performance of different algorithms. To do so, similar to the corresponding 2D experiments,
we selected 20% to 100% of the BN and DoT datasets for the default values of k = 8 and d = 4. The results are
provided in Figures 41 to 46.

Looking at Figures 41 and 42, one can see that, even as the value of n increased, all algorithms had a stable
running time for all values of n. Also, looking at Figures 45 and 46, one can see that the output of all algorithms
satisfied the rank-regret requirement (k = 8) in all settings, as is consistent with the previous experiments. As
shown in Figures 43 and 44, the output of net-extreme-skyline was the largest, while (rand-)k-set could find
representatives with size around 10 in all the scenarios.

9 RELATED WORK

The problem of finding preferred items of a data set has been extensively investigated in re,
has spanned multiple directions, most notably in top-k query processing [40] and skyl
query processing, the approach is to model the user preferences by a ranking/wtil
to preferentially select tuples. Fundamental results include access-based algorith
algorithms [24, 39]. In skyline research, the approach is to compute subs:

rs, and research

Efficiency and effectiveness have always been the chéalleng
depend on the existence of a preference function and ma

] the skyline size. In an elegant effort towards
. [51] introduced the regret-ratio minimizing

data and a preference function, they consi fference between the top result of the subset versus
the actual top result as the measure of reg;
possible linear functions. Since then wor ch as |3, 8, 16, 41, 43, 50, 54, 63] studied different challenges and
ection 4.1, Chester et al. [22] generalize the regret-ratio notion to
k-regret ratio, and Agarwal e ] prove that the k-regret minimizing set problem is NP-complete even when
d = 3. For the case of two di ional databases, [22] proposes a quadratic algorithm. The cube algorithm and a
greedy heuristic [51] aré¢ th algorithms proposed for regret-ratio in dimensionality d > 3. Recently, [3, 8]

independently propese sitr proximation algorithms for the problem both discretizing the function space

differe ers the orlglnal regret-ratio problem while [3] considers the k-regret variation. It is
important the above prior works consider the score difference as the regret measure, making their
problem setting different from ours, since we use the rank difference as the regret measure.

We now review results relevant to the geometric notions that were used in this paper to develop new algorithms.

Such notionsinclude e-net (for the net-extreme-skyline algorithm, Figure 4), (< k)-level in 2D space (for the
2D exact algorithm, Figure 7), shallow cutting (for the 2D and 3D shallow cutting algorithms, Figure 12 and
Theorem 13), and k-set (for the k-set enumeration algorithm, Figure 13).

Haussler and Welzl [38] proved that a random sample (with replacement) of size O(g log é) from a d-
dimensional points set P is an e-net (for halfspaces) with probability at least 1 — §. We utilized this result in
designing the net-extreme-skyline algorithm. For certain dimensionalities (in particular, 2 and 3), it is possible to
produce even smaller e-nets; we refer the reader to [6, 14, 19, 42, 44, 60] for details.
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The notion of (< k)-level, defined on a set H of lines, is fundamental in computational geometry. Recall from
Section 4.2.1 that the (< k)-level is partitioned into non-overlapping polygons using the lines in H. In the special
case of k = n (where n = |H|), the set of polygons that constitute the (< n)-level is called the arrangement of
H. The arrangement can be computed in O(n?) time (the algorithm is easy to implement; see [25]). Another
special case worth mentioning is k = 0. The (< 0)-level (namely, the 0-level) consists of a single polygon, whose
boundary is called the lower envelope and can be computed in O(nlogn) time (again, the algorithm is easy to
implement; see [25]). For general values of k, Alon and Gyori were the first to prove that the (< k)-level has
O(nk) boundary edges (recall that a boundary edge is an edge of a polygon in the (< k)-level); the bound is tight
in the worst case, meaning that the number of boundary edges can reach Q(nk). Clarkson and Shor [23] provided
an alternative (somewhat simpler) argument to prove the same bound. To establish Theorem 7:%e leveraged an

The algorlthm of [32] is a bit complicated and dlfﬁcult to 1rnplement There exist heurlstlc
the (< k)-level which, although not attractive in worst-case time complexity, are mu
One such method is Onion [21]. Next, we illustrate the Onion approach for k = 1 becau;

) time). Then, we
. In the same fashion,
e (£ 1)-level of H must
ed before, takes O(|L|?) time)

we find the set L of lines that define the lower envelope of Hj. All the li
be in L = Ly U L;. We can now compute the arrangement of L (which
and then derive the (< 1)-level of H from the line arrangement.
than n, thus allowing the method to terminate fast.
Shallow cuttings were introduced by Matousek [47] a
polynomial-time algorlthm to compute a shallow cuttlng

hén and Tsakalidis [20] discovered deterministic
shallow cuttings we used in Section 5.2 is a refined
[1]. They also showed [1] that, in 2D and 3D space,

algorithms that finish in O(nlog n) time.
version of Matousek’s and was proposed
all the aforementioned algorithms designe
version with the same time complexity.

There is a simpler method to
but is often sufficiently sma
so, trace out a prism A
right edge is aligned wi
s to move, A will violate the conditions of (4, k/n)-shallow cutting. After that, we
" right away. Specifically, the left edge of A’ is aligned with ¢, while its top edge is

d ] , 45] appeared to be the first to formally investigate how many k-sets can be induced
by a set of 2D P ints. Their work motivated a fruitful line of research on bounding the number of k-sets. See
[26, 29, 30, 52;2%9] for results on dimensionalitiy d = 2 and [4, 27, 28, 57, 59] for results on d > 3. The problem of
enumerating all k-sets has been studied in [32] for 2D and in [4, 7, 26, 57] for higher dimensionalities. A practical
algorithm for enumerating k-sets has been described in Section 5.6.

10 CONCLUSIONS

In this paper, we proposed a rank-regret measure that is easier for users to understand, and often more appropriate,
than regret computed from score values. We defined rank-regret representative as the minimal subset of the
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data containing at least one of the top-k of any possible ranking function. Our systematic study contains an
optimal polynomial time algorithm in 2D space, an NP-hardness proof in 3 or more dimensions, approximation
algorithms of various dimensionalities under different approximation schemes, a randomized algorithm utilizing
the knowledge of query distribution, and a space-partition algorithm leveraging an interesting rank-sum lemma.
In addition to theoretical analyses, we conducted empirical experiments on real data that verified the effectiveness
and efficiency of our techniques. The proposed algorithms nicely complement each other and together constitute
an adequate set of solutions covering a great variety of practical scenarios.

Our work initializes several directions for future research. Recall that in 2D space we developed a bi-criteria
approximation algorithm with running time O(nlogn). Currently, it remains elusive to design a bi-criteria
approximation algorithm with the same time complexity in 3D space. Like most of the research in the skyline
literature, this paper focused on low and medium dimensionalities. When the dimensionality i
that it can no longer be considered a constant, our algorithms would not work well. How to
is another exciting topic for investigation. The last direction we want to mention conce
we have assumed the input set of points to be static. It would be nice to have algorit
rank-regret representative efficiently along with the insertions/deletions on the i
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APPENDIX

PROOF OF LEMMA 1 ]

Clearly, MRR(S) > max,, Wjap0 RRw (S) becat f W . The subsequent discussion will show maXy e, RRw (S) =

MRR(S), which will establish the lemma.

Set r = MRR(S); and suppose that max RR,, (S) < r. There must exist w* € # with w*[d] = 0 such

[d]#0

that RR,,+(S) = r.5 Let 0* € Stbe aft object that has the highest w*-score in S; clearly, rank,, (0*) = r. P must have
r — 1 objects 01, 02, ..., 0,_1 outside S such that the w*-score of 0 (j € [1,r — 1]) is strictly larger than that of o™

Construct w’ € #[q)qWhere w! w*[i] for each i € [1,d — 1] and w’[d] = § where § > 0 is infinitesimally
small. As 0j - w* > o* - ] 5 ,r — 1], a sufficiently low § ensures o; - w’ > 0* - w’. In other words,

Using the definition of 0* and § being infinitesimally small, we can assert 2?:11 o'[i] - w*[i] = Zfl 11 o*[i] - w*[i],
namely, o’ and o* have the same w*-score.

Given o - w* > 0o* - w* = 0o’ - w* for every j € [1,r — 1], we conclude that 0j - w’ > o’ - w’ for a sufficiently
small § > 0. This means that P has at least r — 1 objects whose w’-scores are strictly higher than that of o', which
contradicts rank,,(0o’) < r - 1.

SOtherwise, every weight vector w achieving RR,, (S) = MRR(S) must fall in W a0, implying MaXaw e #4 g140 RR,, (S) = MRR(S)).
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PROOF OF THEOREM 13

We use Lemma 8 to obtain a (J, (k — 1)/n)-shallow cutting =. For each A € Z, define XY, as the xy-projection
of A. Each plane h € Hy (where H, is the conflict set of A; see Section 5.2) intersects A into a polygon, whose
xy-projection is represented as X Y5 (A).

The polygons XY, (A) of all h € Hp induce an arrangement, which is a set A, of O(k?) polygons in the xy-plane
satisfying

o the union of all the polygons in Ap is XYa, and
o for every h € Hp and every polygon A € Ap, XYy (A) either entirely covers A or is non-overlapping with A.

Define

A = Um.

Ae=

The polygons in A are non-overlapping; and their union is precisely R?.
Given a plane h € H, define Z(h) as the set of prisms in = intersectin,
Define:

{A € 2| h e Hpl

7y = {Aeﬂ'HAeE(h)
LemMA 18. For any plane h € H and any query q covered

rallel to dimension d and passes (q[1], ..., q[d —
covered by Zj,, we know that p must be covered by
ed by the (< (1 + &) (k — 1))-level of H, the level of p
¢y (h) < (1+9)k. m|

Proor. As before, denote by £, the vertical lin
1], —00). Let p be the intersection between k
a prism in =. Since the union of all the p
must be at most (1 + §)(k — 1). This means

Consider any optimal so * to Problem 2. We have:

LEMMA 19. Upes+ Z

contrary, that the union fails to include a query q € 2. By definition of §*, there exists
rank is at most k. Let p be the intersection point between h and £4. By ranky (h) < k, the
1. Now, consider the prism A € E whose xy-projection covers q. We assert that p must
fall inside A; o wise, p falls outside the union of all the prisms of Z, contradicting the fact that the union must
contain the (£'k — 1)-level of H. However, A covering p implies that XY, (A) covers ¢, which in turn indicates
the existence of an A € Zj, covering q, giving a contradiction. O

a plane h
level of p is

We now find a small § C H such that | s Zp, covers Z; the existence of § is guaranteed by Lemma 19.
It is rudimentary to apply a greedy set cover algorithm over {Z, | h € H} to find an & with size at most
|8*|O(log n) = OPT- O(log n). As every query must be covered by the Zj, of at least one h € §, Lemma 18 ensures
that MRR'(8) < (1 + d)k.
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To analyze the running time, we observe:

where the last equality used |A| = O(k?) - |Z| and |Z| = O(n/k) (Lemma 8). After explicitly ge
every h € H, the greedy set-cover algorithm runs in O(nk?) time. This concludes the '

A

heH
= Z number of planes h € Hp s.t. XY, (A) covers A, where A is the prism with A € Ap
AeA
Z |Ha| where A is the prism with A € Ap
AeA
Z O(k)  (applying the definition of shallow cutting)
AeA
= O(|A|- k) = O(nk?)

IA

IA
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