
On Finding Rank Regret Representatives

ABOLFAZL ASUDEH∗, University of Illinois Chicago

GAUTAM DAS, University of Texas at Arlington

H. V. JAGADISH, University of Michigan

SHANGQI LU, Chinese University of Hong Kong

AZADE NAZI, Google Brain
YUFEI TAO, Chinese University of Hong Kong

NAN ZHANG, American University

JIANWEN ZHAO, Chinese University of Hong Kong

Selecting the best items in a dataset is a common task in data exploration. However, the concept of łbestž lies in the eyes

of the beholder: diferent users may consider diferent attributes more important and, hence, arrive at diferent rankings.

Nevertheless, one can remove łdominatedž items and create a łrepresentativež subset of the data, comprising the łbest itemsž

in it. A Pareto-optimal representative is guaranteed to contain the best item of each possible ranking, but it can be a large

portion of data. A much smaller representative can be found if we relax the requirement of including the best item for each

user and, instead, just limit the users’ łregretž. Existing work deines regret as the loss in score by limiting consideration to

the representative instead of the full dataset, for any chosen ranking function.

However, the score is often not a meaningful number, and users may not understand its absolute value. Sometimes small

ranges in score can include large fractions of the dataset. In contrast, users do understand the notion of rank ordering.

Therefore, we consider items’ positions in the ranked list in deining the regret and propose the rank-regret representative

as the minimal subset of the data containing at least one of the top-k of any possible ranking function. This problem is

polynomial time solvable in 2D space but is NP-hard on 3 or more dimensions. We design a suite of algorithms to fulill

diferent purposes, such as whether relaxation is permitted on k , the result size, or both, whether a distribution is known,

whether theoretical guarantees or practical eiciency is important, etc. Experiments on real datasets demonstrate that we can

eiciently ind small subsets with small rank-regrets.

CCS Concepts: · Theory of computation→ Approximation algorithms analysis; · Information systems→ Top-k

retrieval in databases.

∗The authors are ordered alphabetically.

Authors’ addresses: Abolfazl Asudeh, asudeh@uic.edu, Department of Computer Science, University of Illinois Chicago, Chicago, Illinois,

United States; Gautam Das, gdas@uta.edu, Department of Computer Science and Engineering, University of Texas at Arlington, Arlington,

Texas, United States; H. V. Jagadish, jag@umich.edu, Department of Electrical Engineering and Computer Science, University of Michigan, Ann

Arbor, Michigan, United States; Shangqi Lu, sqlu@cse.cuhk.edu.hk, Department of Computer Science and Engineering, Chinese University

of Hong Kong, Hong Kong, China; Azade Nazi, azade@google.com, Google Brain, Mountain view, United States, California; Yufei Tao,

taoyf@cse.cuhk.edu.hk, Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China; Nan

Zhang, nzhang@american.edu, Department of Information Technology and Analytics, American University, Washington DC, United States;

Jianwen Zhao, jwzhao@cse.cuhk.edu.hk, Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong,

China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

0362-5915/2022/1-ART1 $15.00

https://doi.org/10.1145/3531054

ACM Trans. Datab. Syst.

https://doi.org/10.1145/3531054

1:2 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

1 INTRODUCTION

Given a dataset with multiple attributes, it is a challenge to combine the values of multiple attributes to arrive
at a rank. In many applications, especially in databases with numeric attributes, a weight vector w is used to
express user preferences through a linear combination of the attributes (i.e.,

∑

i w[i]Ai). Finding lights based on
a linear combination of criteria such as price and duration [12], diamonds based on depth and carat [35], and
houses based on price and loor area [35] are a few examples.

The diiculty is that the concept of łbestž lies in the eyes of the beholder. Various users may consider diferent
attributes more important and, hence, arrive at very diferent rankings. In the absence of explicit user preferences,
the system can remove dominated items and ofer the remaining Pareto-optimal [11] set as representing the
desirable items in the dataset. Such a skyline (or the set of convex hull points) is the smallest subset of the data
that is guaranteed to contain the top choice of a user based on any monotonic (or linear, resp.) ranking function.
Since the introduction of skylines to the database community [13], a large body of work has been conducted
in this area. A major issue with such representatives is that they can be a large portion of the dataset [8, 37],
especially when there are multiple attributes. Hence, several researchers have tackled [17, 61] the challenge of
inding a small subset of the data for further consideration.

One elegant way to ind a smaller subset is to deine the notion of regret for any particular user. That is, how
much this user loses by restricting consideration only to the subset rather than the whole set. The goal is to
ind a small subset of the data such that this regret is small for every user, no matter what their preference
functions are. There has been considerable attention given to the regret-ratio minimizing set [8, 51] problem
and its variants [3, 16, 22, 41, 43, 50, 63]. Letmall be the maximum score of the objects in dataset based on a
scoring function f . Also, letmsub be the maximum score for a subset of data. The regret-ratio of the subset for f
is (mall −msub)/mall . The classic regret-ratio minimizing set problem aims to ind a subset of size r that minimizes
the maximum regret-ratio for any possible function. Other variations of the problem will be pointed out in later
sections.

Unfortunately, in most real situations, the actual score is a łmade upž number with no direct signiicance. This
is especially true when attribute values are drawn from diferent domains. In fact, the score itself could also be on
a made-up scale. Considering the regret as a ratio helps, but is far from being a complete solution, in particular,
for ranking applications. To see a speciic example, let us consider wine ratings.

Example: Each year, Wine Spectator publishes a list of top wines reviewed over the past 12 months1. This annual
list honors successful wineries, regions, and vintages around the world. Let us consider their 2017 list. The dataset
contained 100 items, deined over the attributes rating, vintage year, and price. Wine ratings are in the scale of
0 to 100. In our Wine dataset, the wine with the highest rating is "Clos des Papes Châteauneuf-du-Pape" whose
rating is 98. A regret of 6 points on the rating gives a small regret-ratio of 6/98 ≈ 0.061. The small regret-ratio
indicates the containment of a łgoodž representative for the user’s choice: note that any subset that contains a
wine with rating of 92 satisies this regret-ratio. However, a wine with this rating is even below the median of the
dataset based on ranking! An example of such a wine is "Volver Alicante Tarima Hill Old Vines". A similar story
holds for a ranking function that considers the combination of vintage year and rating with equal weights
(after normalizing each attribute to the same scale). In this case, an item satisfying the small regret-ratio of 0.05
falls in the middle of the ranked list, i.e., half of the wines in the dataset approximate the top choice better than
that item according to the aforementioned ranking function. □

Although ordinary users may not have a good sense of actual scores, they almost always understand the
notion of rank. Therefore, as an alternative to the regret-ratio, we consider items’ positions in the ranked list and

1http://top100.winespectator.com/lists/

ACM Trans. Datab. Syst.

http://top100.winespectator.com/lists/

On Finding Rank Regret Representatives • 1:3

propose the rank-regret measure to quantify an item’s distance from the top of the list. We deine the rank-regret
of a subset of the data to be k , if it contains at least one of the top-k objects of any possible ranking function.
Since items in a dataset are usually not uniformly distributed by score, solutions that minimize regret-ratio

do not typically minimize rank-regret. In this paper, we seek to ind the smallest subset of the given dataset
that has a rank-regret of k . We call this subset a k-rank-regret representative of the database. The 1-rank-regret
representative of a database (for linear ranking functions) comprises the points on the convex hull: guaranteed to
contain the top choice of any linear ranking function. The number of points on the convex hull is usually very
large: almost the entire dataset when there are ive or more dimensions [8, 37]. By choosing a value of k larger
than 1, we can drastically reduce the size of the rank-regret representative set, while guaranteeing everyone has
a choice in their top-k even if not the absolute top choice.

Example (cont.): As explained earlier, a small diference in regret ratio can actually result in a large swing in
rank. On the other hand, consider a subset that satisies the rank-regret of 6. Such a subset should contain one of
the top 6 (i.e., top 6%, in other words) wines based on rating, which serves as a good approximation for the top-1.
"Cantina del Pino Barbaresco Ovello" (with rating of 97) is such a good representative. □

Before moving to our technical contributions, we would like to underscore the complimentary nature of ranks
and scores: neither should be regarded as the absolute winner. There are applications where scores are more
meaningful, but there are also those where ranks matter more. One major diference between ranks and scores is
that the act of łrankingž has a notion of direct competition at its heart, while the sense of competition is subtler
with scores. Consider, as two well-known applications, credit scores vs. university rankings. Credit scores are
used to evaluate the creditworthiness of an individual and are independent from how others perform. Therefore,
any one who has a credit above a speciic threshold can be a candidate for a loan. On the contrary, when one is
interested in inding a top university, seeing a łhighž score is seldom enough because one must consider how this
score stands in comparison with other universities. Therefore, while regret-ratio makes sense for credit scores,
rank-regret is the proper measure for university rankings.

Rank-regrets have the advantage of being insensitive to scaling, as is an important feature because in practice
various dimensions can have drastically diferent domain lengths (e.g., price measured in dollar vs. ratings
measured in percentile). The rank-regret of a subset remains the same no matter how each dimension is scaled,
while the ratio-regret of a subset can change signiicantly! Preprocessing the data with normalization helps only
to a rather limited extent because normalization is only one possible way to scale and it is not clear at all why it
is the best way. With another moment of thoughts, one would realize that the root cause is still the fact that the
score of an item is not a reliable indication of its competition rank.

Contributions. The following is a summary of our contributions:

(1) We propose the rank-regret representative as a way of choosing a small subset of the database guaranteed
to contain at least one good choice for every user.

(2) We establish its connection to the notion of ϵ-net in computational geometry and initialize the study of
instance optimal ϵ-nets.

(3) We give an algorithm to ind an optimal k-rank-regret representative in 2D space eiciently.
(4) When the dimensionality is 3 or above, inding an optimal k-rank-regret representative is NP-hard. We

present polynomial time algorithms for discovering near-optimal rank regret representatives under diferent
approximation schemes. We also formally separate the case of d ≤ 3 (where d is the dimensionality) from
d ≥ 4 in terms of what type of polynomial eiciency is achievable.

(5) We design a space partition algorithm that returns a k-rank-regret representative of a small size based on a
non-trivial rank-sum lemma.

ACM Trans. Datab. Syst.

1:4 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

dimension max rank regret representative size time source

any ixed d k O (n
k
logn) O (n

k
logn) Theorem 4

2 k OPT Õ (nk) Theorem 7
2 (2 + δ)k ≤ OPT O (n logn) Theorem 12

3 (1 + δ)k Õ (OPT) Õ (nk2) Theorem 13

3 k Õ (OPT) O (nk5/2) Theorem 15

d ≥ 4 k Õ (OPT) O (n ⌊d/2⌋k ⌈d/2⌉+1) Theorem 15

d ≥ 3 k OPT NP-hard Section 4.1

d ≥ 4 Õ (k) Õ (OPT) no ixed-para near- Theorem 14
linear algorithms
(see Section 5.5)

Note 1: n is the dataset size, d is the dimensionality, and OPT is the minimum size of k-rank-regret
representatives.

Note 2: Õ (.) hides a polylogn factor.

Table 1. Summary of formal results

(6) We develop a randomized algorithm that utilizes the knowledge of query distribution to ind a k-rank-regret
representative with probabilistic guarantees.

(7) We conduct extensive experimental evaluation based on real datasets to verify the efectiveness and
eiciency of our techniques.

Table 1 gives an overview of the formal results in this paper.
A short version of this paper appeared in [9]. Compared to that preliminary work, the current paper presents

a more comprehensive treatment of the k-rank-regret problem. The new contributions include bullets (2), (3),
new 2D and 3D approximation algorithms in bullet (4), a more powerful rank-sum lemma in bullet (5), and
experimentation with all the new algorithms.

The rest of the paper is organized as follows. Section 2 formally deines the k-rank-regret problem in the primal
and dual spaces. Section 3 clariies its relevance to ϵ-nets. Section 4 settles the problem optimally in 2D space and
proves the NP-hardness on d ≥ 3. Section 5 presents a systematic study on approximation algorithms. Section 6
leverages a query distribution to discover a good solution, while Section 7 introduces our space partitioning
algorithm. Section 8 evaluates our algorithms with extensive experiments. Section 9 reviews the previous work
directly related to ours. Finally, Section 10 concludes the paper with a summary of indings.

2 PROBLEM DEFINITIONS

Section 2.1 will irst formulate k-rank-regret representative as a problem on multidimensional points. Section 2.2
will then present an equivalent formulation that redeines the problem on multidimensional planes. Our technical
discussion will switch between the two formulations, depending on which is easier to work with in a speciic
context.

2.1 Formulation in the Primal Space

Deine P as a set of points in Rd , where d ≥ 2 is a constant integer. We will refer to each point in P as an object,
reserving the term łpointž for general points in Rd ; for the same reason, we reserve the symbol o for objects and
p for general points in Rd . For a point p ∈ Rd , p[i] (1 ≤ i ≤ d) denotes its coordinate on dimension i . We will
sometimes treat p as a d-dimensional vector p = (p[1], ...,p[d]) where p[i] = p[i].

A weight vector is a d-dimensional vectorw = (w[1], ...,w[d]) wherew[i] ≥ 0 for each i ∈ [1,d]. Thew-score

of an object o ∈ P is the dot productw ·o. Thew-rank of o, denoted as rankw (o), equals r if exactly r − 1 objects in

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:5

o1(−1, 24)

o2(−14/24, 14)

o3(−8/24, 13)

o4(5/24, 9)

o5(13/24, 4)

o6(17/24, 1)

O x

y

Fig. 1. The input set P for our running example

P have higherw-scores than o. The t-set ofw , denoted as Pw (t), contains the objects in P withw-ranks 1, 2, ..., t ,
respectively. Denote by W the set of all possible weight vectors.

For a non-empty subset S ⊆ P , deine itsw-rank regret under aw ∈ W as

RRw (S) = min
o∈S

rankw (o)

and its maximum rank regret as

MRR(S) = max
w ∈W

RRw (S). (1)

S is a k-rank-regret representative of P if MRR(S) ≤ k . The problem studied in this paper is:

Problem 1 (k-Rank Regret Representative Problem). Given a set P of n points and an integer k ∈ [1,n],
ind a k-rank-regret representative of P with the smallest size.

Example: Figure 1 shows a set P of 6 objects in 2D space; this input set will serve as our running example
throughout the paper. Consider the weight vector w = (20, 1). The w-score of o1 is (−1) · 20 + 24 · 1 = 4. The
w-ranks of o6,o5,o4,o3,o1, and o2 are 1, 2, 3, 4, 5, and 6, respectively. Thus, the 3-set of w is {o6,o5,o4}. Let
S = {o3,o4}. Its w-rank regret RRw (S) = 3, namely, the w-rank of o4, which is smaller than that of o3. Later,
we will see that MRR(S) = 3, i.e., S is a 3-rank-regret representative of P . Furthermore, P admits no smaller
3-rank-regret representatives. □

2.2 Formulation in the Dual Space

Next, we provide another formulation under the point-plane duality transformation [25] and establish its equiva-
lence to Problem 1. Deine

W[d],0 = {w ∈ W | w[d] , 0}.

Compared to W , W[d],0 leaves out the weight vectorsw withw[d] = 0 that turn out to be unimportant:

Lemma 1. For any S ⊆ P , MRR(S) (deined in (1)) is exactly maxw ∈W[d],0
RRw (S).

ACM Trans. Datab. Syst.

1:6 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

h1 : y = x− 24

(0, 0) (24, 0)x = 20

h2 : y = 14

24
x− 14

h3 : y = 8

24
x− 13

h6 : y = −17

24
x− 1

h5 : y = −13

24
x− 4

h4 : y = −5

24
x− 9

y = 0

Fig. 2. The dual lines in 2D space for the input P in Figure 1

The proof can be found in the appendix. Deine

W[d]=1 = {w ∈ W | w[d] = 1}.

For any object, itsw-rank remains the same whenw is scaled by a positive factor. Thus, everyw ∈ W[d],0 has

the same k-set asw ′ = (
w [1]
w [d] , ...,

w [d−1]
w [d] , 1). Hence, it suices to consider only W[d]=1, where the weight vectors

are said to be canonical henceforth.
Under point-plane duality, each object o = (o[1], ...,o[d]) in P deines a dual plane

x[d] = *
,
d−1
∑

i=1

(−o[i]) · x[i]+- − o[d] (2)

in the dual space Rd (the plane includes all the points x in Rd satisfying the equation). Denote by H the set of n
dual planes obtained from P in this manner.

Example: Consider, again, the set P of points o1,o2, ...,o6 in Figure 1. Figure 2 shows the corresponding dual
planes (which are lines in 2D) h1,h2, ..., and h6, which constitute the set H . Take o1 as an example. Recall from
Figure 1 that o1 has coordinates (−1, 24), i.e., o1[1] = −1 and o1[2] = 24. From (2), we know that its dual plane
h1 is given by the equation x[2] = −o1[1] · x[1] − o1[2], which is x[2] = −(−1) · x[1] − 24. In Figure 2, x[1] and
x[2] correspond to the łxž and łyž dimensions, respectively. This explains why h1 is represented by the equation
y = x − 24. □

Deine the query space Q as the set of all possible (d − 1)-dimensional vectors q = (q[1], ...,q[d − 1]) satisfying
q[i] ≥ 0 for all i ∈ [1,d − 1]. Each query q ∈ Q determines a line ℓq in the dual space Rd that is parallel to
dimension d and passes the point (q[1], ...,q[d − 1],−∞). Consider the n intersections between ℓq and the planes
in H . For each plane h ∈ H , deine its q-rank, denoted as rankq (h), as r if exactly r − 1 intersections have smaller
coordinates on dimension d than the intersection between ℓq and h. The t-set of q, denoted as Hq (t), includes the
planes in H with q-ranks 1, 2, ..., t , respectively.

Example (cont.): The dimensionality d of the dual space is 2. Hence, the query space Q in Figure 2 is one
dimensional (= d − 1), because of which we will simplify the vector representation q into a real value q. Consider
the query q = 20. Line ℓq is the vertical line x = 20, namely, the line parallel to dimension d = 2 (i.e., y-axis) and

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:7

passing the point (q[1],−∞) = (20,−∞). The lines in H intersect ℓq in the bottom-up order of h6,h5,h4,h3,h1,h2
(see Figure 2). The q-ranks of h6,h5,h4,h3,h1, and h2 are, therefore, 1, 2, ..., 6, respectively. □

It is rudimentary to verify the following one-one correspondence between W[d]=1 and Q:

Proposition 1. Fix any canonical weight vectorw ∈ W[d]=1. Set q = (w[1], ...,w[d − 1]). For any object o ∈ P

with dual plane h ∈ H , rankw (o) = rankq (h).

Example (cont.): Consider the canonical weight vector w = (20, 1); recall that w is canonical if and only if
w[2] = 1. As mentioned in an earlier example, the w-ranks of o6,o5,o4,o3,o1, and o2 are 1, 2, 3, 4, 5, and 6,
respectively. These are identical to the q-ranks (where q = 20) of their corresponding dual planes, namely,
h6,h5,h4,h3,h1,h2, respectively (see the previous example for how the q-ranks are computed. □

Given a non-empty subset S ⊆ H , we deine its q-rank regret as

RRq (S) = min
h∈S

rankq (h)

and accordingly the maximum rank regret of S as

MRR′(S) = max
q∈Q

RRq (S). (3)

Problem 2 (Dual Version of Problem 1). Given a set H of n planes in Rd and an integer k ∈ [1,n], ind a
non-empty S ⊆ H with the smallest size satisfying MRR′(S) ≤ k .

Problems 1 and 2 are equivalent:

Lemma 2. For any S ⊆ P , MRR(S) = MRR′(S), where S = {dual plane of o | o ∈ S }.

Proof. Let us irst prove MRR(S) ≤ MRR′(S). Consider any w ∈ W achieving rankw (S) = MRR(S). By
Lemma 1, there is aw+ ∈ W[d],0 satisfying rankw (S) = rankw+ (S), which implies a canonicalw ′ ∈ W[d]=1 satis-
fying rankw ′ (S) = rankw+ (S) = MRR(S). By Proposition 1, there is a q ∈ Q such that rankq (S) = rankw ′ (S) =
MRR(S). It thus follows that MRR′(S) ≥ rankq (S) ≥ MRR(S).

Reversing the above proves MRR′(S) ≤ MRR(S). □

3 EQUIVALENCE TO EPSILON-NETS

A halfspace in Rd is the set of points p ∈ Rd satisfying
∑d

i=1 ci · p[i] ≥ cd+1, where c1, ..., cd+1 are real-valued
coeicients. The halfspace is non-negative if c1, c2, ..., cd are non-negative (note: there are no constraints on cd+1).

Given a real value ϵ ∈ (0, 1], we call a subset S ⊆ P an ϵ-net if every non-negative halfspace covering at least
ϵn objects in P must cover at least one object in S .

Example: Consider the set P = {p1,p2,p3,p4} of 2D points shown in Figure 3. S = {p1,p4} is a 1/2-net. Let us
examine the (non-negative) halfspace 2x +y ≥ −2 (with boundary line l). Because (i) the halfspace covers 3 points
(p1,p2,p4) in P and (ii) 3 is greater than 4 · (1/2) = 2, the 1/2-net deinition demands that the halfspace should
contain at least one point in S , which is indeed the case (actually, both points in S fall in the halfspace). □

The lemma below reveals a connection between ϵ-nets and rank regret representatives:

Lemma 3. A subset S of P is a k-rank-regret representative of P if and only if S is a (k/n)-net of P .

Proof. The IF direction: Consider an arbitrary weight vectorw = (w[1], ...,w[d]). Let o ∈ P be an object
withw-rank k ; specially, if no such objects exist (due to ties in scores), deine o as an object that has the largest

ACM Trans. Datab. Syst.

1:8 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

O x

y

p1(−1, 1) p2(1, 1)

p3(−1,−1) p4(1,−1)

l : 2x + y = −2

Fig. 3. Illustration of ϵ-net

algorithm net-extreme-skyline (P)
1. sample a set Ssam of O (n

k
logn) points from P with replacement

2. EXT (Ssam) ← the extreme set of Ssam
3. S ← the skyline of EXT (Ssam)

4. return S

Fig. 4. The net-extreme-skyline algorithm

w-rank among all the objects withw-ranks at most k . Set τ = w · o. At least k objects o′ ∈ P satisfyw · o′ ≥ τ .
Thus, the halfplanew · p ≥ τ covers at least k objects of P and, by deinition of (k/n)-net, must contain an object
o
′′ ∈ S . Thew-rank of o′′, therefore, is at most k . This means that S is a k-rank-regret representative.

The ONLY-IF direction: Consider any halfspace h covering at least k objects of P . Let
∑d

i=1 ci · p[i] ≥ cd+1
be the inequality of h. Setw = (c[1], ..., c[d]). Being a k-rank-regret representative, S must contain an object o
in the k-set ofw . Thew-score of o must be at least cd+1 (otherwise, the at least k objects covered by h all have
scores strictly higher than o, giving a contradiction). It thus follows that o is covered by h. This means that S is a
(k/n)-net. □

Obtaining an ϵ-net is simple. As proved in [38], by random samplingO (n
k
logn) points from P with replacement

(assuming that d is a ixed constant), we obtain a set Ssam of points that is a (k/n)-net with probability at least
1 − 1/n2. Combining this with Lemma 3 yields:

Theorem 4. We can compute in O (n
k
logn) time a subset S ⊆ P of size O (n

k
logn) that is a k-rank-regret

representative of P with probability at least 1 − 1/n2.

Instance optimal ϵ-nets. Lemma 3 gives an alternative interpretation of Problem 1: its goal is to ind the smallest

ϵ-net (where ϵ = k/n) on the given P , namely, an instance optimal ϵ-net of P . Even at d = 2, 1/ϵ is a known
worst-case lower bound on the ϵ-net size (a higher lower bound of Ω(n

k
log n

k
) holds for d ≥ 4; see [44]). Hence,

when measured by theworst-case quality, n/k is the best possible, and Theorem 4 is already near optimal. However,
n/k is a pessimistic estimate on the size of the smallest (k/n)-net for every P . As shown in the experiments, we
can ind (k/n)-nets whose sizes are considerably smaller than n/k on real-world data.

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:9

Heuristics. In practice, we may shrink the sample set Ssam described earlier to produce a smaller k-rank-regret
representative. The irst idea is to keep only the extreme set of Ssam Ð denoted as EXT (Ssam) Ð namely, the set of
objects on the convex hull boundary of Ssam. We can shrink Ssam even further by resorting to skylines [13]. Given
two distinct objects o,o′ ∈ EXT (Ssam), we say that o dominates o′ if o[i] ≥ o′[i] on all i ∈ [1,d]. The skyline of
EXT (Ssam) is the set of objects in EXT (Ssam) that are not dominated by other objects in EXT (Ssam). The skyline
serves as a k-rank-regret representative. We refer to the above method as net-extreme-skyline (NES), as shown in
Figure 4.

4 EXACT ALGORITHMS

Section 4.1 will point out the relationships between the proposed k-rank-regret problem and the existing k-regret
minimizing set problem, and establish the former’s NP-hardness for d ≥ 3. Section 4.2 will explain how to solve
Problem 1 in polynomial time for d = 2.

4.1 Connections to Regret-Ratio Minimizing Sets

In this subsection, each object o ∈ P is assumed to have positive coordinates o[1], ...,o[d], which can be achieved
by shifting the coordinate system appropriately. Accordingly, the score of an object is always non-negative under
any weight vectorw .
Deine gainw (P ,k) as the lowestw-score of the objects in the k-set ofw . Given a subset S ⊆ P , Chester et al.

[22] deined its k-regret ratio underw as

k-regratiow (S) =
max {0, gainw (P ,k) − gainw (S, 1)}

gainw (P ,k)

and its maximum k-regret ratio as

k-regratio(S) = max
w ∈W

k-regratiow (S).

In the k-regret minimizing set problem, given an integer k ∈ [1,n] and a size threshold s , we want to ind a subset
S with |S | = s to minimize k-regratio(S).

MRR(S) (see (1)) has a connection to k-regratio(S):

Lemma 5. For any S ⊆ P and any k ∈ [1,n], MRR(S) ≤ k if and only if k-regratio(S) = 0.

Proof. If k-regratio(S) = 0, gainw (P ,k) ≤ gainw (S, 1) holds for any weight vectorw , implying that S contains
at least one object in the k-set ofw . Hence, MRR(S) ≤ k . Reversing the argument proves the only-if direction. □

In 2D space, the k-regret minimizing set problem can be settled in Õ (n2) time [16] (where Õ (.) hides a polylogn

factor). Problem 1 can then be settled in Õ (n2) time. By Lemma 5, it suices to ind the smallest s ∈ [1,n] such
that some subset S ⊆ P of size s achieves k-regratio(S) = 0. Since k-regratio(S) monotonically decreases when
|S | increases, we can discover the desired s with binary search, which requires solving O (logn) instances of the
k-regret minimizing set problem. In the next subsection, we will present an algorithm with a more appealing

time complexity of Õ (nk).
When d = 3, Agarwal et al. [3] proved the NP-hardness of the following problem: given a size threshold

s ∈ [1,n], decide whether there is an S with |S | = s and 2-regratio(S) = 0. This implies that the 3D version
Problem 1 is NP-hard even when k = 2. To see why, if we could ind in polynomial time an S ⊆ P satisfying
MRR(S) ≤ k with the smallest |S |, we could settle the above decision problem by comparing |S | to s (by Lemma 5).
The NP-hardness at d = 3 indicates that Problem 1 is NP-hard for all d ≥ 3.

ACM Trans. Datab. Syst.

1:10 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

4.2 A Faster 2D Algorithm

4.2.1 Levels. In general, let H be a set of n planes in Rd . Fix an arbitrary point p ∈ Rd and a plane h that does not
pass p. We say that p is above h if we must move p towards the negative direction of dimension d for p to touch h;
otherwise, p is below h. The level of p is the number of planes in H below p. The l-level (l ∈ [0,n]) is the set of all
points in Rd whose levels are exactly l , and the (≤ l)-level is the set of all points in Rd whose levels are at most l .

h2
h1h6

h3

h4

h5

012

2 2 2

1

1

2

13

3 3
3

4
4

4

4

5

5
6

Fig. 5. Illustration of levels. Each number indicates the level of the corresponding cell. The gray area is the (≤ 2)-level, while

the striped area is the 3-level.

Example: To illustrate the above concepts, Figure 5 shows a set H of 2D planes Ð a.k.a., lines Ð which are taken
directly from Figure 2. Every number indicates the level at the point where the number is placed. The gray area
represents the (≤ 2)-level, the striped area represents the 3-level, and their union is the (≤ 3)-level. □

In 2D space, the (≤ k)-level induced by H consists of non-overlapping polygons (see Figure 5) whose edges we

refer to as boundary edges. There areO (nk) boundary edges [5, 23] and they can be computed in Õ (nk) time [32].
See Figure 6 for an illustration.

4.2.2 Algorithm. We can rephrase (the 2D version of) Problem 2 in terms of levels. Recall that the input is a set
H of lines in the dual space R2 and the query space Q is the interval [0,∞). Each query q ∈ Q corresponds to a
point (q,−∞) at the bottom of the dual space. Imaging shooting a ray ρ from (q,−∞) upwards, which stops right
before leaving the (≤ k − 1)-level. Hq (k) (the k-set of q) includes exactly those lines of H intersecting with ρ. A
subset S ⊆ H hits q if S has at least one line intersecting with ρ. The goal of Problem 2 is to ind the smallest S
that hits all queries in Q.

Example (cont.): Recall that the gray area of Figure 6 corresponds to the (≤ 2)-level deined by the set of
lines in Figure 5. Assuming k = 3, the rays shot from points (q1,−∞) and (q2,−∞) are ρ1 and ρ2, respectively.
S = {h1,h2,h3} hits q1, but does not hit q2, meaning that S contains at least a line in the 3-set of q1, but nothing in
that of q2. Hence, S is not a solution to Problem 2. An optimal solution is S = {h3,h4} (it hits all queries). Optimal
solutions are not unique; e.g., S = {h2,h5} is another example. □

Next, we explain how to solve Problem 2 in Õ (nk) time. Deine an envelop chain as a sequence C of line
segments σ1,σ2, ...,σ |C | such that:

• every segment of C is in the (≤ k − 1)-level and is part of a line in H , i.e., the segment’s support line;
• C is connected, namely, σi and σi+1 share an endpoint for all i ∈ [1, |C | − 1];
• C is x-monotone, namely, any vertical line in R2 can intersect with at most one segment in C;

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:11

A

B

C

D F

E

G

H

I
J

K

L

M

N O

P

h1 h2

h6

h3

h4

h5

(q1,−∞)

ρ1

(q2,−∞)

ρ2
0

Fig. 6. The boundary edges in the (≤ 2)-level (taken from Figure 5) are shown in bold segments.

• C is concave, namely, the support line of σi has a larger slope than that of σi+1 (equivalently, we need to
make a right turn in walking from σi onto σi+1).

Example (cont.): In Figure 6. The sequence AC, CD, DF is connected, x-monotone, but not concave (we make a left
turn in walking from AC to CD). Two envelop examples are AF, FK, KO and AG, GO. □

The length of an envelop chain C = σ1,σ2, ...,σ |C | is |C |. The projection of C onto the x-axis gives an interval
[x1,x2] (speciically, x1 and x2 are the x-coordinates of the left endpoint and right endpoint of σ1 and σ |C | ,
respectively). Let H [C] be the set of support lines of σ1,σ2, ...,σ |C | .

Lemma 6. Let C∗ be an envelop chain of the minimum length whose x-projection covers the entire Q = [0,∞).

Then, H [C∗] is an optimal solution to Problem 2.

Proof. It is obvious that H [C∗] hits all possible queries and, hence, is a legal solution to Problem 2. Next, we
will prove that every optimal solution S to Problem 2 deines an envelop chain C with H [C] = S such that the
x-projection of C covers Q. This implies the correctness of the lemma.

The upper boundary of the (≤ 0)-level of S must be an envelop chain C . Furthermore, every h ∈ S must
contribute an edge to the (≤ 0)-level; otherwise, h is completely above C , because of which S \ {h} must still hit
all the queries, giving a contradiction to the optimality of S. C is thus the envelop chain promised. □

Example (cont.): In Figure 6, no envelop chains of length 1 have an x-projection covering Q. On the other hand,
the x-projection ofC = AF, FP covers Q. Hence, H [C] = {h3,h4} must be an optimal solution (this corresponds to
{p3,p4} in Figure 1). □

We are now ready to clarify our algorithm for computingC∗. The algorithm, summarized in Figure 7, combines
a dynamic programming strategy of [22] with ideas speciic to our context. Let e be a boundary edge in the
(≤ k − 1)-level of H (Lines 1- 3), p be the right endpoint of e , and p[1] be the x-coordinate of p. Deine minlen(e)

as the smallest length of all envelop chains C such that

• the last segment of C contains e;
• the x-projection of C covers [0,p[1]].

ACM Trans. Datab. Syst.

1:12 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

algorithm 2D-exact (H)

1. compute the (≤ k − 1)-level induced by H
2. E ← the set of (directed) boundary edges in the (≤ k − 1)-level
3. sort, in ascending order, the edges in E using their right endpoints’ x-coordinates
4. for each e ∈ E (in the sorted order) do
5. if the x-projection of e covers coordinate 0 then minlen(e) ← 1
6. else

7. p ← the left endpoint of e
8. IN(p) ← the incoming edges of p in E

9. for each e ′ ∈ IN(p)
10. if e ′ and e are on the same line in H thenw (e ′) ← minlen(e ′)

11. else if e ′ has a greater slope than e thenw (e ′) ← minlen(e ′) + 1
12. elsew (e ′) ← ∞

13. minlen(e) ← mine ′∈IN(p)w (e ′)

14. e∗ ← a terminal edge e ∈ E with the smallest minlen(e)

15.C∗ ← an optimal envelop chain whose last segment contains e∗

/* the x-projection of C∗ covers [0,∞) and |C∗ | = minlen(e)*/

16. return C∗

Fig. 7. The 2D exact algorithm

Call e terminal if its right endpoint falls on the dual space’s right boundary. OPT (i.e., |C∗ |) must be equal to the
minlen(e) of some terminal boundary edge e (Lines 14-15).

Example (cont.): Set k = 3. For the boundary edge CD in Figure 6, we have minlen(CD) = 1 because there is a
monotone chain C with only one segment BD such that (i) BD contains CD and (ii) the x-projection of C covers
[0, D[1]]. Similarly, minlen(LP) = 2, evidenced by the monotone chain C = AF, FP; this C is an optimal solution to
Problem 2. □

To describe the computation of minlen(e) (Lines 4-13), let us view each boundary edge e in the (≤ k − 1)-level
as a directed edge pointing from the left endpoint to the right endpoint. Trivially,minlen(e) = 1 if the x-projection
of e covers the coordinate 0 (Line 5). Otherwise, let p be the left endpoint of e and IN(p) be the set of incoming
edges of p in the (≤ k − 1)-level (Lines 7-8). For each e ′ ∈ IN(p), deine its contribution as:

• minlen(e ′) if e ′ and e are on the same line in H (Line 10);
• 1 +minlen(e ′) if e ′ has a greater slope than e (Line 11) ;
• ∞ otherwise (Line 12).

Then, minlen(e) equals the minimum contribution of all e ′ ∈ IN(p) (Line 13).
Ifm is the total number of boundary edges in the (≤ k − 1)-level, it is now straightforward to compute the

minlen(e) of all those edges e in Õ (m) time by dynamic programming. This produces the value of OPT. It is
standard to construct an optimal solution C∗ from the above dynamic programming process using the same time

complexity. As all the boundary edges can be found in Õ (m) = Õ (nk) time (Section 4.2.1), we have arrived at:

Theorem 7. When d = 2, Problem 2 (hence, Problem 1) can be settled in Õ (nk) time.

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:13

5 A THEORY ON APPROXIMATION ALGORITHMS

This section will present algorithms for solving Problem 1 with strong approximation guarantees. Section 5.1
irst illustrates our high-level objectives in terms of approximation quality and running time. Then, Section 5.2
will introduce the shallow cutting technique, which we apply to design 2D and 3D algorithms in Sections 5.3 and
5.4, respectively. Sections 5.5 and 5.6 are dedicated to dimensionalities 4 and higher.

5.1 Overview of Our Approximation Schemes

Denote by OPT the size of an optimal k-rank-regret representative of the input P . In terms of result quality, our

goal is to compute a c1k-rank-regret representative of size c2 · OPT where 1 ≤ c1 = Õ (1) and 1 ≤ c2 = Õ (1). If an
algorithm can always return such representatives, we call it a bi-criteria approximation algorithm. Even better,
if an algorithm guarantees c1 = 1 and c2 ≥ 1, we refer to it as a size-approximation algorithm; similarly, if an
algorithm guarantees c1 ≥ 1 and c2 = 1, we refer to it as a regret-approximation algorithm.
The k-rank-regret representative problem is NP-hard when d ≥ 3 (Section 4.1). To tackle this computation

barrier, we want to design bi-criteria algorithms inishing in f (k) · Õ (n) time, where f (k) is a monotonic function

depending only on k and satisfying f (k) = Õ (1) for k = O (polylogn). Such algorithms have practical signiicance
because users prefer small values of k in real-world applications. In particular, when k = O (polylogn) (we believe

this already fulills the needs of most applications), the running time of those algorithms is bounded by Õ (n).
Motivated by this, we say that a bi-criteria approximation algorithm A is ixed-parameter near-linear if its

running time is bounded by f (k) · Õ (n). This name suggests that if the parameter k is łixedž (i.e., Õ (1)), then the

computation time is łnear-linearž (i.e., Õ (n)). We will strive to design such algorithms whenever possible. As it
will turn out, they exist for dimensionalities d = 2 and 3 but do not exist for d ≥ 4 (unless major breakthroughs
could be made in computational geometry). For d ≥ 4, therefore, we will drop the ixed-parameter near-linear
requirement and, instead, aim to design bi-criteria algorithms that terminate in polynomial time (for arbitrary k).

5.2 Shallow Cuting

A simplex in Rd is a d-dimensional convex polytope with d + 1 vertices. A 1D simplex is an interval, a 2D simplex
is a triangle, a 3D simplex is a tetrahedron, etc. A prism in Rd is a special d-dimensional simplex that has a vertex
at the bottom of Rd , namely, the vertex’s d-th coordinate is −∞. Figure 8 shows an example for d = 2 and 3,
respectively. A 2D prism has the shape of an ininitely extending trapezoid, which can be thought of as a triangle
whose lower vertex is at the bottom of R2. Likewise, a 3D prism can be thought of as a tetrahedron whose lower
vertex has z-coordinate −∞.

x

y
z

x

y

Fig. 8. 2D and 3D prisms

Let H be a set of n planes in Rd . Fix some integer k ∈ [0,n] and a constant λ > 0. A (λ,k/n)-shallow-cutting of
H is a set Ξ of prisms satisfying:

• Every prism in Ξ is covered by the (≤ (1 + λ)k)-level;
• The union of all prisms in Ξ covers the (≤ k)-level;
• Each prism ∆ ∈ Ξ intersects withO (1+k) planes in H , which constitute the conlict set of ∆, denoted as H∆.

ACM Trans. Datab. Syst.

1:14 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

h2h1h6

h3

h4

h5

∆1
∆2 ∆3 ∆4

ℓq1

q1

ℓq2

q2

Fig. 9. A (1, 1/3)-shallow cuting in 2D space. All the lines come from Figure 6. The gray area is the (≤ 2)-level, the striped

area is a part of the 3-level, and the closed white region is a part of the 4-level.

Example: To further illustrate the above concepts, Figure 9 shows a (λ,k/n)-shallow cutting Ξ where n = 6, k = 2,
and λ = 1. Ξ consists of the four prisms ∆1, ...,∆4 as shown. The union of all those prisms covers the (≤ 2)-level,
but is also contained in the (≤ 4)-level. The conlict set H∆4 , for example, includes h4,h5, and h6. □

Lemma 8 ([1, 20]). When d = 2 and 3, for any λ > 0 and k ∈ [0,n], we can compute a (λ,k/n)-shallow cutting of

O (n/(1 + k)) non-overlapping prisms and all the conlict sets in O (n logn) time.

5.3 A 2D Algorithm

We will describe a regret-approximation algorithm to solve Problem 1 with d = 2. Our goal is to ind a small
subset S ⊆ P that is a ck-rank-regret representative where c = 2+δ and δ > 0 can be an arbitrarily small constant.
We will work on the corresponding instance of Problem 2. Here, the input is a set H of n lines in R2, from

which we want to extract a subset S to make sure RRq (S) ≤ ck for every query q ∈ Q. The query space Q is
[0,∞). Accordingly, we will represent each query simply as a real-value q ≥ 0.

A rank-sum lemma. Consider any query q ∈ [0,∞) and the vertical line ℓq passing the point (q,−∞). Let h be
a line in H and p be the intersection point between h and ℓq . Recall that rankq (h) (i.e., the q-rank of h) equals 1
plus the number of lines below p in H . The lemma states an important property about rankq (h):

Lemma 9. Consider any line h ∈ H . Let q1 and q2 be queries satisfying q1 ≤ q2. For any q ∈ [q1,q2], rankq (h) ≤
rankq1 (h) + rankq2 (h) − 1.

The above will be subsumed by Lemma 16 which, however, requires a more sophisticated argument. Under-
standing the proof of Lemma 9 will make it easier to follow that of Lemma 16. Let us irst see an illustration
in Figure 9. Line h5 has q1-rank 2 and q2-rank 2 (see q1 and q2 in the igure). The lemma assures us that h5 has
q-rank at most 3 for any q ∈ [q1,q2].

Proof. Given a query q, deine (i) pq as the intersection point between h and ℓq , and (ii) ρq as the downward-
shooting ray that emanates from but does not include pq . Let Sq be the set of lines in H intersecting with ρq .
|Sq1 | = rankq1 (h) − 1 and |Sq2 | = rankq2 (h) − 1. We will prove that, for any q ∈ [q1,q2], any line h′ ∈ Sq must
belong to either Sq1 or Sq2 . This indicates |Sq | ≤ |Sq1 | + |Sq2 |, from which the lemma follows.

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:15

pq1 pq2h

h′

ρq1

ρq2

p′
q1 p′

q2

query space Q

(q1,−∞) (q2,−∞)

(q,−∞)

Fig. 10. Proof of Lemma 9

I1 I2

h

Ih

∆1 ∆2

Fig. 11. Illustration of Ih

Let p ′q1 (or p
′
q2
) be the intersection point between h′ and ℓq1 (or ℓq2 , resp.), as shown in Figure 10. Assume

that h′ belongs to neither Sq1 nor Sq2 , which means that p ′q1 and p
′
q2

must be on or above h. Hence, the entire

segment p ′q1p
′
q2

must be on or above h. Therefore, the q-rank of h′ cannot be lower than that of h, contradicting

h′ ∈ Sq . □

The algorithm. Figure 12 shows the pseudocode of our algorithm. We start by using Lemma 8 to obtain a (δ/2,
(k − 1)/n)-shallow cutting Ξ on H . Remember that Lemma 8 also produces the conlict set of each prism ∆,
namely, the set H∆ ⊆ H of lines intersecting with ∆ (Line 1).
For each line h ∈ H , we generate an interval Ih as follows (Line 4). First, identify the leftmost (or rightmost)

prism ∆1 (or ∆2, resp.) intersecting h. Let σ1 be the part of h that appears in ∆1; note that σ1 is a segment. Obtain
similarly a segment σ2 with respect to ∆2. Deine I1 (or I2) as the x-projection of σ1 (or σ2, resp.). The interval
Ih is the minimum bounding interval of I1 and I2. See Figure 11 for an illustration. In the special case where h
intersects with no prisms of Ξ, deine Ih as the empty interval.

Lemma 10. For any line h ∈ H whose Ih is not empty, rankq (h) < (2 + δ)k for any q ∈ Ih ∩Q.

Proof. Let ∆1 and ∆2 be the two prisms that deine Ih . By the fact that q ∈ Ih , we can ind queries q1,q2 ∈ Ih
such that (i) 0 < q1 ≤ q ≤ q2, and (ii) the x-projection of ∆1 (or ∆2) covers q1 (or q2, resp.). Suppose that
ℓq1 intersects h at point p1. Since p1 is inside ∆1, the level of p1 must be at most (1 + δ/2) (k − 1) because
the entire ∆1 is in the (≤ (1 + δ/2) (k − 1))-level of H (deinition of shallow cutting; see Section 5.2). Hence,
rankq1 (h) ≤ (1 + δ/2) (k − 1) + 1 < (1 + δ/2)k . Similarly, rankq2 (h) < (1 + δ/2)k . The claim then follows from
Lemma 9. □

Denote by S
∗ an optimal solution to Problem 2. We observe:

ACM Trans. Datab. Syst.

1:16 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

algorithm 2D-shallow-cutting (H)

1. obtain a (δ/2, (k − 1)/n)-shallow cutting Ξ on H and, thus, the conlict sets {H∆ ⊆ H | ∆ ∈ Ξ }
2. I ← ∅
3. for h ∈ H do

4. generate the interval Ih for h (from the leftmost and rightmost prisms intersecting h)
5. I ← I ∪ {Ih }

6. ind a minimum subset J ⊆ Isuch that the union of the intervals in J covers Q

7. S← {h ∈ H | Ih ∈ J }

8. return S

Fig. 12. The 2D shallow cuting algorithm

Lemma 11. The union of Ih for all the h ∈ S∗ covers Q.

Proof. Assume, on the contrary, that the union fails to include a query q ≥ 0. By deinition of S∗, there exists
a line h ∈ S∗ whose q-rank is at most k . Let p be the intersection point between h and ℓq . The fact rankq (h) ≤ k

indicates that the level of p is at most k − 1. Now, consider the prism ∆ ∈ Ξ whose x-projection covers q. We
assert that p must fall inside ∆; otherwise, p falls outside the union of all the prisms of Ξ, contradicting the fact
that the union must contain the (≤ k − 1)-level of H . However, ∆ covering p implies that Ih must contain q,
giving a contradiction. □

Deine I = {Ih | h ∈ H } (Line 5). We ind a subset J ⊆ I of the smallest size having the property that the
union of all the intervals in J covers Q (Line 6). The existence of J is guaranteed by Lemma 11. Finally, we
return S = {h ∈ H | Ih ∈ J } as our inal result (Lines 7-8).

Theorem 12. In 2D space, the above algorithm runs in O (n logn) time and returns a set S of size at most OPT

whose maximum rank regret is at most (2 + δ)k , where δ > 0 can be an arbitrarily small constant.

Proof. Lemma 11 and the minimality of J together imply |S| = |J | ≤ |S∗ | = OPT. MRR(S) ≤ (2 + δ)k

follows from Lemma 10 and the fact that every query is covered by the Ih of at least one h ∈ S.
Regarding the running time, Lemma 8 itself costs O (n logn) time. For each line h ∈ H , its ∆1 and ∆2 can be

found in time proportional to the number of prisms intersecting h. Hence, the total time spent for this purpose is
proportional to the total size of all the prisms’ conlict sets, which is O (n

1+k · (1 + k)) = O (n). The problem of
discovering J from I is known as the interval covering problem, which can be optimally settled in O (n logn)
time (see, e.g., [9]). □

5.4 A 3D Algorithm

The 3D space can also be dealt with using shallow cutting in a manner similar to what was described in the
2D algorithm. We move the proof of the following theorem to the appendix because the details are somewhat
repetitive.

Theorem 13. For d = 3, we can compute in Õ (nk2) time a subset S ⊆ H of size at most OPT · O (logn) whose
maximum rank regret is at most (1 + δ)k , where δ > 0 can be an arbitrarily small constant.

Remark. Theorem 13 is mainly of theoretical interest. Its primary purpose is to prove the existence of ixed-
parameter near-linear algorithms in 3D space. The algorithm in Theorem 13, unfortunately, is a bit sophisticated
and may not be suitable for practical implementation (for this reason, we will omit it in the experiments). In
Sections 6 and 7, we will develop alternative algorithms for 3D space.

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:17

5.5 Hardness of Dimensions d ≥ 4

In this subsection, we will prove that no ixed-parameter near-linear algorithms exist for d ≥ 4 subject to a
conjecture on a well-known problem in computational geometry.
An object o ∈ P is an extreme point of P if it is a vertex of the convex hull of P . The extreme point problem,

where the goal is to report all the extreme points of P , has been extensively studied. The irst major result was

a 1993 algorithm due to Matousek [48] that has running time O (n2−2/(⌈d/2⌉+1)+ϵ). In his 1996 paper [18], Chan

pointed out that the time can be improved to O (n2−2/(⌈d/2⌉+1)). In the same paper, Chan gave an output-sensitive

algorithm with time Õ (n + (n · OUT)1−1/(⌈d/2⌉+1)), where OUT is the number of extreme points. For d = 4, the

bound is Õ (n + (n · OUT)2/3), which still remains the best today.
In this subsection, we will prove:

Theorem 14. Let OPT be the size of an optimal k-rank-regret representative of P . Suppose that there exists an

algorithm A that, for some value c = O (polylogn), can compute a (ck)-rank-regret representative of size Õ (OPT)

in f (k) · Õ (n) time in 4D space where function f (k) satisies f (k) = O (polylogn) for k = O (polylogn). Then, there

exists an algorithm solving the 4D extreme point problem in Õ (n + OUT4/3) time.

Õ (n + OUT4/3) compares more favorably with Chan’s bound Õ (n + (n · OUT)2/3) and would make an exciting
result. An impossibility result in 4D space trivially holds for d ≥ 5 as well.

Proof for c = 1. Denote by X the set of extreme points of P . The optimal 1-rank-regret representative is the set
S∗ of objects each maximizing the score of at least one weight vector. Thus, S∗ ⊆ X .
S∗ is only a subset of X because we have restricted each weight vectorw to take non-negative components

w[1], ...,w[4]. By requiring each w[i] (i ∈ [1, 4]) to be positive or negative independently, we obtain 24 = 16
instances of Problem 1, all on the same P . Denote by S∗j (1 ≤ j ≤ 16) the optimal 1-rank-regret representative of

the j-th instance. X must be the union of S∗1 , ..., S
∗
16.

Let us run A on each of the 16 instances on P , by forcing the input k to 1. Denote by S j the output of A for

the j-th instance. Since c = 1, it must hold that S∗j ⊆ S j for all j ∈ [1, 16]. Furthermore, the Õ (OPT)-output-size

requirement of A guarantees |S j | = |S
∗
j | · Õ (1). The total running time of A in solving all the instances is

f (1) · Õ (n) = Õ (n).
Set S = S1 ∪ S2 ∪ ... ∪ S16. Because

|S | ≤ 16 ·
16

max
j=1
|S j | = Õ

(

16
max
j=1
|S∗j |

)

= Õ (|X |) = Õ (OUT)

we can ind X in Õ (OUT4/3) time by running Chan’s algorithm on S . This gives an overall algorithm to compute

X in Õ (n + OUT4/3) time.

Proof for c > 1.We can extend the argument to any c = O (polylogn). The crucial idea is to create a new dataset
P ′ by duplicating each object (of P) c times. The argument then proceeds as before except that A should be
applied to the 16 instances on P ′. The property S∗j ⊆ S j is now rephrased as: for every object o ∈ S∗j , at least one

of its copies exists in S j . To understand why, note that there must be a weight vectorw such that o hasw-rank 1
in P . Thus, if none of the c copies of o is in S j , the bestw-rank (in P ′) of the objects in S j underw is at least c + 1,
contradicting the fact that the algorithm must have a maximum rank regret c · k = c . The rest of the argument
then runs through with no diiculty. This completes the proof of Theorem 14.

5.6 Algorithms for Dimensions d ≥ 4

Next, we explain how to obtain a polynomial-time size-approximation algorithm for Problem 1 when d ≥ 4.

ACM Trans. Datab. Syst.

1:18 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

A hitting-set approach. Recall that the k-set Pw (k) of a weight vectorw contains the objects in P with ranks at
most k . A subset S ⊆ P hits a k-set Pw (k) if S ∩ Pw (k) , ∅. Problem 1 essentially aims to ind the smallest subset
hitting all the k-sets.
Although the number of weight vectors is ininite, the number of distinct k-sets is inite because diferent

weight vectors may end up having the same k-set. Let K be the collection of all the (distinct) k-sets {K1, ...,Ks }

where s = |K |. Problem 1 then becomes a hitting set problem: ind the smallest subset S ⊆
⋃s

i=1 Ki such that

S ∩ Ki , ∅ for every i ∈ [1, s]. The standard greedy algorithm runs in time Õ (sk) and guarantees a subset S of
size at most OPT · (1 + lnn).
There is considerable work on bounding the number s of k-sets. Currently, the best bound is O (nk1/3) [26]

for d = 2, O (nk3/2) for d = 3 [57], and in general O (n ⌊d/2⌋k ⌈d/2⌉−cd) for ixed d ≥ 4 [4], where cd is a tiny
constant that tends to 0 very quickly as d grows. We must also account for the time to enumerate all the k-sets.

Enumeration can be done in Õ (nk + sk) expected time [32] in 2D, Õ (nk2 + sk) expected time [2] in 3D, and
O (n ⌊d/2⌋k ⌈d/2⌉ + sk) expected time [49] in ixed d-dimensional space with d ≥ 4.

The above discussion gives:

Theorem 15. For any constant d ≥ 2, we can compute in O (n ⌊d/2⌋k ⌈d/2⌉ + sk) expected time a subset S ⊆ H of

size at most OPT · (1 + lnn) whose maximum rank regret is at most k , where s is the number of distinct k-sets which

is bounded by O (nk3/2) for d = 3 and by O (n ⌊d/2⌋k ⌈d/2⌉) for d ≥ 4.

It is interesting to compare the 3D result of Theorem 15 to that of Theorem 13. The time complexity of

Theorem 15 is O (nk5/2) at d = 3, while that of Theorem 13 is Õ (nk2). If k = polylogn, the two time complexities

are within a factor of Õ (1). For larger k , e.g., when k is a polynomial of n, Theorem 15 actually yields a better
time bound. On the other hand, Theorem 15 produces size-approximation algorithms (i.e., the approximation

ratio on size is 1; see Section 5.1), whereas Theorem 13 can only guarantee Õ (1) approximation ratios on size and
rank regret.

Remark. The hitting set instance mentioned earlier is actually an instance of the geometric hitting set problem.
By replacing the standard greedy algorithm with the re-weighting algorithm of [36] for geometric hitting set, we
can reduce the approximation ratio from 1 + lnn to O (logOPT) at the cost of slightly higher computation time.
We will not delve into further details in this paper.

k-set enumeration. Theorem 15 requires enumerating all possible k-sets, for which purpose the algorithms in
[4, 7, 26, 57] are rather complicated. To alleviate the issue, we describe a practical method which does not improve
the complexities in Theorem 15, but is much easier to implement. Our method is adapted from an algorithm in
[7], which, however, requires the sophisticated concept of k-set polytope (see [7] for details). Instead, we will
adopt an intuitive graph perspective.

We call a k-set clean if it has size k .2 As far as the hitting set approach is concerned, it suices to consider the
set Kclean of clean k-sets [4, 7, 26, 57]. Let us introduce the k-set graph G (V ,E) where:

• V = Kclean;
• E has an edge between two k-sets (a.k.a. vertices) K1 and K2 if and only if |K1 ∩ K2 | = k − 1.

G (V ,E) is connected, namely, it has a single connected component.
Figure 13 shows an algorithm for generating Kclean incrementally by performing a BFS (breadth irst search)

on G. After inding an arbitrary clean k-set (Line 1), the algorithm adds it to a queue (Line 2) and continues the
traversal until the queue is empty (Line 3). At every iteration, the algorithm removes a k-set K (i.e., a vertex inG)
from the queue (Line 4) and generates another set K ′ of size k by replacing exactly one object o ∈ K with an

2The size may be greater than k due to a tie in score among multiple objects.

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:19

algorithm enum-kset (P)
1. Kclean = {K }, where K is an arbitrary clean k-set
2. Enqueue(K)
3. while queue is not empty do

4. K = Dequeue()
5. for o ∈ K do

6. for o′ ∈ P \ K do

7. K ′ = K ∪ {o′} \ {o}

8. if K ′ < Kclean and K
′ is a valid k-set then

9. add K ′ to Kclean; Enqueue(K
′)

10. return Kclean

Fig. 13. The k-set enumeration algorithm

algorithm random-kset(P)
1. K = ∅

repeat

2. generate a weight vectorw following D
3. obtain the k-set Pw (k)

4. if Pw (k) < K then add Pw (k) to K
/* note: if Pw (k) ∈ K , we say thatw is captured */

5. until slen = O (logn) queries are captured in a row
6. return K

Fig. 14. The random-kset algorithm

object o′ ∈ P \ K (Lines 5-7). If K ′ does not belong to Kclean, the algorithm checks whether K ′ is a valid k-set. If
so, K ′ is a neighbor vertex of K in G and, hence, is added to Kclean and to the queue (Lines 8-9). After the BFS
inishes, the inal Kclean is returned (Line 10).

Deciding whether K ′ is a k-set can be done through linear programming. Speciically, the answer is yes if and
only if there exist a weight vectorw and a real value τ such that

• o ·w > τ for every object o ∈ K ′;
• o ·w < τ for every object o ∈ P \ K ′.

Motivated by this, we construct a linear program that has d + 2 variables:w[1], ...,w[d],τ , and д:

maximize д subject to:
1. д ≥ 0
2. ∀o ∈ K ′: o ·w − τ ≥ д

3. ∀o ∈ P \ K ′: o ·w − τ ≤ −д

The above program never returns a negative д (because settingw = 0 and τ = д = 0 gives a feasible solution).
The requiredw and τ exist if and only if the returned д is positive.

6 LEVERAGING A KNOWN QUERY DISTRIBUTION

In this section, we assume a known distribution D for the user-speciied weight vectorw and present a simple
algorithm to complement Theorem 15.

ACM Trans. Datab. Syst.

1:20 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

Recall that the main deiciency of Theorem 15 lies in enumerating all the k-sets. The random-kset algorithm
in Figure 14 alleviates the issue by utilizing the knowledge of D. At the beginning, the algorithm initializes an
empty K (Line 1), which at the end will contain the k-sets found. In each iteration, it samples a weight vectorw
from D and retrieves its k-set Pw (k) (Lines 2-3). If Pw (k) is already in K , we say thatw is captured; otherwise,
we add Pw (k) to K (Line 4). The algorithm terminates after the current K captures slen weight vectors in a row
(Line 5). The K returned at Line 6 is then fed to the hitting set approach to compute the inal representative S.

By setting slen = (lnn)/ ln 1
1−δ ≈

1
δ
lnn, the following holds with probability at least 1 − 1/n:

Prw∼D[S ∩ Pw (k) , ∅] ≥ 1 − δ . (4)

To see why, suppose that (4) is not true, namely, Prw∼D[S ∩ Pw (k) = ∅] ≥ δ . Remember that S hits all the k-sets
in the K returned by random-kset. Thus, S ∩ Pw (k) = ∅ implies Pw (k) < K . By combining all these, we know
that K fails to capture aw drawn from D with probability at least δ . However, in that case, the probability for
K to capture slen independent weight vectors continuously should be very slim. Indeed, the probability is at
most 1/n under our choice of slen.

7 A SPACE PARTITION ALGORITHM

This section will present a heuristic algorithm for inding a k-rank-regret representative in any dimensionality.
The algorithm is built on a rank sum lemma that generalizes Lemma 9 and is interesting in its own right. We will
irst present this lemma in Section 7.1 and then explain the algorithm in Section 7.2.

7.1 A Rank Sum Lemma in Arbitrary Dimensions

We will consider Problem 2. Recall that the input is a set H of planes in Rd ; and the query space Q includes all
(d − 1)-dimensional vectors q such that q[i] ≥ 0 for every i ∈ [1,d − 1]. We want to ind an S ⊆ H such that, for
every query q, S contains a plane h satisfying rankq (h) ≤ k .

The rest of this subsection serves as a proof of:

Lemma 16. Fix an arbitrary plane h ∈ H . Consider a simplex ∆ in the (d − 1)-dimensional query space Q. Let

q1,q2, ...,qd be the query vectors at the d vertices of ∆. Then, for any query q in ∆:

rankq (h) ≤ *
,

d
∑

i=1

rankq
i
(h)+- − (d − 1). (5)

Note how Lemma 16 generalizes Lemma 9: the interval [q1,q2] in Lemma 9 is a simplex ∆ in one-dimensional
space.

Proposition 2. Fix an arbitrary plane h ∈ H . Consider a segment q1q2 in the (d − 1)-dimensional query space

Q. Then, for any query q on the segment, rankq (h) ≤ rankq1
(h) + rankq2

(h) − 1.

Proof. The proof uses the same ideas as in the proof of Lemma 9. Each query q corresponds to the point
(q[1], ...,q[d − 1],−∞) at the bottom of the dual space Rd . Denote by ℓq the line parallel to dimension d and
passing (q[1], ...,q[d − 1],−∞). Deine (i) pq as the intersection point between h and ℓq , and (ii) ρq as the open
downward-shooting ray that emanates from pq but does not include pq . Let Sq be the set of lines inH intersecting
with ρq . |Sq

1
| = rankq

1
(h) − 1 and |Sq2

| = rankq2
(h) − 1. We will prove that, for any q on the segment q1q2, any

plane h′ ∈ Sq must belong to either Sq1
or Sq2

. This indicates |Sq | ≤ |Sq1
| + |Sq2

|, from which the lemma will
follow.
Let p ′q1

(or p ′q2
) be the intersection point between h′ and ℓq1

(or ℓq2
, resp.); Figure 15 illustrates this for d = 3.

Assume that h′ belongs to neither Sq1
nor Sq2

, which means that p ′q1
and p ′q2

must be on or above h. Hence,

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:21

q
1

q
2

ρq
1 ρq

2

pq
1

p′q
1

q

query space Q

h′

h

p′q
2

pq
2

Fig. 15. Proof of Proposition 2

the entire segment p ′q1
p ′q2

must be on or above h. Therefore, the q-rank of h′ cannot be lower than that of h,

contradicting h′ ∈ Sq . □

Proposition 3. Fix an arbitrary plane h ∈ H . Consider anym ≥ 2 queries q1, q2, ..., qm in Q. For any query q

that is a convex combination of q1, q2, ..., qm , rankq (h) ≤ (
∑m

i=1 rankqi (h)) − (m − 1).

Before proving the proposition, we would like to remind the reader that q is a convex combination of q1, q2, ...,
qm if and only if q =

∑m
i=1 αiqi form real values α1, ...,αm in [0, 1] satisfying

∑m
i=1 αi = 1.

Proof. We will prove the proposition by induction onm. The base case ofm = 2 is simply Proposition 2.
Assuming correctness onm = t ≥ 2, next we prove the claim onm = t + 1.

Let us write q as
∑m

i=1 αiqi where α1, ...,αm are real values in [0, 1] such that
∑m

i=1 αi = 1. We consider
0 < αm < 1 (otherwise, the claim holds by the inductive assumption). Introduce:

q
′
=

m−1
∑

i=1

αi

1 − αm
qi

Sinceq′ is a convex combination ofq1, ...,qm−1, by the inductive assumptionwe know rankq′ (h) ≤ (
∑m−1

i=1 rankq
i
(h))−

(m − 2). Notice that q = (1− αm)q′ + αmqm . By Proposition 2, we have rankq (h) ≤ rankq′ (h) + rankqm (h) − 1 ≤
(
∑m

i=1 rankqi (h)) − (m − 1). □

Lemma 16 now follows from the above proposition, using the well-known fact that any vector q inside a
simplex ∆ can be expressed as a convex combination of the d vertex vectors of ∆.

7.2 Algorithm

Our algorithm attacks Problem 2 and takes a set H of planes in the dual space as the input.

Rectangle protection. Let R be a hyper-rectangle in the query space Q and q1, q2, ..., q2d−1 be the query vectors
at the corners of R. Consider an arbitrary plane h ∈ H . Deine r1, ..., rd as the d greatest values in

{rankq1
(h), rankq2

(h), ..., rankq
2d−1

(h)}.

ACM Trans. Datab. Syst.

1:22 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

algorithm space-partition (H)

1. S = ∅

2. Enqueue(Q)
3. while queue is not empty do

4. R = Dequeue() /* R is a rectangle in Q */

5. if R is protected by a plane in S then continue

6. if ∃ a plane h ∈ H that protects R then

7. add h to S (if multiple such h’s exist, add the one with the lowest aggregated rank on R)
else

8. split R into two rectangles of the same size on the dimension where R has the
longest extent; call Enqueue on both two rectangles

9. return S

Fig. 16. The space-partition algorithm

We say that h protects R if

d
∑

i=1

ri ≤ k + d − 1. (6)

The sum
∑d

i=1 ri is the aggregated rank of h on R.

Lemma 17. If h protects R, h has a q-rank at most k for any query q inside R.

Proof. Any point q in R must be covered by at least one simplex that is deined by d corners of R. Let those

corners beq′1,q
′

2, ..., andq
′

d . By Lemma 16, rankq (h) ≤ (
∑d

i=1 rankq′i (h))− (d −1). By the deinition of r1, ..., rd ,

we know
∑d

i=1 rankq′i (h) ≤
∑d

i=1 ri . Therefore, rankq (h) ≤
∑d

i=1 ri − (d − 1) ≤ k + (d − 1) − (d − 1) = k , where
the second inequality used (6). □

Space partition. Lemma 17 inspires us to divide Q into non-overlapping (d − 1)-dimensional rectangles each
protected by a plane in H . The space partition algorithm in Figure 16 starts with an empty S (Line 1) and a queue
storing only one rectangle, i.e., Q itself. In each iteration, the algorithm removes a rectangle R from the queue
(Lines 3-4) and checks whether R is protected by a plane in S (Line 5). If not, it adds to S a plane h ∈ H that
protects R (Lines 6-7). If such an h does not exist, the algorithm splits R into two equi-size rectangles on the
dimension where R has the longest extent and enqueue both. When the queue is empty, every possible query
falls in a protected rectangle, making it safe to return S as a k-rank-regret representative (Line 9).
When Q is inite, the algorithm is guaranteed to terminate due to two observations. First, each split creates

strictly smaller rectangles. Second, when a rectangle R contains only one query q, the plane h ∈ H with q-rank 1
deinitely protects R (in this case, r1 = r2 = ... = rd = 1 and, hence, (6) holds). Q is inite in practice because a
weight representation has a bounded precision (e.g., 64 bits) in a computer.

8 EXPERIMENTS

After providing the algorithms and rigorous theoretical analysis, in this section we present comprehensive
experiments to evaluate our proposal in practical scenarios. To do so, using real datasets, we irst provide a
proof-of-concept experiment that highlights the motivation of inding rank-regret representatives. We will then
turn our attention to evaluating the performance of diferent algorithms under various settings.

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:23

8.1 Experiments Setup

Datasets.Weused real datasets in the experiments. All values were normalized into the range [0, 1] and discretized
into granularity of 0.01.

• BlueNile (BN) dataset3: Blue Nile is the largest online diamond retailer in the world. We collected its catalog
that contained 116,300 diamonds at the time of our collection. We considered the scalar attributes Carat,
Depth, LengthWidthRatio, Table, and Price. For all attributes, except Price, higher values were preferred.
The value of diamonds is sensitive to these measurement such that small changes in scores may mean a lot
in terms of the quality of the jewel. For example, while the listed diamonds at Blue Nile range from 0.23
carat to 20.97 carat, minor changes in the carat afect the price. We considered two similar diamonds, where
one was 0.5 carat in weight and the other was 0.53 carat. Even though all other measures were similar, the
second diamond was 30% more expensive than the irst one. This is also true for Depth, LengthWidthRatio,
and Table. The phenomenon that slight changes in the scores may dramatically afect the value (and the
rank) of the items highlights the motivation of rank-regret.
• US Department of Transportation (DoT) light dataset4: This database is widely used by third-party websites
to identify the on-time performance of lights, routes, airports, and airlines. After removing the records
with missing values, the dataset contains 457,892 records, for all lights conducted by the 14 US carriers
in the last months of 2017; we consider the scalar attributes Dep-Delay, Taxi-Out, Actual-elapsed-time,
Arrival-Delay, Air-time, and Distance for our experiments.

As mentioned, BN and DoT datasets are 5D and 6D in their entirety. We generated d-dimensional versions
(where d ∈ [2, 5] for BN and d ∈ [2, 6] for DoT) of each dataset by including the irst d attributes in the order
mentioned earlier.

Algorithms Evaluated. We will evaluate all the algorithms proposed in this paper under diferent settings.
Speciically, we will present two sets of experiments for the two dimensional (2D) and multi-dimensional cases
(MD) where d ≥ 3, involving the following algorithms:

• net-extreme-skyline (2D, MD): Proposed in Section 3, this algorithm uses sampling to construct an ϵ-net. It
further shrinks the size of the ϵ-net by removing the dominated items. Following Theorem 4 and Lemma 3,
using a sample size of O (n

k
logn) the algorithm returns a k-representative set with probability at least

1 − 1/n2.
• exact (2D): The exact 2D algorithm works based on Theorem 7 and inds an optimal k-representative by

constructing an envelop chain as a sequence of line segments in Õ (nk) time.
• shallow-cutting (2D):The shallow-cutting algorithm, proposed in Section 5.3, provides a 2D regret-approximation
algorithm for inding a (2 + δ)k-representative of size at most OPT, where δ > 0 can be an arbitrarily small
constant, in O (n logn) time. The value of δ was set to 1, i.e., the regret approximation ratio was 3.
• k-set (2D, MD): The k-set algorithm is a size-approximation algorithm that provides a k-representative of
size at most OPT ·O (logOPT) by irst enumerating the k-sets and modeling the problem as an instance of
hitting set. We will see in our experiments that this algorithm is expected to perform well when k is small.
• rand-k-set (2D, MD): Due to the high complexity of enumerating the k-sets, the randomized algorithm in
Section 6 serves as a practical alternative for enumerating the k-sets. Algorithm rand-k-set is the same as
the k-set algorithm, except that the former uses the randomized algorithm for enumerating the k-sets. The
distribution D was set to uniformity for rand-k-set, which essentially says that we aimed to capture all

3www.bluenile.com/diamond-search?
4www.transtats.bts.gov/DL_SelectFields.asp?

ACM Trans. Datab. Syst.

www.bluenile.com/diamond-search?
www.transtats.bts.gov/DL_SelectFields.asp?

1:24 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

dimension BN dataset DoT dataset

d = 2 19 13

d = 3 69 56

d = 4 206 168

d = 5 553 445

d = 6 ś 1012

Table 2. The sizes of extreme points at various dimensions

weight vectors, instead of biasing towards particular vectors. The parameter δ for rand-k-set was set to
0.01.
• space-partitioning (2D, MD): The space-partitioning algorithmworks based on the rank sum lemma proposed
in Section 7.1. As will be shown in the experiments, this algorithm is expected to perform well as long as k
is not excessively small.

We preceded each of the above methods with a preprocessing step to shrink the input P of Problem 1. As
deined in Section 3, an object o dominates another one o′ if o[i] ≥ o′[i] for all i ∈ [1,d]. The k-skyband of P
includes every object o ∈ P that is dominated by at most k − 1 other objects in P . The k-set of any weight vector
must be fully contained in the k-skyband [53]. Therefore, as opposed to P itself, we can solve Problem 1 on its
k-skyband instead, which is usually much smaller. For any ixed dimensionality d , the k-skyband can be found in
Õ (n) time [58].

Evaluation measurements. We will evaluate the algorithms using three measures: (i) time, (ii) representative
size, and (iii) rank-regret. Time evaluates the eiciency of an algorithm, while representative size and rank-regret
measures evaluate how efective the algorithm is in inding good and compact representatives.

Default values. In every experiment, we vary one parameter while ixing the other parameters to the following
default values: k = 8, d = 4, and n = 116, 300 for BN and 457, 892 for DoT.

8.2 Performance Evaluation

Having provided the proof of concept, we proceed to evaluate the performance of our algorithms under diferent
settings.

Number of extreme points. As mentioned in Section 1, the 1-rank-regret representative of a dataset comprises
the points on the boundary of the convex hull, i.e., the extreme points, which guarantee to contain the top choice
of any linear ranking function. However, the number of extreme points can be very large. Table 2 shows the
number of extreme points in the BN and DoT datasets at various dimensionalities. As will become evident in
the upcoming experiments, the number of extreme points is usually several times the size of the rank-regret
representative we ind. This further strengthens our motivation and supports the necessity of developing eicient
algorithms for discovering (small) rank-regret representatives.

2D, varying k . Henceforth, we will follow the paradigm explained in Section 8.1, namely, in every experiment,
we will study the impact of one parameter, while ixing the other parameters to their default values.

The value of k greatly impacts the ability to reduce the size of the rank-regret representative. For example,
when k = 1, all the items on the boundary of the convex hull appear in the representative. As the value of k
increases, it gives us the freedom to have more choices for every ranking function, hence more opportunity to

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:25

k-set exact nes rand-k-set sc sp

10−3

10−2

10−1

100

101

102

1 2 4 8 16 32 64

ru
n
n
in
g
ti
m
e(
se
c)

k

Fig. 17. BN, 2D: impact of varying k on time

k-set exact nes rand-k-set sc sp

10−3

10−2

10−1

100

101

102

1 2 4 8 16 32 64

ru
n
n
in
g
ti
m
e(
se
c)

k

Fig. 18. DoT, 2D: impact of varying k on time

k-set exact nes rand-k-set sc sp

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64

re
p
re
se
n
ta
ti
v
e
si
z
e

k

Fig. 19. BN, 2D: impact of varying k on output size

k-set exact nes rand-k-set sc sp

0

1

2

3

4

5

6

1 2 4 8 16 32 64

re
p
re
se
n
ta
ti
v
e
si
z
e

k

Fig. 20. DoT, 2D: impact of varying k on output size

k-set exact nes rand-k-set sc sp

1

10

20

30

40

50

60

70

1 2 4 8 16 32 64

ra
n
k
re
g
re
t

k

Fig. 21. BN, 2D: impact of varying k on output rank regret

k-set exact nes rand-k-set sc sp

1

10

20

30

40

50

60

70

1 2 4 8 16 32 64

ra
n
k
re
g
re
t

k

Fig. 22. DoT, 2D: impact of varying k on output rank regret

ind items that cover large portions of the ranking functions. Besides the size of the representative, the running
time of the algorithms may also depend on the choice of k . Therefore, as the irst 2D experiment, we vary the
value of k while ixing other parameters to their default values. The results are provided in Figures 17 to 22.

Figures 17 and 18 show the time taken by each algorithm to ind a representative. First, one can observe that
the k-set algorithm was signiicantly slower than all other algorithms and its running time rapidly increased as
the value of k increased. The reason for the algorithm’s bad running time is that it requires enumerating all the
k-sets before solving a hitting set problem. Therefore, the running time of the algorithm signiicantly depends on
the number of k-sets. The number of k-sets, on the other hand, depends on the value of k . As observed in the
experiments on both the BN and DoT datasets, the increase in the value of k resulted in a signiicant increase in

ACM Trans. Datab. Syst.

1:26 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

k-set exact nes rand-k-set sc sp

10−4

10−3

10−2

10−1

100

0.2 0.4 0.6 0.8 1

ru
n
n
in
g
ti
m
e(
se
c)

n (ratio of full size)

Fig. 23. BN, 2D: impact of varying n on time

k-set exact nes rand-k-set sc sp

10−4

10−3

10−2

10−1

100

0.2 0.4 0.6 0.8 1

ru
n
n
in
g
ti
m
e(
se
c)

n (ratio of full size)

Fig. 24. DoT, 2D: impact of varying n on time

k-set exact nes rand-k-set sc sp

0

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1

re
p
re
se
n
ta
ti
ve

si
ze

n (ratio of full size)

Fig. 25. BN, 2D: impact of varying n on output size

k-set exact nes rand-k-set sc sp

0

1

2

3

4

5

6

0.2 0.4 0.6 0.8 1

re
p
re
se
n
ta
ti
ve

si
ze

n (ratio of full size)

Fig. 26. DoT, 2D: impact of varying n on output size

k-set exact nes rand-k-set sc sp

2

4

6

8

10

0.2 0.4 0.6 0.8 1

ra
n
k
re
gr
et

n (ratio of full size)

Fig. 27. BN, 2D: impact of varying n on output rank regret

k-set exact nes rand-k-set sc sp

3

6

9

12

15

18

0.2 0.4 0.6 0.8 1

ra
n
k
re
gr
et

n (ratio of full size)

Fig. 28. DoT, 2D: impact of varying n on output rank regret

the number of k-sets, causing the poor running time of the algorithm. Even though the rest of the algorithms
did not have running times as bad as k-set, still rand-k-set had a worse running time and it got worse as k
increased. The main reason why rand-k-set outperformed k-set in the running time is that, compared to the
graph enumeration approach for inding the k-sets, rand-k-set used a more eicient randomized algorithm for the
same purpose. We also note that, at least theoretically, rand-k-set may miss the k-sets of certain weight vectors,
resulting in a potentially smaller number of k-sets in some cases. Among other algorithms, the exact 2D algorithm,
even though initially fast, took noticeably more time than the others as k increased. Net-extreme-skyline (labeled
nes in the legend) had a stable running time (but not the fastest) for diferent values of k . The shallow-cutting
and space-partitioning algorithms (labeled sc and sp in the legend) had similar running time and both were

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:27

signiicantly faster than all other algorithms across all values of k . We note that shallow-cutting is an algorithm
speciically designed for 2D, while space-partitioning works for arbitrary dimensionalities.
Figures 19 and 20 show the size of the output (representative set) found by each algorithm, while Figures 21

and 22 show the rank-regret of the output. Please note that the exact algorithm guarantees to the optimal set (i.e.,
minimum size), while the output of the other algorithms is approximate. Among the approximation algorithms,
net-extreme-skyline consistently returned the largest sets but its output always satisied the rank-regret of k . The
outputs of all other algorithms were very close to optimality, a strong indication that they are efective in inding
compact sets. The k-set and space partitioning algorithms always guarantee the rank-regret of k , rand-k-set and
net-extreme-skyline ensure the guarantee with very high probability, and shallow cutting was parameterized
for a 3-approximate assurance on rank-regret. By comparing the exact algorithm with all other algorithms in
Figures 21 and 22, one can notice that, interestingly, except shallow-cutting, the output of all algorithms satisied
the rank-regret of k . In fact, the same is nearly true for shallow-cutting whose rank regret was always bounded
by k , except in a single case (BN, k = 64),

2D, varying the dataset size (n). Rank regret representatives are compact representatives that are intended to
be signiicantly smaller than the dataset size. The connection to ϵ-nets (Section 3) provides an upper-bound on
the size of the representative set which, however, needs to be 1/k of the original dataset. Therefore, our earlier
results in Figures 19 and 20 suggest that traditional sampling approaches for inding an ϵ-net are not necessarily
efective in practical scenarios. Our objective is to ind the minimal set that satisies the rank regret constraint.
Recall that Section 3 also gave a lower-bound n/k on the size of any ϵ-net in the worst case. Despite this negative
result, Figures 19 and 20 indicate that this lower bound can be excessively pessimistic on real data. To further
demonstrate these phenomena, in the next experiment, we varied the dataset size, while observing the algorithms
performance, rank-regret, and the output size for each algorithm and setting.

The results are provided in Figures 23 to 28. For every dataset, we controlled n by randomly selecting 20%, 40%,
60%, 80%, and 100% of the data. First, as in Figures 23 and 24, the running time of the algorithms was stable as the
value of n increased. Among diferent algorithms, k-set had the longest running time and shallow-cutting had
the least. Figures 25 and 26 show the output size for the BN and DoT datasets, while Figures 27 and 28 show the
rank-regret of the generated results obtained by diferent algorithms. Similar to the previous experiments, the
output of net-extreme-skyline had the maximum size, while the others were close to the optimum (the output
size of the exact algorithm). Furthermore, all algorithms returned representatives achieving a rank-regret of k ,
except shallow-cutting, which guaranteed 3-approximation. These observations imply that all algorithms except
shallow-cutting found near-optimal solutions. A perhaps more important observation is that even though the
theoretical lower bound from the ϵ-net interpretation suggests that the output size should be only a constant
factor smaller than the dataset (recall k = 8, the default value, here), in practice this number may be only a
handful and hardly increase with n.

MD, varying k . After evaluating the 2D solutions, we now turn our attention to MD where d ≥ 3. In the
upcoming experiments, we study the impact of varying the value of k on the performance of diferent MD
algorithms. Figures 29 to 34 show the results across diferent settings for the BN and DoT datasets.

First, looking at the running time of the algorithms in Figures 29 and 30, net-extreme-skyline was the fastest
across diferent cases, while k-set did not scale well with k . An interesting observation, however, is that while the
running time of k-set and rand-k-set monotonically increased with k , that of space-partitioning actually decreased

as k went up. The reason for the increase in the running time of k-set and rand-k-set is that (assuming k < n/2)
the number of k-sets escalates as k increases. This forces both algorithms to spend more time enumerating the
k-sets and solving the hitting set problem. For larger k , however, the space-partitioning algorithm inds more
opportunity to prune the search space, simply because it essentially looks for common elements in larger sets,

ACM Trans. Datab. Syst.

1:28 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

k-set nes rand-k-set sp

10−2

10−1

100
101
102
103
104

1 2 4 8 16 32 64

ru
n
n
in
g
ti
m
e(
se
c)

k

Fig. 29. BN, MD: impact of varying k on time

k-set nes rand-k-set sp

10−1

100

101

102

103

104

1 2 4 8 16 32 64

ru
n
n
in
g
ti
m
e(
se
c)

k

Fig. 30. DoT, MD: impact of varying k on time

k-set nes rand-k-set sp

0

20

40

60

80

1 2 4 8 16 32 64

re
p
re
se
n
ta
ti
v
e
si
z
e

k

Fig. 31. BN, MD: impact of varying k on output size

k-set nes rand-k-set sp

0

10

20

30

40

50

60

1 2 4 8 16 32 64

re
p
re
se
n
ta
ti
v
e
si
z
e

k

Fig. 32. DoT, MD: impact of varying k on output size

k-set nes rand-k-set sp

1

10

20

30

40

50

1 2 4 8 16 32 64

ra
n
k
re
g
re
t

k

Fig. 33. BN, MD: impact of varying k on rank regret

k-set nes rand-k-set sp

1

10

20

30

40

50

60

70

1 2 4 8 16 32 64

ra
n
k
re
g
re
t

k

Fig. 34. DoT, MD: impact of varying k on rank regret

which are the top-k results (which are supersets of the results of smaller k). These observations together indicate
that (rand-)k-set and space partitioning are complimentary algorithms for inding rank-regret representatives in
diferent settings.
Next, we studied the output size (Figures 31 and 32) and rank-regret (Figures 33 and 34) for the BN and DoT

datasets. Recall that, in theory, the space partitioning and k-set algorithms guarantee the rank-regret of k , while
rand-k-set and net-extreme-skyline guarantee the same with very high probability. However, in all settings across
the two datasets, every algorithm managed to ind k-rank representatives. The net-extreme-skyline algorithm,
in spite of being fast, failed to ind compact representatives, especially as k increases. The rand-k-set and k-set
algorithms generated the smallest outputs, and their representative sizes decreased as k increased. In particular,

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:29

k-set nes rand-k-set sp

10−3

10−2

10−1

100
101
102
103
104

2 3 4 5

ru
n
n
in
g
ti
m
e(
se
c)

d

Fig. 35. BN, MD: impact of varying d on time

k-set nes rand-k-set sp

10−3

10−2

10−1

100
101
102
103
104

2 3 4 5 6

ru
n
n
in
g
ti
m
e(
se
c)

d

Fig. 36. DoT, MD: impact of varying d on time

k-set nes rand-k-set sp

0

50

100

150

200

250

300

2 3 4 5

re
p
re
se
n
ta
ti
v
e
si
z
e

d

Fig. 37. BN, MD: impact of varying d on output size

k-set nes rand-k-set sp

0

20

40

60

80

100

120

2 3 4 5 6

re
p
re
se
n
ta
ti
v
e
si
z
e

d

Fig. 38. DoT, MD: impact of varying d on output size

k-set nes rand-k-set sp

0

2

4

6

8

2 3 4 5

ra
n
k
re
g
re
t

d

Fig. 39. BN, MD: impact of varying d on rank regret

k-set nes rand-k-set sp

0

2

4

6

8

2 3 4 5 6

ra
n
k
re
g
re
t

d

Fig. 40. DoT, MD: impact of varying d on rank regret

for all settings with k > 10 in both datasets the output size was always less than 10, fully echoing the motivation
of rank-regret representatives.

MD, varying the number d of dimensions. In this experiment, we evaluate diferent MD algorithms for
diferent values of d . The results are provided in Figures 35 to 40.

Let us irst look into the running time of the algorithms across diferent settings (Figures 35 and 36). The k-set
algorithm failed to scale beyond four dimensions because the exact (graph-traversal) algorithm in Section 5.6
for enumerating the k-sets did not inish within the time budget (20,000 seconds). In contrary, the rand-k-set
algorithm (being eicient in inding the k-sets) scaled much better with respect to d . The time performance of

ACM Trans. Datab. Syst.

1:30 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

k-set nes rand-k-set sp

10−2

10−1

100
101
102
103
104

0.2 0.4 0.6 0.8 1

ru
n
n
in
g
ti
m
e(
se
c)

n (ratio of full size)

Fig. 41. BN, MD: impact of varying n on time

k-set nes rand-k-set sp

10−1

100

101

102

103

104

0.2 0.4 0.6 0.8 1

ru
n
n
in
g
ti
m
e(
se
c)

n (ratio of full size)

Fig. 42. DoT, MD: impact of varying n on time

k-set nes rand-k-set sp

0

20

40

60

80

0.2 0.4 0.6 0.8 1

re
p
re
se
n
ta
ti
ve

si
ze

n (ratio of full size)

Fig. 43. BN, MD: impact of varying n on output size

k-set nes rand-k-set sp

0

10

20

30

40

50

0.2 0.4 0.6 0.8 1

re
p
re
se
n
ta
ti
ve

si
ze

n (ratio of full size)

Fig. 44. DoT, MD: impact of varying n on output size

k-set nes rand-k-set sp

1

3

5

7

9

0.2 0.4 0.6 0.8 1

ra
n
k
re
gr
et

n (ratio of full size)

Fig. 45. BN, MD: impact of varying n on rank regret

k-set nes rand-k-set sp

1

3

5

7

9

0.2 0.4 0.6 0.8 1

ra
n
k
re
gr
et

n (ratio of full size)

Fig. 46. DoT, MD: impact of varying n on rank regret

the space-partitioning algorithm worsened as d became larger, due to the curse of dimensionality, i.e., signiicant
enlargement in the search space. The net-extreme-skyline had the best time performance but, as discussed next,
it failed to ind compact representatives. Figures 37 and 38 show the output size, and Figures 39 and 40 show
the rank-regret of the generated output for the BN and DoT datasets. Similar to the previous experiments, all
algorithms were able to ensure the rank-regret of k = 8 across diferent settings. Evidently, the representative
sets of net-extreme-skyline were fairly large, especially as d increased, while (rand-)k-set managed to secure
small representatives in all cases.

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:31

MD, varying the dataset size n. Finally, we conclude our experiments by studying the impact of varying the
dataset size on the performance of diferent algorithms. To do so, similar to the corresponding 2D experiments,
we selected 20% to 100% of the BN and DoT datasets for the default values of k = 8 and d = 4. The results are
provided in Figures 41 to 46.
Looking at Figures 41 and 42, one can see that, even as the value of n increased, all algorithms had a stable

running time for all values of n. Also, looking at Figures 45 and 46, one can see that the output of all algorithms
satisied the rank-regret requirement (k = 8) in all settings, as is consistent with the previous experiments. As
shown in Figures 43 and 44, the output of net-extreme-skyline was the largest, while (rand-)k-set could ind
representatives with size around 10 in all the scenarios.

9 RELATED WORK

The problem of inding preferred items of a data set has been extensively investigated in recent years, and research
has spanned multiple directions, most notably in top-k query processing [40] and skyline discovery [13]. In top-k
query processing, the approach is to model the user preferences by a ranking/utility function which is then used
to preferentially select tuples. Fundamental results include access-based algorithms [15, 33, 34, 46] and view-based
algorithms [24, 39]. In skyline research, the approach is to compute subsets of the data (such as skylines and
convex hull points) that serve as the data representatives in the absence of explicit preference functions [11, 13, 55].
Skylines and convex hull points can also serve as efective indexes for top-k query processing [10, 21, 62].
Eiciency and efectiveness have always been the ch6allenges in the above studies. While top-k algorithms

depend on the existence of a preference function and may require a complete pass over all of the data before
answering a single query, representatives such as skylines may become overwhelmingly large and inefective in
practice [8, 37]. Studies such as [17, 61] are focused towards reducing the skyline size. In an elegant efort towards
inding a small representative subset of the data, Nanongkai et al. [51] introduced the regret-ratio minimizing
representative. The intuition is that a łclose-to-topž result may satisfy the users’ need. Therefore, for a subset of
data and a preference function, they consider the score diference between the top result of the subset versus
the actual top result as the measure of regret, and seek the subset that minimizes its maximum regret over all
possible linear functions. Since then, works such as [3, 8, 16, 41, 43, 50, 54, 63] studied diferent challenges and
variations of the problem. As discussed in Section 4.1, Chester et al. [22] generalize the regret-ratio notion to
k-regret ratio, and Agarwal et al. [3] prove that the k-regret minimizing set problem is NP-complete even when
d = 3. For the case of two dimensional databases, [22] proposes a quadratic algorithm. The cube algorithm and a
greedy heuristic [51] are the irst algorithms proposed for regret-ratio in dimensionality d ≥ 3. Recently, [3, 8]
independently propose similar approximation algorithms for the problem, both discretizing the function space
and applying the hitting set, thus, providing similar controllable additive approximation factors. The major
diference is that [8] considers the original regret-ratio problem while [3] considers the k-regret variation. It is
important to note that the above prior works consider the score diference as the regret measure, making their
problem setting diferent from ours, since we use the rank diference as the regret measure.

We now review results relevant to the geometric notions that were used in this paper to develop new algorithms.
Such notions include ϵ-net (for the net-extreme-skyline algorithm, Figure 4), (≤ k)-level in 2D space (for the
2D exact algorithm, Figure 7), shallow cutting (for the 2D and 3D shallow cutting algorithms, Figure 12 and
Theorem 13), and k-set (for the k-set enumeration algorithm, Figure 13).

Haussler and Welzl [38] proved that a random sample (with replacement) of size O (d
ϵ
log 1

δϵ
) from a d-

dimensional points set P is an ϵ-net (for halfspaces) with probability at least 1 − δ . We utilized this result in
designing the net-extreme-skyline algorithm. For certain dimensionalities (in particular, 2 and 3), it is possible to
produce even smaller ϵ-nets; we refer the reader to [6, 14, 19, 42, 44, 60] for details.

ACM Trans. Datab. Syst.

1:32 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

The notion of (≤ k)-level, deined on a set H of lines, is fundamental in computational geometry. Recall from
Section 4.2.1 that the (≤ k)-level is partitioned into non-overlapping polygons using the lines in H . In the special
case of k = n (where n = |H |), the set of polygons that constitute the (≤ n)-level is called the arrangement of

H . The arrangement can be computed in Õ (n2) time (the algorithm is easy to implement; see [25]). Another
special case worth mentioning is k = 0. The (≤ 0)-level (namely, the 0-level) consists of a single polygon, whose
boundary is called the lower envelope and can be computed in O (n logn) time (again, the algorithm is easy to
implement; see [25]). For general values of k , Alon and Gyori were the irst to prove that the (≤ k)-level has
O (nk) boundary edges (recall that a boundary edge is an edge of a polygon in the (≤ k)-level); the bound is tight
in the worst case, meaning that the number of boundary edges can reach Ω(nk). Clarkson and Shor [23] provided
an alternative (somewhat simpler) argument to prove the same bound. To establish Theorem 7, we leveraged an
O (n logn + nk)-time algorithm for computing the (≤ k)-level; the algorithm was due to Everett et al. [32].

The algorithm of [32] is a bit complicated and diicult to implement. There exist heuristic methods for inding
the (≤ k)-level which, although not attractive in worst-case time complexity, are much simpler to implement.
One such method is Onion [21]. Next, we illustrate the Onion approach for k = 1 because the extension to higher
k values is straightforward. Let H be a set of lines whose (≤ 1)-level is to be computed. First, ind the set L0
of lines that deine the lower envelope of H (which, as mentioned before, takes O (|L0 | log |L0 |) time). Then, we
remove L0 from H (as if peeling of the out-most layer of an onion) and obtain H1 = H \ L0. In the same fashion,
we ind the set L1 of lines that deine the lower envelope of H1. All the lines relevant to the (≤ 1)-level of H must

be in L = L0 ∪ L1. We can now compute the arrangement of L (which, as mentioned before, takes Õ (|L|2) time)
and then derive the (≤ 1)-level of H from the line arrangement. For small k , the size of L is considerably smaller
than n, thus allowing the method to terminate fast.
Shallow cuttings were introduced by Matousek [47] as a tool for halfspace range reporting. He [47] gave a

polynomial-time algorithm to compute a shallow cutting in any constant-dimensional space. Later, Ramos [56]
presented randomized algorithms for 2D and 3D space, both of which run inO (n logn) expected time (where n is
the number of planes in the input). Also focusing on 2D and 3D, Chan and Tsakalidis [20] discovered deterministic
algorithms that inish in O (n logn) time. The speciic form of shallow cuttings we used in Section 5.2 is a reined
version of Matousek’s and was proposed by Afshani and Chan [1]. They also showed [1] that, in 2D and 3D space,
all the aforementioned algorithms designed to compute Matousek’s version can be used to compute the reined
version with the same time complexity.

There is a simpler method to compute a (λ,k/n)-shallow cutting whose size may not be bounded byO (n/(1+k))
but is often suiciently small for practical use. Imagine sweeping a vertical line ℓ from left to right and, in doing
so, trace out a prism ∆ continuously. Speciically, ∆ is 2-sided: its left and top edges have been decided, but its
right edge is aligned with ℓ and is still moving towards right along with ℓ. The prism’s right edge is inalized at
the current ℓ when, if ℓ continues to move, ∆ will violate the conditions of (λ,k/n)-shallow cutting. After that, we
create another 2-sided prism ∆′ right away. Speciically, the left edge of ∆′ is aligned with ℓ, while its top edge is
the (1 + λ/2)k-th lowest line (in the input set) at the current position of ℓ. The process then repeats until the end.
Lovasz and Erdos [31, 45] appeared to be the irst to formally investigate how many k-sets can be induced

by a set of 2D points. Their work motivated a fruitful line of research on bounding the number of k-sets. See
[26, 29, 30, 52, 59] for results on dimensionalitiy d = 2 and [4, 27, 28, 57, 59] for results on d ≥ 3. The problem of
enumerating all k-sets has been studied in [32] for 2D and in [4, 7, 26, 57] for higher dimensionalities. A practical
algorithm for enumerating k-sets has been described in Section 5.6.

10 CONCLUSIONS

In this paper, we proposed a rank-regret measure that is easier for users to understand, and often more appropriate,
than regret computed from score values. We deined rank-regret representative as the minimal subset of the

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:33

data containing at least one of the top-k of any possible ranking function. Our systematic study contains an
optimal polynomial time algorithm in 2D space, an NP-hardness proof in 3 or more dimensions, approximation
algorithms of various dimensionalities under diferent approximation schemes, a randomized algorithm utilizing
the knowledge of query distribution, and a space-partition algorithm leveraging an interesting rank-sum lemma.
In addition to theoretical analyses, we conducted empirical experiments on real data that veriied the efectiveness
and eiciency of our techniques. The proposed algorithms nicely complement each other and together constitute
an adequate set of solutions covering a great variety of practical scenarios.
Our work initializes several directions for future research. Recall that in 2D space we developed a bi-criteria

approximation algorithm with running time O (n logn). Currently, it remains elusive to design a bi-criteria
approximation algorithm with the same time complexity in 3D space. Like most of the research in the skyline
literature, this paper focused on low and medium dimensionalities. When the dimensionality is very large such
that it can no longer be considered a constant, our algorithms would not work well. How to overcome this issue
is another exciting topic for investigation. The last direction we want to mention concerns updates. In this work,
we have assumed the input set of points to be static. It would be nice to have algorithms that can maintain a
rank-regret representative eiciently along with the insertions/deletions on the input.

ACKNOWLEDGEMENTS

Abolfazl Asudeh’s research was supported in part by project 2107290 from the US National Science Foundation
(NSF). Jagadish’s research was supported in part by projects 1741022 and 2106176 from NSF. Gautam Das’s
research was supported in part by projects 2107296 and 2008602 from NSF. Yufei Tao’s research was supported in
part by GRF projects 142034/21 and 142078/20 from Hong Kong Research Grants Council. Nan Zhang’s research
was supported in part by projects 1850605, 1851637, and 2040807 from NSF.

APPENDIX

PROOF OF LEMMA 1

Clearly,MRR(S) ≥ maxw ∈W[d],0
RRw (S) becauseW[d],0 ⊂ W . The subsequent discussionwill showmaxw ∈W[d],0

RRw (S) ≥

MRR(S), which will establish the lemma.
Set r = MRR(S); and suppose that maxw ∈W[d],0

RRw (S) < r . There must exist w∗ ∈ W with w
∗[d] = 0 such

that RRw ∗ (S) = r .
5 Let o∗ ∈ S be an object that has the highestw∗-score in S ; clearly, rankw ∗ (o

∗) = r . P must have
r − 1 objects o1,o2, ...,or−1 outside S such that thew∗-score of oj (j ∈ [1, r − 1]) is strictly larger than that of o∗.

Constructw ′ ∈ W[d],0 wherew
′[i] = w∗[i] for each i ∈ [1,d − 1] andw ′[d] = δ where δ > 0 is ininitesimally

small. As oj ·w
∗ > o

∗ ·w∗ for every j ∈ [1, r − 1], a suiciently low δ ensures oj ·w
′ > o

∗ ·w ′. In other words,
thew ′-rank of o∗ is at least r .

By the assumption maxw ∈W[d],0
RRw (S) < r , we know RRw ′ (S) ≤ r − 1. Hence, S must have an object o′ whose

w
′-rank is at most r − 1. This object must have aw ′-score higher than that of o∗, namely:

*
,
d−1
∑

i=1

o′[i] ·w∗[i]+- + o
′[d] · δ > *

,
d−1
∑

i=1

o∗[i] ·w∗[i]+- + o
∗[d] · δ .

Using the deinition of o∗ and δ being ininitesimally small, we can assert
∑d−1

i=1 o
′[i] ·w∗[i] =

∑d−1
i=1 o

∗[i] ·w∗[i],
namely, o′ and o∗ have the samew∗-score.
Given oj ·w

∗ > o
∗ ·w∗ = o

′ ·w∗ for every j ∈ [1, r − 1], we conclude that oj ·w
′ > o

′ ·w ′ for a suiciently
small δ > 0. This means that P has at least r − 1 objects whosew ′-scores are strictly higher than that of o′, which
contradicts rankw ′ (o

′) ≤ r − 1.

5Otherwise, every weight vector w achieving RRw (S) = MRR(S) must fall in W[d],0, implying maxw ∈W[d],0
RRw (S) ≥ MRR(S)).

ACM Trans. Datab. Syst.

1:34 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

PROOF OF THEOREM 13

We use Lemma 8 to obtain a (δ , (k − 1)/n)-shallow cutting Ξ. For each ∆ ∈ Ξ, deine XY∆ as the xy-projection
of ∆. Each plane h ∈ H∆ (where H∆ is the conlict set of ∆; see Section 5.2) intersects ∆ into a polygon, whose
xy-projection is represented as XYh (∆).

The polygonsXYh (∆) of all h ∈ H∆ induce an arrangement, which is a setA∆ ofO (k2) polygons in the xy-plane
satisfying

• the union of all the polygons in A∆ is XY∆, and
• for every h ∈ H∆ and every polygon A ∈ A∆, XYh (∆) either entirely coversA or is non-overlapping with A.

Deine

A =

⋃

∆∈Ξ

A∆.

The polygons in A are non-overlapping; and their union is precisely R2.
Given a plane h ∈ H , deine Ξ(h) as the set of prisms in Ξ intersecting with h, i.e., Ξ(h) = {∆ ∈ Ξ | h ∈ H∆}.

Deine:

Zh =
{
A ∈ A

���� ∃∆ ∈ Ξ(h) such that A ∈ A∆

}
.

Lemma 18. For any plane h ∈ H and any query q covered by Zh , rankq (h) ≤ (1 + δ)k .

Proof. As before, denote by ℓq the vertical line in Rd that is parallel to dimension d and passes (q[1], ...,q[d −
1],−∞). Let p be the intersection between h and ℓq . Since q is covered by Zh , we know that p must be covered by
a prism in Ξ. Since the union of all the prisms of Ξ is covered by the (≤ (1 + δ) (k − 1))-level of H , the level of p
must be at most (1 + δ) (k − 1). This means that rankq (h) ≤ (1 + δ)k . □

Consider any optimal solution S
∗ to Problem 2. We have:

Lemma 19.
⋃

h∈S∗ Zh covers Q.

Proof. Assume, on the contrary, that the union fails to include a query q ∈ Q. By deinition of S∗, there exists
a plane h ∈ S∗ whose q-rank is at most k . Let p be the intersection point between h and ℓq . By rankq (h) ≤ k , the
level of p is at most k − 1. Now, consider the prism ∆ ∈ Ξ whose xy-projection covers q. We assert that p must
fall inside ∆; otherwise, p falls outside the union of all the prisms of Ξ, contradicting the fact that the union must
contain the (≤ k − 1)-level of H . However, ∆ covering p implies that XYh (∆) covers q, which in turn indicates
the existence of an A ∈ Zh covering q, giving a contradiction. □

We now ind a small S ⊆ H such that
⋃

h∈S Zh covers Q; the existence of S is guaranteed by Lemma 19.
It is rudimentary to apply a greedy set cover algorithm over {Zh | h ∈ H } to ind an S with size at most
|S∗ |O (logn) = OPT ·O (logn). As every query must be covered by the Zh of at least one h ∈ S, Lemma 18 ensures
that MRR′(S) ≤ (1 + δ)k .

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:35

To analyze the running time, we observe:
∑

h∈H

|Zh |

=

∑

A∈A

number of planes h ∈ H∆ s.t. XYh (∆) covers A, where ∆ is the prism with A ∈ A∆

≤
∑

A∈A

|H∆ | where ∆ is the prism with A ∈ A∆

≤
∑

A∈A

O (k) (applying the deinition of shallow cutting)

= O (|A| · k) = O (nk2)

where the last equality used |A| = O (k2) · |Ξ| and |Ξ| = O (n/k) (Lemma 8). After explicitly generating the Zh of
every h ∈ H , the greedy set-cover algorithm runs in O (nk2) time. This concludes the proof of Theorem 13.

REFERENCES

[1] Peyman Afshani and Timothy M. Chan. 2009. On Approximate Range Counting and Depth. Discrete & Computational Geometry 42, 1

(2009), 3ś21.

[2] Pankaj K. Agarwal, Mark de Berg, Jiri Matousek, and Otfried Schwarzkopf. 1998. Constructing Levels in Arrangements and Higher

Order Voronoi Diagrams. SIAM Journal of Computing 27, 3 (1998), 654ś667.

[3] Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. 2017. Eicient Algorithms for k-Regret Minimizing Sets. In

International Symposium on Experimental Algorithms. 7:1ś7:23.

[4] Noga Alon, Imre Barany, Zoltan Furedi, and Daniel J. Kleitman. 1992. Point Selections and Weak e-Nets for Convex Hulls. Combinatorics,

Probability & Computing 1 (1992), 189ś200.

[5] Noga Alon and Ervin Gyori. 1986. The number of small semispaces of a inite set of points in the plane. Journal of Combinatorial Theory,

Series A 41, 1 (1986), 154ś157.

[6] Noga Alon and Asaf Shapira. 2008. A Characterization of the (Natural) Graph Properties Testable with One-Sided Error. SIAM Journal

of Computing 37, 6 (2008), 1703ś1727.

[7] Artur Andrzejak and Komei Fukuda. 1999. Optimization over k-set Polytopes and Eicient k-set Enumeration. In Algorithms and Data

Structures Workshop (WADS). 1ś12.

[8] Abolfazl Asudeh, Azade Nazi, Nan Zhang, and Gautam Das. 2017. Eicient Computation of Regret-ratio Minimizing Set: A Compact

Maxima Representative. In Proceedings of ACM Management of Data (SIGMOD). 821ś834.

[9] Abolfazl Asudeh, Azade Nazi, Nan Zhang, Gautam Das, and H. V. Jagadish. 2019. RRR: Rank-Regret Representative. In Proceedings of

ACM Management of Data (SIGMOD). 263ś280.

[10] Abolfazl Asudeh, Saravanan Thirumuruganathan, Nan Zhang, and Gautam Das. 2016. Discovering the Skyline of Web Databases.

Proceedings of the VLDB Endowment (PVLDB) 9, 7 (2016), 600ś611.

[11] Abolfazl Asudeh, Gensheng Zhang, Naeemul Hassan, Chengkai Li, and Gergely V. Zaruba. 2015. Crowdsourcing Pareto-Optimal Object

Finding By Pairwise Comparisons. In Proceedings of Conference on Information and Knowledge Management (CIKM).

[12] Abolfazl Asudeh, Nan Zhang, and Gautam Das. 2016. Query Reranking As a Service. Proceedings of Very Large Data Bases (VLDB) 9, 11

(2016).

[13] Stephan Borzsonyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline Operator. In Proceedings of International Conference on

Data Engineering (ICDE). 421ś430.

[14] Herve Bronnimann, Bernard Chazelle, and Jiri Matousek. 1999. Product range spaces, sensitive sampling, and derandomization. SIAM

Journal of Computing 28, 5 (1999), 1552ś1575.

[15] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2002. Top-k selection queries over relational databases: Mapping strategies and

performance evaluation. ACM Transactions on Database Systems (TODS) (2002).

[16] Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-Wing Wong, and Wei Zhan. 2017. k-Regret Minimizing

Set: Eicient Algorithms and Hardness. In Proceedings of International Conference on Database Theory (ICDT). 11:1ś11:19.

[17] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and Zhenjie Zhang. 2006. Finding k-dominant skylines in high

dimensional space. In Proceedings of ACM Management of Data (SIGMOD). 503ś514.

[18] Timothy M. Chan. 1996. Output-Sensitive Results on Convex Hulls, Extreme Points, and Related Problems. Discrete & Computational

Geometry 16, 4 (1996), 369ś387.

ACM Trans. Datab. Syst.

1:36 • Abolfazl Asudeh, Gautam Das, H. V. Jagadish, Shangqi Lu, Azade Nazi, Yufei Tao, Nan Zhang, and Jianwen Zhao

[19] Timothy M Chan, Elyot Grant, Jochen Konemann, and Malcolm Sharpe. 2012. Weighted capacitated, priority, and geometric set cover

via improved quasi-uniform sampling. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1576ś1585.

[20] Timothy M. Chan and Konstantinos Tsakalidis. 2016. Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings. Discrete &

Computational Geometry 56, 4 (2016), 866ś881.

[21] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li, Ming-Ling Lo, and John R Smith. 2000. The onion technique:

indexing for linear optimization queries. In Proceedings of ACM Management of Data (SIGMOD).

[22] Sean Chester, Alex Thomo, S. Venkatesh, and Sue Whitesides. 2014. Computing k-Regret Minimizing Sets. Proceedings of the VLDB

Endowment (PVLDB) 7, 5 (2014), 389ś400.

[23] Kenneth L. Clarkson and Peter W. Shor. 1989. Application of Random Sampling in Computational Geometry, II. Discrete & Computational

Geometry 4 (1989), 387ś421.

[24] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogiannis. 2006. Answering top-k queries using views. In Proceedings

of Very Large Data Bases (VLDB).

[25] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry: Algorithms and Applications (3rd

ed.). Springer-Verlag.

[26] Tamal K. Dey. 1998. Improved Bounds for Planar k -Sets and Related Problems. Discrete & Computational Geometry 19, 3 (1998), 373ś382.

[27] Tamal K Dey and Herbert Edelsbrunner. 1993. Counting triangle crossings and halving planes. In Proceedings of Symposium on

Computational Geometry (SoCG). 270ś273.

[28] Herbert Edelsbrunner. 1987. Algorithms in combinatorial geometry. Vol. 10. Springer Science & Business Media.

[29] Herbert Edelsbrunner, Nany Hasan, Raimund Seidel, and Xiao Jun Shen. 1989. Circles through two points that always enclose many

points. Geometriae Dedicata 32, 1 (1989), 1ś12.

[30] Herbert Edelsbrunner and Emo Welzl. 1985. On the number of line separations of a inite set in the plane. Journal of Combinatorial

Theory, Series A 38 (1985).

[31] P Erdős, László Lovász, A Simmons, and Ernst G Straus. 1973. Dissection graphs of planar point sets. A survey of combinatorial theory

(1973), 139ś149.

[32] Hazel Everett, Jean-Marc Robert, and Marc J. van Kreveld. 1993. An Optimal Algorithm for the (<= k)-Levels, with Applications to

Separation and Transversal Problems. In Proceedings of Symposium on Computational Geometry (SoCG). 38ś46.

[33] Ronald Fagin, Ravi Kumar, and D. Sivakumar. 2003. Comparing Top k Lists. SIAM J. Discret. Math. 17, 1 (2003), 134ś160.

[34] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation Algorithms for Middleware. In Proceedings of ACM Symposium

on Principles of Database Systems (PODS).

[35] Yeshwanth Durairaj Gunasekaran, Abolfazl Asudeh, Sona Hasani, Nan Zhang, Ali Jaoua, and Gautam Das. 2018. QR2: A Third-Party

Query Reranking Service over Web Databases. In Proceedings of International Conference on Data Engineering (ICDE). 1653ś1656.

[36] Sariel Har-Peled. 2011. Geometric approximation algorithms. Number 173. American Mathematical Soc.

[37] Sariel Har-Peled. 2011. On the Expected Complexity of Random Convex Hulls. CoRR abs/1111.5340 (2011).

[38] David Haussler and Emo Welzl. 1987. Epsilon-Nets and Simplex Range Queries. Discrete & Computational Geometry 2 (1987), 127ś151.

[39] Vagelis Hristidis and Yannis Papakonstantinou. 2004. Algorithms and applications for answering ranked queries using ranked views.

The VLDB Journal 13, 1 (2004), 49ś70.

[40] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A survey of top-k query processing techniques in relational database

systems. Comput. Surveys 40, 4 (2008).

[41] Taylor Kessler Faulkner, Will Brackenbury, and Ashwin Lall. 2015. k-regret queries with nonlinear utilities. The VLDB Journal 8, 13

(2015).

[42] Janos Komlos, Janos Pach, and Gerhard Woeginger. 1992. Almost tight bounds for epsilon-nets. Discrete & Computational Geometry 7, 2

(1992), 163ś173.

[43] Nirman Kumar and Stavros Sintos. 2018. Faster Approximation Algorithm for the k-Regret Minimizing Set and Related Problems. In

Proceedings of Workshop on Algorithm Engineering and Experiments (ALENEX).

[44] Andrey Kupavskii, Nabil H. Mustafa, and Janos Pach. 2016. New Lower Bounds for epsilon-Nets. In Proceedings of Symposium on

Computational Geometry (SoCG). 54:1ś54:16.

[45] László Lovász. 1971. On the number of halving lines. Ann. Univ. Sci. Budapest, Eötvös, Sec. Math 14 (1971), 107ś108.

[46] Amélie Marian, Nicolas Bruno, and Luis Gravano. 2004. Evaluating Top-k Queries over Web-accessible Databases. ACM Trans. Database

Syst. 29, 2 (2004).

[47] Jiri Matousek. 1992. Reporting Points in Halfspaces. Comput. Geom. 2 (1992), 169ś186.

[48] Jiri Matousek. 1993. Linear Optimization Queries. J. Algorithms 14, 3 (1993), 432ś448.

[49] Ketan Mulmuley. 1991. On Levels in Arrangement and Voronoi Diagrams. Discrete & Computational Geometry 6 (1991), 307ś338.

[50] Danupon Nanongkai, Ashwin Lall, Atish Das Sarma, and Kazuhisa Makino. 2012. Interactive regret minimization. In Proceedings of

ACM Management of Data (SIGMOD).

ACM Trans. Datab. Syst.

On Finding Rank Regret Representatives • 1:37

[51] Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J Lipton, and Jun Xu. 2010. Regret-minimizing representative databases.

The VLDB Journal (2010).

[52] Janos Pach, William Steiger, and Endre Szemeredi. 1992. An upper bound on the number of planar K-sets. Discrete & Computational

Geometry 7, 1 (1992), 109ś123.

[53] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive skyline computation in database systems. ACM

Transactions on Database Systems (TODS) 30, 1 (2005), 41ś82.

[54] Peng Peng and Raymond Chi-Wing Wong. 2014. Geometry approach for k-regret query. In Proceedings of International Conference on

Data Engineering (ICDE).

[55] Md Farhadur Rahman, Abolfazl Asudeh, Nick Koudas, and Gautam Das. 2017. Eicient Computation of Subspace Skyline over Categorical

Domains. In Proceedings of Conference on Information and Knowledge Management (CIKM).

[56] Edgar A Ramos. 1999. On range reporting, ray shooting and k-level construction. In Proceedings of Symposium on Computational

Geometry (SoCG). 390ś399.

[57] Micha Sharir, Shakhar Smorodinsky, and Gabor Tardos. 2001. An Improved Bound for k-Sets in Three Dimensions. Discrete &

Computational Geometry 26, 2 (2001), 195ś204.

[58] Cheng Sheng and Yufei Tao. 2012. Worst-Case I/O-Eicient Skyline Algorithms. ACM Transactions on Database Systems (TODS) 37, 4

(2012), 26.

[59] Géza Tóth. 2001. Point sets with many k-sets. Discrete & Computational Geometry 26, 2 (2001).

[60] Kasturi Varadarajan. 2010. Weighted geometric set cover via quasi-uniform sampling. In Proceedings of ACM Symposium on Theory of

Computing (STOC). 641ś648.

[61] Akrivi Vlachou and Michalis Vazirgiannis. 2010. Ranking the sky: Discovering the importance of skyline points through subspace

dominance relationships. Data Knowledge Engineering (DKE) 69, 9 (2010).

[62] Dong Xin, Chen Chen, and Jiawei Han. 2006. Towards robust indexing for ranked queries. In Proceedings of Very Large Data Bases

(VLDB).

[63] Sepanta Zeighami and Raymond Chi-Wing Wong. 2016. Minimizing average regret ratio in database. In Proceedings of ACM Management

of Data (SIGMOD).

ACM Trans. Datab. Syst.

	Abstract
	1 Introduction
	2 Problem Definitions
	2.1 Formulation in the Primal Space
	2.2 Formulation in the Dual Space

	3 Equivalence to Epsilon-Nets
	4 Exact Algorithms
	4.1 Connections to Regret-Ratio Minimizing Sets
	4.2 A Faster 2D Algorithm

	5 A Theory on Approximation Algorithms
	5.1 Overview of Our Approximation Schemes
	5.2 Shallow Cutting
	5.3 A 2D Algorithm
	5.4 A 3D Algorithm
	5.5 Hardness of Dimensions d 4
	5.6 Algorithms for Dimensions d 4

	6 Leveraging a Known Query Distribution
	7 A Space Partition Algorithm
	7.1 A Rank Sum Lemma in Arbitrary Dimensions
	7.2 Algorithm

	8 Experiments
	8.1 Experiments Setup
	8.2 Performance Evaluation

	9 Related Work
	10 Conclusions
	References

