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Abstract—In this work, we propose a new approximate logarithm
multipliers (ALM) based on a novel error compensation scheme. The
proposed hardware-efficient ALM, named HEALM, first determines the
truncation width for mantissa summation in ALM. Then the error
compensation or reduction is performed via a lookup table, which stores
reduction factors for different regions of input operands. This is in
contrast to an existing approach, in which error reduction is performed
independently of the width truncation of mantissa summation. As a result,
the new design will lead to more accurate result with both reduced area
and power. Furthermore, different from existing approaches which will
either introduce resource overheads when doing error improvement or
lose accuracy when saving area and power, HEALM can improve accuracy
and resource consumption at the same time. Our study shows that 8-bit
HEALM can achieve up to 2.92%, 9.30%, 16.08%, 17.61% improvement
in mean error, peak error, area, power consumption respectively over
REALM, which is the state of art work with the same number of
bits truncated. We also propose a single error coefficient mode named
HEALM-TA-S, which improves the ALM design with a truncation adder
(TA) for mantissa summation. Furthermore, we evaluate the proposed
HEALM design in a discrete cosine transformation (DCT) application.
The result shows that with different values of k, HEALM-TA can improve
the image quality upon the ALM baseline by 7.8∼17.2dB in average and
HEALM-SOA can improve 2.9∼15.8dB in average, respectively. Besides,
HEALM-TA and HEALM-SOA outperform all the state of art works
with k = 2, 3, 4 on the image quality. And the single coefficient mode,
HEALM-TA-S, can improve the image quality upon the baseline up to
4.1dB in average with extremely low resource consumption.

I. INTRODUCTION

Approximate computing enables efficient trade-off among ac-
curacy, area, latency and power for more efficient error tolerant
applications implementation such as machine learning and multi-
media workloads [1]. Those workloads are heavily dominated by
the multiplication operations and hence design of hardware-efficient
multiplier has been intensively investigated recently. The primary
goal of the approximate multiplier design is to reduce the power
and area for the least accuracy loss.

A number of approximate multiplier designs have been proposed
recently [2]–[11]. Those approximate multipliers employ some ad-
hoc truncation or reduction methods or mathematically formulated
approximation schemes. Most of the existing methods, however, lack
the systematic configurability for accuracy vs. area/power/latency
trade-off. On the other hand, a class of approximate multipliers
that are mathematically formulated include logarithmic multipliers,
which convert multiplication into only shift and addition operations.
Due to the inherent approximate nature of logarithmic operation and
the easy accuracy manipulation of the resulting addition, the area,
latency and power can be traded off at the cost of accuracy. The
logarithmic multiplier was originally proposed by Michelle [12].
Since then, many approximate logarithmic multipliers (ALM) have
been proposed to improve Michelle’s work [9], [10], [13], [14]. Most
of those methods focused on how to reduce and compensate the errors
introduced in the piece-wise approximation of the log function, which
tends to cause negative errors.

Recently Ansari et al. [14] developed an approximate scheme to
make the error distribution more balanced (double sided errors) for
the ALM method. Saadat et al. [10] further introduced a general
error compensation technique, called REALM, using an analytically
generated error reduction factor lookup table for different regions
of input operands. The benefit of this method is that it can generate
more balanced errors by designing and providing configurable design
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trade-off between area and precision. However, this method uses
one lookup table for all truncation configuration in the approximate
addition, which may lead to large errors especially for low precision
cases as we will show in this work.

Based on the observation, in this work, we propose a new hardware
efficient approximate logarithmic multiplier, named HEALM, with
a novel error reduction scheme for low precision (8-bit to 16-bit)
multiplication. The key contributions of this work are listed as
follows:

1. HEALM first determines the truncation width for mantissa
summation in ALM based on the resource requirement or
design constraints. Then the error compensation or reduction is
performed via a lookup table, which stores error compensation
coefficients for different regions of input operands. This is
different from the existing approach like REALM [10], in
which error reduction is performed independently of the width
truncation of mantissa summation.

2. The error behaviors of HEALM show that HEALM can
achieve lower mean error (1.12%) and peak error (4.71%) than
the ALM baseline. Unlike existing approaches which will either
introduce resource overheads while doing error improvement or
sacrifice accuracy when saving area and power, HEALM can
improve the error metrics and resource consumption at the same
time. 8-bit HEALM-TA with k = 3 achieves 2.17% / 9.75% in
mean / peak error, and provides 9.38% in area reduction. 8-bit
HEALM-SOA with k = 3 achieves 1.78% / 7.65% in mean /
peak error, and provides 1.42% in area reduction. Compared
with REALM, which is the state of art work, HEALM can
achieve up to 2.92%, 9.3%, 16.08%, 17.61% improvement in
mean error, peak error, area, power consumption respectively
with the same number of bits truncated. Furthermore, 16-bit
HEALM-TA improves all of the four design metrics (mean error,
peak error, area, power) against the ALM baseline by 2.12%,
5.28%, 17.21%, 21.00%; and HEALM-SOA can improve the
design metrics by 2.38%, 5.96%, 13.59%, 17.15%.

3. We propose a single error coefficient mode named HEALM-
TA-S, which can do error improvement on ALM design with
a truncation adder (TA) doing the mantissa summation. 8-bit
HEALM-TA-S achieves 4.26% in mean error, 17.12% in peak
error, saving 34.8% and 41.9% in area and power consumption
and 16-bit HEALM-TA-S achieves 4.87%, 12.02% in mean
and peak error, saving 30.59% and 40.09% in area and power
consumption when compared to the ALM baseline.

4. We also evaluate the HEALM in a discrete cosine transfor-
mation (DCT) application. The result shows that with different
values of k, HEALM-TA can improve the image quality upon
the ALM baseline by 7.8∼17.2dB in average and HEALM-
SOA can improve 2.9∼15.8dB in average, respectively. Besides,
HEALM-TA and HEALM-SOA outperform all the state of art
works with k = 2, 3, 4 on the image quality. In addition the
single coefficient mode, HEALM-TA-S, can improve the image
quality upon the baseline up to 4.1dB in average with extremely
low resource consumption.

This paper is organized as follows: Section II reviews several
recently proposed approximate multiplication designs. Section III
presents the proposed HEALM design including the inexact adders
and the error reduction techniques. Section IV shows the experimen-
tal results for the error metrics, area, power and comparison results
with state of art methods. Finally, section V concludes the paper.
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II. REVIEW OF RELATED WORK

Recently, various designs of approximate unsigned integer mul-
tipliers have been proposed. Earlier designs often involve ad-hoc
based approximations, such as recursive multipliers [2] which consist
of 2 × 2 multiplication blocks, simplification of Wallace tree [3],
simplifying partial product generation/summation [4]–[6], others used
a smaller multiplier by extracting m-bit fragment from the N -bit
precision inputs. Such as [7], [8].

Among these methods, many recent approximate multipliers are
developed based on the classic approximate logarithmic multiplier
proposed by Mitchell, also called ALM, as it shows good overall
performance and has flexibility for trade-offs among area, power and
accuracy [12]. Specifically, for ALM design, the two inputs A and B
are first represented by the following format: 2ka ·(1+x) and 2kb ·(1+
y), respectively. Then the multiplication result can be approximated
as (1).

CALM =

{
2ka+kb · (1 + x+ y), x+ y < 1,

2ka+kb+1 · (x+ y), x+ y ≥ 1
(1)

Here CALM is the approximate multiplication result. The ALM
design requires four steps to finish the multiplication process. First
it utilizes leading-one detectors (LOD) to find the leading bit ‘1’ as
the integer part; second, barrel shifters are used to re-align the rest
of the bits as the fraction part; then it sums the two fraction and
integer parts up as ka+kb+x+y; and finally it shifts back with the
same bits. Although ALM suffers from high absolute MRED (mean
relative error distance) and peak relative error of 3.76% and 11.11%,
respectively, it can perform a good trade-off among accuracy, area
and power.

To further improve the accuracy of the ALM method, several
derivative works have been proposed by means of different error
compensation mechanisms. For instance, the MBM design tried to
add a fixed single error-correction term to the final result [9]. This
was further improved by the LeAp multiplier, which added different
error coefficients to the fraction parts based on the value ranges of
the results [15]. The REALM multiplier design further improved
the compensation scheme by using a lookup table to store M ×M
coefficients / factors for M×M partitions of input ranges with some
hardware resource overheads [10]. These works indeed improved the
error metrics of the approximate logarithmic multiplication without
incurring too much resource overheads.

One important observation is that the ALM design will become
less effective in reducing area and power when the precision of
inputs decreases. Ebrahimi et al. [15] recently showed that 32-
bit ALM can have more area and power reduction than 16-bit
ALM. However, low precision operation is important as emerging
machine learning workloads can be performed (at least for inference)
using low precision operations. For instance, 16-bit fixed point is
demonstrated to be sufficient for training neural networks with no
loss in classification accuracy [16]. 8-bit precision is sufficient for
inference with minimal accuracy loss [17].

Some previous works [13], [14] tried to do further area reduction
by replacing the exact adder with an inexact one. Since the exact
adder unit is the bottleneck of the ALM critical path and occupies
large area, this idea does help in area saving. But the inexact adder
also introduces extra error, and the error can become quite significant
especially in the 8-bit case (shown later in Sec. IV). The REALM
design [10] did error compensation for ALM and achieved extremely
low error bias with very low peak error even under the circumstance
that truncates the lower part in the mantissa summation. However,
the results are also obtained under 16-bit precision only. We’ll show
that REALM under 8-bit precision will not perform as well as the
16-bit case in Sec. IV.

In this work, we will focus on the 8-bit and 16-bit precision
hardware efficient approximate logarithmic multiplier design and
demonstrate the superior performance of the proposed new design
against the ALM [12] baseline and other state of art works like
LeAp [15], REALM [10], ALM-SOA [13], ILM-EA [14] and ILM-
AA [14].

III. PROPOSED HARDWARE-EFFICIENT APPROXIMATE

MULTIPLIER

In this section, we show the details of the proposed hardware-
efficient ALM design by considering the bit or width truncation in
the mantissa summation part and error compensation at the same
time.

Consider an inexact adder with N -bit inputs A and B, then the
sum S has N+1 bits. Let k be the number of bits in the lower part of
the sum which are approximated. The binary representation of A is
AN−1AN−2...AkAk−1...A0 and B is in a similar form. The upper
part AN−1AN−2...Ak and BN−1BN−2...Bk, which are denoted as
AH and BH , respectively, will perform the exact summation to obtain
the higher part of S, SNSN−1...Sk, which is denoted as SH . The
lower part Ak−1...A0 and Bk−1...B0, which are denoted as AL and
BL, will perform the approximate summation to obtain the lower
part of S: Ck−1Sk−1...S0. Note that Ck−1 is the carry bit to the
exact summation of upper parts.

We implement two representative approximate adders (or inexact
adders), one is the truncation adder (TA), the other is the set one
adder (SOA) [13] with error improvement to the ALM. These adders
have very small complexity, which are suitable for implementing our
HEALM designs, named as HEALM-TA and HEALM-SOA with error
improvement. To carry out the error compensation, we first analyze
the error profile of ALM when the exact adder used for the mantissa
summation is replaced with an approximate adder. Then, we perform
specified error compensation for HEALM with each approximate
adder under different k values, where k represents the number of bits
in the inexact mantissa summation part, to achieve the best trade-off
among the error metrics and the hardware resources. The structure
of the HEALM design is shown in Fig. 1.

Fig. 1: HEALM design: mantissa summation in ALM design replaced

with an error compensated approximate adder.

(a) (b)

Fig. 2: (a) The error behavior of ALM (8×8). (b) The error behavior of

the fractional part of ALM in an power-of-two interval.

A. HEALM with truncation adder: HEALM-TA

1) The error behaviors of ALM-TA: Before we discuss our pro-
posed HEALM design with truncation adder, or HEALM-TA, we need
to show the error behavior of ALM with a simple TA, represented
as ALM-TA. First, we give a brief introduction on the concept of TA.
The TA simply truncates the lower part of the inputs A and B, which
makes the inexact part of the mantissa summation SL equal to zero.
Thus the mantissa summation with TA will only calculate the upper
part SH . An N -bit adder is actually truncated to an N −k-bit adder.
We use a 7-bit case with k = 4 to describe the concept of TA, which
is shown in Fig. 3(a).
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(a) (b)

Fig. 3: (a) A 7-bit truncation adder (TA) example. (b) A 7-bit set one

adder (SOA) example.

The error behavior of ALM-TA is similar as the error behavior of
the ALM method. We have shown the ALM method in (1) in Sec. II,
and now the exact multiplication written in log-based form can be
expressed as (2).

CExact = 2ka+kb · (1 + x) · (1 + y)

= 2ka+kb · (1 + x+ y + xy)
(2)

ErrorALM = CExact − CALM

=

{
2ka+kb · (xy), x+ y < 1,

2ka+kb+1 · (1− x− y + xy), x+ y ≥ 1

(3)

ErrorALM−TA = CExact − CALM−TA

=

⎧⎪⎪⎨
⎪⎪⎩

2ka+kb · (1 + xHxL + yHyL
+x · y − 1− xH − yH), x+ y < 1,

2ka+kb+1 · (1 + xHxL + yHyL
+x · y − 2 · xH − 2 · yH), x+ y ≥ 1

=

⎧⎨
⎩
2ka+kb · (xL + yL + xy), x+ y < 1,

2ka+kb+1 · (1 + xL + yL
+x · y − xH − yH), x+ y ≥ 1

(4)

Based on (1) and (2), we can calculate the error of ALM as (3).
The error behavior of ALM showing a proportional replication in
each power-of-two interval is demonstrated in Fig. 2. Hence, we
can perform error compensation to the fractional part before barrel
shifting operation to save resource, which is also demonstrated
in [15].

After replacing the exact mantissa summation in ALM (“x+ y”)
with approximate summation by using TA, the error will also
accumulate. We use ErrorALM−TA to represent it from time being.
The error behavior of ALM-TA can be calculated as (4) and also has
a proportional replication in each power-of-two interval. Fig. 4(a)
demonstrates the error behavior of ALM-TA with k = 4 in an
interval. Notice that the error behavior though distributes nearly
symmetric, which is similar as the error profile of ALM in a single
interval. It further shows proportional replication in each 1/8 interval.
Also, for TA summation, no matter what the lower half of the
inputs are (here represented as xL and yL, as the inputs of the
mantissa summation is the fractional part x and y of input A and B,
respectively), the approximate summation is only determined by the
exact summation part (xH + yH ). Thus, we partition the fractional
xy-space into 64 blocks (8×8) with the red dash line, which are the
most significant 3 bits (3 MSBs) of x and y, as shown in Fig. 4; and
recalculate the average error in each block as shown in Fig. 4(b).
Also, for ALM-TA with more than 3 bits in the exact summation
part (k < 4), we still use the 8×8 blocks partition to calculate the
average error to save resource. The experimental results shown in
Sec. IV will prove that the partition with 8×8 is sufficient to achieve
acceptable accuracy improvement and good resource saving.

2) The proposed HEALM-TA error compensation: Based on the
aforementioned observation on the error behavior of ALM-TA, we
can perform specified error compensation and propose our HEALM
idea. We first generate a lookup table, which is of the same size as

8×8 blocks partition, as an error compensation pattern. An example
of the pattern is shown in Fig. 4(c). The error coefficient, Errcoeff ,
which is added to the approximate mantissa summation, is generated
by searching the lookup table based on the 3 MSBs of x and y to
perform the specified error compensation. Note that when the error
compensation pattern is simple (usually the value of k is large),
such as the example we show in Fig. 4(c), the lookup table can
be simplified to several large squarish area. Like the case shown in
Fig. 4(c), the blue area is equivalent to the sum of 3 rectangular
regions, which can be described much simpler than an 8×8 lookup
table, thus saving the resource consumption.

CHEALM−TA =

⎧⎪⎪⎨
⎪⎪⎩

2ka+kb · (1 + xH + yH
+Errcoeff ), x+ y < 1,

2ka+kb+1 · (xH + yH
+Errcoeff ), x+ y ≥ 1

(5)

The HEALM-TA method can be expressed as (5), where
CHEALM−TA is the product of HEALM-TA method. And the value
of the error coefficients are determined by the average error of each
block. We notice that if x + y ≥ 1, the error coefficient Errcoeff
will be added twice. Thus, the equivalent error in these blocks where
x + y ≥ 1 should be as half as its initial value. So we divided
the Errcoeff for these blocks to half. And for those blocks where
x + y could be either smaller or larger than 1, we further perform
error compensation arrangement to achieve the possible smallest peak
relative error. Note that the mantissa summation of x+ y is replaced
with the approximate summation now, so we need to do quatization of
the error coefficients to ensure that the precision of these coefficients
no larger than the precision of the exact summation part. In the case
of k = 4 as shown in Fig. 4(c), the exact summation only has 3 bits.
So Errcoeff also need to be a 3-bit parameter. Actually in this case,
the error coefficient will either be 1/8 or 2/8 as shown in Fig. 4(c).
Our proposed HEALM-TA design performs well especially when the
value of k is large. And 8-bit HEALM-TA with k = 3 can improve
the traditional ALM design in both error metrics and area, which
is never achieved by the previous works with 8-bit precision. We’ll
prove this later in Sec. IV.

3) Single coefficient mode: HEALM-TA-S: Furthermore, we pro-
pose a single coefficient mode, named as HEALM-TA-S to perform
error compensation on ALM-TA with almost no resource overheads.
As an N -bit simple TA with k bits truncated, it consists of 1 HA (half
adder) and N − k− 1 FAs (full adder), which is shown in Fig. 6(a)
(in the example of k = 4, the exact summation part includes 2 FA
and 1 HA). To perform the simplest error compensation, the error
coefficient for the whole fractional space is set to be the same value,

which is 2−(N−k) (1/8 in this case); and the HA is replaced with an
FA at the LSB (least significant bit) location to obtain the smallest
resource overheads. The structure of the mantissa summation part
of HEALM-TA-S design is shown in Fig. 6(b). Note that the input
carry bit (Cin) for the FA at LSB is always set to ‘1’ according to the
error coefficient. We’ll prove later in Sec. IV that HEALM-TA-S can
perform a good trade-off among the error metrics and the hardware
performance especially when k is large for HEALM-TA-S design.

B. HEALM with set one adder: HEALM-SOA

Besides HEALM-TA, we also propose another HEALM design
with set one adder, or SOA, called HEALM-SOA. Simple ALM
design with mantissa summation replaced with SOA (ALM-SOA)
has already been proposed before [13]. Based on ALM-SOA, we
further perform error compensation similar to Sec. III-A.

In an SOA, different from TA, all the bits in SL part are set to
logic ‘1’ to produce a balanced error in the ALM-SOA method. For
the SH , which is the exact summation part, SH = AH +BH +Cin,
where the carry bit Cin is obtained by doing an AND operation of the
MSB in AH and BH (A[k-1] and B[k-1], respectively), as expressed
in (6), suppose the SOA is an N -bit summation with k bits in the
approximate summation part SL.

SH = S[N : k] = A[N − 1 : k] +B[N − 1 : k] + Cin

Cin = A[k − 1]B[k − 1]

SL[i] = 1, i ∈ [0, k − 1]

(6)
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(a) (b) (c)

Fig. 4: (a) The error behavior of ALM-TA with k = 4. (b) The error behavior of ALM-TA with k = 4 doing average operation in each block. (c)

The error compensation pattern for HEALM-TA with k = 4.

(a) (b) (c)

Fig. 5: (a) The error behavior of ALM-SOA with k=4. (b) The error behavior of ALM-SOA doing average operation in each block. (c) The error

compensation pattern for HEALM-SOA with k=4.

Fig. 6: The mantissa summation unit of HEALM-TA-S design with k =

4: (a) The exact summation part with no error compensation. (b) The

exact summation part improved with a single error coefficient, replacing

the HA with an FA.

Then, based on (1) and (6), we can calculate the error of ALM-SOA
in an power-of-2 interval as (7), where Cin = x[k− 1]y[k− 1], and
SSOA = Σ2i/2N , i ∈ {0, 1, ..., k − 1}. Similar as ALM-TA, we
show the error behavior of ALM-SOA (k = 4) with an example in
Fig. 5(a).

ErrorALM−SOA = CExact − CALM−SOA

=

⎧⎪⎪⎨
⎪⎪⎩

2ka+kb · (1 + xHxL + yHyL + x · y

−1− xH − yH − Cin − SSOA), x+ y < 1,

2ka+kb+1 · (1 + xHxL + yHyL + x · y

−2 · (xH + yH + Cin + SSOA)), x+ y ≥ 1

=

⎧⎨
⎩
2ka+kb · (xL + yL + x · y − Cin − SSOA), x+ y < 1,

2ka+kb · (1 + xL + yL + x · y

−xH − yH − Cin − SSOA), x+ y ≥ 1
(7)

The HEALM-SOA idea is similar as HEALM-TA. The error com-
pensation pattern of HEALM-SOA is shown in Fig. 5(c). We partition
the fractional space into 8×8 blocks and calculate the average error
following the same way as HEALM-TA, which is shown in Fig. 5(b).
Then based on the error distribution of ALM-SOA, we generate a
specified error compensation pattern in a lookup table form. The

error coefficient which is added to the mantissa summation part is
determined by the 3 MSBs of x and y as HEALM-TA. Similar
to HEALM-TA, HEALM-SOA also selects the error compensation
patterns to achieve the smallest possible peak relative error and can
provide improvement upon the traditional ALM design in terms of
both the error metrics and resource consumption. We’ll show this
later in Sec. IV.

Note that unlike HEALM-TA, the LSB summation of the exact
summation part in HEALM-SOA should consider the carry bit Cin

from the SL (approximate summation part). The LSB summation
also requires a FA instead of HA in the exact summation part of
HEALM-SOA. We cannot directly add a bit ‘1’ as error compensation
to the LSB location. So HEALM-SOA will not have a single error
coefficient mode like “HEALM-SOA-S”.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
hardware-efficient approximate logarithmic multiplier with reduced
error, named HEALM under 8-bit precision. We also compare
HEALM against the ALM (approximate logarithmic multiplier) base-
line [12] and other state of art works with the same precision. Fur-
thermore, we demonstrate 16-bit HEALM design results compared
with the baseline and state of art works as a complementary.

A. Experimental setup

To evaluate the performance of the proposed HEALM design,
we first compare the error metrics and the hardware performance
of HEALM with its original version: a classical ALM proposed
by Mitchell, which is selected as the baseline. We also compare
HEALM with other state of art improved ALMs. These improved
ALMs include: LeAp [15], REALM [10], ALM-SOA [13], ILM-
EA [14], ILM-AA [14]. For REALM design, we compare REALM8
which did the same partition in the fractional space (in an power-of-2
interval) as HEALM does for fair comparison.

All the above mentioned 8-bit multipliers are implemented in
Verilog HDL and synthesized with Synopsys Design Compiler using
EDK 32nm standard cell library [18] as single-cycle designs, and at
the same timing constraints of 2.5ns (400 MHz working frequency)
for area and power consumption comparison. For 16-bit multipliers,
we implemented with the same library but at the timing constraints
of 5ns (200MHz).

For the error metrics evaluation, we developed behavioral simu-
lation models for all the multipliers listed in Table I in MATLAB
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and measured the accuracy using 1 million random inputs uniformly
distributed over the set {0, 1, ..., (28 − 1)}. The errors are reported
with respect to the exact results. The error metrics used to report the
error behavior include: mean error (mean of absolute relative error,
also referred as MRED in some previous works [14]); and peak error
(maximum value of the absolute relative error). All the error metrics
are in percentages.

TABLE I

ERROR METRICS AND HARDWARE PERFORMANCE COMPARISON FOR

THE 8-BIT MULTIPLIERS.

Logarithmic Multiplier Design k Mean Error /% Peak Error /% Area /μm2 Power /μW

HEALM-TA (proposed)

1 1.12 4.86 1216.84 114.50
2 1.40 8.25 938.05 92.17
3 2.17 9.75 743.63 74.14
4 3.66 13.77 595.46 51.41

HEALM-TA-S (proposed)

1 3.21 11.11 763.70 71.19
2 3.17 12.02 716.69 65.68
3 3.39 13.79 614.01 56.62
4 4.26 17.12 534.72 42.32

HEALM-SOA (proposed)

1 1.13 4.71 1175.41 113.96
2 1.38 5.90 966.76 90.32
3 1.78 7.65 808.94 75.05
4 3.12 12.17 664.33 59.55

ALM with/without Approximate Adder

ALM [12] 0 3.76 11.11 820.63 72.83

ALM-TA

1 4.02 12.03 763.45 69.41
2 4.79 13.83 702.71 65.07
3 6.58 17.25 612.74 56.20
4 10.29 23.53 533.19 41.73

ALM-SOA [13]

1 3.50 11.11 776.92 72.11
2 3.23 11.46 736.26 68.54
3 3.07 12.36 702.96 64.46
4 3.47 14.13 596.98 50.63

Other Improved Logarithmic Multipliers from the Literature

LeAp [15] 0 1.38 4.71 1040.21 106.43

REALM [10]

0 0.90 3.96 1235.14 124.75
1 1.06 4.76 1128.40 108.48
2 1.81 8.27 993.96 96.46
3 3.25 12.80 908.82 82.56
4 6.58 23.07 709.57 62.40

ILM-EA [14] 0 2.84 11.11 1221.92 107.89

ILM-AA [14]

1 2.91 12.25 1186.85 104.72
2 3.09 14.24 1046.06 95.03
3 3.64 17.35 985.57 87.74
4 5.47 23.47 887.47 77.34

B. Performance evaluation

The error metrics and the hardware performance for the imple-
mented multipliers are shown in Table I. Since the proposed HEALM
designs utilize the inexact adder in the mantissa summation, we use a
parameter k in Table I to represent the number of bits in the inexact
summation part. For example, in the demonstrated cases shown in
Fig. 3(a) and Fig. 3(b), k equals to 4. For ALM, LeAp, and ILM-
EA designs, as these multipliers do not have an inexact summation
unit, k equals to 0. For the REALM design, the value of the error
configuration parameter mentioned in the work [10] is equivalent to
the number of bits in the inexact summation part, which is represented
by k in our work. To avoid ambiguity, we use the same notation as
HEALM design does for easy comparison.

Table I demonstrates that with the same value of k, the proposed
HEALM-TA design improves the error metrics upon the ALM-TA
design, reducing up to 6.63%, 9.76%, in mean and peak error,
respectively; HEALM-SOA improves the error metrics upon the
ALM-SOA design, reducing up to 2.37%, 6.40%, in mean and
peak error, respectively. When compared with the ALM baseline,
HEALM-TA and HEALM-SOA can improve the mean / peak error
by 2.64% / 6.25%, and 2.63% / 6.40%, respectively. When compared
with REALM, which is the state of art work, the HEALM designs can

TABLE II

ERROR METRICS AND HARDWARE PERFORMANCE COMPARISON FOR

THE 16-BIT MULTIPLIERS.

Approach k Mean Error /% Peak Error /% Area /μm2 Power /μW

ALM [12] 0 3.76 11.11 1825.52 110.91

REALM [10]
0 0.75 3.70 2383.36 164.50

9 1.06 5.27 1572.90 94.07

LeAp [15] 0 0.98 4.76 1990.71 128.20

ALM-TA 9 4.88 12.93 1263.86 66.26

HEALM-TA-S 9 4.87 12.02 1267.16 66.45

HEALM-TA 9 1.64 5.83 1511.39 87.62

ALM-SOA [13] 9 3.07 12.03 1383.56 74.10

HEALM-SOA 9 1.38 5.15 1577.47 91.89

improve mean error, peak error, area and power consumption by up
to 2.92%, 9.3%, 16.08%, 17.61% respectively with the same value of
k. The smallest mean error that HEALM-TA and HEALM-SOA can
achieve are 1.12% and 1.13%, respectively. And the smallest peak
error that HEALM-TA and HEALM-SOA can obtain are 4.86% and
4.71%, respectively. The 16-bit multiplication results are summarized
in Table II. Due to limited space, we simply show the results of k = 9
and compare with several state of art works. 16-bit HEALM-TA can
improve all of the four design metrics (mean error, peak error, area,
power) against the ALM baseline by 2.12%, 5.28%, 17.21%, 21.00%;
and 16-bit HEALM-SOA can improve the design metrics by 2.38%,
5.96%, 13.59%, 17.15%.

Considering the trade-off among error metrics improvement and
resource consumption, the previous works can improve either error
metrics or resource consumption (area, power) aspect, but can hardly
improve both of these aspects especially when the precision is small
(like 8-bit precision) as shown in Table I. To better illustrate this,
we show the relationship between the mean error / peak error and
area / power for all the listed multipliers in Fig. 7. The rectangular
area with the red dash border line in all four sub figures represents
that a design outperforms the classical ALM design both in error
metrics and resource consumption aspects. Notice in Fig. 7(a), only
the proposed HEALM-TA and HEALM-SOA with k = 3 improve
both the peak error and area aspects, decreasing the peak error with
1.36% and 3.46%, respectively. In Fig. 7(c), though some previous
works like ALM-SOA outperforms ALM in both mean error and area
aspects, only a little improvement in mean error (at most 0.69%)
was obtained. In contrast, the proposed HEALM-TA and HEALM-
SOA with k = 3 reduce the mean error by 1.59% and 1.98% when
compared to ALM, respectively; and provides 9.38% and 1.42% in
area reduction at the same time. Besides, HEALM-TA and HEALM-
SOA design with k = 4 can reduce the mean error by 0.10% and
0.64% when compared to ALM and reduce power by 29.41% and
18.23% at the same time.

The results of HEALM-TA-S (single error coefficient mode) design
in Table I shows that HEALM-TA-S can do better trade-offs between
accuracy and resource consumption especially when the value of k is
large. In case of k = 4, which is the largest value of k, HEALM-TA-S
decreases the mean / peak error by up to 6.03% / 6.11%, respectively
when compared to ALM-TA. Note that HEALM-TA-S achieves this
improvement with almost no resource overheads. It also saves 34.84%
/ 41.89% of area / power with 8-bit inputs, respectively; and 30.59%
/ 40.09% with 16-bit inputs when compared to the ALM baseline.

C. An image processing application evaluation

Now, we show how the proposed HEALM designs compare to
state of art methods in an multimedia application. Discrete cosine
transformation (DCT) is a commonly used lossy image compression
method. The quality of the compressed images is usually evaluated
using metrics such as PSNR (peak signal noise ratio) and higher
PSNR value represents better image quality. We implement the pro-
posed HEALM design with 8-bit precision in the DCT-iDCT (inverse
DCT) workloads, and compare with other logarithmic multipliers on
five example images. To be fair, the mantissa summation parts of
all the compared logarithmic multipliers are inexact unit, except for
the ALM, which is chosen as the baseline. We show the results of
image compression in Table III. The result shows that with different
values of k, HEALM-TA can improve the image quality upon the
ALM baseline by from 7.8∼17.2dB in average and HEALM-SOA
can improve 2.9∼15.8dB in average, respectively. Besides, HEALM-
TA and HEALM-SOA design outperform all the other state of art
works when k = 2, 3, 4 by at least 6.3dB, 6.3dB, 8.8dB, respectively.
Note that the single coefficient mode design HEALM-TA-S performs
the best when k = 4, making improvement upon the ALM baseline
by 4.1dB in average with extremely low resource consumption as
mentioned before. This is due to the error behavior of ALM, whose
outputs are always smaller than the exact product. And HEALM-
TA-S with k = 4 will have a more balanced error than the cases of
k = 1, 2, 3.
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Fig. 7: Comparison of HEALM with baseline and state of art works.

V. CONCLUSION

In this work, we have proposed a novel hardware-efficient approx-
imate logarithmic multiplier, called HEALM. The proposed design,
first determined the truncation width for mantissa summation in
ALM. Then the error reduction is performed via a lookup table
for multiple partitioned input ranges. Numerical results showed that
HEALM and its enhanced designs could lead to more accurate results
with reduced area and power at the same time than the existing
ALM baseline design. It also outperformed the state of art design,
REALM, with up to 2.92%, 9.30%, 16.08%, 17.61% improvement in
mean error, peak error, area, power consumption for 8-bit precision.
For discrete cosine transformation (DCT) application, with different
values of k, HEALM-TA could improve the image quality upon the
ALM baseline by 7.8∼17.2dB in average and HEALM-SOA could
improve 2.9∼15.8dB in average, respectively. Besides, HEALM-
TA and HEALM-SOA outperformed all the state of art works with
k = 2, 3, 4 on the image quality.
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