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Abstract—In this article, we present a novel approach to real-time tracking of full-chip heatmaps for commercial off-the-shelf
microprocessors based on machine-learning. The proposed post-silicon approach, named RealMaps, only uses the existing
embedded temperature sensors and workload-independent utilization information, which are available in real-time. Moreover,
RealMaps does not require any knowledge of the proprietary design details or manufacturing process-specific information of the chip.
Consequently, the methods presented in this work can be implemented by either the original chip manufacturer or a third party alike,
and is aimed at supplementing, rather than substituting, the temperature data sensed from the existing embedded sensors. The new
approach starts with offline acquisition of accurate spatial and temporal heatmaps using an infrared thermal imaging setup while
nominal working conditions are maintained on the chip. To build the dynamic thermal model, a temporal-aware
long-short-term-memory (LSTM) neutral network is trained with system-level features such as chip frequency, instruction counts, and
other high-level performance metrics as inputs. Instead of a pixel-wise heatmap estimation, we perform 2D spatial discrete cosine
transformation (DCT) on the heatmaps so that they can be expressed with just a few dominant DCT coefficients. This allows for the
model to be built to estimate just the dominant spatial features of the 2D heatmaps, rather than the entire heatmap images, making it
significantly more efficient. Experimental results from two commercial chips show that RealMaps can estimate the full-chip heatmaps
with 0.9◦C and 1.2◦C root-mean-square-error respectively and take only 0.4ms for each inference which suits well for real-time use.
Compared to the state of the art pre-silicon approach, RealMaps shows similar accuracy, but with much less computational cost.

Index Terms—Post-silicon, thermal modeling, real-time, temperature estimation, processor heatmaps, infrared imaging, machine
learning, deep neural networks.
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1 INTRODUCTION

WITH the continuing trend of rapid integration and
technology scaling, today’s high performance processors

have become more thermally constrained than ever before.
Increase in temperature has been shown to exponentially
degrade reliability of semiconductor chips [1], [2], [3], and has
consequently become one of the leading concerns in the industry
today. Thermal and reliability validation and sign-off is a crucial
step in today’s physical design flow. Commercial tools exist to
ensure sound thermal design from the device level [4] all the way
to the system-on-chip (SoC) level [5]. While design time thermal
considerations play a crucial role in ensuring reliability and
consistent performance, monitoring and managing the processor’s
temperature while it is in use is equally important. This is
especially a challenge for system integrators that produce thin and
light mobile devices, laptops, and embedded systems where the
space restrictions limit the effectiveness of traditional coolers such
as heatsinks and heatpipes. In such cases, software based thermal
monitors and controllers can be used along with the external
coolers to ensure proper operation. To this end, runtime power
and thermal control schemes are being implemented in most, if
not all new generations of devices [6], [7]. These control schemes
depend on accurate real-time temperature information, ideally of
the entire die area of the processor in order to be effective [8], [9].

On-chip temperature sensors alone cannot provide the full-
chip temperature information since the number of sensors that can
be placed in a chip is limited due to the high design overheads
that they incur. It has been shown recently that the number of
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Fig. 1: Hot-spot observed spatially distant from an embedded
temperature sensor in an Intel i7-8650U

hotspots on a typical commercial microprocessor far exceeds the
number of embedded temperature sensors [10]. Consequently, the
thermal and power control algorithms that solely depend on the
embedded sensors become oblivious to significant temperature
peaks that occur spatially distant from the sensor locations.
For example, Fig. 1 shows a significant temperature difference
observed between a hotspot and the nearest embedded sensor in
an Intel Core i7-8650U processor.

Adapting smart sensor placement algorithms that aid in
spatial temperature interpolation of non-sensor locations can help
mitigate this issue [11], [12], [13]. However, these methods
require modifications to the chip’s design (i.e. adding or relocating
temperature sensors) which is not a post-silicon approach that can
be applied to off-the-shelf processors.

In this article, we introduce a software-based solution to the
problem at hand. Specifically, we present an entirely new data-
driven approach, named RealMaps, to deriving a light-weight
thermal model that is capable of real-time estimation of full-
chip spatial heatmaps. The estimated heatmaps from the model
can then be used to supplement the temperature readings from
the embedded temperature sensors for more effective thermal
monitoring and control [14]. To our knowledge, the proposed
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approach is the first one that can be implemented on existing
commercial multi-core processors for real-time full-chip heatmap
estimation. Note that this article presents the complete and
comprehensive version of the preliminary work that we published
in a conference [15]. The following is a summary of the
contributions of this work.

• First, RealMaps can be implemented on most, if not all,
existing commercial microprocessors and micro-controllers as
it only uses the existing temperature sensors and workload
independent utilization information. In other words, our strictly
post-silicon approach does not require any modifications to the
chip’s design. Additionally, unlike many existing methods, it
requires no proprietary design, floor-plan or process-specific
information and therefore can be implemented by both the
original chip manufacturer and third-parties, such as system
integrators and academic research labs, on future, current, and
older generations of microprocessors alike.
• Second, our model is built based on high-level performance

monitors, which are supported in most, if not all, commercial
microprocessors. High-level performance monitors, unlike low-
level performance counters, provide system-level utilization
metrics such as the core frequency, instruction counts, cache
hit/miss-rates etc rather than functional-unit-wise access rates.
• Third, RealMaps uses an advanced infrared (IR)

thermography setup that enables lucid heatmaps to be recorded
directly from commercial microprocessors while they are under
load. This system allows us to build and validate the model
using data measured directly from commercial off-the-shelf
microprocessors as opposed to using simulation platforms.
• Fourth, to reduce the dimensionality of the model, 2D

spatial discrete cosine transformation (DCT) is first performed
on the heatmaps so that they can be expressed with just their
dominant DCT frequencies. This allows for the model to be
built to estimate just the dominant spatial frequencies of the
2D heatmaps, rather than the entire heatmap images, making it
significantly more efficient.
• Last but not least, we propose the use of long-short-

term-memory (LSTM) neural-networks (NN), which can
discern temporal information, to build the model. This
popular recurrent-neural-network (RNN) architecture is ideal
for extracting features from sequential input data and therefore
performs very well in the application at hand where several
time-steps of high-level performance metrics are used for each
time-step of temperature inference.

Experimental results validated using measured thermal data
from two commercial chips (Intel i5-3337U and i7-8650U) show
that RealMaps can estimate the full-chip heatmaps with 0.9◦C and
1.2◦C root-mean-square (RMS) error with 0.4ms of inference
time. This makes the proposed approach very desirable for online
thermal estimation. Additionally, when compared to the state-
of-the-art full-chip heatmap estimation method, EigenMaps [13],
which requires pre-silicon design modifications, our purely post-
silicon RealMaps shows similar accuracy, but with much less
computational cost.

This article is organized as follows. Sec. 2 reviews the existing
relevant work. Sec. 3 illustrates the IR thermography setup used
in this study. Sec. 4 details the proposed input and output
dimensionality reduction technique used to reduce the size of the
model. Sec. 5 presents the framework and implementation details
of the proposed approach. Sec. 6 presents the experimental results
and comparisons with the current state-of-the-art method. Sec. 7
concludes this article.

2 RELATED WORK AND MOTIVATION
Hardware performance counters are a collection of special-
purpose registers that are now present in most, if not all,
commercial microprocessors. These registers can be configured
to count low-level performance metrics such as the utilization
rates of one or more functional units (FU). Due to the correlation
between a FU’s utilization rate and its power consumption, it
has been shown that FU-wise thermal and power models can be
built as functions of low-level performance metrics. Exploiting
this correlation, low-level performance metrics and temperature
readings from the embedded temperature sensors have been used
in the past to predict the future readings from the embedded
sensors (i.e. at time t predict Tsenst+1) [16]. Predicting the
future temperature aids in the development of proactive thermal
control schemes as opposed to the existing reactive ones [17], [18].
However, in this study, we attempt to solve a different problem.
As previously mentioned, the number of embedded sensors on
the chip is very limited due to their high design overheads and
they may not always be placed in close proximity to the hot-spots
on the chip (Fig. 1). Hence it is imperative to develop methods
to monitor the temperature and/or power distributions across the
entire chip’s surface-area in real-time.

To that end, software-based power-consumption and
temperature estimation methods for both high performance and
mobile/embedded processors have been developed [19], [20], [21],
[22], [23], [24]. These methods offer a software-based solution
to runtime FU-wise, or package-wise, power and temperature
estimation which otherwise would require a vast number of
embedded sensors that incur significant design overheads and
are prone to sensing and process-based noise [18]. However,
these methods typically rely on manually identifying the low-
level performance metrics that are correlated with each FU on
the chip. Additionally, for FU-wise estimation, at least one low-
level performance metric must be recorded for each FU at all
times. However, the number of configurable performance counting
registers available in a typical microprocessor is limited, hence
simultaneous monitoring of the entire chip is not feasible using
this method.

To overcome these challenges, two general strategies have
been explored. The first is to estimate the full-chip heatmaps from
physics-based thermal models and power related information [25],
[26]. These thermal models can be built using the so-called
“bottom-up” approaches such as HotSpot [27] based simplified
finite difference methods, finite element methods [28], equivalent
thermal RC networks [29], and recently proposed behavioral
thermal models based on the matrix pencil method [30] and the
subspace identification method [31], [32]. However, such methods
are typically not suited for real-time use and often require accurate
component wise power-traces as inputs, which are not trivial
to obtain [33], [34]. Second is to use an interpolation based
approach to estimate the full-chip heatmaps from the embedded
sensor readings [35]. Since the number of sensors and their
placement have a significant impact on the accuracy of the
aforementioned interpolation, smart sensor placement algorithms
have also been proposed that can be used during design time
to find the optimal placement for the given budget of embedded
temperature sensors [11], [12], [13], [36], [37]. It has been shown
that adapting smart sensor placement algorithms can improve the
accuracy of soft-sensing or interpolation based methods that can
be used to estimate the temperature of any arbitrary location on
the chip [12], [13].

However, the aforementioned methods either require design-
time hardware changes (inserting or relocating sensors) or at
the very least require detailed knowledge of the chip’s floorplan
and constants specific to the technology-node which are not
disclosed by the original chip manufacturer. An exclusively post-
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silicon approach to real-time estimation of the spatial temperature
distribution across the entire chip area (i.e. at time t, estimate
the full-chip spatial heatmap T (x, y)t) remains a challenge for
existing commercial microprocessors. Such an approach would
aid the original chip manufacturer, as well as third-parties, such
as system integrators and academic research labs, in developing
more robust thermal, power, and reliability control schemes that
can make use of both the real-time temperature data sensed by
the existing embedded sensors, as well as the real-time estimation
from the thermal model.

On the other hand, recently, machine-learning (especially
deep-learning) is gaining much attention due to the breakthrough
performance in various cognitive applications such as visual object
recognition, object detection, speech recognition, natural language
understanding, etc., due to dramatic accuracy improvements
in their time-series or sequential modeling capabilities [38].
Machine-learning for electronic design automation (EDA) is
also gaining significant traction as it provides new computing
and optimization paradigms for many of the challenging
design automation problems that are complex in nature. For
instance, machine learning methods have been applied to power
modeling [39] and design space exploration [40]. Additionally,
machine-learning based schemes have recently been explored to
build a workload-dependent thermal prediction model [41], where
the future steady-state temperature of the chip can be predicted by
application characteristics and physical features.

Inspired by the recent breakthrough in deep-learning, in this
work we present a machine-learning based framework to post-
silicon full-chip heatmap estimation for commercial off-the-shelf
microprocessors. The proposed method leverages the existing
embedded temperature sensors and high-level performance
monitors which provide system-level metrics such as core-
wise frequency, instruction counts, cache hit/miss-rates, overall
energy consumption, etc., providing a comprehensive view of
the utilization of the entire microprocessor in real time. Deep
learning is used to ascertain the relationship between the system-
level utilization behavior of the microprocessor and its thermal
behavior. The proposed data-driven modeling strategy is structured
such that it can be applied to most, if not all, existing commercial
multi-core microprocessors with no knowledge of the proprietary
design/floorplan information.

3 INFRARED THERMOGRAPHY SETUP
With any machine-learning based approach, proper acquisition
of the training and testing data is of utmost importance. To
develop the proposed thermal model for a given microprocessor,
two critical pieces of data must be collected. Specifically, a
time-continuous sequence of spatial temperature data and high-
level performance metrics of the microprocessor captured in
synchronous with each-other. To this end, we have built an
IR thermography setup that allows us to synchronously capture
heatmaps (T (x, y)t) and performance metrics (M(j)t) at a
constant frequency (f = 1/!t). Here, x and y are spatial
coordinates, t is time, !t is the time-span between two adjacent
time-steps, and 1 < j < m where m is the total number of
metrics supported by the performance monitoring software.

Our IR thermography setup, shown in Fig. 2, is based on
the setup proposed in [42]. It features a thermo-electric (Peltier)
device mounted on the PCB directly beneath the processor
allowing it to be cooled from underneath. This leaves the front
side of the processor fully exposed to the IR camera without
any interference layer in-between. A programmable DC power
supply is used to control the heat-flow through the thermo-
electric device so that the operating conditions can be matched
to the baseline cooling unit (stock heat-sink) using the calibration

method discussed in [42]. Unlike the traditional oil-based front-
cooling methods, no de-embedding [34] is required in our setup.
It should be noted that this cooling system should only be used for
processors that require heat-sinks. Many mobile and embedded
processors are designed to be operated without heat-sinks. In
such cases, the aforementioned cooling system should not be used
during data acquisition.

Detailed description of the IR thermography setup is as
follows. The IR camera used in this setup is a FLIR A325sc
which supports a maximum imaging resolution of 320×240
pixels (px) with 16-bits of precision per px, and a maximum
capturing frequency of 60Hz. The IR sensor is factory calibrated
for accuracy across the temperature range of 0◦C to 328◦C, and
resolves the IR spectral range of 7.5µm to 13µm. A microscope
lens is used to achieve the spatial resolution of 50µm per px. The
FLIR A325sc has an internal waveform generator that outputs
a square waveform in synchronous with the capture rate of
the camera. An I/O module is used to interface the waveform
generator to the processor-under-test so that the performance
metrics (recorded in the processor) can be synchronized with
the thermal data recorded by the IR camera. Mounted on the
PCB directly underneath the processor is the thermo-electric-
based cooling system which includes a Peltier device powered
by a programmable DC power supply. The Peltier device is
the primary cooling mechanism, keeping the chip operating at
nominal working conditions. Thermal energy flows from the cool-
side of the Peltier device to its hot-side, where it must be dissipated
in order to ensure proper operation. To this end, an off-the-shelf
liquid cooling system is used to cool the hot-side of the Peltier
device.

It is crucial to note two details regarding the infrared
thermography setup. First, the maximum inference frequency of
the proposed model will be ultimately limited by the capturing
frequency of the IR camera. In our case, the maximum inference
frequency cannot exceed 60Hz. If inference at a higher frequency
is desired, then a more advanced IR camera will be required.
Second, such as setup does incur a considerable financial cost.
Currently, the configuration shown in Fig. 2 costs roughly $15K
USD in which the IR camera costs roughly $10K USD. While
this is significant, in most circumstances, it can be justified as
it is a one time investment. For example, if a system integrator
plans to produce 100K mobile/embedded devices using a given
commercial processor, then the research and development cost of
deriving the runtime thermal model for that processor using the
proposed method will be only $0.15 per unit.

4 MODEL OPTIMIZATION
In RealMaps, the thermal model will be built via training a LSTM-
based deep-neural-network (DNN). The DNN will be trained
offline using the full-chip heatmaps and high-level performance
metrics acquired using our IR thermography setup. In machine-
learning terminology, the heatmaps will be our labels (output
of the model) while the performance metrics are our features
(input of the model). Once the model is trained, the goal is
to deploy the model back into the processor in the form of a
background application residing in the operating system (OS).
This application will, in real-time, feed the performance metrics
from the online performance monitor into the model; the model
will in-turn periodically output the estimated heatmaps. Since the
model is meant for real-time use, it is imperative for it to be as
lightweight as possible with minimal overheads in processing time
and memory usage.

From the DNN perspective, several techniques, such as weight
pruning and quantization, exist for optimizing DNN models.
However, in this work we will be utilizing Google’s Tensorflow
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Fig. 2: Our IR thermography setup

(TF) machine-learning library [43] to configure and train our
model. The aforementioned weight pruning and quantization
methods, along with a number of other optimizations are already
performed by the aforementioned library (TF Lite); hence, from
this perspective, there’s limited margin to optimize our core
model any further. We can however optimize the model from
the input and output points of view. To this end, in this section
we will discuss our approach to output and input dimensionality
reduction via dominant spatial frequency extraction and simple
cross-correlation analysis.

4.1 Heatmap compression
Heatmaps of the Intel i5-3337U and i7-8650U captured using our
IR thermography setup have image resolutions of 177 × 166px
and 185 × 154px respectively. This constitutes to a total pixel
count of 29382 and 28490 respectively for the two chips. If we
were to build DNN models capable of pixel-wise estimation of the
full-chip heatmaps (image generation task), then the models for
the two chips will need to have output sizes of 29382 and 28490
dimensions respectively. This would not only make the DNN
models very large, thus unfit for online inference, but will likely
be untrainable due to the large number of trainable parameters that
the network will contain. One solution to this problem is to build
a model to only estimate the dominant features of the heatmaps
rather than the entire heatmap image. The estimated heatmaps can
then be reconstructed using the dominant features outputted by the
model.

Generally, feature extraction can be carried out using popular
dimensionality reduction techniques such as principal component
analysis (PCA). Here, compression or approximation is achieved
by projecting a data-sample, heatmap T (x, y), onto the subspace
spanned by the dominant principal components (PCs) of the
available dataset. Such a method would involve first calculating
the PCs which form the columns of the change-of-basis matrix.
The dominant features in this case would be the coefficients of
expansion corresponding to the dominant PCs. However, using this
non-standard basis for the application at hand is not recommended
since this would require the dominant PCs to be stored in memory.
Each PC has the dimensionality equivalent to the pixel-count of
the heatmap image (29382 and 28490 single precision floating
point values for the two chips respectively). Hence, just storing
a few PCs will incur a significant amount of memory overhead.
An alternative would be to use a basis with established analytical
transformation equations, so that the basis vectors do not need to
be stored in memory.

In the case of spatial heatmaps, it has been shown that
discrete cosine transformation (DCT) to the spatial frequency
domain is an excellent option as the majority of the information
from a heatmap can be expressed with just a few low-frequency
coefficients of DCT [36]. To this end, we use 2D DCT to
convert the measured heatmaps, T (x, y), into spatial frequency-
domain [44]. This allows us to extract the dominant low-frequency
DCT coefficients of the heatmaps and train our DNN to only
estimate these coefficients. Inverse DCT can then be performed
at the model’s output to recover the estimated heatmaps.

2D DCT is a popular choice for signal and image processing
with its “strong energy compaction property” [44]. In most
applications, the bulk of the information can be represented by
a few low-frequency components of the DCT. A 2D DCT consists
of two separate 1D DCT operations, which can be denoted as

fk =
a0√
N

+

√
2

N

N−1∑

i=1

ai cos
(2i+ 1)kπ

2N
, 0 ≤ k < N, (1)

where vector {ai} is the original (1 × N ) data, and {fk} is the
result of 1D DCT. A 2D DCT is completed by applying 1D DCT
on each column and then on each row of the matrix.

For feature extraction, 1 ≤ n ≤ xmax × ymax number
of dominant DCT frequencies can be extracted from a spatial
heatmap (T (x, y)) by transforming T (x, y) into its spatial
frequency domain representation (F (x, y)) using 2D DCT; then
retaining only the first n dominant coefficients in F (x, y).

In an image compression scenario, a compressed frequency
map (F(x, y)) is obtained by applying a mask to F (x, y)

F(x, y) = F (x, y)m(x, y), (2)

where m(x, y) is a mask map valued 1 at the n most dominant
DCT frequency locations and 0 everywhere else. The compressed
heatmap (T (x, y)), can then be recovered by carrying out 2D
inverse DCT (iDCT) on F(x, y). Similar to its forward counterpart
(1), 2D iDCT consists of two separate 1D iDCT steps (3) on the
rows and columns respectively.

ai =
f0√
N

+

√
2

N

N−1∑

k=1

fk cos
(2i+ 1)kπ

2N
, 0 ≤ i < N. (3)

In this case, the higher the value of n, the more T (x, y)
will resemble T (x, y). For example, Fig. 3(a) shows a random
heatmap of an Intel i7-8650U. The heatmap compressed using
n = 1 spatial DCT frequencies is shown in Fig. 3(b). Since only 1
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(a) (b) (c) (d) (e)

Fig. 3: (a) A randomly selected uncompressed heatmap of an Intel i7-8650U. (b) Compressed (n = 1). (c) Compressed (n = 3). (d)
Compressed (n = 6). (e) Compressed (n = 10).

spatial frequency is used, the compressed heatmap only retains the
approximate amplitude and no details of the spatial temperature
distribution. As n in increased (Fig. 3(c) - Fig. 3(e)), more and
more nuanced spatial details are retained in the compression. For
a heatmap of size xmax × ymax, if n = xmax × ymax, then
T (x, y) = T (x, y).

# of DCT Frequencies

R
M

S 
Er

ro
r (
°C

) i5-3337U
i7-8650U

 ~ 0.17°C

Fig. 4: RMS error between actual heatmaps and heatmaps compressed
using varying number of DCT coefficients

In this work, our goal is to identify the minimum value for
n that results in minimal loss of spatial information from this
compression. In order to determine the minimum number of DCT
coefficients that we can use without introducing a significant
amount of error, we compress 140,000 heatmaps from each of
the two processors with varying number of DCT coefficients.
Root-mean-square (RMS) error is then computed between the
compressed heatmaps and their uncompressed counterparts. Fig. 4
shows the RMS error in ◦C as the number of DCT coefficients
used in the compression is increased. Based on Fig. 4, we can see
that it is sufficient to use only the first 36 most-dominant DCT
coefficients, as increasing the number of features further produces
marginal benefits. With this compression, the output of the two
models (F = vectorize(nonZero(F)) only need the dimensionality
of 36, instead of 29382 and 28490 respectively. This is a significant
reduction to the size of the model, with a compression error of only
0.17◦C RMSE as shown in Fig. 4.

While we found that 36 DCT coefficients is sufficient for the
two chips used in this study, this number may not be true in
general for all processor models. Some processors may require
fewer, while other may require more. Hence, it is imperative to
repeat the above analysis for each processor model to derive the
minimum value for n that results in negligible loss due to the
compression.

4.2 Performance metrics selection
As previously mentioned, two Intel chips are used in this
study. Namely, the Intel i5-3337U (2 cores, 4 threads, released
in 2012) representing an older generation and the Intel i7-
8650U (4 cores, 8 threads, released in 2017) representing a
relatively newer generation of chips from the Intel core family of
microprocessors. The primary high-level performance monitoring
software supported by Intel is Intel’s Performance Counting
Monitor (IPCM) [45]. IPCM provides the system-level utilization

TABLE 1: High-level Performance Metrics (Intel PCM)

Package Core
Exec Read C1res% Exec1 L2Miss1 c0res%1

IPC Write C2res% Exec2 L2Miss2 c0res%2

Freq INST C3res% IPC1 L3Hit1 c1res%1

AFreq ACYC C6res% IPC2 L3Hit2 c1res%2

L3Miss Time C7res% Freq1 L2Hit1 C3res%
L2Miss PhysIPC C8res% Freq2 L2Hit2 C6res%
L3Hit PhysIPC% C9res% Afreq1 L3MPI1 C7res%
L2Hit INSTnom C10res% Afreq2 L3MPi2 Tsens

L3MPI INSTnom% Energy(J) L3Miss1 L2MPI1
L2MPI C0res% sens L3Miss2 L2MPI2

The subscript 1 and 2 (i.e. Exec1 and Exec2) correspond to hardware
threads 1 and 2 within a single core.

metrics that we will be utilizing in this work. For non-Intel
chips, the equivalent performance monitors can be used (i.e. AMD
uProf [46]).

IPCM provides package and core-wise performance metrics
such as energy usage, package and core frequency, instruction
counts, cache hit/miss-rates, etc., as well as the sensed temperature
from the embedded sensors. Table 1 shows the complete list of
IPCM performance metrics from both the package and core-wise
domains. There are 30 metrics corresponding to the whole package
domain, and 28 metrics for each core. In total, IPCM provides 86
metrics for the dual-core i5-3337U and 142 metrics for the quad-
core i7-8650U.

If we were to use the entire IPCM suite as the input to
our models, they would have input dimensionalities of 86 and
142 respectively for the two chips. However, although the entire
suite of metrics may be useful from a performance monitoring
perspective, not all of the metrics may be relevant in modeling
the temperature of the chip. Hence, if we can identify the metrics
that are irrelevant to the application at hand, eliminating them
from the input will aid in further reducing the size of the model.
Removing the irrelevant IPCM metrics can be done simply by
computing the Pearson’s correlation coefficient between a given
IPCM metric and each one of the 36 DCT frequencies discussed
in Sec. 4.1. If a metric is not correlated with any of the dominant
frequencies then it can be eliminated from the input (Algorithm 1).
This trivial approach allows us to reduce the input size from 86
to 58 for the i5-3337U and from 142 to 86 for the i7-8650U.
While this reduction is not as significant as the output reduction
in Sec. 4.1, it will nonetheless contribute to the efficiency of the
model. Additionally, only utilizing relevant features at the input
will make the DNN easier and faster to train.

5 FRAMEWORK AND IMPLEMENTATION
In this section, we will present the framework and implementation
specifics of RealMaps. We will detail the process of acquiring
the necessary data, training and validating the DNN model, and
deploying the end model for real-time inference.
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Algorithm 1: Relevant IPCM Metric Selection
" n = # of DCT Freq, m = # of IPCM
metrics, tmax = # of timesteps

input : F = [F0; ..;Ftmax]
M = [allM0; ..; allMtmax]

output:M

M = [ ];
for i← 1 to m do

maxC = 0;
for j ← 1 to n do

currC = PearCorr(M[:, i], F[:, j]);
maxC = max(currC , maxC);

end
if maxC ≥ 0.5 then

M = concatenate(M , M[:, i]);
else
pass;

end
end

5.1 Data acquisition and normalization
The data acquisition for the proposed approach involves
simultaneously recording spatial heatmaps of the processor and
performance metrics at a constant capture rate (f = 1/!t =
60Hz). At time t, one complete heatmap matrix T (x, y)t of size
xmax × ymax is captured, while at the same time IPCM vector
allMt of size 1×m is recorded. Where xmax × ymax = 177×
166 and m = 86 for the i5-3337U and, xmax×ymax = 185×154
and m = 142 for the i7-8650U. The 36 most dominant DCT
frequencies (vector Ft), previously identified using the method
presented in Sec. 4.1, are extracted from T (x, y)t, while at the
same time the relevant IPCM metrics (vector Mt), previously
identified using the method presented in Sec. 4.2, are extracted
from allMt. Both Ft and Mt are then normalized to the range of
−1 to 1 and saved. After a period of time (!t), the next time-step
of data is captured in the same manner. This process is repeated
until the desired amount of data is acquired. To summarize, the
proposed data acquisition flow is illustrated in Fig. 5.

For this study, a total of tmax = 149760 and tmax = 230400
time-steps of training data were collected for the i5-3337U and
i7-8650U respectively at a capture rate of 60Hz. This constitutes
to a total runtime of 41.6 and 64 minutes respectively. During the
initial data collection phase, it is difficult to judge exactly how
much data will be needed. However, after the training process,
if the model does not produce the desired accuracy then one
course of action would be to collect additional data to train the
model further. As a rule of thumb, with any machine learning
based method, more data will generally lead to a better model.
It is however important to denote that increasing the training
dataset without increasing the validation dataset can heighten the
risk of overfitting. This will result in the model performing well
on the training dataset but poorly on the validation dataset and
consequently in testing and deployment. In our study, we use
80% of the acquired data for training and 20% for validation.
With sufficient validation data, it will be easier to detect and
mitigate overfitting during the training process. As we will discuss
in the next subsection, this is done by monitoring the learning
curve during the training process. If overfitting is detected, then
regularization methods can be used.

During the course of data acquisition, the processors
were subjected to a variety of workloads. These range from

Fig. 5: Data Acquisition Flow

TABLE 2: Phoronix Workloads Executed During Data Acquisition

Processor System Memory Disk
aobench cyclictest stream aio-stress

compress-7zip phpbench tinymembench fio
encode-flac gimp t-test1 fs-mark
build-gcc git ramspeed dbench

cachebench blender mbw tiobench

lightweight workloads like idling, to intensive workloads like data
compression. Some workloads were primarily compute-intensive
tasks while others were memory-intensive. It is important to note
that the model itself will be workload independent as it only uses
the performance metrics (Sec. 4.2) as the inputs, which contain
no information of the workload that the processor is executing.
The end goal of the proposed approach is to derive a model that
performs reliability regardless of the workload that the processors
will be subject to during deployment. However, when the training
dataset is being collected, diversity in workloads is nonetheless
important due to the extensive use of clock and power gating
in modern processor architectures. If a FU is not used when the
training data is being collected, it is likely that this FU will remain
disabled during the entire time. Hence, it is crucial to utilize all
the different sub-systems in the processor during the course of
data acquisition so that their thermal behavior can be recorded
and consequently be “learned” by the model during the training
process. One option to ensure diversity of workloads is to use a
benchmark suite that offers a variety of workloads that range in
hardware utilization and intensity [47], [48], [49].

For this study, we used the Phoronix test suite [47], which
is an open-source benchmark software for Linux that offers an
extensive range of workloads. In Phoronix, the workloads are
categorized under four domains: processor, system, memory and
disk. The processor and system workloads tend to be more
compute intensive, while memory and disk workloads tend to be
memory intensive. For this study, 5 workloads from each category
were randomly selected as shown in Table 2. These workloads
were randomly executed in the processor during the course of the
data acquisition (Fig. 5).

5.2 Training and testing the LSTM model
As previously mentioned, in this study, we will be employing a
LSTM-based DNN to train our online thermal model. A LSTM
network is an improved variant of RNNs whose nodes (or neurons)
have gated internal states, allowing the network to model problems
that require substantial temporal dimensionality. Such a network
is ideal for the problem at hand, since the current temperature
of a microprocessor (heatmap T (x, y)t) is not just a function of
its current utilization (vector Mt), but rather its recent utilization
(matrix [Mt−s; ..;Mt]). In this work we will set s = 59, making
our estimated heatmap (T (x, y)t) a function of 60 time-steps
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of utilization data ([Mt−59; ..;Mt]). With the acquisition rate of
60Hz, 60 time-steps of M represents the processor’s utilization
for a time-span of 1 second. Given that the thermal time-constant
for semiconductor chips is in the order of milliseconds, 1 second of
temporal dimensionality at the input should be sufficient. Setting s
to a substantially large number will make the model more difficult
to train while yielding minimal improvements in accuracy. This
is because, during the training process, the weights assigned to
the inputs spanning significantly far back in time will be set very
close to 0 as their contribution to the current output of the model
(current temperature) is minimal.

Fig. 6: LSTM Network Configuration

The specific configuration of the LSTM network (# of nodes
and # of layers) is not an exact science, especially for a regression
problem. Generally, it is recommended to start with a smaller
network and increase the size based on its performance. In this
work, we will be utilizing the network illustrated in Fig. 6. This is
a two layer network with k nodes and 60 time-steps of feedback
in the LSTM layer, and 36 nodes in the linear output layer.
Through experimentation, we determined that k = 58 and k = 86
(matching size(M )) yielded a good trade-off between network size
and inference time for the i5-3337U and i7-8650U respectively.

Fig. 7: Testing Flow

After the training data was acquired using the method outlined
in Sec. 5.1, the aforementioned LSTM network was trained for a
total of 150 EPOCHS with 80% of the data used for training and
20% used for validation. Training was carried out on a server with
two Intel 22-core E5-2699 CPUs, and 320GB of memory. The total
time elapsed for training was approximately 81 and 112 hours
for the two models respectively. As previously mentioned, for
each time-step t, 60 time-steps of IPCM metrics [Mt−s; ..;Mt]
were used as the features (input) while 1 time-step of the 36 most
dominant DCT frequencies Ft extracted from T (x, y)t was used
as the label (output).

During the training process, it is essential to monitor the
learning curve. If validation loss diverges significantly from
training loss, this typically indicates overfitting. The learning
curves for the two chips are shown in Fig. 8. In our case, overfitting
was not found to be an issue. However, this will not always be true

as overfitting is a common problem encountered during training.
If overfitting is detected, then regularization techniques such as
the popular Dropout [50] method can be used to mitigate it.

(a)

(b)

Fig. 8: Learning curves: (a) i5-3337U (b) i7-8650U.
Once the model is trained, it is crucial to test it throughly

with new data that was not used for training. As illustrated in
Fig. 7, in this study, testing was done by capturing additional
thermal data using the IR thermography setup and comparing
the measured heatmaps (T (x, y)) with the estimated heatmaps
(T (x, y)) produced by the model. The error maps (T − T ) are
saved in order to evaluate the accuracy of the model. For testing,
it is recommended to execute a variety of workloads, ideally
different than the ones used previously during the acquisition of
the training dataset, in order to test both the accuracy and the
generality of the model. In this study, the Phoronix test suite [47]
was once again used for this purpose. Other benchmark suites
such as PARSEC [48], and SPEC [49] or any random collection
of workloads that vary in hardware utilization and intensity
will suffice as well. The randomly selected Phoronix workloads
that were executed during the testing process are: cloverleaf,
compilebench, cpp-perf-bench, himeno, pgbench, phpbench, bork,
byte, node-octane, opt carrot, osbench, pyperformance, opencv-
bench, pybench, sqlite-speedtest, ozone, postmark. This testing
process allows us to calculate the error between the estimated
heatmaps and the true measured heatmaps, while at the same
time, measure the processing and memory overheads of the model.
These results for both of the chips will be presented in the next
section.
5.3 Deployment
Once the model has been trained and validated as shown
in Sec. 5.2, it can be deployed in the processor as a OS-
resident background application (software thermal monitor).
Online inference can be achieved by directing the performance
metrics to the thermal monitor, which in-turn outputs the estimated
heatmap (T (x, y)t). This estimated heatmap can then be directed
to a thermal/power controller or any other OS-resident application
as desired. After a period of !t, this process can be repeated
again (Fig. 9). Note, it is important to set !t to be equivalent to
the capture rate of the training datasets. In our case, it would be
!t = 1/60sec since the training data was captured at the rate of
60Hz. In the next section, we will present the experimental results
from implementing the proposed framework on two test chips and
analyze the model’s performance both in terms of its estimation
accuracy and its overheads compared to the current state-of-the-art
approach.
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Fig. 9: Model Deployment

TABLE 3: Error stats - Realmaps

RMS(E) Mean(E) Med(E) Max(E) Stdev(E)
i5-3337U 0.87◦C 0.75◦C 0.69◦C 10.31◦C 0.56◦C
i7-8650U 1.24◦C 0.86◦C 0.70◦C 9.74◦C 0.75◦C

6 EXPERIMENTAL RESULTS AND COMPARISONS
6.1 Experimental results
As outlined in Sec. 5.1 and Sec. 5.2, an extensive set of data
were collected from both the i5-3337U and i7-8650U which were
then used to train the respective RNN-based thermal models. Once
the loss function saturates at a sufficiently low value, the two
models were retrieved and put under the testing process illustrated
in Fig. 7. As previously mentioned, the testing phase involves
utilizing the model to estimate the processor’s spatial heatmaps
(T (x, y)) while at the same time, the real heatmaps (T (x, y)) are
captured using the IR thermography setup. At each time-step, the
error-maps (T − T ) are stored in order to compute the overall
accuracy of the model.

Extensive testing conducted on the two chips show that
the models perform exceptionally well. The results from the
testing process are presented in Fig. 10, Fig. 11, and Table. 3.
The estimated 36 DCT coefficients F follow the trends of
the measured data with marginal error. The estimated DCT
coefficients for both chips are shown in Fig. 10, plotted along
with their measured counterparts from the testing process. For
better visualization, we can randomly select a measured heatmap
(T (x, y)t) and compare it with the estimated heatmap (T (x, y)t)
from the same testing time-step t. Fig. 11 shows a measured
heatmap of the two chips alongside the estimated heatmaps
generated by the models. The error-map (T − T ) is also shown.
The heatmaps shown in Fig. 11 are from the randomly selected
time-step t = 15059 and t = 30073 from the testing process for
the two chips respectively.

In order to formally compute the overall accuracy of the model
from the data acquired through the testing phase, we first assemble
the error vector given in (4).

E = vectorize([T1 − T1, .., Ttmax − Ttmax]) (4)

Where matrices T and T are the measured and estimated
heatmaps respectively, and tmax is the final testing time-step. The
total length of E is 8.8× 108 and 1.3× 109 elements for the i5-
3337U and i7-8650U respectively. This error vector (E) captures
all of the pixel to pixel errors between the measured heatmaps and
the estimated heatmaps throughout the span of the entire testing
process. Once E has been assembled, the error statistics shown in
Table 3 can be calculated.

As shown in Table 3, the models yielded a root-mean-
square error of 0.87◦C and 1.24◦C, max error of 10.31◦C
and 9.74◦C and a mean error of 0.75◦C and 0.86◦C with a
standard deviation of 0.56◦C and 0.75◦C for the i5-3337U and
i7-8650U respectively. We believe that this is sufficient for full
chip heatmap estimation, especially when considering the fact
that the embedded temperature sensors are rated to have an error
of ±5◦C [51]. As previously mentioned, the heatmaps estimated
by the model are to be used to supplement the temperature
data sensed by the embedded temperature sensors, rather than
being used as a substitute. For example, the readings from the
embedded temperature sensors provide more accurate temperature
data but only of a few pre-selected locations of the chip, whereas
the proposed thermal model will offer full-chip temperature
information albeit at lower accuracy. Hence, both the sensors and
proposed model can be used together by the dynamic thermal
and power controller in order to make a well informed regulation
decision. In addition, the accuracy of the model is comparable
to the existing pre-silicon techniques which require specialized
sensor placement algorithms to be adapted during design time and
often require more sensors than the quota allocated for typical
microprocessors [24], [36], [52], [53]. As we will show in the
next subsection, this model is also more lightweight in terms of
the computation and memory overheads when compared to the
current state-of-the-art. The computation time of our model is,
on average, 0.41 milliseconds per inference for both chips and
its memory overhead, primarily incurred in storing the network
weights, is 266Kb and 557Kb respectively for the i5-3337U and
i7-3650U respectively. This makes the proposed full-chip heatmap
estimation technique not only practical, but also highly desirable
for online temperature estimation.

One caveat that should be noted, however, is the existence
of variations between processor samples that stem from the
manufacturing process. The model that is derived using the
proposed framework must be robust against such variations. In this
study, only one sample of the i5-3337U and i7-8650U were used to
collect the training dataset. However, in reality, it is recommended
to use multiple samples of the given chip for both the acquisition
of the training datasets, as well as for testing the end model. This
aids in increasing the robustness of the model to such statistical
variations.

6.2 Comparisons with the state-of-the-art pre-silicon
approach
As previously mentioned, to our knowledge, the proposed
framework is the first exclusively post-silicon approach to achieve
real-time full-chip spatial heatmap estimation for commercial off-
the-shelf microprocessors. However, as discussed in Sec. 2, pre-
silicon methods based on smart embedded temperature sensor
placement algorithms have been presented in the past [13],
[36]. The current state-of-the-art pre-silicon method known as
“Eigenmaps” was established by Ranieri et. al. [13]. In this
subsection, we present the implementation of [13] for the two Intel
chips used in this study (i5-3337U and i7-8650U) and compare
the heatmap estimation accuracy as well as the overheads with
that of the proposed post-silicon machine-learning based approach
(Realmaps).

In summary, the approach in [13] is based on identifying the
ideal basis (matrix Φ) for the vectorized spatial heatmaps of the
given chip. Sensor locations are determined by calculating the
correlation between all the rows of Φ and determining s least
correlated spatial locations for sensor placement. Once the sensors
are placed, the temperature readings from the sensors can be used
to approximate the coefficients of expansion over Φ.

More specifically, let v[i], where 0 < i < N = xmax×ymax,
be the 1D vectorized form of the 2D heatmap T (x, y), where
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(a)

(b)

Fig. 10: Estimated vs measured F [1] to F [36] (a) i5-3337U (b) i7-8650U.

(a) (b) (c)

(d) (e) (f)

Fig. 11: (a) Measured T (x, y) i5-3337U. (b) Estimated T (x, y) i5-3337U. (c) Error T − T i5-3337U. (d) Measured T (x, y) i7-8650U (b)
Estimated T (x, y) i7-8650U (c) Error T − T i7-8650U.
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0 < x < xmax, 0 < y < ymax, and xmax and ymax are the
horizontal and vertical pixel counts of T (x, y) respectively. This
vectorization is done simply by vertically stacking the columns of
T (x, y) such that the 1D index i for v corresponds to the 2D index
x, y for T according to (5)

v[i] = T

[
i mod ymax,

⌊
i

xmax

⌋]
(5)

In general, the vector v can be represented using a basis Φ as
per (6).

v[i] =
N∑

j=1

Φ[i, j]α[j] (6)

Here, vector α[j] contains the coefficients of expansion
over basis Φ. With vectorized heatmap v expressed as (6), an
approximate or compressed vectorized heatmap v̂ can be described
as a linear combination of the first K columns of Φ and the
corresponding K elements of α as shown in (7). In other words,
this process is a projection of the spatial heatmap onto the linear
subspace spanned by the first K columns of basis Φ.

v̂ = Φ[:, 0 : K]α[0 : K] = ΦKαK (7)

The optimal subspace ΦK is the one that introduces the
smallest error between v and v̂. Finding this optimal subspace ΦK
is a classical problem that is better known as Principal Component
Analysis (PCA). As per PCA, the ideal subspace ΦK is the matrix
whose columns are made up of the first K principal components
(PCs) of matrix V = [v1, .., vtmax]. Ranieri et. al. aptly named
these PCs as “Eigenmaps” as the analytical solution to computing
the PCs involves calculating the Eigenvectors of the covariance
matrix of V .

In [13], being a pre-silicon approach, V is derived by
simulating the chip’s layout using a thermal simulator. At
each simulation time-step t, the simulated heatmap T (x, y)t is
vectorized into vt and stacked into column V [:, t] = vt. This
process is repeated until the final simulation time-step tmax. In
this comparison, we will be using the measured heatmaps of our
two chips (our entire training dataset from Sec. 5.1) as a substitute
to the simulated heatmaps used in [13].

Similar to the DCT basis discussed in Sec. 4.1, here the higher
the value of K , the better v̂ will resemble v. However, since ΦK is
the ideal basis for the given problem, far fewer coefficients will be
needed compared to the DCT basis. For example, Fig. 12 shows
the RMSE computed between the measured heatmaps and the
compressed counterparts using varying number (K) of columns
in Φ. Comparing this with the same analysis done previously for
the DCT basis (Fig. 4), it is clear that ΦK is indeed a superior
basis for the problem. However, the disadvantage of using ΦK for
real-time applications is that it has to be held in memory, which
incurs a considerable memory overhead. Note, each columns of
ΦK contains N = xmax × ymax single-precision floating point
values.

Fig. 12: RMS error between actual heatmaps and heatmaps
compressed using varying number of Eigenmaps.

After ΦK was calculated for the i5-3337U and the i7-

TABLE 4: Error stats - Eigenmaps

RMS(E) Mean(E) Med(E) Max(E) Stdev(E)
i5-3337U 0.86◦C 0.57◦C 0.34◦C 9.02◦C 0.65◦C
i7-8650U 0.94◦C 0.57◦C 0.26◦C 12.52◦C 0.74◦C

8650U, the greedy sensor placement algorithm from [13] was
implemented for the two chips to determine the optimal sensor
locations given the allocation of s number of temperature sensors.
Normally, after the sensors are placed in the design, and the chip
is manufactured, the temperature readings from the embedded
sensors (vector vs = [Tsens#1, .., Tsens#s]) can be used to
approximate the estimated vectorized spatial heatmap ṽ using (8).

ṽ = ΦK(Φ̃K ∗ Φ̃K)−1 ∗ Φ̃K ∗ vs = C ∗ vs (8)

Here Φ̃K is the matrix made up of the first s columns of
ΦK and the rows corresponding to the spatial coordinates of the
selected sensor locations.

For our implementation of EigenMaps, we cannot physically
embed the sensors as this would require the two chips
re-manufactured with the sensors in place. Instead, sensor
temperatures are not sampled from physical sensors but rather
sampled from the measured heatmaps from our thermal imaging
system. This is done by simply reading the temperature of the
spatial locations where the sensor would have been located.
For this comparison, RMSE between the measured heatmaps
and the heatmaps estimated using the framework in [13] was
calculated using various number of artificially embedded sensors,
whose locations are determined by EigenMaps’ sensor placement
algorithm. The results for the two chips is shown in Fig. 13. The
results show that the error between the estimated and measured
heatmaps generally tend to decrease as the number of allocated
sensors is increased. In reality, the number of sensors allocated
for a processor typically depends on its core count. This is often
equal to the number of cores + 1. For example, the dual-core
i5-3337U and the quad-core i7-8650U have 3 and 5 sensors
respectively. Accordingly, we will consider s = 3 sensors, and
s = 5 sensors for the two chips in this comparison. The accuracy
results for Eigenmaps are presented in Table 4 for the two
chips. As the results show, the estimation accuracy of Eigenmaps
is comparable to what was achieved with Realmaps (Table 3),
especially considering that Eigenmaps requires pre-silicon design
considerations, where as Realmaps is an exclusively post silicon
framework.

(a)

(b)

Fig. 13: RMS error between measured heatmaps and heatmaps
estimated using [13] as a function of the number of embedded
temperature sensors. (a) i5-3337U (b) i7-8650U.
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In terms of overheads, deploying the method in [13] for real-
time inference would require the expression in (8) to be calculated
for each inference. This is computationally very expensive and
is therefore not suited for online use. Alternatively, the matrix
C in (8) can be pre-calculated and stored in memory. This way,
each inference is simply a matrix-vector-multiplication operation.
While this is the more suitable option, it does require the entire
matrix C to be stored in memory. Note, matrix C is an N × N
matrix whose exact size is 863301924 and 811680100 single-
precision floating point elements for the two chips respectively.
This translates to a memory overhead of 3.45GB and 3.25GB
respectively, which is quite expensive. This can however be
remedied by considering lower resolution heatmaps as done
in [13].

We remark that the comparison against EigenMaps [13] is
not an apples-to-apples comparison as EigenMaps is a pre-
silicon approach that requires the placement of embedded
sensors at specific locations during design time to achieve the
reported accuracy. However, the above comparison does show
that the proposed data-driven RealMaps framework can yield very
similar results in terms of accuracy, with a substantially lower
computational overhead. Additionally, the post-silicon nature of
RealMaps makes it feasible for existing commercial off-the-shelf
processors. Moreover, it can be used by third parties who do
not have control over and, in most cases, have no knowledge of
the proprietary design details of the chip. This includes system
integrators interested in developing ultra compact mobile devices
that benefit from innovative thermal monitoring and management
software, and academic research labs that can use the full
chip temperature estimation to develop advanced thermal control
schemes.

7 CONCLUSION
In this article, we have proposed a machine learning based
framework to real-time estimation of full-chip heatmaps for
commercial microprocessors. The proposed approach, named
RealMaps, only uses the existing embedded temperature sensors
and system level utilization information, which are available in
real-time. Moreover, it is structured to not require any knowledge
of the proprietary design details or manufacturing process-specific
information of the commercial processors. Consequently, the
methods presented in this work can be implemented by either
the original chip manufacturer or a third party alike. In this new
approach, we start with accurate spatial and temporal heatmaps
measured from an advanced infrared thermal imaging system. To
build the transient thermal model, we utilize temporal-aware long-
short-term-memory (LSTM) networks with system-level variables
such as chip frequency, voltage, and instruction counts as inputs.
Instead of a pixel-wise heatmap estimation, we use 2D spatial
discrete cosine transformation (DCT) on the heatmaps so that they
can be expressed with just a few dominant DCT coefficients. Our
study shows that only 36 DCT coefficients are required to maintain
sufficient accuracy. Experimental results show that RealMaps can
estimate the transient heatmaps with 0.9◦C and 1.2◦C RMSE
with minimal overheads for the two commercial chips tested in
this study. Compared to the state-of-the-art pre-silicon method,
the proposed approach shows similar accuracy, but with much less
computational cost.
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