Memory at Your Service: Fast Memory Allocation for
Latency-critical Services

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou
University of Colorado Colorado Springs
{epi,jzhao,swang,xzhou}l@uccs.edu

ABSTRACT

Co-location and memory sharing between latency-critical services,
such as key-value store and web search, and best-effort batch jobs
is an appealing approach to improving memory utilization in multi-
tenant datacenter systems. However, we find that the very diverse
goals of job co-location and the GNU/Linux system stack can lead to
severe performance degradation of latency-critical services under
memory pressure in a multi-tenant system.

We address memory pressure for latency-critical services via
fast memory allocation and proactive reclamation. We find that
memory allocation latency dominates the overall query latency,
especially under memory pressure. We analyze the default memory
management mechanism provided by GNU/Linux system stack and
identify the reasons why it is inefficient for latency-critical services
in a multi-tenant system. We present Hermes, a fast memory alloca-
tion mechanism in user space that adaptively reserves memory for
latency-critical services. It advises Linux OS to proactively reclaim
memory of batch jobs. We implement Hermes in GNU C Library.
Experimental result shows that Hermes reduces the average and the
99th percentile memory allocation latency by up to 54.4% and 62.4%
for a micro benchmark, respectively. For two real-world latency-
critical services, Hermes reduces both the average and the 99th
percentile tail query latency by up to 40.3%. Compared to the de-
fault Glibc, jemalloc and TCMalloc, Hermes reduces Service Level
Objective violation by up to 84.3% under memory pressure.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Soft-
ware and its engineering — Software libraries and reposito-
ries; Memory management.

KEYWORDS

Job co-location, Memory management, Latency-critical services

ACM Reference Format:

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou. 2021. Memory at Your
Service: Fast Memory Allocation for Latency-critical Services. In 22nd In-
ternational Middleware Conference (Middleware °21), December 6—10, 2021,
Virtual Event, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3464298.3493394

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware °21, December 6—10, 2021, Virtual Event, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8534-3/21/12...$15.00
https://doi.org/10.1145/3464298.3493394

185

1 INTRODUCTION

Latency-critical services such as key-value store and web search are
usually featured with largely varied peak and average resource con-
sumption [26, 40]. For guaranteed performance of latency-critical
services, a naive approach is to use a dedicated system for latency-
critical services. However, the approach leads to a large amount
of idle resources during runtime since the average resource con-
sumption of the services is usually much less than their peak con-
sumption [22, 33, 42]. For instance, SnowFlake system found that
the average memory utilization on its servers is only ~ 19% [42].
To improve the utilization of resources, it is a common practice that
best-effort batch jobs are co-located with latency-critical services
to exploit transient resources in datacenters [22, 29, 30, 43, 44, 47].

Although co-location with memory sharing increases resource
utilization, it often significantly degrades the latency particularly
the tail latency of latency-critical services. Latency-critical services
like cloud-native key-value store and web search commonly dis-
tribute requests across many servers, thus the end-to-end response
time is determined by the slowest individual latency [9, 20, 22, 48].
We find the root cause of long tail latency is due to the very diverse
goals of job co-location and the GNU/Linux system stack. On one
hand, job co-location leverages idle resources for batch jobs while
maintaining the performance of latency-critical services. On the
other hand, the GNU/Linux stack tries to accommodate as many
submitted processes as possible while only offering few knobs
to prioritize processes. As a result, although co-located latency-
critical services and batch jobs may both survive, the performance
of latency-critical services is significantly degraded under memory
pressure, which jeopardizes Service Level Objective (SLO).

There are mainly two categories of research on improving perfor-
mance for latency-critical services. Studies [9, 13, 34, 48] improve
performance for latency-critical services by leveraging their run-
time characteristics. For example, ROLP [13] is a runtime object
lifetime profiler for efficient memory allocation and garbage col-
lection for latency-critical services. However, these studies do not
take job co-location into consideration. Studies of the other cate-
gory [29, 30, 43, 47] target co-location of latency-critical services
with other jobs. For example, PerfIso [29] and Dirigent [47] are
two representative approaches that leverage multicore systems to
efficiently share CPU resource between processes. Our work falls
into the second category.

While existing efforts try to push the resource utilization to
the limit, memory management for latency-critical services still
faces significant challenges. First, the runtime behavior of a job is
difficult to predict. In particular, it is difficult to obtain the amount
of memory that will be requested by a job in the future. Second,
it is expensive to reclaim physical memory that is occupied by a
process. If a process requests more memory when the node memory

https://doi.org/10.1145/3464298.3493394
https://doi.org/10.1145/3464298.3493394
https://doi.org/10.1145/3464298.3493394

Middleware *21, December 6-10, 2021, Virtual Event, Canada

is almost used up, swapping will be triggered to make space for the
requested memory. However, swapping is an expensive operation
that takes a long period of time (tens of milliseconds to seconds) or
even leads to thrashing. In such cases, the performance of latency-
critical services are significantly degraded.

Since the original purpose of a dedicated system is for sole use
by latency-critical services, ideally their performance should not
be affected by batch jobs. In a shared environment, memory is
frequently allocated and reclaimed due to provisioning of various
workloads. However, the memory reclaim mechanism in Linux OS
significantly degrades the performance of latency-critical services
under memory pressure, which makes co-location inefficient or
even ineffective. In light of the challenges, we tackle the problem
from a new perspective: resource slacks should be reserved for
latency-critical services in case of a burst of resource requests. Per-
fIso [29] is a preemptive approach that adopts this principle to
achieve CPU sharing between latency-critical services and batch
jobs. However, memory sharing is very different from CPU sharing
since tasks on a core can be easily preempted and later resched-
uled [18]. Data in memory can only be preempted by swapping
them onto disks, which is a very expensive operation.

We aim to materialize the principle to achieve fast memory
allocation for latency-critical services in a multi-tenant system. Our
experiments find that memory allocation latency takes up to 97.5%
of a whole query latency. Thus, we focus on reducing the memory
allocation latency for latency-critical services. The design should
meet the following requirements:

e R1 Latency-critical services have the highest priority. This
is the primary principle. Best-effort batch jobs can share
idle resources only if they do not affect the performance of
latency-critical services.

e R2 Memory should be allocated in a fast manner. This is
the key to achieving low latency for latency-critical services
when they request memory:.

e R3 The design should be generally applicable to all applica-
tions written in a popular language such as C / C++. That is,
the source code of applications should not be modified.

e R4 The overhead should be low. In other words, it should
consume little resource of a node.

In this paper, we make the following contributions. First, we
analyze the current memory management in GNU C Library (a.k.a.
Glibc) and Linux OS, and show that it is inefficient for memory shar-
ing between latency-critical services and batch jobs. In particular, 1)
it adopts an on-demand physical memory allocation mechanism in
order to accommodate as many processes as possible without prior-
itization. Though this mechanism works well in a dedicated system
with sufficient memory, it significantly degrades job performance
or even causes thrashing under memory pressure. 2) It uses a reac-
tive algorithm to reclaim file cache even if no process accesses the
cache. The design expects the cache will be accessed again in the
near future. The reactive algorithm introduces significant delay on
latency-critical services since a memory reclaim routine is invoked
before requests are served. In summary, the design of the current
GNU / Linux stack contradicts the goal of co-location and memory
sharing of latency-critical services and batch jobs.

186

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou

Second, we present Hermes, a library-level mechanism for fast
memory allocation for latency-critical services in multi-tenant
systems. Hermes maintains one dedicated memory pool for each
latency-critical service (R1, R2). Upon receiving requests from a
latency-critical service, memory can be immediately allocated from
the memory pool to the service. Hermes uses a lightweight heuristic
to determine the size of the memory pool (R4). It advises Linux OS
to release file cache pages occupied by batch jobs under memory
pressure so as to make more available memory for latency-critical
services (R1). We implement Hermes in library Glibc. It is a library-
level mechanism without modification to applications (R3) or Linux
OS. Note that Hermes could be implemented into Linux OS, but the
modification may affect other processes, incur security issues, and
importantly violate Linux monolithic kernel generality.

We conduct experiments for Hermes with a micro benchmark
and two real-world services under a multi-tenant system. Compared
to the default Glibc, Hermes reduces the average and the 99th
percentile memory allocation latency by up to 54.4% and 62.4%
under memory pressure, respectively. The allocation latency is as
low as 4ps for small requests and 1ms for large requests.

Furthermore, we use Redis [4] and Rocksdb [5] as two real-
world services to examine the query latency. Results show that
Hermes reduces both the average and the 99! percentile tail query
latency by up to 40.3%. Compared to the default Glibc, jemalloc
and TCMalloc, Hermes reduces the SLO violation by up to 84.3%
under memory pressure. Hermes achieves significantly improved
system throughput. Results also show that Hermes achieves similar
or slightly better query latency under a dedicated system. The
overhead of Hermes is negligible.

The rest of the paper is organized as follows. Section 2 introduces
the default GNU stack and its problems. Sections 3 and 4 present
the design and implementation of Hermes, respectively. Section 6
discusses Hermes. We present the related work in Section 7 and
conclude the paper in Section 8.

2 BACKGROUND AND MOTIVATIONS
21

The famous malloc function call in Glibc is a unified interface for
programs to allocate memory from Linux OS. A process conve-
niently obtains the address of the memory space without knowing
the underlying mechanism by calling malloc. The function call
uses two Linux system calls brk and mmap to serve memory re-
quests of different sizes. Figure 1(a) shows the simplified address
space of a process that includes memory chunks allocated by both
system calls. We focus on the mechanisms in Glibc that manipulate
the main heap space and mmapped memory chunks. Both kinds of
memory are dynamically allocated at runtime.

System call brk. Each process has exactly one main heap that is
a continuous virtual address space. Glibc divides the main heap into
two areas: the allocated area and the top chunk. Glibc keeps track
of the used and free space in the allocated area. It is worth noting
that the allocated area and the top chunk in Glibc are transparent
to Linux OS. Following the allocated area lies the top chunk that is
a continuous free address space. The end address of the top chunk
is the program break returned by the sbrk wrapper function which
calls the brk system call. Upon a request for a small size of memory

Memory Management in Glibc

Memory at Your Service: Fast Memory Allocation for Latency-critical Services

high stack stack
address |- _____________} L.
@ mmapped memory
o space 2
©
°
©
— | mmapped memory mmapped memory
2 space 1 space 1
S . program break [, program break
{ top chunk (bytzzrk) top chunk (byt:k;rk)
“main heap ;m;;‘;;;- address main heap alloc area address
low {text, data, bss} {text, data, bss}
address segment segment
(a) stage 1 (b) stage 2

Figure 1: Process address space in Linux. Shaded areas repre-
sent allocated virtual memory whose physical pages do not
reside in RAM. Red fonts represent variables on Glibc.

(< 128 KB by default), Glibc first tries to find a free space in the
allocated area. If it cannot satisfy the request, space is taken from
the beginning of the top chunk and added to the allocated area.
Once the top chunk is used up, Glibc expands the main heap by
calling sbrk with the exact requested size. If the top chunk is greater
than a certain threshold, Glibc shrinks the main heap by passing a
negative number to sbrk.

System call mmap. Besides the main heap, a process can have
multiple disjoint memory chunks allocated by mmap. This system
call can either map a file to process address space or allocate anony-
mous pages. Glibc leverages the anonymous page usage to handle
large memory requests (> 128 KB by default). Upon success, it re-
turns the starting address of the newly allocated mmapped memory
chunk. Glibe gives the memory chunk to the process after a book-
keeping operation. When a process frees a memory space allocated
by mmap, Glibc releases it directly back to Linux OS.

Upon return of both system calls, a process gets a virtual mem-
ory space while the corresponding physical memory does not nec-
essarily reside in RAM at the moment. Linux OS constructs the
virtual-physical address mapping only when the process accesses
(i.e., writes or reads or executes) the allocated memory for the first
time. For example, in Figure 1(a), the process has a main heap and
a mmapped memory space 1. In Figure 1(b), the process allocates
a new mmapped memory space and writes data in the main heap.
The newly mmapped memory space does not have corresponding
physical pages yet. Thus, the virtual-physical mapped space in the
main heap expands.

Two benefits come with the on-demand mapping construction.
For Linux OS, physical memory pages are loaded for the actually
used memory since physical memory is a scarce resource. For the
process, it accelerates the memory allocation routine. The reason is
that the mapping construction for all the virtual addresses requires
loading all the physical pages at once, which takes a longer time
than only returning the virtual address.

While usually fast, the on-demand virtual-physical mapping
construction can be significantly delayed when there is insufficient
physical memory in the node, which is common in a multi-tenant
system. At this point, Linux OS starts to reclaim physical pages by
either directly freeing them or swapping them onto disks.

187

Middleware *21, December 6-10, 2021, Virtual Event, Canada

100 100
E read £l
9 80 ~— 7 insert 9 80 7 7 — 7 ipSe)
o @
60 S 60
izl Ak
g 40 § 40
o L
& 20 & 20
[0

(a) Small (1KB) requests. (b) Large (200KB) requests.

Figure 2: The percentage breakdown of the insert and read
operations in Rocksdb.

1.0

0.8
w 0.61
[a]
© 0.4+ /ot —— idle system

0.2 1 .ll' = = file cache pressure

* anonymous page pressure
0.0 T T T
0 4000 8000 12000 16000
Time (ns)

Figure 3: The CDF of the memory allocation latency.

2.2 Case Studies

In real-world latency sensitive services, latency spent in memory
allocation during data insertion takes a large portion of latency of
a whole workload. We take Rocksdb as a case study to illustrate
that memory allocation latency is much higher compared to data
read latency using both small (1KB) and large (200KB) requests. We
use Glibc as the memory allocator and execute Rocksdb queries
without any memory pressure. Each query is a data insertion oper-
ation (involving memory allocation) followed by a read operation.
Figure 2 shows the percentage breakdown of the query latency
at specified percentiles. For small requests, the average (99" per-
centile) query latency is the 15us (29us). Data insertion latency is
74.7% (54.5%) of the average (99th percentile) overall query latency.
For large request, the average (99° h percentile) query latency is the
1730pus (14069us). Data insertion latency is 93.5% (97.5%) of the aver-
age (99'" percentile) overall query latency. The impact of memory
allocation is significant, and even more in large requests. As for
data update requests, it renders similar results compared with read
quests since they do not incur memory allocation.

We use another case study to demonstrate the memory allocation
latency degradation under anonymous page pressure and file cache
pressure. We use a micro benchmark that continuously sends 1KB-
size memory requests until a total amount of 1 GB, using the default
Glibc in a node with 128 GB RAM. We repeat the experiment under
a dedicated system with sufficient memory, under anonymous page
pressure, and under file cache pressure, respectively. The details
of the micro benchmark and the node are described in Section 5.1.
Figure 3 shows the CDF of the memory allocation latency under
the dedicated system and two kinds of memory pressure.
Anonymous page pressure. To generate anonymous page pres-
sure, we run a program that continuously sends memory allocation
requests until the available memory in the node becomes about 300
MB. Note that, the available memory could not further drop below
300 MB due to the indirect and direct reclaim mechanisms of Linux

Middleware *21, December 6-10, 2021, Virtual Event, Canada

Glibc Memory monitor daemon

default routines

fil h
(e.g. malloc, free, e cache

|| batch job q

adviser
realloc) Set
o
memory shared latency-sensitive Lt~ Admins
management thread |\ memory service set

Figure 4: The architecture of Hermes.

OS. At this point, new memory allocation requests from the micro
benchmark trigger the memory reclaim routine and cause swapping.
Figure 3 shows that the memory allocation latency significantly in-
creases under anonymous page pressure. The average and the 99t"
percentile allocation latency under anonymous page pressure are
prolonged by 35.6% and 46.6% compared to those without memory
pressure, respectively.

File cache pressure. We generate file cache pressure by loading 10
GB files and sending memory allocation requests to occupy the rest
of the system memory until free memory drops to about 300 MB. In
this case, memory reclaim routine starts but not necessarily trigger
swapping since the file cache can be directly released without ac-
cessing the disk. Figure 3 shows that the memory allocation latency
under file cache pressure is lower than that under anonymous page
pressure, but it is still higher than that under a dedicated system.
The average and the 99th percentile allocation latency under file
cache pressure are prolonged by 10.8% and 7.6% compared to those
without memory pressure, respectively.

Memory pressure significantly prolongs memory allocation la-
tency, which has non-trivial impact on SLO violation. We target
both kinds of memory pressure and aim to reduce the memory
allocation latency of latency-critical services in a co-located system
as well as in a dedicated system.

2.3 Memory Reclaim in Linux OS

Linux OS emulates an LRU-like (Least Recent Used) algorithm for
physical memory page reclaim by keeping four lists: active_anon
and inactive_anon for anonymous pages, and active_file and
inactive_file for file cache pages. The two active lists contain re-
cently used pages while the two inactive lists contain pages that are
not recently used. Under memory pressure, Linux OS scans through
these four lists, updates page usage status, moves pages between
lists, and selects pages to reclaim. Specifically, Linux OS keeps three
memory watermarks (i.e. high, low and minimum) to instruct mem-
ory reclaim routine. When available memory drops below the low
watermark, a page reclaim thread is started until available memory
is larger than the high watermark. When available memory further
drops below the minimum watermark, each memory request goes
through a synchronous direct memory reclaim routine before the
physical memory is allocated.

However, the page reclaim algorithm in Linux OS is inefficient
for latency-critical services in a multi-tenant system. The water-
marks are conservatively set at around 1%, of a memory zone. For
example, the total capacity of a memory zone in one of our physical
nodes is 60 GB. The low and high watermarks are 53 MB and 64

188

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou

— return allocated memory — internal workflow - - thread synchronization

process thread

malloc

<>
erfough mem S
in heap

n
default mmap default heap
alloc routine alloc routine

management thread

nq :

mmap management i
routine

Figure 5: The workflow of the modified Glibc routines.

MB, respectively. Since both latency-critical services and batch jobs
tend to consume hundreds of megabytes or gigabytes of memory,
the watermarks are too small to timely trigger the indirect memory
reclaim thread. The direct memory reclaim routine even causes
more delays on memory requests. After a process finishes, all of
its anonymous pages are reclaimed immediately. However, the file
cache pages loaded by the process are not reclaimed by Linux OS but
remain in memory. They are only reclaimed upon memory pressure
by the reclaim routine, which prolongs new memory requests. The
memory pressure cannot be relived even if we increase the water-
marks. Although, Linux OS triggers memory reclaim routine when
there is still much free memory with higher watermarks, it does
not distinguish latency-critical services and batch jobs. Memory
from both kinds of workloads can be reclaimed. The performance
of latency-critical services is still degraded.

[Summary] There are two drawbacks of the current GNU / Linux
system stack that make the memory allocation of latency-critical
services ineflicient in a multi-tenant system. 1) Glibc only keeps
a small chunk of physically mapped memory in the main heap,
which is much less than the total size of memory requests from
latency-critical services. 2) The on-demand virtual-physical mem-
ory mapping construction causes significant delay under memory
pressure due to the conservative memory page reclaim mechanism
in Linux OS.

3 HERMES DESIGN

3.1 Overview

In this paper, we propose and develop Hermes, a library-level mech-
anism to memory management that addresses the identified prob-
lems in the GNU/Linux system stack and reduces memory alloca-
tion latency of latency-critical services in a multi-tenant system.
Hermes is transparent to applications and it does not make mod-
ification to Linux OS. As shown in Figure 4, Hermes consists of
two major components: a memory management thread woken per
f milliseconds in Glibc and a memory monitor daemon indepen-
dently running on the same physical node. A system administrator
sends the process IDs of batch jobs and latency-critical services
to the memory monitor daemon. Upon memory pressure, the file
cache adviser advises Linux OS to free the file cache owned by
batch jobs. In Glibc, if a process is a latency-critical service, the
memory management thread is started for memory reservation and
virtual-physical address mapping.

Memory at Your Service: Fast Memory Allocation for Latency-critical Services

3.2 Memory Management Thread

The goal of the memory management thread is to reserve memory
and construct its virtual-physical address mapping in advance for
latency-critical services. Figure 5 outlines the workflow of the man-
agement thread and the modified Glibc. The management thread
periodically checks the current amount of reserved memory and de-
cides whether to reserve more memory or release reserved memory
back to Linux OS. When a process thread calls malloc, Hermes first
tries to return the reserved memory to the process. If the reserved
memory is insufficient, it uses the default routine to serve the re-
quest. Though sharing the same principle, the management thread
uses different approaches to manage the main heap memory and
mmapped memory chunks since they are allocated by two different
system calls.

3.2.1 Heap Memory Management. Small-sized memory requests
are allocated from the main heap, as shown in the no branch of the
large_size statement in Figure 5. If there is sufficient memory in
the main heap, Hermes immediately allocates it to the requests. Oth-
erwise, if the management thread is running, the requests wait on it.
If memory in the main heap is insufficient, the requests are allocated
by the default allocation routine in Glibc. We show the heap man-
agement routine in Algorithm 1. In every round of the execution,
the routine first updates the memory allocation metrics including
the total size of all small memory requests (i.e. requests <128 KB)
and the number of requests in the last interval. It then updates all
the thresholds based on the collected memory allocation metrics
(function UpDATETHRESHOLD). For example, the target amount of
reserving memory is the total amount of memory requests in the
last interval multiplying a reservation factor RSV_FACTOR. If the
top chunk is smaller than the reservation threshold RSV_THR, it
expands the current program break and immediately constructs the
virtual-physical mapping for the newly allocated memory. Other-
wise, if the free space in the top chunk exceeds the trim threshold
TRIM_THR, it shrinks the top chunk by setting the program break
to a lower memory address.

Algorithm 1 Heap management routine.

1: RSV_THR: a threshold below which more memory should be reserved;

: TGT_MEM: the target free size in the top chunk at which the memory reservation
stops;

3: TRIM_THR: a threshold above which memory is released;

4: MEM_CHUNK: memory reserved on each sbrk() call;

5: top_free: current free memory in the top chunk;

6

7

8

N

: UPDATETHRESHOLD();
: if top_free < RSV_THR then
mem_to_reserve « (TGT_MEM — top_free);

9: reserved « 0;
10: while reserved < mem_to_reserve do
11: Lock(heap);
12: address < sbrk(MEM_CHUNK);

13: ConsTrUCTMAPPING(address);

14: reserved «— (reserved + MEM_CHUNK);
15: Untock(heap);

16: end while

17: else if top_free > TRIM_THR then

18: extra « (top_free — TRIM_THR);
19: Lock(heap);

20: sbrk(—extra);

21: Unrock(heap);

22: end if

189

Middleware *21, December 6-10, 2021, Virtual Event, Canada

3
<
=
@
w
—>

— N
[)

—
NN O

space in top chunk

Iy ts time

(a) Reserving a large chunk of memory at once.

bytes A

—_
(o]

—_
(=}

N

space in top chunk

NS}

oG Glds bt Ly fy time
(b) Reserving small chunks of memory for multiple times.

Figure 6: Illustration of gradual reservation.

A naive approach. The challenge of expanding the main heap
lies in how to determine the amount of memory to be reserved.
Intuitively, simply reserving a large amount of memory at once
would boost process performance since the memory is immediately
available for processes. However, our experiments find that this
approach even degrades the performance of latency-critical services
in terms of tail latency. The latency of the default on-demand virtual-
physical mapping construction is near proportional to the size of
the constructed memory. Since there is only one program break
for each process, the manipulation on the program break must be
synchronized.

A burst of memory requests in the process thread may be blocked
for a long time due to the mapping construction for a large chunk
of memory in the management thread. Figure 6 (a) illustrates this
scenario. There are initially 10 bytes in the top chunk. At #; and
ty, the user process sends two memory requests req and reqa of 4
bytes, respectively. The requests return immediately. Then, there
are only 2 bytes left in the top chunk. The management thread is
now invoked to expand the top chunk by 20 bytes and construct the
virtual-physical mapping. At t3, there is another request reqs of 4
bytes from the user process. Since the running management thread
locks the program break, reqs is blocked. It can only be served at
ts5 after the top chunk is expanded at t4, which incurs significant
delay on the request. Although a large number of memory requests
do not compete with the main heap expansion, it is the competing
ones that lead to prolonged tail latency.

Gradual reservation. We propose gradual reservation that ex-
pands the program break by a small size at a time for multiple times
(lines 10 ~ 16 in Algorithm 1). For example, instead of expanding the
program break for 20 bytes at once, gradual reservation expands the
program break for 5 times, each time for 4 bytes, as shown in Fig-
ure 6(b). Before reqs arrives, a reservation of a small memory chunk
has already been sent to Linux OS at t; by the management thread.

Middleware *21, December 6-10, 2021, Virtual Event, Canada

After the reservation returns, reqs can be immediately served. Fi-
nally, the management thread sends four more small reservation
operations until the reserved memory reaches 18 bytes. Based on
our observation and other studies [11, 26], continuous memory
requests from latency-critical services are usually of a similar or
constant size. Hermes uses the average memory request size during
the previous interval as the size of each memory chunk in gradual
reservation. Compared with the default on-demand virtual-physical
mapping construction, Hermes serves memory requests faster even
if the program break is locked by the management thread, because
the virtual-physical mapping construction already starts in advance
and returns shortly.

3.2.2 Mmapped Memory Management. Large memory requests
are allocated from mmapped memory chunks, as shown in the
yes branch of the large_size statement in Figure 5. Management
for mmapped memory is asynchronous since a process can have
multiple chunks of mmapped memory space. In other words, the
process thread and the management thread can simultaneously
allocate two different chunks of mmapped memory space. Thus,
incoming requests do not wait on the management thread but
uses the default memory allocation routine when the reserved
memory is insufficient. Algorithm 2 shows the management routine
for mmapped memory. Since the addresses of mmapped memory
space are not necessarily adjacent, each chunk of space needs to be
managed separately. We use a segregated free list as the memory
pool to keep track of the addresses of mmapped memory space (line
14). The function calculates the target bucket based on the size of a
mmapped memory chunk using formula 1.

Glibc parameter min_mmap_size is the minimum memory re-
quest size that can use mmap system call, which is 128 KB by default.
We use parameter table_size to represent the maximum number of
buckets in the segregated free list. In implementation, we empiri-
cally set table_size to 8 (1 MB / 128 KB) since the size of a single
memory request is usually less than 1 MB.

chunk_size

bucket(chunk_size) = MIN({ J table_size) (1)

min_mmap_size

Upon a request for a large chunk of memory (i.e., requests > 128
KB) from the process, the modified allocation routine first tries to
find the best-fit bucket in the list by calculating the bucket based on
the requested size. The hash code of the best-fit bucket is calculated
by equation MIN (bucket(request_size) + 1, table_size). If there is
no such a chunk, the allocation routine uses the largest chunk in
the memory pool and expands the chunk to the requested size. If
this step still fails due to an empty memory pool, it falls back to the
default allocation using mmap system call. By this design, the user
process gets requested memory immediately as long as they are
available while asynchronous shrinking avoids memory wastage. If
memory requests are served by expanding an existing small chunk,
the delay is still shorter than that of the default allocation routine.
The reason is that small chunks already have their virtual-physical
mapping constructed. Additional mapping constructions only need
to be done for the memory space that exceeds the size of the original
memory chunks.

190

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou

Algorithm 2 Mmap management routine.

: RSV_THR: a threshold below which more memory is reserved;

: TGT_MEM the target free size of mmapped space at which reservation stops;

: TRIM_THR: a threshold above which memory is released;

: MEM_CHUNK: memory reserved on each mmap() call;

: memory_pool a segregated free list that keeps track of the allocated mmapped
space;

6: alloc_set: a set of allocated mmapped chunks by the process thread;

7: DELAYRELEASE(alloc_set);

8: UPDATETHRESHOLD();

9: if memory_pool.total_size < RSV_THR then

reserved « 0;

11: while reserved < TGT_MEM do

address «— mmap(MEM_CHUNK);

ConsTRUCTMAPPING(address);

AW N =

14: memory_pool.add(address);

15: reserved «— (reserved + MEM_CHUNK);
16: end while

17: end if

18: while memory_pool.total_size > TRIM_THR do
19: to_release < memory_pool.smallest_space;
20: munmap (to_release);

: end while

3.3 Memory Monitor Daemon

The memory monitor daemon is running on a physical node that
adopts job co-location. The daemon keeps the process IDs of latency-
critical services in shared memory. The memory management
thread adopts a lazy initialization mechanism. When a process
detects its process ID is in the shared memory, it initializes the
memory management thread. Otherwise, the process behaves as it
uses the default Glibc.
Proactive reclamation. The memory monitor daemon is respon-
sible for proactively advising Linux OS to release file cache pages
upon memory pressure. The daemon keeps track of all batch jobs
and their loaded data files. When the system memory usage exceeds
threshold adv_thr, the monitor daemon advises Linux OS to release
file cache pages in a largest-file-first order until the percentage of
file cache drops below the threshold or no file cache is from the
specified batch jobs. The largest-file-first paging order makes a large
chunk of memory available at once for latency-critical services. It
also reduces the number of calls to the advising routine.
Proactive reclamation is an effective approach to accelerating
memory allocation. Although Hermes reserves physical memory in
advance, the reservation can still be delayed if it triggers the direct
reclaim routine due to insufficient memory. Proactive reclamation
reduces the chance by which the direct reclaim routine is triggered.
Note that solely relying on proactive reclamation is insufficient
since it only tries to make free space for new memory requests but
it does not contribute to virtual-physical mapping construction.

4 IMPLEMENTATION

We implement Hermes in Glibc-2.23 with about 1,200 lines of C
code. We empirically set the invocation interval (f) of the memory
management thread to 2 ms. There could be transient changes in
terms of memory space of a process during the interval. In the next
wakeup, the monitoring thread is able to capture the change and
the memory management thread can manage the available memory
accordingly. Recall that we use a reservation factor RSV_FACTOR
to determine the amount of memory to be reserved. A larger value
results in more reserved memory and faster memory allocation.

Memory at Your Service: Fast Memory Allocation for Latency-critical Services

However, the reserved memory is wasted if it is never used by
latency-critical services. In the rest of the paper, we set this value
to 2 if not otherwise specified, which balances between memory
allocation speed and memory wastage. We also set the minimum
amount of memory min_rsv that should be reserved after each
execution of the management thread even if there is no newly
incoming memory request. It allows that a burst of memory requests
after an idle period can be quickly served. The value depends on the
characteristics of latency-critical services. Empirically, we set this
value to 5 MB. We use mlock system call to delegate virtual-physical
mapping construction to kernel space.

There are two choices to implement the virtual-physical mapping
construction function, 1) iterating through the allocated virtual
memory addresses and filling them with ‘0’, and 2) using the mlock
system call to delegate the construction to the kernel space. We
choose the second one for two reasons. First, our experiments find
that using mlock system call is at least 40% faster than the iteration
approach for both heap memory and mmapped memory. Second,
the mlock system call guarantees newly reserved physical memory
not to be swapped into disks, which further accelerates memory
allocation. After a chunk of reserved memory is allocated to a
process, the munlock system call will be called on that address
space to allow swapping on the chunk.

The memory monitor daemon takes about 500 lines of C code. It
is responsible for bookkeeping latency-critical services and batch
jobs, and advising Linux OS to release file cache pages. It com-
municates with the modified Glibc with a shared memory area.
Specifically, it uses the shared memory to store all the process
IDs of latency-critical services specified by a system administrator.
With the modified Glibc, a process examines whether its process
ID is in the shared memory. If so, the modified Glibc initializes
the memory management thread. When a process is no longer a
latency-critical service, the administrator can simply remove its
process ID. The monitor daemon keeps track of the data files loaded
by batch jobs by calling the 1sof command. It uses the C library call
posix_fadvise() to release file cache pages, which is a wrapper
function of the underlying system call fadvise64(). Hermes then
adopts the default memory management in Glibc for this process.

Hermes is open sourced at https://github.com/EddiePi/Hermes.

5 EVALUATION
5.1 Evaluation Setup

We use both a micro benchmark and real-world latency-critical
services to evaluate the performance of Hermes, and compare it to
Glibc, jemalloc [21], and TCMalloc [6]. Glibc is the most popular
memory allocator in C/C++. Jemalloc is the default memory alloca-
tor for Redis [4]. TCMalloc is Google’s customized implementation
of malloc() function. All experiments are executed on a server
that has two 2.4 GHz 8-core Intel Xeon E5-2630 CPUs, 128 GB
DRAM, and 2 TB 7200 rpm HDD disks. The server is installed with
Ubuntu 16.04 with Linux kernel-4.4.0. For all experiments, we pin
latency-critical services and background processes onto different
cores to avoid CPU interference.

Micro benchmark. We implement a micro benchmark in C, which
continuously calls malloc function to request memory until the to-
tal amount of requested memory reaches a specified threshold. We

191

Middleware *21, December 6-10, 2021, Virtual Event, Canada

run the experiments in two settings referred as dedicated system
and memory pressure. For the dedicated system setting, we run the
micro benchmark alone on the nodes with sufficient memory. For
the memory pressure setting, we generate the memory pressure
for the micro benchmark by loading the node with either anony-
mous pages or file cache pages. We measure the memory allocation
latency due to the three approaches.

Real-world services. We evaluate Redis [4] and Rocksdb [5] as
real-world latency-critical services under different memory pres-
sure levels in Section 5.3. We measure three metrics in the experi-
ments: 1) query latency of latency-critical services, 2) SLO violation
of latency-critical services, and 3) throughput of batch job. The
memory pressure is computed as virtual memory of batch job
/ memory capacity of the server. To generate different levels
of memory pressure, we configure the maximum logically available
memory of batch jobs to 50%, 75%, 100%, 125% and 150% of the
memory capacity of the node. For example, on a node with 128
GB DRAM, 150% memory pressure level suggests batch jobs can
oversubscribe 192 GB (128 GB X 1.5) of DRAM. In addition, we
also conduct the experiment on a dedicated server, i.e., 0% memory
pressure level.

Parameter sensitivity. We conduct experiments to evaluate pa-
rameter sensitivity in Section 5.4. Specifically, we run the micro
benchmark and evaluate its latency under different values of reser-
vation factor RSV_FACTOR. We evaluate the overhead of Hermes
in Section 5.5.

5.2 Micro Benchmark

We evaluate the performance of Hermes under three scenarios: a
dedicated system with sufficient memory, anonymous page pres-
sure, and file cache pressure. Under file cache pressure, we also
show the performance of Hermes when it is disabled with proactive
reclamation, denoted as “Hermes w/o rec’, to demonstrate the per-
formance gain due to proactive reclamation. The anonymous page
pressure is made by a process that keeps allocating memory until
the system available memory drops below 300 MB. The file cache
pressure is made by a process that repeatedly reads 10 GB files and
occupies the rest of the system memory with anonymous pages. We
develop the micro benchmark by continuously sending fix-sized
memory requests until the total requested memory reaches 1 GB.
We use 1KB-size and 256KB-size memory requests to evaluate the
allocation latency of heap memory and mmapped memory.

Figure 7(a)-(c) and Figure 8(a)-(c) show the CDFs of memory
allocation latency of 1KB-size and 256KB-size requests under a
dedicated system, anonymous page pressure (“+anon” suffix), and
file cache pressure (“+file” suffix), respectively. For small memory
requests, Hermes achieves the lowest latency at every percentile
compared to Glibc and jemalloc in all three cases. TCMalloc presents
low latency on average. However, it has very high tail latency in
all three cases. As for large memory requests, jemalloc presents
longer but more stable latency under a dedicated system. However,
Hermes outperforms both Glibc, jemalloc and TCMalloc when the
system is under memory pressure. Jemalloc and TCMalloc present
very long tail latency under memory pressure.

Specifically, we show the latency reduction of Hermes at each
percentile for small requests and large requests compared to Glibc

Middleware *21, December 6-10, 2021, Virtual Event, Canada

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou

1.0 e e— —= 1.0 1.0 r— ——
1 — ‘/,._-—-
0.8 L | e 08 0.81 —
_——— L~
_l : i
W 0.6 Lo e w 0.6 / W 06 H g
[a) 1 | [a) [a) —— Hermes+file
O 0.4 : | — Hermes ®] 0.4 | ,_-f —— Hermes+anon ®] 0.4 : S Hermes w/o rec+file
1 i --- Glibc ,’.’v --- Glibc+anon i ! === Glibc+file
0.2 i i —= jemalloc 0.2 { ! —-~jemalloc+anon 0.2 "' ! —-~ jemalloc+file
‘ : H TCMalloc l' ! TCMalloc+anon i ! TCMalloc+file
0.0 - . . . 0.0 - 0.0) |
2000 4000 6000 . 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000
Time (ns) Time (ns) Time (ns)
(a) Dedicated system. (b) Anonymous pages pressure. (c) File cache pressure.
Figure 7: The memory allocation latency for small (1KB-size) memory requests.
1.0 = 1.0 1.0
0.8 0.8 0.8
L 06 L 06 L 06 § :
[a) [a) [a) : ' —— Hermes+file
Ooa —— Hermes Oos —— Hermes+anon Ooa ; [Hermes w/o rec-+file
--- Glibc --- Glibc+anon i I ——- Glibc+file
0.2 e il A jemalloc P e o — T jemalloc+anon 0.2 : ' —-= jemalloc+file
_ TCMalloc E TCMalloc+anon 3 | TCMalloc+file
0.0 = < ; ; 0.0 : . ; ; 0.0 £ . ; :
800 1200 1600 2000 2400 2800 800 1200 1600 2000 2400 2800 800 1200 1600 2000 2400 2800
Time (us) Time (us) Time (us)

(a) Dedicated system.

(b) Anonymous pages pressure.

(c) File cache pressure.

Figure 8: The memory allocation latency for large (256KB-size) memory requests.

[0 anon WM file

771 dedicated

77 dedicated [anon EEE file

p90 p95

P99

avg. p75

(a) Small requests (b) Large requests

Figure 9: The latency reduction by Hermes.

in Figures 9, since Glibc outperforms jemalloc in most cases. For
1KB-size requests, Hermes reduces the average latency by 16.0%,
29.3%, 9.4%, and the 9gth percentile latency by 15.0%, 38.8%, 17.2%
in the three scenarios, respectively. For 256KB-size requests, Her-
mes reduces the average latency by 12.1%, 54.4%, 21.7%, and the
99th percentile latency by 5.2%, 62.4%, 11.4%, respectively. Hermes
outperforms the default Glibc at each percentile in all scenarios.
The allocation latency is as low as 4us for small requests and 1ms
for large requests. For 1KB-size requests, brk is called 1,053,952
times. For 256KB-size request, mmap is called 4099 times.

By comparing the “dedicated” and “file” bars in Figure 9(a) to
those in Figure 9(b), the performance gain by Hermes under a ded-
icated system and under file cache pressure for large requests is
more significant than that for small requests. The reason is that
large requests take a long time to be allocated in the default Glibc.
Hermes allocates the requests and constructs the virtual-physical

192

mapping in advance. Thus, memory is immediately available for
incoming requests. By comparing the “anon” bar to the “dedicated”
and “file” bars in Figure 9(a) or Figure 9(b), we observe that Hermes
generally achieves more performance improvement under anony-
mous pressure for both small and large requests compared to those
under file cache pressure. The reason is that it is faster to reclaim file
cache pages in the default Linux kernel since unmodified file cache
pages are directly released without I/O operations. For anonymous
pages, however, each of them must be swapped into disks before
released, causing much longer delay due to I/O operations.
Proactive reclamation. Figures 7c and 8c show that “Hermes
w/o paging” achieves similar memory allocation latency at low
percentiles compared with the default Glibc, but it significantly re-
duces the latency at high percentiles. Full Hermes further improves
the average latency over “Hermes w/o paging”.

5.3 Two Real-world Latency-critical Services

5.3.1 Query latency and SLOs. We evaluate the query latency re-
duction on real-world latency-critical services by Hermes compared
to Glibc, jemalloc and TCMalloc under different memory pressure.
We use Redis-5.0.5 [4] and Rocksdb-6.4.0 [5] as two representative
real-world services. Redis is an in-memory key-value store for fast
data access. Rocksdb is a disk-based persistent key-value store for
fast storage environments. It uses memory as data cache. These ser-
vices are usually used for intermediate or temporary data storage.
Thus, they frequently allocate and release memory.

For both Redis and Rocksdb, we implement a program to con-
tinuously generate requests. One request consists of one insertion

Memory at Your Service: Fast Memory Allocation for Latency-critical Services

Table 1: The number of system calls invoked.

Redis 1KB Redis Rocksdb Rocksdb
200KB 1KB 200KB
brk 0 0 52,429 5
mmap 35 8 34 8,397
e 500 —e— Hermes - 7000 —e— Hermes ,/'/A
ey -®- Glibc Q -=- Glibc j——
Gaoo| e A
g g 5000 P s
8 50 SLO=330ps. o . e
2 < 4000 Sloma3268
o Q

3000

~
o
=)

50% 75% 100% 125%
Memory pressure level

0% 50% 75% 100% 125% 150%

Memory pressure level

150% 0%

(a) Small requests (b) Large requests

Figure 10: The 90‘" percentile query latency of Redis.

40 60 —
. —e— Hermes — —e— Hermes -
9q 30/ —= Giibe E 501 -m- Glibc Va
N —-- jemalloc JRESEEL = 40 = jemalloc /
9 TCMalloc T oy TCMalloc /
$ 20 s e =y S 30 5 el
-1 S i) / -
& .‘.—// som76s | B 50 A -
S 10) s
2 2 10 Z
o SL0=573,5
0% 50% 75% 100% 125% 150% 0 50% 75% 100% 125% 150%

Memory pressure level Memory pressure level

(a) Small requests (b) Large requests

Figure 11: The 90'" percentile query latency of Rocksdb.

operation followed by one read operation. We use 1KB-size and
200KB-size data records referenced as small and large memory re-
quests, respectively. For each data insertion execution, we insert
the data until it reaches 2 GB. Table 1 summarizes the number of
the two system calls invoked during the insertion exectuion. To
inject memory pressure, we run Spark Kmeans and Spark PageRank
as batch jobs on the host node. The jobs are from HiBench-6.0 [27]
using its default huge data size. We run Spark-2.3.0 on Hadoop-
2.7.3 [41].

Since there is not a magic value to define the SLO of each service,

we adopt the 907 h percentile latency by the default Glibc under a
dedicated system (w/o memory pressure) as the SLO, which is a
rather strict value. The rational is that latency-critical services like
web search commonly distribute requests across many servers. The
end-to-end response time is determined by the slowest individual
latency [9, 20, 22, 48]. Thus, the 90th percentile latency is a critical
metric in measuring the SLO of latency-critical services.
Latency reduction. Figures 10 and 11 show the 90 h
query latency under different memory pressure levels for Redis
and Rocksdb, respectively. Under memory pressure level 0%, 50%
and 75%, memory is not a scarce resource. Under memory pressure
level 100%, 125% and 150%, memory become a scarce resource. The
horizontal dash line represents the target SLO in each situation. In
Redis, the SLOs are 330us and 4, 326s for small and large requests,
respectively. In Rocksdb, the SLOs are 17us and 573us for small and
large requests, respectively.

percentile

193

Middleware *21, December 6-10, 2021, Virtual Event, Canada

—— Hermes
-=- Glibc
i —:- jemalloc
TCMalloc

—— Hermes 0.99 r,”‘
-—- Glibe f
— - jemalloc

TcMalloc

2000 4000 6000

Time (us)

0.900 200 400 800 0 8000 10000

Time (us)

600

(a) Small requests w/o batch jobs (b) Large requests w/o batch jobs

Figure 12: Redis latency under a dedicated system.

0.99

0.95

—— Hermes

=== Glibc

—-- jemalloc
TCMalloc

—— Hermes

--- Glibc

—-- jemalloc
TCMalloc

10 20 30 40 50 0.900 20 40 60 80

Time (us) Time (ms)

100

(a) Small requests w/o batch jobs (b) Large requests w/o batch jobs

Figure 13: Rocksdb latency under a dedicated system.

—— Hermes

==+ Glibc

—-+ jemalloc
TCMalloc

—— Hermes

-=- Glibc

—: jemalloc
TCMalloc

0.99

&
§o.os

|
6000
Time (us)

200 600 2000 4000 8000 10000

Time (us)

(a) Small requests w/ batch jobs (b) Large requests w/ batch jobs

Figure 14: Redis latency under 100% memory pressure.

The results show that Hermes outperforms Glibc, jemalloc and
TCMalloc in reducing the 90th percentile query latency in all sce-
narios for both Redis and Rocksdb. Specifically, with a dedicated
system (0% memory pressure) or a low memory pressure level (50%
and 75%), Hermes achieves similar or slightly lower 90th percentile
latency compared to Glibc, jemalloc and TCMalloc. With a moder-
ate memory pressure level (100% and 125%), Hermes can meet the
SLO targets for small requests while Glibc, jemalloc and TCMalloc
incur significant SLO violation. With a severe memory pressure
level (> 125%), all three approaches incur non-trivial SLO violation
but Hermes significantly outperforms the others. We observe that
large requests in Rocksdb under high memory pressure experience
tens of milliseconds of latency. Note that Rocksdb is a disk-based
KV store with memory cache. Under severe memory pressure, data
are written into disks more frequently, causing high latency.
Under a dedicated system and job co-location. We evaluate the
performance of real-world services Redis and Rocksdb by Hermes,
Glibc and jemalloc under a dedicated system with sufficient memory.
Figures 12 and 13 plot the CDF of the query latency for the two real-
world services under the dedicated system, respectively. Compared
to Glibc and jemalloc, Hermes renders similar or slightly better
average, 90‘", and 99*" percentile query latency.

Middleware *21, December 6-10, 2021, Virtual Event, Canada

0.99

a8
0.95
o —— Hermes
-=- Glibc
—-- jemalloc
TCMalloc

—— Hermes

==+ Glibc

—-- jemalloc
TCMalloc

’
1]
1
I}
f]
i
1
1
1
1
1

I
10 20 30 40 50
Time (us)

40 60 80
Time (ms)

100

(a) Small requests w/ batch jobs (b) Large requests w/ batch jobs

Figure 15: Rocksdb latency under 100% memory pressure.

100 100
o |2

DT:’ 80 EZA jemalloc ’ E 80
[=4

2 60| EEN TCMalloc ’ S 60
© ©

2 40 3 ’ S 40
> J >

g 20) ’ S 20

Pis Hal U
50% 75% 100% 125% 150% 50% 75% 100% 125% 150%

Memory pressure level Memory pressure level

(a) Small requests (b) Large requests

Figure 16: The SLO violation ratio of Redis requests.

Under job co-location, severe memory pressure is usually ad-

dressed by a system administrator while memory pressure around
the 100% level is more likely to happen due to the dynamic memory
consumption of latency-critical services and batch jobs. Thus, we
plot the CDF of the query latency under such a scenario for Redis
and Rocksdb in Figures 14 and 15, respectively. Hermes achieves the
lowest latency for both services. Compared to Glibc, it reduces the
average (99'" percentile) latency by up to 17.0% (40.6%) for Redis
and 20.6% (63.4%) for Rocksdb.
SLO violation. Figure 16 and Figure 17 show the ratios of SLO vio-
lation with Hermes, Glibc, jemalloc and TCMalloc under different
memory pressure levels for Redis and Rocksdb, respectively. For
Redis, Hermes achieves the SLO violation ratio lower than 10% un-
der a low memory pressure level (i.e., 50% and 75%). The results for
Rocksdb are similar. The reason is that Hermes builds the virtual-
physical mapping in advance such that incoming memory requests
can be immediately served. The most significant results are those
under 100% or higher memory pressure levels which usually hap-
pen in a multi-tenant system. Under such a memory pressure level,
compared to the default Glibc, jemalloc, and TCMalloc, Hermes
reduces the SLO violation of Redis by up to 83.6%, and reduces the
SLO violation of Rocksdb by up to 84.3%.

5.3.2 Batch job throughput. We examine the throughput of batch
jobs co-located with latency-critical services. We submit Spark
Kmeans jobs and keep three concurrent job instances in the node.
Each Kmeans job runs in eight Yarn containers and requests around
40GB memory. This generates the 100% memory pressure level.
We send data insertion, read, and deletion requests to the latency-
critical services such that stored data size varies from 20GB to 40GB.
The co-location experiment runs for 24 hours in each of the three
scenarios: Default, Hermes, and Killing.

o Default. We co-locate batch jobs and latency-critical ser-

vices with the default GNU/Linux stack.

194

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou

=
o
o

o
o

7 Glibc
¥ jemalloc
ETS TCMalloc

A Glibc
KA jemalloc
KN TCMalloc

80
60
40

o o

o

SLO violation (%)
=N W A WU,
o
SLO violation (%)

20

o

o
o

%

75%
Memory pressure level

50% 100% 125% 150% 50% 75% 100% 125%

Memory pressure level

(a) Small requests (b) Large requests

Figure 17: The SLO violation ratio of Rocksdb requests.

Table 2: The throughput of batch jobs.

Default Hermes Killing Dedicated
Redis 212 194 123 N/A
Rocksdb 380 364 267 N/A

e Hermes. We co-locate batch jobs and latency-critical ser-
vices with Hermes.

e Killing. Upon Default, we kill the latest launched container
of a batch job when node memory is insufficient, which frees
up memory. Killing the container results in the least progress
loss of the batch job.

Table 2 gives the number of the finished batch jobs in the three
co-location scenarios as well as in a dedicated system where there
is no throughput of batch jobs. Both Default and Hermes achieve
much higher throughput than that of Killing. Hermes achieves
slightly lower throughput to that of Default. In return, it signif-
icantly reduces the query latency and SLO violation of latency-
critical services, the principle requirement of job co-location. We
notice that the throughput of co-location with Rocksdb is higher
than that of Redis. The reason is that Redis is a memory-based KV
store that keeps all data in DRAM. Rocksdb is a disk-based KV store
that has much lower memory consumption than Redis. Thus, more
memory can be allocated to batch jobs. Experimental results find
that job co-location due to Hermes renders about 98.5% average
node memory utilization.

5.4 Parameter Sensitivity

We evaluate the impact of parameter sensitivity. Specifically, we
change the value of reservation factor RSV_FACTOR raging from
0.5 to 3, and evaluate the memory allocation latency under each
value for both small and large memory requests using the micro
benchmark. We run the micro benchmark under a dedicated system
and under anonymous page pressure, respectively. We use the same
settings as those in Section 5.2 to generate the memory pressure.
Figures 18 and 19 show the percentage of latency reduction at
specific percentiles for small and large requests, respectively.
Under a dedicated system, a small value of RSV_FACTOR signif-
icantly increases the 99 h percentile tail latency for small requests,
as shown in Figure 18(a). The reason is that the reserved memory
under such a RSV_FACTOR value is too small. When a burst of
memory requests are sent by the processes, the reserved mem-
ory quickly runs out. In this case, the incoming memory requests
are blocked by the memory reservation routine. As the value of

Memory at Your Service: Fast Memory Allocation for Latency-critical Services

o
=3

100

72 05x BN 15x EEE 2.5x 72 05x [15x EEE 2.5x

. 40 = 1.0x [2.0x EEE 3.0x . 80 10— E-2:0x—— M- 3:0x

S S

2 qﬂ P[ﬂ all :

=R il H_‘ g

o o

Q Q

T

-40 avg. p75 p90 p95 p99 avg. p75 p90 p95 p99
(a) Dedicated system (b) Anonymous pressure
Figure 18: Latency reduction for small requests.
40 80

72 0.5x BN 15x BN 2.5x 72 05x SN 15x EEN 2.5x

30 1.0x [2.0x WEE 3.0x _ | EEH1.0x 3 2.0x

B B

c 20 c

S S

S 10 5

o o

g0 Al il :

0 |

avg. p75 p90 p95 P99

avg.

(a) Dedicated system (b) Anonymous pressure

Figure 19: Latency reduction for large requests.

RSV_FACTOR is increased, the 99" percentile tail latency becomes
better than that by the default Glibc. For large memory requests, the
incoming memory requests are not blocked but served by the default
allocation routine in Glibc since there can be multiple mmapped
memory chunks for a process. Thus, Hermes achieves more alloca-
tion latency reduction for large requests under a dedicated system
as shown in Figure 19(a).

Under anonymous page pressure, Hermes achieves much more
significant latency reduction compared with that under a dedicated
system. Specifically, it reduces the average and the 99" percentile
latency by up to 69.1% and 41.6% for small requests, respectively.
It reduces the average and the 99th percentile latency by up to
63.8% and 64.2% for large requests, respectively. Overall, setting
RSV_FACTOR to a value larger than 2 does not achieve more per-
formance gain. The reserved memory exceeds the total amount
of memory requests and causes more memory wastage. Thus, we
empirically set the value of RSV_FACTOR to 2 since it achieves
good reduction in the memory allocation latency while resulting
in the least memory wastage.

5.5 Hermes Overhead

Hermes introduces about 0.4% CPU usage overhead to the appli-
cation due to the management thread in the modified Glibc. The
downsides using Hermes is that there is some memory which is
reserved but not actually used by the application. We profile such
memory in the micro benchmark for both small (1KB-size) and large
(256KB-size) memory requests. The reserved memory at runtime is
about 6 MB~6.4 MB, which is negligible compared to the memory
capacity of a physical node. In addition, the memory monitor dae-
mon requires about 2 MB memory including the memory occupied
by the daemon process and the shared memory space. It introduces
about 2.4% CPU usage as it keeps monitoring the latency-critical
services and available memory in the OS.

195

Middleware *21, December 6-10, 2021, Virtual Event, Canada

6 DISCUSSIONS

Reservation factor. Users need to set an appropriate value for the
reservation factor RSV_FACTOR in Hermes. We find that a value
of 2 achieves good performance gain for both the micro benchmark
and two real-world services while introducing the least memory
wastage. However, the value setting depends on various factors such
as the characteristics of latency-critical services and the underlying
multi-tenant system. If a latency-critical service does not require
much memory at runtime, RSV_FACTOR can be set to a small
value. Otherwise, it should be set to a relatively large value.
Reservation heuristic. Hermes relies on two simple but effective
heuristics, heap management routine and mmap management rou-
tine, to reserve memory for latency-critical services. Since Hermes
is developed at the library level, the reservation heuristics incur
low overhead. Users can also implement their own heuristics.
Query latency. Hermes aims for fast memory allocation. Once the
reserved pages are obtained by a process, Hermes calls munlock
system call on the pages. The pages can be swapped into disks when
the available system memory is low. Queries to the latency-critical
services will be delayed if the physical pages reside in the swap
area. A simple solution is to return the pages to a process without
calling munlock. In this case, the pages occupied by latency-critical
services are never swapped, resulting in low latency for queries.
The simple solution meets the design goal that batch jobs should
not affect the performance of latency-critical services. However, it
may incur out-of-memory errors if the locked memory is not well
managed under extreme memory pressure. Thus, no page is eligible
for reclaim but killing processes is the only choice.

Default Linux mechanisms. Linux provides mechanisms by
which applications can instruct the system to construct the virtual-
to-physical memory mapping. For example, the MAP_POPULATE flag
in the mmap() system call and the mlock() system call. However,
using these mechanisms in applications has two drawbacks. First,
using these mechanisms requires modification to application source
code. By doing so, applications bypass the memory management
routine in the library and need to manage the memory by them-
selves, which puts much more burden on software developers. Sec-
ond, when an application tries to allocate memory under memory
pressure, using these mechanisms does not help accelerate mem-
ory allocation since Linux OS still needs to reclaim/swap physical
memory before the new allocation request.

Cgroups and VMs. Linux provides the cgroup mechanism to
control resource utilization of processes. Its memory subsystem
can be used to dynamically set memory limits for batch jobs. How-
ever, there are two limitations by using the cgroup mechanism.
First, after the memory of batch jobs is reclaimed by setting a
smaller limit in cgroup, the reclaimed memory can be allocated to
multiple latency-critical services. This may lead to memory compe-
tition and degrades latency. Second, the cgroup mechanism cannot
proactively construct the virtual-to-physical mapping. The idea of
Hermes could be applied to cgroup such that it allows prioritization
of memory allocation between cgroups. However, it requires OS-
level modification. In this paper, latency-critical services and batch
jobs run in the same OS. Hermes is still effective if latency-critical
services and batch jobs run in separate VMs on the same host server
since it reserves physical memory for latency-critical services.

Middleware *21, December 6-10, 2021, Virtual Event, Canada

Fragmentation. The current Glibc does not round up the size of
heap memory chunks to power of two. Thus, freed memory chunks
of any size can be coalesced to neighboring chunks, which does not
incur high memory waste through fragmentation. Hermes inherits
the heap management algorithm from Glibc for small memory
requests allocated from heap. Thus, the impact of fragmentation
on heap memory is the same as that in Glibc. Hermes uses its own
segregated free list to manage large memory chunks allocated by
mmap system call. Since most memory requests from latency-critical
services are of the same size, freed large memory chunks may
exactly fit incoming requests, incurring no fragmentation. In the
worst case where significant memory waste through fragmentation
occurs, memory compaction can be done through mremap system
call. This is a rare case since modern CPUs support hundreds of
gigabytes of memory address space.

Applicability. Currently, Hermes supports C/C++ programs. Many
popular key-value stores [2-5] are implemented in C/C++. A po-
tential limitation of using Hermes is that it might clash with other
C/C++ libraries. In the future, we plan to do more compatibility
experiments for Hermes. The principle and design of Hermes can
be applied to other language runtimes. For example, for programs
running on Java Virtual Machines (JVMs), JVMs could reserve a
chunk of memory and construct the virtual-physical mapping in
advance for fast memory allocation.

7 RELATED WORK

Latency reduction. There are extensive efforts on reducing query
latency for latency-critical services [9, 14, 15, 19, 23, 25, 26, 29, 32,
34, 35, 48]. Tail-control [34] develops a work-stealing scheduler for
optimizing the number of requests that meet a target latency. Mit-
tOS [26] tackles the tail latency for distributed file systems where
the bottleneck is disk I/O. SDChecker [15] is a tool that characterizes
scheduling delay for low-latency data analytics workloads. Fast-
Track [25] targets mobile devices and improves the response time
for foreground apps. Perflso [29] is an approach that reserves CPU
slacks to achieve efficient CPU sharing between latency-critical
services and batch jobs. RobinHood [9] dynamically reallocates
the cache between cache-rich and cache-poor applications. Cur-
tailHDFS [35] manages the tail latency in distributed file systems.
Hermes aims to reduce the latency in the memory allocation phase
for latency-critical services in multi-tenant systems and achieve
significantly lower tail query latency and higher throughput.
Cluster resource sharing. Modern cluster schedulers [12, 18, 31]
launch best-effort jobs with transient resources in a cluster. For
example, Apollo [12] is a scalable scheduling framework for cloud
computing. Mercury [31] launches jobs with transient resources
and kills the jobs when the available resources drop below a thresh-
old. Pado [45] is a data processing engine that aims to harness
transient resources. Mos [8] analyzes cloud object stores and pro-
poses independent microstores for the needs of particular types of
workloads. Big-C [18] is a preemption-based cluster scheduler that
achieves low scheduling latency for heterogeneous workloads. Cal-
adan [22] exclusively relies on CPU scheduling to mitigate resource
interference and achieve better QoS in a co-located environment.
Hermes targets efficient co-location and specifically efficient mem-
ory sharing in physical nodes.

196

Aidi Pi, Junxian Zhao, Shaoqi Wang, Xiaobo Zhou

Memory management. Study [36] designs a buffer pool for rela-
tional databases in a multi-tenant environment. There are studies
on efficient memory management for applications running in JVMs
by leveraging the runtime characteristics of applications [13, 17,
24, 37, 38, 46]. Broom [24] proposes to use region based memory
management for data analytics applications. Facade [38] statically
bounds the number of objects allocated to threads for efficient mem-
ory management in JVMs. Yak [37] creates a new region in the JVM
heap to store long-lived data. ROLP [13] is an object lifetime profiler
for efficient garbage collection. Pufferfish [17] is an elastic mem-
ory manager that leverages containers to flexibly allocate memory
for data-intensive applications. Charon [16] is a cluster scheduler
for oversubscription of opportunistic memory in an on-demand
manner that leverages an OS-augmented and user-assisted Out-
OfMemory killer. Hermes focuses on fast memory allocation for
latency-critical services that use C libraries.

Memory allocation libraries. GNU C Library provides ptmal-
loc [1] as the memory allocator for C/C++ programs. There are
other memory allocators [6, 10, 21, 28, 39] that focus on different
design objectives. Jemalloc [21] emphasizes fragmentation avoid-
ance. It is the default memory allocator for FreeBSD [7]. Hoard [10]
is a scalable memory allocator that largely avoids false sharing and
better worst case fragmentation. TCMalloc [6] supports efficient
memory allocation for multi-thread processes. McRT-Malloc [28]
and SFMalloc [39] focus on non-blocking scalable memory allo-
cation. Especially, McRT-Malloc is specialized for transactional
memory while SFMalloc is a general purpose memory allocation.
Both memory allocators support concurrent memory manipulation
by multiple threads. The major difference between the existing
memory allocators and Hermes is that, only Hermes explicitly fo-
cuses on physical memory management while the other memory
allocators focus on virtual memory management. In addition, Her-
mes is aware of and mitigates the cost in building virtual-physical
mapping. Although Hermes is implemented in Glibc, its principle
and the idea of proactively building virtual-physical mapping can
be integrated to those memory allocators.

8 CONCLUSION

We present Hermes, a library-level mechanism that enables fast
memory allocation for latency-critical services in multi-tenant
servers. Hermes constructs the virtual-physical address mapping
in advance and quickly serves incoming memory requests from
latency-critical services. It proactively advises Linux OS to release
file cache occupied by batch jobs so as to make available memory
without going through the slow memory reclaim routine. Hermes
is implemented in GNU C Library. Experimental results show that
Hermes significantly reduces the average and the tail latency of
queries for latency-critical services especially under memory pres-
sure, and improves system throughput and memory utilization.

In the future, we plan to extend the principle and design of
Hermes to language runtimes Java and Scala.

9 ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grant CCF-1816850.
We thank our shepherd Dr. Sameh Elnikety and the anonymous
reviewers for their valuable comments.

Memory at Your Service: Fast Memory Allocation for Latency-critical Services

REFERENCES

[12]

[17]

(18]

[19]

[20]
[21]
[22]

[23

[24

[25

[26]

[27

[28]

[29

[30

[31

GNU C Library. https://www.gnu.org/software/libc/.

Memcached. https://memcached.org/.

MongoDB. https://www.mongodb.com/.

Redis. https://redis.io/.

Rocksdb. https://rocksdb.org/.

TCMalloc. https://gperftools.github.io/gperftools/tcmalloc.html.

The FreeBSD Project. https://www.freebsd.org/.

Ali Anwar, Yue Cheng, Aayush Gupta, and Ali R. Butt. Mos: Workload-aware
elasticity for cloud object stores. In Proc. of ACM HPDC, 2016.

Daniel S. Berger, Benjamin Berg, Timothy Zhu, Mor Harchol-balter, and Sid-
dhartha Sen. Robinhood: Tail latency-aware caching — dynamically reallocating
from cache-rich to cache-poor. In Proc. of USENIX OSDI, 2018.

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
Hoard: A scalable memory allocatorfor multithreaded applications. In Proc. of
ACM ASPLOS, 2000.

Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator. In
USENIX Summer, 1994.

Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. Apollo: scalable and coordinated scheduling for
cloud-scale computing. In Proc. of USENIX OSDI, 2014.

Rodrigo Bruno, Duarte Patricio, Jose Simao, Luiz Veiga, and Paulo Ferreira. Run-
time object lifetime profiler for latency sensitive big data applications. In Proc. of
ACM EuroSys, 2019.

Jigiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun, Huan Liu,
and Feifei Li. Hotring: A hotspot-aware in-memory key-value store. In Proc. of
USENIX FAST, 2020.

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou. Characterizing scheduling
delay for low-latency data analytic workloads. In Proc. of IEEE IPDPS, 2018.

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou. Os-augmented oversub-
scription of opportunistic memory with a user-assisted oom killer. In Proc. of
ACM/IFIP Middleware, 2019.

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou. Pufferfish: Container-driven
elastic memory management for data-intensive applications. In Proc. of ACM
SoCC, 2019.

Wei Chen, Jia Rao, and Xiaobo Zhou. Preemptive, low latency datacenter sched-
uling via lightweight virtualization. In Proc. of USENIX ATC, 2017.

Youmin Chen, Lu Youyou, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu.
Flatstore: An efficient log-structured key-value storage engine for persistent
memory. In Proc. of ACM ASPLOS, 2020.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of ACM,
56(2):74-80, February 2013.

Jason Evans. A scalable concurrent mallloc(3) implementation for freebsd. In
Proc. of BSDCan, 2006.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. Caladan:
Mitigating interference at microsecond timescales. In Proc. of USENIX OSDI, 2020.
Eran Gilad, Edward Bortnikov, Anastasia Braginsky, Yonatan Gottesman, Eshcar
Hillel, Idit Keidar, Nurit Moscovici, and Rana Shahout. Evendb: optimizing
key-value storage for spatial locality. In Proc. of ACM Eurosys, 2020.

Tonel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios Vytiniotis,
Ganesan Ramalingam, Manuel Costa, Derek G Murray, Steven Hand, and Michael
Isard. Broom: Sweeping out garbage collection from big data systems. In Proc. of
USENIX HotOS, 2015.

Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee, Donguk Ryu, and Jihong King.
Fasttrack: Foreground app-aware i/o management for improving user experience
of android smartphones. In Proc. of USENIX ATC, 2018.

Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, and Riza O.
Suminto. Mittos: Supporting millisecond tail tolereance with fast rejecting slo-
aware os interface. In Proc. of ACM SOSP, 2017.

Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The HiBench
benchmark suite: Characterization of the mapreduce-based data analysis. In Proc.
of IEEE Data Engineering Workshops (ICDEW), 2010.

Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin C.
Hertzberg. Mcrt-malloc: A scalable transactional memory allocator. In Proc.
of ACM ISMM, 2006.

Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Semeh Elnikety, Manoj Sya-
mala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack
Zhang, and Junhua Wang. Perfiso: Performance isolation for commercial latency-
sensitive services. In Proc. of USENIX ATC, 2018.

Seyyed Ahmad Javadi and Anshul Gandhi. Dial: Reducing tail latencies for cloud
applications via dynamic interference-aware load balancing. In Proc. of IEEE
ICAC, 2017.

Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas, Kishore Chali-
parambil, Giovanni Matteo Fumarola, Solom Heddaya, Raghu Ramakrishnan,
and Sarvesh Sakalanaga. Mercury: Hybrid centralized and distributed scheduling
in large shared clusters. In Proc. of USENIX ATC, 2015.

Middleware *21, December 6-10, 2021, Virtual Event, Canada

[32] Marios Kogias and Edouard Bugnion. Hovercraft: achieving scalability and fault-

tolerance for microsecond-scale datacenter services. In Proc. of ACM Eurosys,
2020.

Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and
sub-millisecond quality-of-service. In Proc. of ACM Eurosys, 2014.

Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I-Ting Angelina Lee,
Chenyang Lu, and Kathryn S. McKinley. Work stealing for interactive services
to meet target latency. In Proc. of ACM PPoPP, 2016.

Pulkit A. Misra, Maria F. Borge, Inigo Goiri, Alvin R. Lebeck, Willy Zwaenepoel,
and Ricardo Bianchini. Managing tail latency in datacenter-scale file systems
under production constraints. In Proc. of ACM EuroSys, 2019.

Vivek Narasayya, Ishai Menache, Mohit Singh, Feng Li, Manoj Syamala, and Sura-
jit Chudhuri. Sharing buffer pool memory in multi-tenant relational databases-
as-a-service. In Proc. of VLDB, 2015.

Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat
Alamian, and Onur Mutlu. Yak: A high-performance big-data-friendly garbage
collector. In Proc. of USENIX OSDI, 2016.

Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoging Xu.
Facade: A compiler and runtime for (almost) object-bounded big data applications.
In Proc. of ACM SOSP, 2015.

Sangmin Seo, Junghyun Kim, and Jaejin Lee. Sfmalloc: A lock-free and mostly
synchronization-free dynamic memory allocator for manycores. In Proc. of IEEE
PACT, 2011.

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana Klimovic, Adrian Schuep-
bach, and Metzler Bernard. Unification of temporary storage in the nodekernel
architecture. In Proc. of USENIX ATC, 2019.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache Hadoop YARN: Yet another resource negotiator. In Proc. of
ACM SoCC, 2013.

MidHul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,
and Thierry Cruanes. Building an elastic query engine on disaggregated storage.
In Proc. of USENIX NSDI, 2020.

Hailong Yang, Alex Breslow, Jason Mars, and Tang Lingjia. Bubble-flux: Precise
online qos management for increased utilization in warehouse scale computers.
In Proc. of ACM ISCA, 2013.

Xi Yang and Stephen M. Blackburn. Elfen scheduling: Fine-grain principled
borrowing from latency-critical workloads using simultaneous multithreading.
In Proc. of USENIX ATC, 2016.

Youngseok Yang, Geon-Woo Kim, Won Wook Song, Yunseong Lee, Andrew
Chung, Zhengping Qian, Brian Cho, and Byung-Gon Chun. Pado: A data pro-
cessing engine for harnessing ransient resources in datacenters. In Proc. of ACM
EuroSys, 2017.

Junxian Zhao, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou. Flashbyte: Improving
memory efficiency with lightweight native storage. In Proc. of IEEE/ACM CCGrid,
2021.

Haishan Zhu and Mattan Erez. Dirigent: Enforcing qos for latency-criticaltasks
on shared multicore systems. In Proc. of ACM ASPLOS, 2016.

Timothy Zhu, Michael A. Kozuch, and Mor Harchol-Balter. Workloadcompactor:
Reducing datacenter cost while providing tail latency slo guarantees. In Proc. of
ACM SoCC, 2017.

https://www.gnu.org/software/libc/
https://memcached.org/
https://www.mongodb.com/
https://redis.io/
https://rocksdb.org/
https://gperftools.github.io/gperftools/tcmalloc.html
https://www.freebsd.org/

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Memory Management in Glibc
	2.2 Case Studies
	2.3 Memory Reclaim in Linux OS

	3 Hermes Design
	3.1 Overview
	3.2 Memory Management Thread
	3.3 Memory Monitor Daemon

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Micro Benchmark
	5.3 Two Real-world Latency-critical Services
	5.4 Parameter Sensitivity
	5.5 Hermes Overhead

	6 Discussions
	7 Related Work
	8 Conclusion
	9 Acknowledgment
	References

