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ABSTRACT
Co-location and memory sharing between latency-critical services,

such as key-value store and web search, and best-effort batch jobs

is an appealing approach to improving memory utilization in multi-

tenant datacenter systems. However, we find that the very diverse

goals of job co-location and the GNU/Linux system stack can lead to

severe performance degradation of latency-critical services under

memory pressure in a multi-tenant system.

We address memory pressure for latency-critical services via

fast memory allocation and proactive reclamation. We find that

memory allocation latency dominates the overall query latency,

especially under memory pressure. We analyze the default memory

management mechanism provided by GNU/Linux system stack and

identify the reasons why it is inefficient for latency-critical services

in a multi-tenant system. We present Hermes, a fast memory alloca-

tion mechanism in user space that adaptively reserves memory for

latency-critical services. It advises Linux OS to proactively reclaim

memory of batch jobs. We implement Hermes in GNU C Library.

Experimental result shows that Hermes reduces the average and the

99
𝑡ℎ

percentile memory allocation latency by up to 54.4% and 62.4%

for a micro benchmark, respectively. For two real-world latency-

critical services, Hermes reduces both the average and the 99
𝑡ℎ

percentile tail query latency by up to 40.3%. Compared to the de-

fault Glibc, jemalloc and TCMalloc, Hermes reduces Service Level

Objective violation by up to 84.3% under memory pressure.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering→ Software libraries and reposito-
ries; Memory management.
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1 INTRODUCTION
Latency-critical services such as key-value store and web search are

usually featured with largely varied peak and average resource con-

sumption [26, 40]. For guaranteed performance of latency-critical

services, a naive approach is to use a dedicated system for latency-

critical services. However, the approach leads to a large amount

of idle resources during runtime since the average resource con-

sumption of the services is usually much less than their peak con-

sumption [22, 33, 42]. For instance, SnowFlake system found that

the average memory utilization on its servers is only ∼ 19% [42].

To improve the utilization of resources, it is a common practice that

best-effort batch jobs are co-located with latency-critical services

to exploit transient resources in datacenters [22, 29, 30, 43, 44, 47].

Although co-location with memory sharing increases resource

utilization, it often significantly degrades the latency particularly

the tail latency of latency-critical services. Latency-critical services

like cloud-native key-value store and web search commonly dis-

tribute requests across many servers, thus the end-to-end response

time is determined by the slowest individual latency [9, 20, 22, 48].

We find the root cause of long tail latency is due to the very diverse

goals of job co-location and the GNU/Linux system stack. On one

hand, job co-location leverages idle resources for batch jobs while

maintaining the performance of latency-critical services. On the

other hand, the GNU/Linux stack tries to accommodate as many

submitted processes as possible while only offering few knobs

to prioritize processes. As a result, although co-located latency-

critical services and batch jobs may both survive, the performance

of latency-critical services is significantly degraded under memory

pressure, which jeopardizes Service Level Objective (SLO).

There are mainly two categories of research on improving perfor-

mance for latency-critical services. Studies [9, 13, 34, 48] improve

performance for latency-critical services by leveraging their run-

time characteristics. For example, ROLP [13] is a runtime object

lifetime profiler for efficient memory allocation and garbage col-

lection for latency-critical services. However, these studies do not

take job co-location into consideration. Studies of the other cate-

gory [29, 30, 43, 47] target co-location of latency-critical services

with other jobs. For example, PerfIso [29] and Dirigent [47] are

two representative approaches that leverage multicore systems to

efficiently share CPU resource between processes. Our work falls

into the second category.

While existing efforts try to push the resource utilization to

the limit, memory management for latency-critical services still

faces significant challenges. First, the runtime behavior of a job is

difficult to predict. In particular, it is difficult to obtain the amount

of memory that will be requested by a job in the future. Second,

it is expensive to reclaim physical memory that is occupied by a

process. If a process requests more memory when the node memory
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is almost used up, swapping will be triggered to make space for the

requested memory. However, swapping is an expensive operation

that takes a long period of time (tens of milliseconds to seconds) or

even leads to thrashing. In such cases, the performance of latency-

critical services are significantly degraded.

Since the original purpose of a dedicated system is for sole use

by latency-critical services, ideally their performance should not

be affected by batch jobs. In a shared environment, memory is

frequently allocated and reclaimed due to provisioning of various

workloads. However, the memory reclaim mechanism in Linux OS

significantly degrades the performance of latency-critical services

under memory pressure, which makes co-location inefficient or

even ineffective. In light of the challenges, we tackle the problem

from a new perspective: resource slacks should be reserved for

latency-critical services in case of a burst of resource requests. Per-

fIso [29] is a preemptive approach that adopts this principle to

achieve CPU sharing between latency-critical services and batch

jobs. However, memory sharing is very different from CPU sharing

since tasks on a core can be easily preempted and later resched-

uled [18]. Data in memory can only be preempted by swapping

them onto disks, which is a very expensive operation.

We aim to materialize the principle to achieve fast memory

allocation for latency-critical services in a multi-tenant system. Our

experiments find that memory allocation latency takes up to 97.5%

of a whole query latency. Thus, we focus on reducing the memory

allocation latency for latency-critical services. The design should

meet the following requirements:

• R1 Latency-critical services have the highest priority. This

is the primary principle. Best-effort batch jobs can share

idle resources only if they do not affect the performance of

latency-critical services.

• R2 Memory should be allocated in a fast manner. This is

the key to achieving low latency for latency-critical services

when they request memory.

• R3 The design should be generally applicable to all applica-

tions written in a popular language such as C / C++. That is,

the source code of applications should not be modified.

• R4 The overhead should be low. In other words, it should

consume little resource of a node.

In this paper, we make the following contributions. First, we

analyze the current memory management in GNU C Library (a.k.a.

Glibc) and Linux OS, and show that it is inefficient for memory shar-

ing between latency-critical services and batch jobs. In particular, 1)

it adopts an on-demand physical memory allocation mechanism in

order to accommodate as many processes as possible without prior-

itization. Though this mechanism works well in a dedicated system

with sufficient memory, it significantly degrades job performance

or even causes thrashing under memory pressure. 2) It uses a reac-

tive algorithm to reclaim file cache even if no process accesses the

cache. The design expects the cache will be accessed again in the

near future. The reactive algorithm introduces significant delay on

latency-critical services since a memory reclaim routine is invoked

before requests are served. In summary, the design of the current

GNU / Linux stack contradicts the goal of co-location and memory

sharing of latency-critical services and batch jobs.

Second, we present Hermes, a library-level mechanism for fast

memory allocation for latency-critical services in multi-tenant

systems. Hermes maintains one dedicated memory pool for each

latency-critical service (R1, R2). Upon receiving requests from a

latency-critical service, memory can be immediately allocated from

the memory pool to the service. Hermes uses a lightweight heuristic

to determine the size of the memory pool (R4). It advises Linux OS
to release file cache pages occupied by batch jobs under memory

pressure so as to make more available memory for latency-critical

services (R1). We implement Hermes in library Glibc. It is a library-

level mechanismwithout modification to applications (R3) or Linux
OS. Note that Hermes could be implemented into Linux OS, but the

modification may affect other processes, incur security issues, and

importantly violate Linux monolithic kernel generality.

We conduct experiments for Hermes with a micro benchmark

and two real-world services under amulti-tenant system. Compared

to the default Glibc, Hermes reduces the average and the 99
𝑡ℎ

percentile memory allocation latency by up to 54.4% and 62.4%

under memory pressure, respectively. The allocation latency is as

low as 4𝜇𝑠 for small requests and 1𝑚𝑠 for large requests.

Furthermore, we use Redis [4] and Rocksdb [5] as two real-

world services to examine the query latency. Results show that

Hermes reduces both the average and the 99
𝑡ℎ

percentile tail query

latency by up to 40.3%. Compared to the default Glibc, jemalloc

and TCMalloc, Hermes reduces the SLO violation by up to 84.3%

under memory pressure. Hermes achieves significantly improved

system throughput. Results also show that Hermes achieves similar

or slightly better query latency under a dedicated system. The

overhead of Hermes is negligible.

The rest of the paper is organized as follows. Section 2 introduces

the default GNU stack and its problems. Sections 3 and 4 present

the design and implementation of Hermes, respectively. Section 6

discusses Hermes. We present the related work in Section 7 and

conclude the paper in Section 8.

2 BACKGROUND AND MOTIVATIONS
2.1 Memory Management in Glibc
The famous malloc function call in Glibc is a unified interface for

programs to allocate memory from Linux OS. A process conve-

niently obtains the address of the memory space without knowing

the underlying mechanism by calling malloc. The function call

uses two Linux system calls brk and mmap to serve memory re-

quests of different sizes. Figure 1(a) shows the simplified address

space of a process that includes memory chunks allocated by both

system calls. We focus on the mechanisms in Glibc that manipulate

the main heap space and mmapped memory chunks. Both kinds of

memory are dynamically allocated at runtime.

System call brk. Each process has exactly one main heap that is

a continuous virtual address space. Glibc divides the main heap into

two areas: the allocated area and the top chunk. Glibc keeps track

of the used and free space in the allocated area. It is worth noting

that the allocated area and the top chunk in Glibc are transparent

to Linux OS. Following the allocated area lies the top chunk that is

a continuous free address space. The end address of the top chunk

is the program break returned by the sbrk wrapper function which

calls the brk system call. Upon a request for a small size of memory
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(a) stage 1 (b) stage 2

Figure 1: Process address space in Linux. Shaded areas repre-
sent allocated virtual memory whose physical pages do not
reside in RAM. Red fonts represent variables on Glibc.

(< 128 KB by default), Glibc first tries to find a free space in the

allocated area. If it cannot satisfy the request, space is taken from

the beginning of the top chunk and added to the allocated area.

Once the top chunk is used up, Glibc expands the main heap by

calling sbrkwith the exact requested size. If the top chunk is greater
than a certain threshold, Glibc shrinks the main heap by passing a

negative number to sbrk.
System call mmap. Besides the main heap, a process can have

multiple disjoint memory chunks allocated by mmap. This system
call can either map a file to process address space or allocate anony-

mous pages. Glibc leverages the anonymous page usage to handle

large memory requests (≥ 128 KB by default). Upon success, it re-

turns the starting address of the newly allocated mmapped memory

chunk. Glibc gives the memory chunk to the process after a book-

keeping operation. When a process frees a memory space allocated

by mmap, Glibc releases it directly back to Linux OS.

Upon return of both system calls, a process gets a virtual mem-

ory space while the corresponding physical memory does not nec-

essarily reside in RAM at the moment. Linux OS constructs the

virtual-physical address mapping only when the process accesses

(i.e., writes or reads or executes) the allocated memory for the first

time. For example, in Figure 1(a), the process has a main heap and

a mmapped memory space 1. In Figure 1(b), the process allocates

a new mmapped memory space and writes data in the main heap.

The newly mmapped memory space does not have corresponding

physical pages yet. Thus, the virtual-physical mapped space in the

main heap expands.

Two benefits come with the on-demand mapping construction.

For Linux OS, physical memory pages are loaded for the actually

used memory since physical memory is a scarce resource. For the

process, it accelerates the memory allocation routine. The reason is

that the mapping construction for all the virtual addresses requires

loading all the physical pages at once, which takes a longer time

than only returning the virtual address.

While usually fast, the on-demand virtual-physical mapping

construction can be significantly delayed when there is insufficient

physical memory in the node, which is common in a multi-tenant

system. At this point, Linux OS starts to reclaim physical pages by

either directly freeing them or swapping them onto disks.
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(b) Large (200KB) requests.

Figure 2: The percentage breakdown of the insert and read
operations in Rocksdb.
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Figure 3: The CDF of the memory allocation latency.

2.2 Case Studies
In real-world latency sensitive services, latency spent in memory

allocation during data insertion takes a large portion of latency of

a whole workload. We take Rocksdb as a case study to illustrate

that memory allocation latency is much higher compared to data

read latency using both small (1KB) and large (200KB) requests. We

use Glibc as the memory allocator and execute Rocksdb queries

without any memory pressure. Each query is a data insertion oper-

ation (involving memory allocation) followed by a read operation.

Figure 2 shows the percentage breakdown of the query latency

at specified percentiles. For small requests, the average (99
𝑡ℎ

per-

centile) query latency is the 15𝜇𝑠 (29𝜇𝑠). Data insertion latency is

74.7% (54.5%) of the average (99
𝑡ℎ

percentile) overall query latency.

For large request, the average (99
𝑡ℎ

percentile) query latency is the

1730𝜇𝑠 (14069𝜇𝑠). Data insertion latency is 93.5% (97.5%) of the aver-

age (99
𝑡ℎ

percentile) overall query latency. The impact of memory

allocation is significant, and even more in large requests. As for

data update requests, it renders similar results compared with read

quests since they do not incur memory allocation.

We use another case study to demonstrate the memory allocation

latency degradation under anonymous page pressure and file cache

pressure. We use a micro benchmark that continuously sends 1KB-

size memory requests until a total amount of 1 GB, using the default

Glibc in a node with 128 GB RAM. We repeat the experiment under

a dedicated system with sufficient memory, under anonymous page

pressure, and under file cache pressure, respectively. The details

of the micro benchmark and the node are described in Section 5.1.

Figure 3 shows the CDF of the memory allocation latency under

the dedicated system and two kinds of memory pressure.

Anonymous page pressure. To generate anonymous page pres-

sure, we run a program that continuously sends memory allocation

requests until the available memory in the node becomes about 300

MB. Note that, the available memory could not further drop below

300 MB due to the indirect and direct reclaim mechanisms of Linux
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Figure 4: The architecture of Hermes.

OS. At this point, new memory allocation requests from the micro

benchmark trigger thememory reclaim routine and cause swapping.

Figure 3 shows that the memory allocation latency significantly in-

creases under anonymous page pressure. The average and the 99
𝑡ℎ

percentile allocation latency under anonymous page pressure are

prolonged by 35.6% and 46.6% compared to those without memory

pressure, respectively.

File cache pressure.We generate file cache pressure by loading 10

GB files and sending memory allocation requests to occupy the rest

of the system memory until free memory drops to about 300 MB. In

this case, memory reclaim routine starts but not necessarily trigger

swapping since the file cache can be directly released without ac-

cessing the disk. Figure 3 shows that the memory allocation latency

under file cache pressure is lower than that under anonymous page

pressure, but it is still higher than that under a dedicated system.

The average and the 99
𝑡ℎ

percentile allocation latency under file

cache pressure are prolonged by 10.8% and 7.6% compared to those

without memory pressure, respectively.

Memory pressure significantly prolongs memory allocation la-

tency, which has non-trivial impact on SLO violation. We target

both kinds of memory pressure and aim to reduce the memory

allocation latency of latency-critical services in a co-located system

as well as in a dedicated system.

2.3 Memory Reclaim in Linux OS
Linux OS emulates an LRU-like (Least Recent Used) algorithm for

physical memory page reclaim by keeping four lists: active_anon
and inactive_anon for anonymous pages, and active_file and
inactive_file for file cache pages. The two active lists contain re-

cently used pages while the two inactive lists contain pages that are

not recently used. Under memory pressure, Linux OS scans through

these four lists, updates page usage status, moves pages between

lists, and selects pages to reclaim. Specifically, Linux OS keeps three

memory watermarks (i.e. high, low and minimum) to instruct mem-

ory reclaim routine. When available memory drops below the low

watermark, a page reclaim thread is started until available memory

is larger than the high watermark. When available memory further

drops below the minimum watermark, each memory request goes

through a synchronous direct memory reclaim routine before the

physical memory is allocated.

However, the page reclaim algorithm in Linux OS is inefficient

for latency-critical services in a multi-tenant system. The water-

marks are conservatively set at around 1‰ of a memory zone. For

example, the total capacity of a memory zone in one of our physical

nodes is 60 GB. The low and high watermarks are 53 MB and 64
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mmap management 
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Figure 5: The workflow of the modified Glibc routines.

MB, respectively. Since both latency-critical services and batch jobs

tend to consume hundreds of megabytes or gigabytes of memory,

the watermarks are too small to timely trigger the indirect memory

reclaim thread. The direct memory reclaim routine even causes

more delays on memory requests. After a process finishes, all of

its anonymous pages are reclaimed immediately. However, the file

cache pages loaded by the process are not reclaimed by Linux OS but

remain in memory. They are only reclaimed upon memory pressure

by the reclaim routine, which prolongs new memory requests. The

memory pressure cannot be relived even if we increase the water-

marks. Although, Linux OS triggers memory reclaim routine when

there is still much free memory with higher watermarks, it does

not distinguish latency-critical services and batch jobs. Memory

from both kinds of workloads can be reclaimed. The performance

of latency-critical services is still degraded.

[Summary] There are two drawbacks of the current GNU / Linux

system stack that make the memory allocation of latency-critical

services inefficient in a multi-tenant system. 1) Glibc only keeps

a small chunk of physically mapped memory in the main heap,

which is much less than the total size of memory requests from

latency-critical services. 2) The on-demand virtual-physical mem-

ory mapping construction causes significant delay under memory

pressure due to the conservative memory page reclaim mechanism

in Linux OS.

3 HERMES DESIGN
3.1 Overview
In this paper, we propose and develop Hermes, a library-level mech-

anism to memory management that addresses the identified prob-

lems in the GNU/Linux system stack and reduces memory alloca-

tion latency of latency-critical services in a multi-tenant system.

Hermes is transparent to applications and it does not make mod-

ification to Linux OS. As shown in Figure 4, Hermes consists of

two major components: a memory management thread woken per

𝑓 milliseconds in Glibc and a memory monitor daemon indepen-

dently running on the same physical node. A system administrator

sends the process IDs of batch jobs and latency-critical services

to the memory monitor daemon. Upon memory pressure, the file

cache adviser advises Linux OS to free the file cache owned by

batch jobs. In Glibc, if a process is a latency-critical service, the

memory management thread is started for memory reservation and

virtual-physical address mapping.
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3.2 Memory Management Thread
The goal of the memory management thread is to reserve memory

and construct its virtual-physical address mapping in advance for

latency-critical services. Figure 5 outlines the workflow of the man-

agement thread and the modified Glibc. The management thread

periodically checks the current amount of reserved memory and de-

cides whether to reserve more memory or release reserved memory

back to Linux OS. When a process thread calls malloc, Hermes first

tries to return the reserved memory to the process. If the reserved

memory is insufficient, it uses the default routine to serve the re-

quest. Though sharing the same principle, the management thread

uses different approaches to manage the main heap memory and

mmapped memory chunks since they are allocated by two different

system calls.

3.2.1 Heap Memory Management. Small-sized memory requests

are allocated from the main heap, as shown in the no branch of the

large_size statement in Figure 5. If there is sufficient memory in

the main heap, Hermes immediately allocates it to the requests. Oth-

erwise, if the management thread is running, the requests wait on it.

If memory in the main heap is insufficient, the requests are allocated

by the default allocation routine in Glibc. We show the heap man-

agement routine in Algorithm 1. In every round of the execution,

the routine first updates the memory allocation metrics including

the total size of all small memory requests (i.e. requests <128 KB)

and the number of requests in the last interval. It then updates all

the thresholds based on the collected memory allocation metrics

(function UpdateThreshold). For example, the target amount of

reserving memory is the total amount of memory requests in the

last interval multiplying a reservation factor 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅. If the

top chunk is smaller than the reservation threshold 𝑅𝑆𝑉 _𝑇𝐻𝑅, it

expands the current program break and immediately constructs the

virtual-physical mapping for the newly allocated memory. Other-

wise, if the free space in the top chunk exceeds the trim threshold

𝑇𝑅𝐼𝑀_𝑇𝐻𝑅, it shrinks the top chunk by setting the program break

to a lower memory address.

Algorithm 1 Heap management routine.

1: 𝑅𝑆𝑉 _𝑇𝐻𝑅: a threshold below which more memory should be reserved;

2: 𝑇𝐺𝑇 _𝑀𝐸𝑀 : the target free size in the top chunk at which thememory reservation

stops;

3: 𝑇𝑅𝐼𝑀_𝑇𝐻𝑅: a threshold above which memory is released;

4: 𝑀𝐸𝑀_𝐶𝐻𝑈𝑁𝐾 : memory reserved on each sbrk() call;
5: 𝑡𝑜𝑝_𝑓 𝑟𝑒𝑒 : current free memory in the top chunk;

6: UpdateThreshold( );

7: if 𝑡𝑜𝑝_𝑓 𝑟𝑒𝑒 < 𝑅𝑆𝑉 _𝑇𝐻𝑅 then
8: 𝑚𝑒𝑚_𝑡𝑜_𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ← (𝑇𝐺𝑇 _𝑀𝐸𝑀 − 𝑡𝑜𝑝_𝑓 𝑟𝑒𝑒) ;
9: 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ← 0;

10: while 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 <𝑚𝑒𝑚_𝑡𝑜_𝑟𝑒𝑠𝑒𝑟𝑣𝑒 do
11: Lock(heap);

12: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← sbrk(𝑀𝐸𝑀_𝐶𝐻𝑈𝑁𝐾);
13: ConstructMapping(𝑎𝑑𝑑𝑟𝑒𝑠𝑠);

14: 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ← (𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 +𝑀𝐸𝑀_𝐶𝐻𝑈𝑁𝐾) ;
15: Unlock(heap);

16: end while
17: else if 𝑡𝑜𝑝_𝑓 𝑟𝑒𝑒 > 𝑇𝑅𝐼𝑀_𝑇𝐻𝑅 then
18: 𝑒𝑥𝑡𝑟𝑎 ← (𝑡𝑜𝑝_𝑓 𝑟𝑒𝑒 −𝑇𝑅𝐼𝑀_𝑇𝐻𝑅) ;
19: Lock(heap);

20: sbrk(−𝑒𝑥𝑡𝑟𝑎);
21: Unlock(heap);

22: end if
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(a) Reserving a large chunk of memory at once.
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(b) Reserving small chunks of memory for multiple times.

Figure 6: Illustration of gradual reservation.

A naive approach. The challenge of expanding the main heap

lies in how to determine the amount of memory to be reserved.

Intuitively, simply reserving a large amount of memory at once

would boost process performance since the memory is immediately

available for processes. However, our experiments find that this

approach even degrades the performance of latency-critical services

in terms of tail latency. The latency of the default on-demand virtual-

physical mapping construction is near proportional to the size of

the constructed memory. Since there is only one program break

for each process, the manipulation on the program break must be

synchronized.

A burst of memory requests in the process thread may be blocked

for a long time due to the mapping construction for a large chunk

of memory in the management thread. Figure 6 (a) illustrates this

scenario. There are initially 10 bytes in the top chunk. At 𝑡1 and

𝑡2, the user process sends two memory requests 𝑟𝑒𝑞1 and 𝑟𝑒𝑞2 of 4

bytes, respectively. The requests return immediately. Then, there

are only 2 bytes left in the top chunk. The management thread is

now invoked to expand the top chunk by 20 bytes and construct the

virtual-physical mapping. At 𝑡3, there is another request 𝑟𝑒𝑞3 of 4

bytes from the user process. Since the running management thread

locks the program break, 𝑟𝑒𝑞3 is blocked. It can only be served at

𝑡5 after the top chunk is expanded at 𝑡4, which incurs significant

delay on the request. Although a large number of memory requests

do not compete with the main heap expansion, it is the competing

ones that lead to prolonged tail latency.

Gradual reservation. We propose gradual reservation that ex-

pands the program break by a small size at a time for multiple times

(lines 10∼ 16 in Algorithm 1). For example, instead of expanding the

program break for 20 bytes at once, gradual reservation expands the

program break for 5 times, each time for 4 bytes, as shown in Fig-

ure 6(b). Before 𝑟𝑒𝑞3 arrives, a reservation of a small memory chunk

has already been sent to Linux OS at 𝑡2 by the management thread.
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After the reservation returns, 𝑟𝑒𝑞3 can be immediately served. Fi-

nally, the management thread sends four more small reservation

operations until the reserved memory reaches 18 bytes. Based on

our observation and other studies [11, 26], continuous memory

requests from latency-critical services are usually of a similar or

constant size. Hermes uses the average memory request size during

the previous interval as the size of each memory chunk in gradual

reservation. Compared with the default on-demand virtual-physical

mapping construction, Hermes serves memory requests faster even

if the program break is locked by the management thread, because

the virtual-physical mapping construction already starts in advance

and returns shortly.

3.2.2 Mmapped Memory Management. Large memory requests

are allocated from mmapped memory chunks, as shown in the

yes branch of the large_size statement in Figure 5. Management

for mmapped memory is asynchronous since a process can have

multiple chunks of mmapped memory space. In other words, the

process thread and the management thread can simultaneously

allocate two different chunks of mmapped memory space. Thus,

incoming requests do not wait on the management thread but

uses the default memory allocation routine when the reserved

memory is insufficient. Algorithm 2 shows the management routine

for mmapped memory. Since the addresses of mmapped memory

space are not necessarily adjacent, each chunk of space needs to be

managed separately. We use a segregated free list as the memory

pool to keep track of the addresses of mmapped memory space (line

14). The function calculates the target bucket based on the size of a

mmapped memory chunk using formula 1.

Glibc parameter𝑚𝑖𝑛_𝑚𝑚𝑎𝑝_𝑠𝑖𝑧𝑒 is the minimum memory re-

quest size that can use mmap system call, which is 128 KB by default.

We use parameter 𝑡𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒 to represent the maximum number of

buckets in the segregated free list. In implementation, we empiri-

cally set 𝑡𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒 to 8 (1 MB / 128 KB) since the size of a single

memory request is usually less than 1 MB.

𝑏𝑢𝑐𝑘𝑒𝑡 (𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒) = 𝑀𝐼𝑁 (
⌊ 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒

𝑚𝑖𝑛_𝑚𝑚𝑎𝑝_𝑠𝑖𝑧𝑒

⌋
, 𝑡𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒) (1)

Upon a request for a large chunk of memory (i.e., requests ≥ 128

KB) from the process, the modified allocation routine first tries to

find the best-fit bucket in the list by calculating the bucket based on

the requested size. The hash code of the best-fit bucket is calculated

by equation𝑀𝐼𝑁 (𝑏𝑢𝑐𝑘𝑒𝑡 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑠𝑖𝑧𝑒) + 1, 𝑡𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒). If there is
no such a chunk, the allocation routine uses the largest chunk in

the memory pool and expands the chunk to the requested size. If

this step still fails due to an empty memory pool, it falls back to the

default allocation using mmap system call. By this design, the user

process gets requested memory immediately as long as they are

available while asynchronous shrinking avoids memory wastage. If

memory requests are served by expanding an existing small chunk,

the delay is still shorter than that of the default allocation routine.

The reason is that small chunks already have their virtual-physical

mapping constructed. Additional mapping constructions only need

to be done for the memory space that exceeds the size of the original

memory chunks.

Algorithm 2 Mmap management routine.

1: 𝑅𝑆𝑉 _𝑇𝐻𝑅: a threshold below which more memory is reserved;

2: 𝑇𝐺𝑇 _𝑀𝐸𝑀 the target free size of mmapped space at which reservation stops;

3: 𝑇𝑅𝐼𝑀_𝑇𝐻𝑅: a threshold above which memory is released;

4: 𝑀𝐸𝑀_𝐶𝐻𝑈𝑁𝐾 : memory reserved on each mmap() call;
5: 𝑚𝑒𝑚𝑜𝑟𝑦_𝑝𝑜𝑜𝑙 a segregated free list that keeps track of the allocated mmapped

space;

6: 𝑎𝑙𝑙𝑜𝑐_𝑠𝑒𝑡 : a set of allocated mmapped chunks by the process thread;

7: DelayRelease(𝑎𝑙𝑙𝑜𝑐_𝑠𝑒𝑡 );

8: UpdateThreshold( );

9: if𝑚𝑒𝑚𝑜𝑟𝑦_𝑝𝑜𝑜𝑙 .𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 < 𝑅𝑆𝑉 _𝑇𝐻𝑅 then
10: 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ← 0;

11: while 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 < 𝑇𝐺𝑇 _𝑀𝐸𝑀 do
12: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ← mmap(𝑀𝐸𝑀_𝐶𝐻𝑈𝑁𝐾);
13: ConstructMapping(𝑎𝑑𝑑𝑟𝑒𝑠𝑠);

14: 𝑚𝑒𝑚𝑜𝑟𝑦_𝑝𝑜𝑜𝑙 .𝑎𝑑𝑑 (𝑎𝑑𝑑𝑟𝑒𝑠𝑠) ;
15: 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ← (𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 +𝑀𝐸𝑀_𝐶𝐻𝑈𝑁𝐾) ;
16: end while
17: end if
18: while𝑚𝑒𝑚𝑜𝑟𝑦_𝑝𝑜𝑜𝑙 .𝑡𝑜𝑡𝑎𝑙_𝑠𝑖𝑧𝑒 > 𝑇𝑅𝐼𝑀_𝑇𝐻𝑅 do
19: 𝑡𝑜_𝑟𝑒𝑙𝑒𝑎𝑠𝑒 ←𝑚𝑒𝑚𝑜𝑟𝑦_𝑝𝑜𝑜𝑙 .𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡_𝑠𝑝𝑎𝑐𝑒 ;

20: munmap(𝑡𝑜_𝑟𝑒𝑙𝑒𝑎𝑠𝑒);
21: end while

3.3 Memory Monitor Daemon
The memory monitor daemon is running on a physical node that

adopts job co-location. The daemon keeps the process IDs of latency-

critical services in shared memory. The memory management

thread adopts a lazy initialization mechanism. When a process

detects its process ID is in the shared memory, it initializes the

memory management thread. Otherwise, the process behaves as it

uses the default Glibc.

Proactive reclamation. The memory monitor daemon is respon-

sible for proactively advising Linux OS to release file cache pages

upon memory pressure. The daemon keeps track of all batch jobs

and their loaded data files. When the systemmemory usage exceeds

threshold adv_thr, the monitor daemon advises Linux OS to release

file cache pages in a largest-file-first order until the percentage of

file cache drops below the threshold or no file cache is from the

specified batch jobs. The largest-file-first paging order makes a large

chunk of memory available at once for latency-critical services. It

also reduces the number of calls to the advising routine.

Proactive reclamation is an effective approach to accelerating

memory allocation. Although Hermes reserves physical memory in

advance, the reservation can still be delayed if it triggers the direct

reclaim routine due to insufficient memory. Proactive reclamation

reduces the chance by which the direct reclaim routine is triggered.

Note that solely relying on proactive reclamation is insufficient

since it only tries to make free space for new memory requests but

it does not contribute to virtual-physical mapping construction.

4 IMPLEMENTATION
We implement Hermes in Glibc-2.23 with about 1,200 lines of C

code. We empirically set the invocation interval (𝑓 ) of the memory

management thread to 2 ms. There could be transient changes in

terms of memory space of a process during the interval. In the next

wakeup, the monitoring thread is able to capture the change and

the memory management thread can manage the available memory

accordingly. Recall that we use a reservation factor 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅

to determine the amount of memory to be reserved. A larger value

results in more reserved memory and faster memory allocation.
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However, the reserved memory is wasted if it is never used by

latency-critical services. In the rest of the paper, we set this value

to 2 if not otherwise specified, which balances between memory

allocation speed and memory wastage. We also set the minimum

amount of memory 𝑚𝑖𝑛_𝑟𝑠𝑣 that should be reserved after each

execution of the management thread even if there is no newly

incomingmemory request. It allows that a burst of memory requests

after an idle period can be quickly served. The value depends on the

characteristics of latency-critical services. Empirically, we set this

value to 5MB.We use mlock system call to delegate virtual-physical

mapping construction to kernel space.

There are two choices to implement the virtual-physical mapping

construction function, 1) iterating through the allocated virtual

memory addresses and filling them with ‘0’, and 2) using the mlock
system call to delegate the construction to the kernel space. We

choose the second one for two reasons. First, our experiments find

that using mlock system call is at least 40% faster than the iteration

approach for both heap memory and mmapped memory. Second,

the mlock system call guarantees newly reserved physical memory

not to be swapped into disks, which further accelerates memory

allocation. After a chunk of reserved memory is allocated to a

process, the munlock system call will be called on that address

space to allow swapping on the chunk.

The memory monitor daemon takes about 500 lines of C code. It

is responsible for bookkeeping latency-critical services and batch

jobs, and advising Linux OS to release file cache pages. It com-

municates with the modified Glibc with a shared memory area.

Specifically, it uses the shared memory to store all the process

IDs of latency-critical services specified by a system administrator.

With the modified Glibc, a process examines whether its process

ID is in the shared memory. If so, the modified Glibc initializes

the memory management thread. When a process is no longer a

latency-critical service, the administrator can simply remove its

process ID. The monitor daemon keeps track of the data files loaded

by batch jobs by calling the lsof command. It uses the C library call

posix_fadvise() to release file cache pages, which is a wrapper

function of the underlying system call fadvise64(). Hermes then

adopts the default memory management in Glibc for this process.

Hermes is open sourced at https://github.com/EddiePi/Hermes.

5 EVALUATION
5.1 Evaluation Setup
We use both a micro benchmark and real-world latency-critical

services to evaluate the performance of Hermes, and compare it to

Glibc, jemalloc [21], and TCMalloc [6]. Glibc is the most popular

memory allocator in C/C++. Jemalloc is the default memory alloca-

tor for Redis [4]. TCMalloc is Google’s customized implementation

of malloc() function. All experiments are executed on a server

that has two 2.4 GHz 8-core Intel Xeon E5-2630 CPUs, 128 GB

DRAM, and 2 TB 7200 rpm HDD disks. The server is installed with

Ubuntu 16.04 with Linux kernel-4.4.0. For all experiments, we pin

latency-critical services and background processes onto different

cores to avoid CPU interference.

Micro benchmark.We implement a micro benchmark in C, which

continuously calls malloc function to request memory until the to-

tal amount of requested memory reaches a specified threshold. We

run the experiments in two settings referred as dedicated system

and memory pressure. For the dedicated system setting, we run the

micro benchmark alone on the nodes with sufficient memory. For

the memory pressure setting, we generate the memory pressure

for the micro benchmark by loading the node with either anony-

mous pages or file cache pages. We measure the memory allocation

latency due to the three approaches.

Real-world services. We evaluate Redis [4] and Rocksdb [5] as

real-world latency-critical services under different memory pres-

sure levels in Section 5.3. We measure three metrics in the experi-

ments: 1) query latency of latency-critical services, 2) SLO violation

of latency-critical services, and 3) throughput of batch job. The

memory pressure is computed as virtual memory of batch job
/ memory capacity of the server. To generate different levels

of memory pressure, we configure the maximum logically available

memory of batch jobs to 50%, 75%, 100%, 125% and 150% of the

memory capacity of the node. For example, on a node with 128

GB DRAM, 150% memory pressure level suggests batch jobs can

oversubscribe 192 GB (128 GB × 1.5) of DRAM. In addition, we

also conduct the experiment on a dedicated server, i.e., 0% memory

pressure level.

Parameter sensitivity.We conduct experiments to evaluate pa-

rameter sensitivity in Section 5.4. Specifically, we run the micro

benchmark and evaluate its latency under different values of reser-

vation factor 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅. We evaluate the overhead of Hermes

in Section 5.5.

5.2 Micro Benchmark
We evaluate the performance of Hermes under three scenarios: a

dedicated system with sufficient memory, anonymous page pres-

sure, and file cache pressure. Under file cache pressure, we also

show the performance of Hermes when it is disabled with proactive

reclamation, denoted as “Hermes w/o rec’, to demonstrate the per-

formance gain due to proactive reclamation. The anonymous page

pressure is made by a process that keeps allocating memory until

the system available memory drops below 300 MB. The file cache

pressure is made by a process that repeatedly reads 10 GB files and

occupies the rest of the system memory with anonymous pages. We

develop the micro benchmark by continuously sending fix-sized

memory requests until the total requested memory reaches 1 GB.

We use 1KB-size and 256KB-size memory requests to evaluate the

allocation latency of heap memory and mmapped memory.

Figure 7(a)-(c) and Figure 8(a)-(c) show the CDFs of memory

allocation latency of 1KB-size and 256KB-size requests under a

dedicated system, anonymous page pressure (“+anon” suffix), and

file cache pressure (“+file” suffix), respectively. For small memory

requests, Hermes achieves the lowest latency at every percentile

compared to Glibc and jemalloc in all three cases. TCMalloc presents

low latency on average. However, it has very high tail latency in

all three cases. As for large memory requests, jemalloc presents

longer but more stable latency under a dedicated system. However,

Hermes outperforms both Glibc, jemalloc and TCMalloc when the

system is under memory pressure. Jemalloc and TCMalloc present

very long tail latency under memory pressure.

Specifically, we show the latency reduction of Hermes at each

percentile for small requests and large requests compared to Glibc
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(c) File cache pressure.

Figure 7: The memory allocation latency for small (1KB-size) memory requests.
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(b) Anonymous pages pressure.

800 1200 1600 2000 2400 2800

Time (µs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hermes+file

Hermes w/o rec+file

Glibc+file

jemalloc+file

TCMalloc+file

(c) File cache pressure.

Figure 8: The memory allocation latency for large (256KB-size) memory requests.
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Figure 9: The latency reduction by Hermes.

in Figures 9, since Glibc outperforms jemalloc in most cases. For

1KB-size requests, Hermes reduces the average latency by 16.0%,

29.3%, 9.4%, and the 99
𝑡ℎ

percentile latency by 15.0%, 38.8%, 17.2%

in the three scenarios, respectively. For 256KB-size requests, Her-

mes reduces the average latency by 12.1%, 54.4%, 21.7%, and the

99
𝑡ℎ

percentile latency by 5.2%, 62.4%, 11.4%, respectively. Hermes

outperforms the default Glibc at each percentile in all scenarios.

The allocation latency is as low as 4𝜇𝑠 for small requests and 1𝑚𝑠

for large requests. For 1KB-size requests, brk is called 1,053,952

times. For 256KB-size request, mmap is called 4099 times.

By comparing the “dedicated” and “file” bars in Figure 9(a) to

those in Figure 9(b), the performance gain by Hermes under a ded-

icated system and under file cache pressure for large requests is

more significant than that for small requests. The reason is that

large requests take a long time to be allocated in the default Glibc.

Hermes allocates the requests and constructs the virtual-physical

mapping in advance. Thus, memory is immediately available for

incoming requests. By comparing the “anon” bar to the “dedicated”

and “file” bars in Figure 9(a) or Figure 9(b), we observe that Hermes

generally achieves more performance improvement under anony-

mous pressure for both small and large requests compared to those

under file cache pressure. The reason is that it is faster to reclaim file

cache pages in the default Linux kernel since unmodified file cache

pages are directly released without I/O operations. For anonymous

pages, however, each of them must be swapped into disks before

released, causing much longer delay due to I/O operations.

Proactive reclamation. Figures 7c and 8c show that “Hermes

w/o paging” achieves similar memory allocation latency at low

percentiles compared with the default Glibc, but it significantly re-

duces the latency at high percentiles. Full Hermes further improves

the average latency over “Hermes w/o paging”.

5.3 Two Real-world Latency-critical Services
5.3.1 Query latency and SLOs. We evaluate the query latency re-

duction on real-world latency-critical services by Hermes compared

to Glibc, jemalloc and TCMalloc under different memory pressure.

We use Redis-5.0.5 [4] and Rocksdb-6.4.0 [5] as two representative

real-world services. Redis is an in-memory key-value store for fast

data access. Rocksdb is a disk-based persistent key-value store for

fast storage environments. It uses memory as data cache. These ser-

vices are usually used for intermediate or temporary data storage.

Thus, they frequently allocate and release memory.

For both Redis and Rocksdb, we implement a program to con-

tinuously generate requests. One request consists of one insertion
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Table 1: The number of system calls invoked.

Redis 1KB Redis

200KB

Rocksdb

1KB

Rocksdb

200KB

brk 0 0 52,429 5

mmap 35 8 34 8,397
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Figure 10: The 90𝑡ℎ percentile query latency of Redis.
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Figure 11: The 90𝑡ℎ percentile query latency of Rocksdb.

operation followed by one read operation. We use 1KB-size and

200KB-size data records referenced as small and large memory re-

quests, respectively. For each data insertion execution, we insert

the data until it reaches 2 GB. Table 1 summarizes the number of

the two system calls invoked during the insertion exectuion. To

inject memory pressure, we run Spark Kmeans and Spark PageRank

as batch jobs on the host node. The jobs are from HiBench-6.0 [27]

using its default huge data size. We run Spark-2.3.0 on Hadoop-

2.7.3 [41].

Since there is not a magic value to define the SLO of each service,

we adopt the 90
𝑡ℎ

percentile latency by the default Glibc under a

dedicated system (w/o memory pressure) as the SLO, which is a

rather strict value. The rational is that latency-critical services like

web search commonly distribute requests across many servers. The

end-to-end response time is determined by the slowest individual

latency [9, 20, 22, 48]. Thus, the 90
𝑡ℎ

percentile latency is a critical

metric in measuring the SLO of latency-critical services.

Latency reduction. Figures 10 and 11 show the 90
𝑡ℎ

percentile

query latency under different memory pressure levels for Redis

and Rocksdb, respectively. Under memory pressure level 0%, 50%

and 75%, memory is not a scarce resource. Under memory pressure

level 100%, 125% and 150%, memory become a scarce resource. The

horizontal dash line represents the target SLO in each situation. In

Redis, the SLOs are 330𝜇𝑠 and 4, 326𝜇𝑠 for small and large requests,

respectively. In Rocksdb, the SLOs are 17𝜇𝑠 and 573𝜇𝑠 for small and

large requests, respectively.
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Figure 12: Redis latency under a dedicated system.
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Figure 13: Rocksdb latency under a dedicated system.
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Figure 14: Redis latency under 100% memory pressure.

The results show that Hermes outperforms Glibc, jemalloc and

TCMalloc in reducing the 90
𝑡ℎ

percentile query latency in all sce-

narios for both Redis and Rocksdb. Specifically, with a dedicated

system (0% memory pressure) or a low memory pressure level (50%

and 75%), Hermes achieves similar or slightly lower 90
𝑡ℎ

percentile

latency compared to Glibc, jemalloc and TCMalloc. With a moder-

ate memory pressure level (100% and 125%), Hermes can meet the

SLO targets for small requests while Glibc, jemalloc and TCMalloc

incur significant SLO violation. With a severe memory pressure

level (> 125%), all three approaches incur non-trivial SLO violation

but Hermes significantly outperforms the others. We observe that

large requests in Rocksdb under high memory pressure experience

tens of milliseconds of latency. Note that Rocksdb is a disk-based

KV store with memory cache. Under severe memory pressure, data

are written into disks more frequently, causing high latency.

Under a dedicated system and job co-location.We evaluate the

performance of real-world services Redis and Rocksdb by Hermes,

Glibc and jemalloc under a dedicated systemwith sufficientmemory.

Figures 12 and 13 plot the CDF of the query latency for the two real-

world services under the dedicated system, respectively. Compared

to Glibc and jemalloc, Hermes renders similar or slightly better

average, 90
𝑡ℎ
, and 99

𝑡ℎ
percentile query latency.
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Figure 15: Rocksdb latency under 100% memory pressure.
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Figure 16: The SLO violation ratio of Redis requests.

Under job co-location, severe memory pressure is usually ad-

dressed by a system administrator while memory pressure around

the 100% level is more likely to happen due to the dynamic memory

consumption of latency-critical services and batch jobs. Thus, we

plot the CDF of the query latency under such a scenario for Redis

and Rocksdb in Figures 14 and 15, respectively. Hermes achieves the

lowest latency for both services. Compared to Glibc, it reduces the

average (99
𝑡ℎ

percentile) latency by up to 17.0% (40.6%) for Redis

and 20.6% (63.4%) for Rocksdb.

SLO violation. Figure 16 and Figure 17 show the ratios of SLO vio-

lation with Hermes, Glibc, jemalloc and TCMalloc under different

memory pressure levels for Redis and Rocksdb, respectively. For

Redis, Hermes achieves the SLO violation ratio lower than 10% un-

der a low memory pressure level (i.e., 50% and 75%). The results for

Rocksdb are similar. The reason is that Hermes builds the virtual-

physical mapping in advance such that incoming memory requests

can be immediately served. The most significant results are those

under 100% or higher memory pressure levels which usually hap-

pen in a multi-tenant system. Under such a memory pressure level,

compared to the default Glibc, jemalloc, and TCMalloc, Hermes

reduces the SLO violation of Redis by up to 83.6%, and reduces the

SLO violation of Rocksdb by up to 84.3%.

5.3.2 Batch job throughput. We examine the throughput of batch

jobs co-located with latency-critical services. We submit Spark

Kmeans jobs and keep three concurrent job instances in the node.

Each Kmeans job runs in eight Yarn containers and requests around

40GB memory. This generates the 100% memory pressure level.

We send data insertion, read, and deletion requests to the latency-

critical services such that stored data size varies from 20GB to 40GB.

The co-location experiment runs for 24 hours in each of the three

scenarios: Default, Hermes, and Killing.

• Default. We co-locate batch jobs and latency-critical ser-

vices with the default GNU/Linux stack.
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Figure 17: The SLO violation ratio of Rocksdb requests.

Table 2: The throughput of batch jobs.

Default Hermes Killing Dedicated
Redis 212 194 123 N/A

Rocksdb 380 364 267 N/A

• Hermes. We co-locate batch jobs and latency-critical ser-

vices with Hermes.

• Killing. Upon Default, we kill the latest launched container

of a batch job when node memory is insufficient, which frees

up memory. Killing the container results in the least progress

loss of the batch job.

Table 2 gives the number of the finished batch jobs in the three

co-location scenarios as well as in a dedicated system where there

is no throughput of batch jobs. Both Default and Hermes achieve

much higher throughput than that of Killing. Hermes achieves

slightly lower throughput to that of Default. In return, it signif-

icantly reduces the query latency and SLO violation of latency-

critical services, the principle requirement of job co-location. We

notice that the throughput of co-location with Rocksdb is higher

than that of Redis. The reason is that Redis is a memory-based KV

store that keeps all data in DRAM. Rocksdb is a disk-based KV store

that has much lower memory consumption than Redis. Thus, more

memory can be allocated to batch jobs. Experimental results find

that job co-location due to Hermes renders about 98.5% average

node memory utilization.

5.4 Parameter Sensitivity
We evaluate the impact of parameter sensitivity. Specifically, we

change the value of reservation factor 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 raging from

0.5 to 3, and evaluate the memory allocation latency under each

value for both small and large memory requests using the micro

benchmark. We run the micro benchmark under a dedicated system

and under anonymous page pressure, respectively. We use the same

settings as those in Section 5.2 to generate the memory pressure.

Figures 18 and 19 show the percentage of latency reduction at

specific percentiles for small and large requests, respectively.

Under a dedicated system, a small value of 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 signif-

icantly increases the 99
𝑡ℎ

percentile tail latency for small requests,

as shown in Figure 18(a). The reason is that the reserved memory

under such a 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 value is too small. When a burst of

memory requests are sent by the processes, the reserved mem-

ory quickly runs out. In this case, the incoming memory requests

are blocked by the memory reservation routine. As the value of
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Figure 18: Latency reduction for small requests.
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Figure 19: Latency reduction for large requests.

𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 is increased, the 99
𝑡ℎ

percentile tail latency becomes

better than that by the default Glibc. For large memory requests, the

incomingmemory requests are not blocked but served by the default

allocation routine in Glibc since there can be multiple mmapped

memory chunks for a process. Thus, Hermes achieves more alloca-

tion latency reduction for large requests under a dedicated system

as shown in Figure 19(a).

Under anonymous page pressure, Hermes achieves much more

significant latency reduction compared with that under a dedicated

system. Specifically, it reduces the average and the 99
𝑡ℎ

percentile

latency by up to 69.1% and 41.6% for small requests, respectively.

It reduces the average and the 99
𝑡ℎ

percentile latency by up to

63.8% and 64.2% for large requests, respectively. Overall, setting

𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 to a value larger than 2 does not achieve more per-

formance gain. The reserved memory exceeds the total amount

of memory requests and causes more memory wastage. Thus, we

empirically set the value of 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 to 2 since it achieves

good reduction in the memory allocation latency while resulting

in the least memory wastage.

5.5 Hermes Overhead
Hermes introduces about 0.4% CPU usage overhead to the appli-

cation due to the management thread in the modified Glibc. The

downsides using Hermes is that there is some memory which is

reserved but not actually used by the application. We profile such

memory in the micro benchmark for both small (1KB-size) and large

(256KB-size) memory requests. The reserved memory at runtime is

about 6 MB∼6.4 MB, which is negligible compared to the memory

capacity of a physical node. In addition, the memory monitor dae-

mon requires about 2 MB memory including the memory occupied

by the daemon process and the shared memory space. It introduces

about 2.4% CPU usage as it keeps monitoring the latency-critical

services and available memory in the OS.

6 DISCUSSIONS
Reservation factor. Users need to set an appropriate value for the

reservation factor 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 in Hermes. We find that a value

of 2 achieves good performance gain for both the micro benchmark

and two real-world services while introducing the least memory

wastage. However, the value setting depends on various factors such

as the characteristics of latency-critical services and the underlying

multi-tenant system. If a latency-critical service does not require

much memory at runtime, 𝑅𝑆𝑉 _𝐹𝐴𝐶𝑇𝑂𝑅 can be set to a small

value. Otherwise, it should be set to a relatively large value.

Reservation heuristic. Hermes relies on two simple but effective

heuristics, heap management routine and mmap management rou-

tine, to reserve memory for latency-critical services. Since Hermes

is developed at the library level, the reservation heuristics incur

low overhead. Users can also implement their own heuristics.

Query latency. Hermes aims for fast memory allocation. Once the

reserved pages are obtained by a process, Hermes calls munlock
system call on the pages. The pages can be swapped into disks when

the available system memory is low. Queries to the latency-critical

services will be delayed if the physical pages reside in the swap

area. A simple solution is to return the pages to a process without

calling munlock. In this case, the pages occupied by latency-critical

services are never swapped, resulting in low latency for queries.

The simple solution meets the design goal that batch jobs should

not affect the performance of latency-critical services. However, it

may incur out-of-memory errors if the locked memory is not well

managed under extreme memory pressure. Thus, no page is eligible

for reclaim but killing processes is the only choice.

Default Linux mechanisms. Linux provides mechanisms by

which applications can instruct the system to construct the virtual-

to-physical memory mapping. For example, the MAP_POPULATE flag
in the mmap() system call and the mlock() system call. However,

using these mechanisms in applications has two drawbacks. First,

using these mechanisms requires modification to application source

code. By doing so, applications bypass the memory management

routine in the library and need to manage the memory by them-

selves, which puts much more burden on software developers. Sec-

ond, when an application tries to allocate memory under memory

pressure, using these mechanisms does not help accelerate mem-

ory allocation since Linux OS still needs to reclaim/swap physical

memory before the new allocation request.

Cgroups and VMs. Linux provides the cgroup mechanism to

control resource utilization of processes. Its memory subsystem

can be used to dynamically set memory limits for batch jobs. How-

ever, there are two limitations by using the cgroup mechanism.

First, after the memory of batch jobs is reclaimed by setting a

smaller limit in cgroup, the reclaimed memory can be allocated to

multiple latency-critical services. This may lead to memory compe-

tition and degrades latency. Second, the cgroup mechanism cannot

proactively construct the virtual-to-physical mapping. The idea of

Hermes could be applied to cgroup such that it allows prioritization

of memory allocation between cgroups. However, it requires OS-

level modification. In this paper, latency-critical services and batch

jobs run in the same OS. Hermes is still effective if latency-critical

services and batch jobs run in separate VMs on the same host server

since it reserves physical memory for latency-critical services.
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Fragmentation. The current Glibc does not round up the size of

heap memory chunks to power of two. Thus, freed memory chunks

of any size can be coalesced to neighboring chunks, which does not

incur high memory waste through fragmentation. Hermes inherits

the heap management algorithm from Glibc for small memory

requests allocated from heap. Thus, the impact of fragmentation

on heap memory is the same as that in Glibc. Hermes uses its own

segregated free list to manage large memory chunks allocated by

mmap system call. Since most memory requests from latency-critical

services are of the same size, freed large memory chunks may

exactly fit incoming requests, incurring no fragmentation. In the

worst case where significant memory waste through fragmentation

occurs, memory compaction can be done through mremap system
call. This is a rare case since modern CPUs support hundreds of

gigabytes of memory address space.

Applicability. Currently, Hermes supports C/C++ programs. Many

popular key-value stores [2–5] are implemented in C/C++. A po-

tential limitation of using Hermes is that it might clash with other

C/C++ libraries. In the future, we plan to do more compatibility

experiments for Hermes. The principle and design of Hermes can

be applied to other language runtimes. For example, for programs

running on Java Virtual Machines (JVMs), JVMs could reserve a

chunk of memory and construct the virtual-physical mapping in

advance for fast memory allocation.

7 RELATED WORK
Latency reduction. There are extensive efforts on reducing query

latency for latency-critical services [9, 14, 15, 19, 23, 25, 26, 29, 32,

34, 35, 48]. Tail-control [34] develops a work-stealing scheduler for

optimizing the number of requests that meet a target latency. Mit-

tOS [26] tackles the tail latency for distributed file systems where

the bottleneck is disk I/O. SDChecker [15] is a tool that characterizes

scheduling delay for low-latency data analytics workloads. Fast-

Track [25] targets mobile devices and improves the response time

for foreground apps. PerfIso [29] is an approach that reserves CPU

slacks to achieve efficient CPU sharing between latency-critical

services and batch jobs. RobinHood [9] dynamically reallocates

the cache between cache-rich and cache-poor applications. Cur-

tailHDFS [35] manages the tail latency in distributed file systems.

Hermes aims to reduce the latency in the memory allocation phase

for latency-critical services in multi-tenant systems and achieve

significantly lower tail query latency and higher throughput.

Cluster resource sharing. Modern cluster schedulers [12, 18, 31]

launch best-effort jobs with transient resources in a cluster. For

example, Apollo [12] is a scalable scheduling framework for cloud

computing. Mercury [31] launches jobs with transient resources

and kills the jobs when the available resources drop below a thresh-

old. Pado [45] is a data processing engine that aims to harness

transient resources. Mos [8] analyzes cloud object stores and pro-

poses independent microstores for the needs of particular types of

workloads. Big-C [18] is a preemption-based cluster scheduler that

achieves low scheduling latency for heterogeneous workloads. Cal-

adan [22] exclusively relies on CPU scheduling to mitigate resource

interference and achieve better QoS in a co-located environment.

Hermes targets efficient co-location and specifically efficient mem-

ory sharing in physical nodes.

Memory management. Study [36] designs a buffer pool for rela-

tional databases in a multi-tenant environment. There are studies

on efficient memory management for applications running in JVMs

by leveraging the runtime characteristics of applications [13, 17,

24, 37, 38, 46]. Broom [24] proposes to use region based memory

management for data analytics applications. Facade [38] statically

bounds the number of objects allocated to threads for efficient mem-

ory management in JVMs. Yak [37] creates a new region in the JVM

heap to store long-lived data. ROLP [13] is an object lifetime profiler

for efficient garbage collection. Pufferfish [17] is an elastic mem-

ory manager that leverages containers to flexibly allocate memory

for data-intensive applications. Charon [16] is a cluster scheduler

for oversubscription of opportunistic memory in an on-demand

manner that leverages an OS-augmented and user-assisted Out-

OfMemory killer. Hermes focuses on fast memory allocation for

latency-critical services that use C libraries.

Memory allocation libraries. GNU C Library provides ptmal-

loc [1] as the memory allocator for C/C++ programs. There are

other memory allocators [6, 10, 21, 28, 39] that focus on different

design objectives. Jemalloc [21] emphasizes fragmentation avoid-

ance. It is the default memory allocator for FreeBSD [7]. Hoard [10]

is a scalable memory allocator that largely avoids false sharing and

better worst case fragmentation. TCMalloc [6] supports efficient

memory allocation for multi-thread processes. McRT-Malloc [28]

and SFMalloc [39] focus on non-blocking scalable memory allo-

cation. Especially, McRT-Malloc is specialized for transactional

memory while SFMalloc is a general purpose memory allocation.

Both memory allocators support concurrent memory manipulation

by multiple threads. The major difference between the existing

memory allocators and Hermes is that, only Hermes explicitly fo-

cuses on physical memory management while the other memory

allocators focus on virtual memory management. In addition, Her-

mes is aware of and mitigates the cost in building virtual-physical

mapping. Although Hermes is implemented in Glibc, its principle

and the idea of proactively building virtual-physical mapping can

be integrated to those memory allocators.

8 CONCLUSION
We present Hermes, a library-level mechanism that enables fast

memory allocation for latency-critical services in multi-tenant

servers. Hermes constructs the virtual-physical address mapping

in advance and quickly serves incoming memory requests from

latency-critical services. It proactively advises Linux OS to release

file cache occupied by batch jobs so as to make available memory

without going through the slow memory reclaim routine. Hermes

is implemented in GNU C Library. Experimental results show that

Hermes significantly reduces the average and the tail latency of

queries for latency-critical services especially under memory pres-

sure, and improves system throughput and memory utilization.

In the future, we plan to extend the principle and design of

Hermes to language runtimes Java and Scala.
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