
1

Elastic Parameter Server: Accelerating ML
Training with Scalable Resource Scheduling

Shaoqi Wang, Student Member, IEEE, Aidi Pi, Student Member, IEEE,
Xiaobo Zhou, Senior Member, IEEE,

Abstract—Parameter server (PS) based on worker-server communication is designed for distributed machine learning (ML) training in
clusters. In feedback-driven exploration of ML model training, users exploit early feedback from each job to decide whether to kill the
job or keep it running so as to find the optimal model configuration. However, PS does not support adjusting the number of workers and
servers of a job at runtime. It becomes the bottleneck of scalable distributed ML training because the cluster resources cannot be
dynamically allocated or deallocated to jobs, resulting in significant early feedback latency and resource under-utilization. This paper
rethinks the principle of PS architecture. We present Elastic Parameter Server (EPS), a lightweight and user-transparent PS that
accelerates feedback-driven exploration for distributed ML training. EPS allows to remove a subset of workers and servers from
running jobs and allocate the released resources to an incoming job at runtime so as to reduce its early feedback latency. It can also
use the released resources from a killed job to add workers and servers to running jobs to improve resource utilization and the training
speed. We develop a heuristic scheduler that leverages EPS and offers scalable resource scheduling for multiple ML jobs. We
implement EPS in Tencent Angel and the scheduler in Apache Yarn, and conduct evaluations with various ML models. Experimental
results show that EPS achieves up to 1.5x improvement on the ML training speed compared to PS.

Index Terms—Parameter Server, Feedback-driven Exploration, ML Model Training, Resource Scheduling, Elasticity.

F

1 INTRODUCTION

D ISTRIBUTED ML frameworks such as Tencent An-
gel [1], [2], TensorFlow [3], Petuum Bosen [4], [5],

and MXNet [6] have emerged to support distributed ML
training in clusters. In these frameworks, parameter server
(PS) [7], which is a common architecture that coordinates the
distributed storage and access of ML model parameters, has
been regarded as the key component for distributed training
of ML jobs with a large dataset and a high dimensional
model. In PS, there are two types of resource units, workers
and servers. The servers serve as a distributed storage of
model parameters, and the workers update the model in
parallel with their partitions of the training data. The ML
frameworks employ cluster schedulers, such as Mesos [8]
and Apache Yarn [9], to allocate a fixed amount of resources
(i.e., a number of workers and servers) to a training job
upon its submission according to the resource requirements
specified by the user.

ML model training is a feedback-driven exploration pro-
cess [10], [11], [12], [13] where a user trains a ML model
repeatedly to tune its hyperparameters and adjust the model
structure. In specific, the user submits multiple training jobs
with different model configurations in a certain distribution.
The job execution is divided into two phases: early feedback
phase (e.g., the first 100 iterations) and training phase (the rest
iterations). The user exploits early feedback of the model
accuracy from each job to decide whether to kill the job or
keep it running so as to find the optimal configuration of
the model. The larger number of jobs that can provide early

• S. Wang, A. Pi and X. Zhou are with the Department of Computer
Science, University of Colorado, Colorado Springs, CO 80918, USA.
E-mail: {swang, epi, xzhou}@uccs.edu.

This research was supported in part by U.S. NSF grant CCF-1816850.

feedback in time, the faster the feedback-driven exploration
could be. The user also sets a pre-defined threshold that
limits the number of running jobs in the training phase.

However, the PS architecture has a fundamental limi-
tation, that is, there is no sufficient support for adjusting
the number of workers and servers at runtime. It leads to
two major drawbacks in ML model training. First, when
all cluster resources are allocated to running jobs in the
training phase, they hold resources for hours or even days
until the completion since the number of allocated workers
and servers are unadjustable. Incoming jobs with potential
better model configurations will be queued and thus model
training suffers significant early feedback latency and pro-
longed training time. A straightforward approach is to kill
running jobs and allocate their resources to incoming jobs,
but it incurs high overhead. Second, when jobs with poor
early feedbacks are killed by the user and new jobs are not
submitted yet, the resources freed from the killed jobs can-
not be timely utilized to allocate new workers and servers to
the rest running jobs, leading to significant resource under-
utilization.

Intuitively, one may propose to reduce early feedback
latency through reserving a resource pool dedicated to run-
ning jobs in the early feedback phase. However, when the
user decides to keep a job running after its early feedback
phase, moving the job out of the resource pool incurs non-
trivial overhead since the job has to be killed first and
restarted using different resources. Also, it is difficult to
decide the size of the resource pool. A small resource pool
prolongs the early feedback phase, while a large one leads
to resource under-utilization when there is no incoming job.

Recent years, innovative approaches have been pro-
posed to improve the scalability of distributed ML training

2

through optimizing PS architecture [14], [15], [16], [17], [18],
[19] and cluster schedulers [13], [20], [21]. There are also
research focused on developing parameter server based
distributed machine learning recommendation systems [22],
[23], [24]. However, the fundamental limitation of PS archi-
tecture has not been addressed. Moreover, There are a few
recent efforts that aim to speedup feedback-driven explo-
ration, such as SLAQ [25], Hyperdrive [12], Gandiva [13],
and Pytorch [26]. These approaches do not support PS
architecture.

Interestingly, Tencent Angel introduces fault tolerance
support in PS [1]. In specific, when a server or worker is
crashed, a new server or worker will be allocated and ini-
tialized to resume job training. However, the fault tolerance
mechanism cannot be used to adjust the number of workers
and servers at runtime.

In this paper, we tackle the fundamental limitation of
the PS architecture. We design and develop Elastic Param-
eter Server (EPS), an augmented and lightweight PS that
allows adjusting the number of workers and servers for a
ML job at runtime and significantly accelerates feedback-
driven exploration and distributed ML model training. EPS
addresses several key design challenges. First, it supports
runtime update of the dependency between workers and
servers. Second, it enables server-to-server and worker-
to-worker communications to support dynamic data and
parameter transmissions between the removed or added
workers and servers and the existing workers and servers.
Finally, it supports parameters or input data repartitioning
in order to determine the amount of parameters or data to
be transferred among servers or workers.

To leverage EPS, we develop a heuristic scheduler that
adaptively specifies the number of workers and servers to
be added or removed. When no resource is available for an
incoming job, EPS removes a specified number of workers
and servers from the running jobs while maintaining their
execution, and allocate the released resources to the incom-
ing job to reduce its early feedback latency. This heuristic is
based on the insight that memory in each worker is over-
provisioned to avoid Out-Of-Memory errors [27]. Thus, the
input data on the removed workers can be transmitted to
and stored in the other workers, and so do the parameters
on the removed servers. When a job is killed by the user,
the freed resources are utilized by EPS to add workers
and servers to the running jobs so as to improve resource
utilization and accelerate ML model training.

The design of EPS consists of three core components:
dependency update, data and parameter transmission, and
global decision making. With the dependency update com-
ponent, a job can keep running without the removed work-
ers and servers because the component removes the de-
pendency between the removed workers and servers and
the remaining workers and servers. A job can also keep
running with the added workers and servers since the
component adds the dependency between the added work-
ers and servers and the existing workers and servers. The
transmission component enables server-to-server parame-
ter transmission and worker-to-worker data transmission.
The global decision making component makes data and
parameter transmission decisions by repartitioning input
data and parameters for runtime adjustment. For example,

the component partitions the input data on a removed
worker and specifies the workers to which the input data
is transmitted.

Upon the three core components, EPS provides four
functions with interfaces to the heuristic scheduler. The four
functions are adding workers, adding servers, removing
workers, and removing servers, all at runtime.

In a nutshell, we make the following contributions.
1) We design EPS, which enables lightweight and user-

transparent resource adjustment to a running job by
augmenting PS with three core components and four
functions.

2) We develop a heuristic scheduler that leverages EPS
and offers scalable resource scheduling to speed up
feedback-driven exploration and accelerate distributed
ML training in clusters.

3) We implement EPS in open-source Tencent Angel
framework and the scheduler in Apache Yarn. We con-
duct evaluations with various ML models. Experimen-
tal results show that EPS achieves up to 1.5x and 50%
improvement on the ML training speed compared to PS
and the kill-based approach deployed in Optimus [21],
respectively. EPS is lightweight in runtime resource
adjustment, compared to the kill-based approach.

In the following, Section 2 gives motivation on EPS.
Section 3 describes the design of EPS. Section 4 presents
the design of the heuristic scheduler. Section 5 describes
the system implementation. Sections 6 and 7 present the
experimental setup and evaluation results. Section 8 reviews
related work, and Section 9 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first describe the feedback-driven explo-
ration in ML model training. We then introduce PS archi-
tecture for distributed ML training in clusters. Further, we
present a case study to show that resource allocation with
the current PS results in significant early feedback latency,
and show the advantage of scalable resource allocation at
runtime with EPS.

2.1 Multi-job in Feedback-driven Exploration

One key characteristic of ML model training is the feedback-
driven exploration due to the inherent iterative trial-and-
error methodology of ML. A user often trains a model on
the same dataset multiple times for the exploratory purpose,
by continuously submitting jobs with different configura-
tions such as model structures and hyperparameters. The
execution of each job is divided into two phases: the early
feedback phase (e.g., the first 100 iterations) and the training
phase (the rest iterations). The first phase provides early
feedback of model accuracy to users so as to help guide the
optimization process of model configurations.

A ML model contains many hyperparameters that need
to be specified, for example, the learning rate of model
parameters, the batch size in each iteration, the number of
hidden layers in a neural network, etc. Ideal values of these
hyperparameters usually cannot be calculated based on the
training data. The current approaches empirically explore
different combinations of hyperparameter values [10], [11].

3

(a) PS architecture. (b) The execution mechanism inside a worker. (c) The execution mechanism inside a server.

Fig. 1. PS architecture and internal execution mechanisms in workers and servers. Pm(t) refers to the mth partition in iteration t. The updates of
partition Pm is notated as Um. Um Di /j /k refers to Um generated from splits Di, Dj, and Dk.

In order to tune hyperparameters in a ML model, a user sub-
mits multiple ML jobs, in which each job trains the model
using one combination of hyperparameter values. The user
also uses early feedback from each job to decide whether to
kill the job or keep it running. When all jobs are finished,
the ML model is configured with the hyperparameters of
the job that gives the best training result, e.g., the highest
ML model accuracy.

2.2 Parameter Server Architecture
Prevalent distributed ML frameworks (e.g., TensorFlow,
Tencent Angel, Petuum Bosen) employ PS to train ML
models iteratively in clusters. The PS architecture is shown
in Figure 1(a). There are two types of resource units: workers
and servers. The training dataset is partitioned into multiple
data splits (i.e., D1 to D9) that are distributed to workers.
ML model parameters are divided into multiple parameter
partitions (i.e., P1 to P6) that are distributed to servers. In
one iteration, each server sends the latest parameters to
workers. Then each worker computes parameter updates
(e.g., gradients) locally using its data splits and pushes
the updates to the servers that store the corresponding
parameters. After receiving parameter updates, servers up-
date the model parameters using a pre-defined optimiza-
tion algorithm, such as Stochastic Gradient Descent. There
are explicit dependencies between workers and servers in
conducting computation and model parameter updates. For
example, in Figure 1(a), worker W1 depends on servers S1,
S2, and S3 since the worker has to push the updates to the
three servers. Server S1 depends on workers W1, W2, and
W3 since the server has to send the updated parameters to
the three workers.

Figure 1(b) illustrates the execution mechanism in
worker W1. The execution at each iteration involves six
steps. 1) W1 receives parameter partitions and iteration
number from each server. 2) W1 combines the partitions
into ML model parameters when all partitions are received.
3) W1 updates a clock list. The clock list stores the clock of
each server, which is the iteration number of partitions in the
server. 4) When the clocks of all servers in the list increase by
one, W1 conducts computation using its data splits and ML
model parameters to generate parameter updates. 5) W1

partitions the generated updates based on the server list that
stores the metadata of partitions in each server. 6) W1 sends
the partitioned updates to servers in the list. According to
the metadata in the list, W1 is able to partition and send
updates in a way that the updates are sent to the servers that
store the corresponding parameters. Note that the clock list
and the server list maintain the dependency between W1
and the three servers. The worker implementation varies in
different ML frameworks. In some frameworks [1], [3], [5],
the first three steps are overlapped.

Figure 1(c) shows the execution mechanism in server
S1. The execution at each iteration involves five steps. 1)
S1 receives parameter updates from each worker. 2) S1
accumulates the updates of the same partition when all
updates are received. 3) S1 updates a clock list. The clock
list stores the clock of each worker, which is the iteration
number of updates pushed by the worker. 4) When the
clocks of all workers in the list increase by one, S1 updates
its partitions and iteration number. 5) S1 sends the updated
partitions to the workers in the worker list and starts the
next iteration. The clock list and the worker list maintain
the dependency between S1 and the three workers.

For synchronization between servers and workers, there
are several popular models, such as BSP [28], A-BSP [29],
SSP [4], [5], and ASP [30].

2.3 A Case Study
We created a small 4-node cluster to demonstrate that
resource allocation upon to the current PS could result in
significant early feedback latency and the potential of EPS
reducing the latency. Note that EPS adopts a simple heuristic
scheduler in this case study. The outcome of the study
motivates us to design and develop a more sophisticated
heuristic scheduler (i.e., H-scheduler) in a large cluster.

The distributed ML framework deployed in the cluster
is Tencent Angel. Its underlying scheduling framework is
Apache Yarn that allocates resource units in workers and
servers to ML training jobs. Workers and servers run in Yarn
containers. The cluster is configured with one master and
three slave nodes. Each slave node can run one worker and
one server. BSP model is used for synchronization between
servers and workers.

4

(a) Job execution due to the default PS.

(b) Job execution due to the kill-based approach.

(c) Job execution due to EPS.

Fig. 2. Microscopic views of the execution of two jobs.

Two Logistic Regression jobs with different hyperparam-
eter values are submitted at different time by a user. Job 1 is
configured with correct hyperparameters and it converges
quickly. Job 2 is configured with wrong hyperparameters
and it converges slowly. Table 1 gives the job details. The
performance metrics include the average queuing delay, the
average early feedback latency, and the model training time.
Note that for a training job, the queuing delay is a part of the
early feedback latency. Three approaches are examined, the
default PS, a kill-based approach used in Optimus [21], and
EPS. The kill-based approach terminates a job and restarts it
to adjust its number of workers and servers.

TABLE 1
Two Logistic Regression Jobs in the Case Study.

Job id Submission time Resources Hyperparameters

1 0 second three workers and
three servers

correct
hyperparameters

2 600th second one worker and
one server

wrong
hyperparameters

Figure 2 shows the microscopic views of the execution
of two ML jobs due to three approaches. Figure 2(a) shows
the number of workers and servers used by the two jobs
due to the default PS, respectively. In specific, when job 1 is
submitted at time 0, Yarn initializes the job and allocates
three workers and three servers to start model training.
At the 276th second, job 1 finishes its first 100 iterations.
The user obtains the early feedback of model accuracy and
decides to keep the job running since the obtained model

Fig. 3. Performance due to three approaches.

converges quickly. When job 2 is submitted at the 600th
second, all cluster resources have been allocated to job 1 so
that job 2 is queued. At the 1735th second, job 1 finishes all
its iterations. Yarn releases its allocated resources, initializes
job 2, and allocates one worker and one server to the job to
start model training. At the 2134th second, job 2 finishes its
first 100 iterations. The user decides to kill it due to poor
early feedback of model accuracy.

Figure 2(b) shows the execution process due to the kill-
based approach. When job 2 is submitted at the 600th
second, the approach removes one worker and one server
from job 1 through three steps. Firstly, Angel checkpoints
the ML model in job 1. Secondly, Yarn terminates job 1 and
releases its allocated resources. Finally, Yarn re-initializes job
1 and allocates two workers and two servers to resume its
model training. Then, Yarn initializes job 2 and allocates one
worker and one server to start model training. To utilize
the resources released by job 2 at the 1369th second, the
approach adds one worker and one server to job 1 through
three steps. Firstly, Angel checkpoints the ML model in job
1. Secondly, Yarn terminates job 1 and releases its allocated
resources. Finally, Yarn re-initializes job 1 and allocates three
workers and three servers to resume its model training.

Figure 2(c) shows the execution process due to EPS
that allows to adjust the number of workers and servers
at runtime. When job 2 is submitted at the 600th second,
EPS removes one worker and one server from job 1 through
three steps. Firstly, the data on the removed worker and
the parameters on the removed server are transmitted to
the other workers and servers, respectively. Secondly, EPS
removes the dependency between the removed worker and
server and the remaining workers and servers. Finally, Yarn
releases the resources that were previously allocated to the
removed worker and server. Yarn initializes job 2 and allo-
cates one worker and one server to start its model training.

To utilize the resources released by job 2 at the 1045th
second, EPS adds one worker and one server to job 1
through three steps. Firstly, EPS requests Yarn to add one
worker and one server to job 1. Secondly, EPS adds the
dependency between the added worker and server and the
existing workers and servers. Finally, a subset of data on
the two existing workers and a subset of parameters on the
two existing servers are transmitted to the added worker
and server, respectively. Overall, the overhead of adding or
removing workers and servers by EPS is much lower than
that by the kill-based approach.

Figure 3 depicts the performance of job executions due
to the three approaches. EPS achieves the smallest average
queuing delay, average early feedback latency, and model
training time. The default PS leads to the largest average

5

Fig. 4. The architecture of EPS.

queuing delay and average early feedback latency, because
job 2 has to wait in the queue until job 1 finishes. The kill-
based approach achieves a smaller queuing delay of job 2
than that due to the default PS. However, it brings in non-
trivial overhead when adjusting the number of workers and
servers allocated to a job. In the case study, it results in the
largest model training time because two jobs are relatively
small and thus the overhead becomes more severe.

3 EPS DESIGN

In this section, we first describe the architecture of EPS with
its three key components. We then introduce four functions
in EPS: adding workers, adding servers, removing workers,
and removing servers.

3.1 EPS Architecture
Figure 4 illustrates the architecture of EPS. The new com-
ponents in EPS are shown in grey. EPS centers on three
core components: dependency update, data and parameter
transmission, and global decision making. EPS also includes
a two-dataset component that can reduce data transmission
overhead between workers.

3.1.1 Dependency Update
In PS, workers and servers depend on each other explicitly.
A worker pushes updates to its dependent servers that store
the parameters, and a server sends the parameters to its
dependent workers that use the parameters in computation.
The dependency is maintained by a server list and a clock
list in workers, and a worker list and a clock list in servers.
In EPS, the dependency update component is designed
to update the lists to remove or add dependency. When
workers and servers are removed from a running job, the
component deletes the removed workers and servers from
the lists in other workers and servers of the running job.
When new workers and servers are added, it adds them to
the lists of the current workers and servers.

3.1.2 Data and Parameter Transmission
In PS, there are worker-to-server and server-to-worker com-
munications that push updates and send parameters. EPS
enables worker-to-worker and server-to-server communi-
cations to transmit data splits and parameter partitions,
respectively. With the component, each worker stores a

worker list and each server stores a server list. The worker
and server lists contain information such as the host IP
and port number that are used to communicate with the
other workers and servers. When a worker is removed, the
removed worker sends its data splits to other workers in
the worker list. When a new worker is added, the existing
workers first update their worker lists using the dependency
update component and then transmit a subset of the data
splits to the new worker. When removing or adding a server,
parameter transmission is conducted in a similar way.

3.1.3 Global Decision Making
EPS uses a global decision algorithm to make data and
parameter transmission decisions. For example, for data
splits on a removed worker, the algorithm partitions the
splits and determines the worker to which each split is
transmitted. When a new worker is added, it partitions data
splits on the current workers and determines the number
of splits to be transmitted to the new worker. Parameter
transmission decisions are made similarly. The algorithm
avoids the situation that parameters and data are irregularly
distributed across servers and workers.

The algorithm is conducted in the master, e.g., Applica-
tionMaster in Yarn, which stores the metadata of the data
splits on each worker and the parameter partitions on each
server. After the decision is made, the master sends two
signals to workers and servers. The first one is the data and
parameter transmission signal that requests the execution
of transmission. The second one is the dependency update
signal that requests the dependency update component to
update the lists in workers and servers, respectively.

3.1.4 Two datasets
In PS, each worker loads its local data splits into memory
for computation. In EPS, the splits are divided into two
datasets: active dataset and inactive dataset. The splits in
the active dataset are loaded into memory and the splits
in the inactive dataset are only stored on local disks. The
rationale of the two-dataset component is that it helps to
reduce data transmission overhead when workers are added
or removed. For example, when a worker is added, a subset
of the data splits on the other workers are transmitted to the
added worker. Meanwhile, these data splits are moved to
inactive dataset. When the added worker is removed later, it
does not need to transmit its data splits to the other workers
because they can read the splits from the inactive dataset
directly.

3.2 Function Calls to Adding Servers or Workers
With EPS, when adding servers to a running job there are
three steps, as shown in Figure 5. In the first step, the sched-
uler allocates containers and initializes the added servers. In
the second step, EPS adds dependency between the added
servers and the current workers and servers. In the third
step, parameters on the current servers are transmitted to
the added servers. Note that adding workers to a running
job is done in three similar steps.

The three steps of adding servers are partially over-
lapped and there are synchronization barriers. In the first
step, the scheduler launches the containers of the added

6

Fig. 5. Three steps for adding servers to a job.

Fig. 6. Parameter transmission in adding server S4.

servers. After launching the containers (barrier 1), the added
servers start the initialization process that is overlapped
with the parameter transmission decision in the second
step. The master makes the decision on the number of
parameter partitions to be transmitted to each added server.
The first step and the decision making in the second step
are overlapped with the previous iteration executed by the
current workers and servers. After making the decision,
finishing the initialization, and finishing the previous iter-
ation (barrier 2), the current workers put the added servers
into their clock lists and server lists to add the dependency.
Meanwhile, the current servers put the added servers into
their server lists. After the server lists in the current servers
are updated (barrier 3), the current servers transmit their
parameter partitions to the added servers in the third step.
After parameter partitions are transmitted and all lists are
updated (barrier 4), the job starts the next iteration with the
added servers.

When adding servers, the master makes parameter
transmission decisions using a round-robin algorithm. The
algorithm determines the number of partitions and which
partitions to be transmitted to each added server. When
adding workers, the master makes data transmission de-
cisions using a similar algorithm. The major difference
between the two algorithms is that the data splits in data
transmission are not only remotely transmitted to the added
workers but also locally moved to the inactive datasets.
Note that the round-robin algorithm can avoid the situa-
tion where parameters and data are irregularly distributed
across workers and servers.

We use two examples to illustrate parameter and data
transmissions. A job is running with three workers and
three servers as shown in Figure 4. When a new server
(S4) is added to the job, the master decides to transmit two
parameter partitions to S4. The transmission procedure is
illustrated in Figure 6. First, the current servers put S4 into
their server lists. Then, parameter partitions P3 and P5 are

Fig. 7. Dependency between S4 and W1 is added.

Fig. 8. Data transmissions in adding worker W4.

transmitted to S4. After the transmission, P3 and P5 are
removed from S2 and S3, respectively. The server lists and
clock lists in the current workers are updated to add the
dependency between them and S4. Figure 7 illustrates the
dependency update procedure inside worker W1 and the
updates are shown in red. In specific, worker W1 receives
P3 and P5 from S4 and updates the clock of S4. The
generated updates are partitioned based on the updated
server list. The updates of P3 and P5 are sent to S4.

When a new worker (W4) is added to the job, the master
decides to transmitted three data splits to the added worker.
The transmission procedure is illustrated in Figure 8. The

Fig. 9. Dependency between W4 and S1 is added.

7

Fig. 10. Three steps for removing workers from a job.

current workers put W4 into their worker lists. Data splits
D3, D6, and D9 are remotely transmitted to W4. Mean-
while, these splits are locally moved to the inactive datasets.
Further, the worker lists and clock lists in the current servers
are updated to add the dependency between W4 and the
servers. Figure 9 illustrates the dependency update proce-
dure inside server S1 and the updates are shown in red. In
specific, W4 sends the updates generated from data splits
D3, D6, and D9 to S1, following which the clock list of W4
is updated. The updated parameters are also sent to W4.

3.3 Function Calls to Removing Servers or Workers
With EPS, when removing workers from a running job,
there are three steps as shown in Figure 10. In the first
step, data splits of the removed workers are transmitted
to the remaining workers and servers. In the second step,
EPS removes dependency between the removed workers
and the remaining workers and servers. In the third step,
a scheduler terminates the removed workers and releases
their containers. Note that removing servers from a running
job is done in three similar steps.

The three steps in removing workers are partially over-
lapped and there are synchronization barriers. At the first
step, the master makes data transmission decisions on how
to transmit the data splits from the removed workers. The
decision-making process is overlapped with the previous
iteration executed by all workers and servers. After making
the decision and finishing the previous iteration (barrier
1), the removed workers transmit their data splits to the
remaining workers. At the second step, the servers delete
the removed workers from their clock lists and worker lists
to remove the dependency. After the splits are transmitted
(barrier 2), the remaining workers delete the removed work-
ers from their worker lists and the removed workers are
terminated. At termination (barrier 3), the scheduler releases
the containers of the removed workers. When all lists are
updated (barrier 4), the job starts the next iteration.

When removing workers, the master makes data trans-
mission decisions using a round-robin algorithm. The algo-
rithm determines the worker to which each data split of the
removed servers is transmitted. In specific, it scans through
the workers. In each scan, the algorithm checks whether
the inactive dataset on the scanned worker contains the
data splits of the removed workers. If it does, the removed
workers do not transmit the split to the scanned worker.
Otherwise, they do. When removing servers, the master

Fig. 11. Data transmission in removing worker W4.

Fig. 12. Parameter transmission in removing server S3.

makes parameter transmission decisions using a similar
algorithm without the check procedure.

We use two examples to illustrate data and parameter
transmissions. Consider the job running with four workers
in Figure 8. When a worker (W4) is removed from the job,
the data transmission procedure is illustrated in Figure 11.
Note that W4 does not transmit data splits D3, D6, and D9
to workers W1, W2, and W3 because the splits already exist
in the inactive datasets of the workers. The workers only
need to move the data splits from their inactive datasets to
active datasets. After the transmission, workers W1, W2,
and W3 delete W4 from their worker lists. Besides, the
worker lists and clock lists in the servers are updated to
remove the dependency between W4 and the servers.

When server (S3) is removed from the job, Figure 12
shows the parameter transmission where partitions P5 and
P6 are transmitted to servers S1 and S2, respectively. After
the transmission, S1 and S2 delete S3 from their server lists.
The server lists and clock lists in the workers are updated to
remove the dependency between the workers and S3.

4 SCALABLE RESOURCE SCHEDULING

The heuristic scheduler contains two scheduling modes:
incoming job scheduling and running job scheduling. Incoming
job scheduling is triggered when a new job is submitted.
The scheduler calls the removing workers and servers func-
tions in EPS when the available resources cannot meet the
resource requirements of the new job. Running job schedul-
ing is triggered when there are available resources but no
submitted jobs.

4.1 Incoming Job Scheduling

Algorithm 1 describes the incoming job scheduling mode
(lines 1 to 27). In specific, the scheduler first checks the
available resources in the cluster (lines 2 to 6). When the
available resources cannot meet the resource requirements
of the submitted job, it identifies running jobs where work-
ers and servers are removable and determines the number

8

of workers and servers to be removed (lines 7 to 27). It calls
two EPS functions to remove workers and servers. It then
allocates resources to the submitted job.

To determine the number of workers (N w r) to be
removed, the scheduler calculates the ratio (R submit) of
the number of workers to the number of servers in the
resource requirements (line 2). It divides available resources
into two parts (line 3). The first part is allocated as workers
and the second is allocated as servers. The ratio between
the two equals R submit. N w r is the number of workers
in the resource requirements minus the number of workers
that can be allocated using available resources (line 7).

The scheduler selects running jobs where workers and
servers are removable based on two rules (lines 10 to 16),
1) the running jobs that have not provided early feedback
are not removable, and 2) the running jobs with only one
worker and one server are not removable. It determines the
number of workers to be removed from each removable job
in a round-robin way (lines 17 to 26). The number of servers
to be removed is determined similarly.

4.2 Running Job Scheduling

Algorithm 1 describes the running job scheduling mode
(lines 29 to 40). The scheduler selects running jobs that new
workers and servers can be added (line 33). It iteratively
adds one worker and one server to each job in a round-robin
way (lines 34 to 40). It monitors the training speed of the
job. If the speed drops due to the additional communication
overhead, it removes the added worker and server from the
running job.

Fig. 13. Implementation of EPS and H-scheduler.

5 IMPLEMENTATION

We implement EPS in Tencent Angel (version 2.0.1) by mod-
ifying source files in package angel.angel-ps.core.
The heuristic scheduler is implemented in Apache Yarn
(version 2.8.3) by adding a new component called
H-scheduler. Figure 13 shows the implementation of EPS
and H-scheduler. This project is open-sourced at Github:
https://github.com/ibingoogle/EPS-angel-2.0.1.

Algorithm 1 Scalable resource scheduling
1: /* Incoming Job Scheduling */
2: Number of workers and servers required by the submitted job: N w submit,

N s submit; Ratio R submit = N w submit/N s submit;
3: Divide available resource into two parts; The ratio of the two parts =

R submit;
4: Number of workers that can be allocated using part one: N w ava; The

number of servers that can be allocated using part two: N s ava;
5: if N w ava > N w submit and N s ava > N s submit
6: return
7: Number of workers to be removed: N w r = N w submit − N w ava;

Number of servers to be removed: N s r = N s submit − N s ava;
8: /* select running jobs where workers and servers are removable */
9: Initialize two lists: l1 = [] and l2 = []; l1 contains jobs whose workers are

removable; l2 contains jobs whose servers are removable;
10: for job J i in running jobs
11: if J i has not provided early feedback
12: continue
13: if the number of workers in J i > 1
14: Put J i into list l1;
15: if the number of servers in J i > 1
16: Put J i into list l2;
17: /* decide the number of workers to be removed from each job */
18: Sort jobs in l1 in decreasing order based on the number of workers in each

job; Initialize count = 0;
19: while true
20: for removable job J k in list l1
21: increase the number of workers to be removed from J k;
22: if the number of remaining workers in J k == 1
23: Remove J k from list l1;
24: count = count + 1;
25: if count == N w r
26: break while loop
27: Decide the number of servers to be removed from each job in a similar way;
28:
29: /* Running Job Scheduling */
30: The number of workers and servers in cluster N w cluster, N w cluster;

Ratio R cluster = N w cluster/N s cluster;
31: Calculate the number of workers and servers that can be allocated using

available resources: N w add, N s add; Their ratio equals R cluster;
32: /* select running jobs that can are able to add workers/servers */
33: Initialize two lists: l1 and l2; l1 contains jobs that can add workers; l2

contains jobs that can add servers; Put running jobs in training phase into
l1 and l2;

34: /* add one worker to each job in a round-robin way */
35: Sort jobs in l1 in increasing order based on the number of workers in each

job;
36: for job J k in list l1
37: Add one worker to J k; N w add = N w add - 1;
38: if N w add == 0
39: break for loop
40: Add one server to each job similarly;

5.1 Heuristic Scheduler

In package yarn.server.resourcemanager.scheduler
of Yarn, we add a new class H-scheduler. It obtains the
amount of available CPU and memory resources in clusters
through calling function getClusterResource in class
YarnScheduler. It obtains the amount of CPU and
memory required by one worker and server by reading
job configuration file angel-site.xml. It calculates the
number of workers and servers that can be allocated to
a submitted job using available resources. It obtains the
information of the running jobs from class RMAppManager
so that it can call APIs in the application master of each
running job.

5.2 EPS

In Tencent Angel, each ML job has an application mas-
ter that runs class AngelApplicationMaster in pack-
age core.mast er.yarn.until. The class communicates
with Yarn to request or release resources. We add four APIs
in the class: addServers, addWorkers, removeServers,
and removeWorkers, which take the number of removed

9

0

2

4

6
|-| Standard deviation PS Priority scheduling Kill-based EPS

T
im

e
 in

 h
o
u
rs

RobustSoftmaxRidgeLassoLR Linear DNNSVM

Fig. 14. The training time of eight representative ML models due to four approaches.

or added workers and servers as the input. H-scheduler
calls APIs to make scheduling decisions.

The master makes parameter transmission decisions us-
ing the modified class AMMatrixMetaManager in package
core.master.matrixmeta. The class contains the meta-
data of parameter partitions in servers. It makes data trans-
mission decisions using the modified class DaraSpliter
in package core.master.data. The class contains the
metadata of data splits in workers.

To add or remove servers, we add a new class PSList
in class ParameterServer in servers. PSList contains
RPC server for parameter transmissions. In workers, we
modify two classes, PSAgentMatrixMetaManager and
ClockCache in package core.psagent so that work-
ers can update the dependency with the added or re-
moved servers. To add or remove workers, we add a
new class WorkerList in class Worker in workers. The
class contains RPC server for data transmissions. In
servers, we modify two classes PSMatrixMetaManager
and ClockVectorManager in package core.ps so that
servers can update the dependency with the added or
removed workers.

6 EVALUATION SETUP

Testbed and Performance Metrics. We build a multi-job
cluster to evaluate the performance of EPS and the heuristic
scheduler. The cluster is deployed in a university private
cloud with 37 virtual machines, i.e., one master node and
36 slave nodes. Each node is configured with four vCPUs
and 16GB memory. All nodes run Ubuntu Server 14.04 with
Linux kernel 4.4.0-64. The primary performance metric is
ML model training time. We also measure the average early
feedback latency and resource utilization.
Workloads. We adopt eight representative ML models used
in Tencent Angel: Support Vector Machine (SVM), Logistic
Regression (LR), Linear Regression (Linear), Deep Neural
Network (DNN), Lasso, Ridge Regression (Ridge), Softmax
Regression (Softmax), and Robust Regression (Robust). The
dataset used is kdd2012 from LIBSVM datasets [31]. The
size kdd2012 dataset is 9.9 GB. It contains 1.4∗109 non-zero
features. Each data point is a training instance derived from
search session log messages in Tencent.

For each of the eight models, we use library Hyper-
opt [10] to generate 75 jobs with different hyper-parameter
configurations. The jobs are submitted in an exponential
distribution. The resource requirements of each job are

eight workers and four servers. The requirements are ho-
mogeneous because each job trains the same model. Each
worker or server is over-provisioned with 4GB memory and
one vCPU. For each job, the model accuracy at the 100th
iteration (same as Gandiva [13] and HyperBand [11]) is used
as the early feedback. The threshold number of running
jobs in the training phase is 11 because of the job resource
requirements and the cluster resource availability.
Approaches. We mainly evaluate performance of
three approaches in the multi-job setting : EPS with
H-scheduler (namely EPS), the kill-based approach [21]
with H-scheduler (namely kill-based), and the default PS
(namely PS). Each evaluation runs ten times and we report
average results as well as standard deviation.

In the default PS, when the threshold is met, all cluster
resources are allocated to the running jobs in the training
phase and an incoming job with potential better model
configurations will be queued. In the kill-based approach,
when the threshold is met and there is an incoming job, it
will checkpoint and kill the job in the training phase with
the worst early feedback, distribute the released resources
to the killed job and the incoming job, and run both jobs.

In EPS, when the above scenario occurs, it will leverage
the elasticity to remove a subset of workers and servers
from the running jobs at runtime and allocate the released
resources to the incoming job so as to reduce its early feed-
back latency. In EPS and the kill-based approaches, when
the number of running jobs is larger than the threashold,
the one with the worst early feedback is killed.

Further, we extend the evaluation to compare the
performance of two popular scheduling approaches:
H-scheduler and priority scheduling in Litz [32]. We com-
pare the performance of two PS architectures with elasticity:
EPS and PS in Litz (namely Litz-PS).

For the comparison between H-scheduler and priority
scheduling, we measure the training time of eight represen-
tative ML models due to EPS with priority scheduling in
the multi-job setting, and compare the training time with
that due to EPS with H-scheduler (namely EPS).

The priority scheduling in Litz simply requests a low-
priority ML job to release resources when a high-priority job
arrives. In the context of feedback-driven exploration, EPS
with priority scheduling removes workers from running
jobs in order to provide resources to incoming jobs. Note
that the number of workers to be removed is random and
the running jobs are randomly selected. Litz leaves the
detailed design of the priority scheduling for future work.

10

(a) Default PS. (b) Kill-based. (c) EPS.

Fig. 15. The number of running jobs during LR training due to three approaches.

For the comparison between EPS and Litz-PS, we submit
one RL job to a cluster and measure the average iteration
time of the job when the number of nodes available to the
job ranges from 1 to 36. The initial number of nodes and
workers is set to 6 and 12, respectively.

7 EVALUATION

7.1 ML Model Training Time

Figure 14 shows the ML model training time due to the four
approaches. EPS significantly outperforms the other three
approach. Moreover, the results of the standard deviation
identify that EPS has the best robustness among them.

Compared to the default PS, EPS accelerates the model
training speed by 1.13x, 1.5x, 74%, 93% 84%, 85%, 98%,
and 1.2x for the eight ML models, respectively. The rea-
sons are twofold. First, when the cluster resources are not
fully utilized by the running jobs and there are no new
jobs submitted yet, the default PS cannot utilize the idle
resources. In contrast, EPS can add workers and servers to
the running jobs at runtime so as to utilize the idle resources
and improve the training speed.

Second, in the default PS, when all cluster resources are
allocated to running jobs at the training phase, a new job
has to wait in a queue until one running job finishes training
and releases allocated resources. If the hyperparameters of
the new job are worse than those of all running jobs, the
queuing does not really affect ML model training because
better ML models will be generated from the running
jobs. However, if the hyperparameters of the new job are
better than those of some running jobs, the queuing will
significantly delay ML model training because the running
jobs with worse hyperparameters occupy cluster resources
until finished but they will not generate ML models that
are better than the one to be generated by the new job.
The new job has a long queueing delay. In EPS, a new job
can start running shortly after its submission because of the
elasticity of EPS and scalable resource scheduling. Thus, if
the hyperparameters of the new job are better than those
of some running jobs, it will generate a better model ML
without queueing delay.

Compared to the kill-based approach, EPS improves the
training speed by 39%, 37%, 50%, 38%, 36%, 39%, 40%
and 37% for the eight ML models, respectively. The kill-
based approach incurs significant overhead in removing all
workers and servers from the killed job, adding some of the
removed workers and servers back to the job, and adding
the left workers and servers to the new job. Its checkpointing
and model reloading further prolong the model training.

Compared to the priority scheduling approach, EPS im-
proves the training speed by 1.05x, 65%, 57%, 39%, 61%,
45%, 47% and 78% for the eight ML models, respectively.
The reasons are trifold. First, when the cluster resources are
not fully utilized by the running jobs and there are no new
jobs submitted yet, the priority scheduling cannot utilize
the idle resources. Second, the priority scheduling randomly
chooses the number of workers to be removed. When the
number is too small, the released resources are not sufficient
to launch the incoming job so that the priority scheduler has
to make an extra call of the removing workers function in
EPS, leading to high overhead in resource adjustment. When
the number is too large, there would be idle resources after
the incoming job is launched. Third, priority scheduling
cannot remove servers. This could cause an inappropriate
ratio of the number of workers to the number of servers,
slowing down the per-iteration execution of a job.

Figure 15 plots the number of running jobs in LR model
training. In the default PS, the maximum number of running
jobs is capped to 11. When the number of jobs in training
phase reaches 11 at the 28th minute (t a), there is no job
running in early feedback phase since submitted jobs are
queued. When a job finished at the 41st minute (t b), a
queued job starts running in early feedback phase. Both the
kill-based approach and EPS allow to run jobs in the early
feedback phase when the number of jobs in the training
phase reached 11, by adjusting resource allocations at run-
time. For example, jobs are running in early feedback phase
between the 28th minute and the 41st minute. However, the
number of running jobs in training phase due to the kill-
based approach often drops below 11 since the approach
kills running jobs to adjust resource allocation. Moreover,
the number of running jobs due to EPS is larger than that
due to the kill-based approach in some time slots (e.g., from
t a to t b). EPS is more efficient than the kill-based approach
in resource utilization, which leads to faster training speed.
Overall, EPS can remove more resources from running jobs
in those time slots and use the resources to run more jobs in
early feedback phase.

Figure 16 depicts the number of queued jobs in LR model
training. The kill-based approach and EPS offer resources
to a new job by removing a subset of workers and servers
from the running jobs, which result in significantly fewer
queued jobs than the default PS. Compared to the kill-based
approach, EPS results in fewer queued jobs because it takes
less time in removing or adding workers and servers so that
a new job starts running more quickly.

11

Fig. 16. The number of queued jobs in LR training.

Fig. 17. The average early feedback latency.

7.2 Average Early Feedback Latency

Figure 17 depicts the average early feedback latency due
to the three approaches. The latency due to the default PS
mainly consists of the queuing delay and the time in the
early feedback phase. In the kill-based approach and EPS, a
new job has to wait for resources released from the removed
workers and servers. Thus, the latency mainly consists of the
time spent on removing and adding workers and servers,
and the time spent on the early feedback phase. EPS incurs
the smallest average early feedback latency since it incurs
no queuing delay and the least time in removing or adding
workers and servers.

Figure 18 illustrates the early feedback latency at runtime
during LR model training. At the beginning, the latency
due to the three approaches is similar since the cluster has
sufficient resources for new jobs. After the 28th minute, all
cluster resources are allocated to the running jobs in the
training phase. The latency due to the default PS increases
significantly since a new job has to be queued. EPS outper-
forms the kill-based approach because of its lower overhead
in removing or adding workers and servers.

7.3 Resource Utilization

Figure 19 (a)-(c) depict the CPU utilizations and (d)-(e)
depict the memory utilizations during LR model training.
From the 9th minute to the 23rd minute, the utilizations

Fig. 18. The early feedback latency in LR training.

due to the default PS are much lower than those due to
the kill-based approach and EPS. The cause is that there is
no job submitted in the period so that the default PS cannot
utilize the idle resources, while the other two approaches
can utilize the idle resources by adding workers and servers
to the running jobs at runtime. After the 23rd minute, the
utilizations due to the two approaches are slightly higher
than that due to the default PS. The reason is that the two
approaches use the over-provisioned memory space when
the input data and parameters on the removed workers and
servers are transmitted to and stored in the other workers.

In Figure 19 (b) and Figure 19(e), there are moments
(e.g., t1 and t2) when the CPU and memory utilizations
due to the kill-based approach drop significantly and then
rebound. To remove resources from a running job, the kill-
based approach has to first release all workers and servers
from the job, and then re-distribute the resources to the job
and a new job. This process significantly affects the CPU
and memory utilizations.

7.4 Overhead Analysis
Table 2 presents the overhead in training of the eight
ML models due to the kill-based approach and EPS. The
overhead is measured as the ratio of the total time spent
on removing and adding workers and servers to the total
runtime of all jobs. The kill-based approach incurs much
higher overhead than EPS. The overhead due to EPS is
negligible compared to its performance gain.

TABLE 2
The overhead of the kill-based approach and EPS.

SVM LR Linear DNN
Kill 22.3% 21% 29.2% 26.1%
EPS 5.4% 4.9% 6.2% 5.6%

Lasso Ridge Softmax Robust
Kill 24.1% 24.5% 25.7% 23.5%
EPS 5.1% 5.2% 5.9% 5.3%

We take a closer look at the overhead analysis. We submit
a LR job to the cluster and allocate three workers and three
servers to the job. We measure the overhead when one
worker and one server are removed from the job by the
kill-based approach and EPS, respectively. Recall that both
approaches take three steps in removing one worker and
one server. Figure 20 plots the time spent on the three indi-
vidual steps by the two approaches. Overall, the kill-based
approach incurs much more significant overhead than EPS,
as it spends non-negligible time on ML model checkpoint in
Angel, job termination and resource release in Yarn, and job
initialization and resource re-allocation in Yarn.

The overhead of EPS mainly comes from data and pa-
rameter transmissions as well as resource release. There are
no job checkpoint, initialization and termination overheads.
The amount of resources released or allocated in EPS is
much less than that in the kill-based approach. For example,
when a subset of workers and servers are removed from a
job, EPS requests Yarn to release the resources allocated to
the removed workers and servers only. In contrast, the kill-
based approach requires Yarn to release the resources of all
workers and servers allocated to the job. Furthermore, the

12

0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250
0.0
0.2
0.4
0.6
0.8
1.0

CP
U

ut
ili

za
tio

n

(a) PS

t1 t2

(b) Kill-based

(c) EPS

M
em

or
y U

til
iza

tio
n

(d) PS

(e) Kill-based

t1 t2

(f) EPS

Fig. 19. CPU and memory utilizations during LR training.

Fig. 20. Overhead in removing one worker & server.

three steps in EPS are partially overlapped, while they are
executed sequentially in the kill-based approach.

We also measure the overhead of removing one worker
and one server when different numbers of workers/servers
are allocated to job 3 in the submission. In specific, the
number of allocated workers/servers ranges from 6 to 16.
The results in Figure 21(a) show that, when the number
of workers/servers in job 3 increases, the overhead due to
the kill-based approach increases significantly since Yarn
spends more time on resource release/re-allocation. The
overhead due to EPS increases sightly because more work-
ers/servers are involved in data/parameter transmission.

We further measure the overhead of removing multiple
workers and servers at the same time. In specific, we al-
locate 8 workers and 8 servers to job 3 in the submission
and remove different numbers of workers/servers from the
job. In Figure 21(b), when the number of removed work-
ers/servers increases, the overhead due to EPS increases
since Yarn spends more time releasing resources allocated to
the removed workers/servers. The overhead due to the kill-
based approach decreases because job 3 re-allocates fewer
number of workers/server in job initialization. However,
the overhead due to EPS is much lower than that due to the
kill-based approach.

(a) Overhead of removing one worker
and one server.

(b) Overhead of removing multiple
workers and servers.

Fig. 21. Overhead of removing workers and servers.

7.5 Elasticity Comparison
Figure 22 plots the average iteration time of a RL job due
to two PS architectures when the number of nodes available
to the job ranges from 1 to 36. The result shows that EPS
outperforms Litz-PS when the cluster scales up or scales
down to a certain degree. When the number of nodes is
small (< 2), Litz-PS distributes 12 workers to these nodes so
that each node is overloaded, leading to resource contention
and extra communication overhead. In contrast, EPS can
avoid the contention and overhead by removing a certain
number of workers. When the number of nodes becomes
large (> 12), the average iteration time due to Litz-PS does
not decrease anymore. The reason is that Litz-PS distributes
12 workers to 12 nodes at most and it cannot utilize the
resources in the other nodes. In contrast, EPS can utilize all
resources in the cluster by adding more workers.

7.6 Discussions
User transparency. The runtime resource adjustment in EPS
can be simply utilized by calling the four APIs using the
scheduler. To apply EPS to ML model training, users only
need to employ H-scheduler without changing ML model
source code. Users can also customize their own schedulers
to leverage EPS.

13

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 o

n
e
 it

e
ra

tio
n
 t
im

e
 in

 s
e
c
o
n
d
s

Number of nodes

 EPS

 Litz-PS

Fig. 22. The average iteration time of a RL job.

PS compatibility. EPS implementation does not change
any mechanisms in the current PS. It can be implemented
as a PS-compatible architecture in existing distributed ML
frameworks so that elasticity can be introduced as a se-
lectively enabled feature in these frameworks. EPS can be
extended to other frameworks, such as TensorFlow.
Data transmission. EPS assumes that input data is stored
in a local file system. Thus, when a worker is removed, the
input data is transmitted from the removed worker to the
other workers. Recently, remote file system is also used in
practice. In this case, the input data should be transmitted
from the remote file system to the other workers. We will
extend EPS to support remote file system in the future.
Fairness. The heuristic scheduler does not schedule an
incoming job resources based on fairness because the in-
coming job has high priority than the running jobs. The
scheduling of running jobs follows the principle of fairness
because it adds resources to each running job in a round-
robin manner.
Model convergence. EPS adjusts the resources allocated
to a job so that it only impacts the execution time of one
iteration. But, it does not impact the convergence speed of
the iteration.
In-memory storage. Servers in PS store model parameters
in memory which is similar to in-memory database (e.g.,
Redis [33]). However, the resource adjustment mechanism
in these databases only supports adding or removing ma-
chines instead of containers. The mechanism cannot be
easily integrated into the runtime adjustment of servers.
Dataset. EPS is only aware of dataset size and conducts data
repartition based on the size and the number of workers.
It is agnostic to the number of features in the dataset and
also does not impact the model convergence. Thus, EPS is
general approach for different types/sizes of data.
Multiple distributed clusters. The ML job using EPS is
agnostic to the machines it runs on. These machines can be
either located in one cluster or distributed across multiple
clusters as long as data can be transmitted between them.
Therefore, EPS is not limited to a single cluster.

In a large-scale cloud environment with multiple dis-
tributed clusters, H-scheduler should be extended to sched-
ule workers and servers of a ML job to the same cluster
in order to avoid communication overhead. Note that the
open-source Apache Yarn is responsible for resource man-
agement in such a large-scale cloud environment.

Although the presented EPS works for multiple dis-
tributed clusters, it can be further optimized when workers
or servers are located in the different clusters. A straightfor-
ward optimization approach can avoid cross-cluster com-
munication overhead in EPS from two aspects: (1) when

removing a worker from a cluster, the data on the re-
moved worker is only transmitted to the running workers
in the same cluster. (2) when adding a worker to a cluster,
only the running workers in the same cluster transmit
their data to the added worker. Parameter transmission is
conducted similarly. However, this approach would incur
imbalanced data/parameter distribution across all work-
ers/servers. Therefore, a more sophisticated transmission
algorithm should be developed in EPS to achieve the bal-
ance between data/parameter distribution and cross-cluster
communication.

8 RELATED WORK

PS architecture optimization. GeePS [15] is a PS special-
ized for scaling deep learning applications in distributed
GPUs. Poseidon [14] uses wait-free backpropagation that
overlaps backward computation with gradient communica-
tion. P3 [16], TicTac [34], and Byte Scheduler [35] change
the transmission order of different DNN layers in order
to reduce the communication overhead in PS architecture.
Gaia [17] is an efficient ML synchronization model for
communication between parameter servers across datacen-
ters. Work [36] introduces a distributed GPU hierarchi-
cal parameter server for massive scale deep learning ads
systems. PHub [37] is a multi-tenant and rack-scale PS
design for cloud-based distributed deep neural network
training. DynSSP [19] introduces heterogeneity-aware dy-
namic learning for jobs based on gradient descent so as to
improve ML job training speed. Parallax [38] integrates PS
with AllReduce architecture to optimize the amount of data
transmission. LAG [39] proposes lazily aggregated gradient
that adaptively skips the gradient calculations to reduce
communication and computation in PS. Work [40] proposes
a general distributed compressed SGD with momentum in
PS. PS2 [41] is a PS architecture that integrates Spark plato-
form [28] without hacking the core of Spark. FlexPS [20]
focuses on specific ML jobs whose input data size can be
dynamically changed at runtime and reduces the training
time. It is inapplicable to general ML jobs with static input
data size. It also cannot adjust the number of servers at
runtime. Complementary to these efforts, EPS augments
the PS architecture with elasticity that allows to adjust the
number of workers and servers at runtime.
PS based on distributed recommendation systems. Kun-
Peng [22] is a parameter server based distributed learning
system that supports recommendation scenarios in Alibaba.
Study [23] introduces a simple parameter server based
federated learning approach for recommender systems to
improve on personalization. It discusses closely-related
meta-learning algorithms. Recent work [24] proposes a dis-
tributed hierarchical GPU parameter server for massive-
scale deep learning ads systems. The GPU parameter server
builds a distributed hash table across multiple GPUs and
performs direct inter-GPU communications to eliminate the
CPU-GPU data transferring overhead. EPS can be integrated
into these systems to improve or enable the elasticity.
Elasticity in distributed ML training. Work [42] introduces
worker elasticity to AllReduce architecture. Proteus [43]
introduces redundant servers in PS and is designed for
dynamic resource markets (e.g., AWS). When a redundant

14

server is removed, Proteus does not maintain the depen-
dencies between workers and servers. Work [44] adjusts the
number of tasks within a Yarn container. It does not support
adjusting the number of workers and servers in PS. Meta-
Daraflows [45] can efficiently execute exploratory work-
flows. However, it is not designed for concrete data process-
ing workflows such as distributed ML training. PSLD [46]
proposes a dynamic PS load distribution algorithm so as
to mitigate PS straggler issues and accelerate distributed
model training in the PS architecture.

Litz [32] implements worker (named executor in its lit-
erature) elasticity in PS from scratch based on event-driven
programming model. However, its worker elasticity is only
limited to moving workers between different nodes and it
cannot adjust the number of workers at runtime. Also, Litz
does not support server elasticity.
Multi-job ML cluster optimization. There are innovative
efforts on system support for accelerating distributed ML
training. Tiresias [47] is a GPU cluster resource manager that
minimizes the job completion time based on the character-
istic study of Microsoft cluster Philly [48]. FfDL [49] is a
cloud-hosted and multi-tenant dependable distributed DL
platform used to train DL models at IBM. Litz [32] proposes
priority scheduling in that a low-priority ML job can simply
use less amount of resource by moving its workers to a
fewer number of machines so that a higher-priority job can
use the released resource.

Recently, there are a few innovations that aim to speedup
feedback-driven exploration. Population based training [50]
uses information from the jobs in the training phase to
refine the hyperparameters so as to quickly choose the best
set of them. This effort focuses on deep learning model
training. Hyperdrive [12] proposes to accelerate feedback-
driven exploration by dynamically classifying the config-
uration of hyperparameters into three categories: promis-
ing, opportunistic, and poor. It terminates jobs with poor
configurations, and prioritizes promising jobs with more
GPU resource. SLAQ [25] uses a dedicated cluster to run
distributed ML jobs in the early feedback phase. The goal
is to maximize the average model accuracy in the phase.
It dynamically allocates CPU resource at runtime based on
the job resource demand and intermediate model accuracy.
Gandiva [13] accelerates DL model training in feedback-
driven exploration by dynamically changing GPU usage
modes of distributed deep learning jobs at runtime. It can
reduce early feedback latency and improve the scheduling
efficiency in GPU clusters. Pytorch [26] develops worker
elasticity in AllReduce architecture so that the number of
allocated workers is adjustable at runtime. However, these
approaches do not support PS architecture.

Optimus [21] minimizes the makespan and the average
job completion time of multiple jobs in PS architecture. It
designs a novel resource-performance model and proposes
a scheduling scheme to dynamically adjust the number of
allocated workers and servers. It employs the kill-based
approach to implement the resource adjustment at runtime,
which results in significant overheads. Instead, EPS enables
elasticity by adjusting resource allocations at runtime. It is
lightweight and efficient in resource utilization.
Preemption technique. Recent efforts leverage lightweight
virtualization (e.g., Docker [51]) to make tasks preemptable

in cluster scheduling of batch jobs [52], [53]. In these efforts,
when latency-critical jobs are submitted to clusters, they
preempt tasks of best-effort long jobs so that the submitted
jobs can be scheduled to avoid any queuing delays. The pre-
emption idea can be used to adjust the allocated resources
of distributed ML jobs with PS architecture. For example,
we can preempt workers and servers of running jobs to
offer resources to incoming jobs. This idea works when
incoming jobs are configured with wrong hyperparameters
so that the preempted jobs can resume execution soon after
incoming jobs are killed by users. But when incoming jobs
are configured with right hyperparameters and run for
several hours to days, the preempted jobs are blocked for
a long time.
Cloud auto-scaling. Web application providers have been
migrating their applications to cloud data centers, attracted
by the emerging cloud computing paradigm [54]. One of
the appealing features of the cloud is elasticity that au-
tonomously and dynamically provisions and de-provisions
a set of resources to cater to fluctuant application work-
loads [54], [55], [56].

Note that the elasticity in cloud auto-scaling is defined
as adjusting the size of cluster resources to cater to fluctuant
web application jobs, and thus it can be regarded as cluster-
level resource elasticity. In contrast, the elasticity in EPS
is a job-level resource elasticity, which adjusts the size of
resources used by a ML job. The design and development
of EPS and H-scheduler assume that the size of cluster re-
sources is fixed (i.e., no cluster-level resource elasticity). The
combination of the two-level elasticities can be a potential
future research direction.

9 CONCLUSION

This paper presents EPS, a lightweight and user-transparent
parameter server that accelerates feedback-driven explo-
ration for distributed ML training. EPS is designed with
three new components and four function calls, which enable
the elasticity in resource adjustments to a distributed ML
job at runtime. To leverage EPS, we develop a heuristic
scheduler that offers scalable resource scheduling for multi-
ple ML training jobs in a distributed cluster. We implement
EPS in Tencent Angel and the scheduler in Apache Yarn.
Experimental results show that EPS achieves up to 1.5x
and 50% improvement on the ML training speed compared
to PS and the kill-based approach deployed in Optimus,
respectively, due to its built-in elasticity and lightweight in
runtime resource adjustment.

In future work, we will extend EPS to other ML frame-
works such as TensorFlow and extend H-scheduler to other
applications with elastic mechanisms.

REFERENCES

[1] J. Jiang, L. Yu, J. Jiang, Y. Liu, and B. Cui, “Angel: a new large-scale
machine learning system,” National Science Review, vol. 5, no. 2, pp.
216–236, 2018.

[2] J. Jiang, B. Cui, C. Zhang, and F. Fu, “Dimboost: Boosting gradient
boosting decision tree to higher dimensions,” in Proc. of ACM
SIGMOD, 2018.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for
large-scale machine learning.” in Proc. of USENIX OSDI, 2016.

15

[4] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky,
Q. Ho, G. R. Ganger, P. B. Gibbons, G. A. Gibson et al., “Exploiting
iterative-ness for parallel ml computations,” in Proc. of ACM SoCC,
2014.

[5] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed
machine learning on big data,” IEEE Transactions on Big Data,
vol. 1, no. 2, pp. 49–67, 2015.

[6] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv
preprint arXiv:1512.01274, 2015.

[7] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server.” in Proc. of USENIX
OSDI, 2014.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center.” in Proc. of USENIX
NSDI, 2011.

[9] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proc. of ACM
SoCC, 2013.

[10] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, “Hy-
peropt: a python library for model selection and hyperparameter
optimization,” Computational Science & Discovery, vol. 8, no. 1, p.
014008, 2015.

[11] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter
optimization,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 6765–6816, 2017.

[12] J. Rasley, Y. He, F. Yan, O. Ruwase, and R. Fonseca, “Hyperdrive:
Exploring hyperparameters with pop scheduling,” in Proc. of
ACM/IFIP/USENIX Middleware, 2017.

[13] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in Proc. of USENIX OSDI,
2018.

[14] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on gpu clusters,” in Proc.
of USENIX ATC, 2017.

[15] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing,
“Geeps: Scalable deep learning on distributed gpus with a gpu-
specialized parameter server,” in Proc. of EuroSys, 2016.

[16] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn train-
ing,” in Proc. of SysML, 2019.

[17] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine
learning approaching lan speeds,” in Proc. of USENIX NSDI, 2017.

[18] S. Wang, A. Pi, and X. Zhou, “Scalable distributed dl training:
Batching communication and computation,” in Proc. of AAAI,
2019.

[19] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware dis-
tributed parameter servers,” in Proc. of ACM SIGMOD, 2017.

[20] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo, and
J. Cheng, “Flexps: Flexible parallelism control in parameter server
architecture,” in Proc. of VLDB, 2018.

[21] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in Proc. of
EuroSys, 2018.

[22] J. Zhou, X. Li, P. Zhao, C. Chen, L. Li, X. Yang, Q. Cui, J. Yu,
X. Chen, Y. Ding et al., “Kunpeng: Parameter server based dis-
tributed learning systems and its applications in alibaba and ant
financial,” in Proc. Of ACM SIGKDD, 2017.

[23] A. Jalalirad, M. Scavuzzo, C. Capota, and M. Sprague, “A sim-
ple and efficient federated recommender system,” in Proc. of
IEEE/ACM DBCAT, 2019.

[24] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li,
“Distributed hierarchical gpu parameter server for massive scale
deep learning ads systems,” in Proc. of MLSys, 2020.

[25] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-
driven scheduling for distributed machine learning,” in Proc. of
ACM SoCC, 2017.

[26] “Pytorch elastic,” https://github.com/pytorch/elastic.

[27] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and
O. Mutlu, “Yak: A high-performance big-data-friendly garbage
collector,” in Proc. of USENIX OSDI, 2016.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proc. of USENIX NSDI, 2012.

[29] S. Wang, W. Chen, A. Pi, and X. Zhou, “Aggressive synchroniza-
tion with partial processing for iterative ml jobs on clusters,” in
Proc. of ACM/IFIP Middleware, 2018.

[30] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project adam: Building an efficient and scalable deep learning
training system.” in Proc. of USENIX OSDI, 2014.

[31] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM transactions on intelligent systems and technology,
vol. 2, no. 3, pp. 1–27, 2011.

[32] A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A. Gibson,
and E. P. Xing, “Litz: Elastic framework for high-performance
distributed machine learning,” in Proc. of USENIX ATC, 2018.

[33] “Redis,” https://https://redis.io.
[34] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Acceler-

ating distributed deep learning with communication scheduling,”
in Proc. of SysML, 2019.

[35] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo,
“A generic communication scheduler for distributed dnn training
acceleration,” in Proc. of ACM SOSP, 2019.

[36] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li,
“Distributed hierarchical gpu parameter server for massive scale
deep learning ads systems,” in Proc. of MLSys, 2020.

[37] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter hub: a rack-scale parameter server for distributed
deep neural network training,” in Proc. of ACM SoCC, 2018.

[38] S. Kim, G.-I. Yu, H. Park, S. Cho, E. Jeong, H. Ha, S. Lee, J. S. Jeong,
and B.-G. Chun, “Parallax: Sparsity-aware data parallel training of
deep neural networks,” in Proc. of EuroSys, 2019.

[39] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggre-
gated gradient for communication-efficient distributed learning,”
in Proc. of NeurIPS, 2018.

[40] S. Zheng, Z. Huang, and J. T. Kwok, “Communication-efficient
distributed blockwise momentum sgd with error-feedback,” in
Proc. of NeurIPS, 2019.

[41] Z. Zhang, B. Cui, Y. Shao, L. Yu, J. Jiang, and X. Miao, “Ps2:
Parameter server on spark,” in Proc. of ACM SIGMOD, 2019.

[42] A. Or, H. Zhang, and M. Freedman, “Resource elasticity in dis-
tributed deep learning,” in Proc. of MLSys, 2020.

[43] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: agile ml elasticity through tiered reliability in dynamic
resource markets,” in Proc. of EuroSys, 2017.

[44] B. Huang, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, and F. R.
Reiss, “Resource elasticity for large-scale machine learning,” in
Proc. of ACM SIGMOD, 2015.

[45] R. Castro Fernandez, W. Culhane, P. Watcharapichat, M. Weidlich,
V. Lopez Morales, and P. Pietzuch, “Meta-dataflows: Efficient
exploratory dataflow jobs,” in Proc. of ACM SIGMOD, 2018.

[46] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo, “Elastic
parameter server load distribution in deep learning clusters,” in
Proc. of ACM SoCC, 2020.

[47] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A gpu cluster manager for distributed deep
learning,” in Proc. of USENIX NSDI, 2019.

[48] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant gpu clusters for dnn
training workloads,” in Proc. of USENIX ATC, 2019.

[49] K. Jayaram, V. Muthusamy, P. Dube, V. Ishakian, C. Wang,
B. Herta, S. Boag, D. Arroyo, A. Tantawi, A. Verma et al., “Ffdl: A
flexible multi-tenant deep learning platform,” in Proc. of ACM/IFIP
Middleware, 2019.

[50] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan
et al., “Population based training of neural networks,” arXiv
preprint arXiv:1711.09846, 2017.

[51] C. Boettiger, “An introduction to docker for reproducible re-
search,” ACM SIGOPS Operating Systems Review, vol. 49, no. 1,
pp. 71–79, 2015.

[52] W. Chen, J. Rao, and X. Zhou, “Preemptive, low latency datacenter
scheduling via lightweight virtualization,” in Proc. of USENIX
ATC, 2017.

16

[53] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Kairos:
Preemptive data center scheduling without runtime estimates,”
in Proc. of ACM SoCC, 2018.

[54] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applica-
tions in clouds: A taxonomy and survey,” ACM Computing Surveys,
vol. 51, no. 4, pp. 1–33, 2018.

[55] ——, “A reliable and cost-efficient auto-scaling system for web ap-
plications using heterogeneous spot instances,” Journal of Network
and Computer Applications, vol. 65, pp. 167–180, 2016.

[56] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An au-
tonomic resource provisioning approach for service-based cloud
applications: A hybrid approach,” Future Generation Computer
Systems, vol. 78, pp. 191–210, 2018.

Shaoqi Wang received the BS degree in engi-
neering from Anhui Normal University in 2012.
He received the MS degree in engineering from
the University of Science and Technology of
China in 2015. He obtained Ph.D. degree in
Computer Science from the University of Col-
orado, Colorado Springs in 2020. His research
interests include big data processing, distributed
machine learning systems, and deep learning.
He is a student member of the IEEE.

Aidi Pi received his B.S. and M.S degree
in Computer Science from Tongji University
in 2015 and 2016, respectively. He obtained
Ph.D. in Computer Science from the Univer-
sity of Colorado, Colorado Springs in 2021. His
research interests include distributed systems,
troubleshooting, cloud computing. He is a stu-
dent member of the IEEE.

Xiaobo Zhou obtained the BS, MS, and PhD
degrees in Computer Science from Nanjing
University, in 1994, 1997, and 2000, respec-
tively. Currently he is a professor of the Depart-
ment of Computer Science, University of Col-
orado, Colorado Springs. His research lies in
distributed systems, Cloud computing and data-
centers, data parallel and distributed processing,
autonomic and sustainable computing. He was a
recipient of the NSF CAREER Award in 2009. He
is a senior member of the IEEE.

