

How clustered protocadherin binding specificity is tuned for neuronal self/non-self-recognition

Kerry M. Goodman^{1,7}, Phinikoula S. Katsamba^{1,7}, Rotem Rubinstein^{5,6}

Göran Ahlsén¹, Fabiana Bahna¹, Seetha Mantepalli¹, Hanbin Dan⁴,

Rosemary Sampogna⁴, Lawrence Shapiro^{1,2*}, and Barry Honig^{1,2,3,4*}

¹Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA

²Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA

³Department of Systems Biology, Columbia University, New York, NY 10032, USA

⁴Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032, USA

⁵School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Israel

⁶Sagol School of Neuroscience, Tel Aviv University, Israel

⁷Equal contribution

*Correspondence: lss8@columbia.edu (L.S.); bh6@cumc.columbia.edu (B.H.)

1 **Abstract (152 words)**

2 The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides
3 diverse identities to individual vertebrate neurons and a molecular basis for self/non-self-
4 discrimination. cPcdhs form chains mediated by alternating *cis* and *trans* interactions between
5 apposed membranes, which has been suggested to signal self-recognition. Such a mechanism
6 requires that cPcdh *cis* dimers form promiscuously to generate diverse recognition units, and that
7 *trans* interactions have precise specificity so that isoform mismatches terminate chain growth.
8 However, the extent to which cPcdh interactions fulfill these requirements has not been
9 definitively demonstrated. Here we report biophysical experiments showing that cPcdh *cis*
10 interactions are promiscuous, but with preferences favoring formation of heterologous *cis* dimers.
11 *Trans*-homophilic interactions are remarkably precise, with no evidence for heterophilic
12 interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis
13 data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs
14 help explain their function in neuronal self/non-self-discrimination.

15 **Introduction**

16 Clustered protocadherins (cPcdhs) are a large family of cadherin-like proteins named for the
17 clustered arrangement of their genes in vertebrate genomes (Wu and Maniatis, 1999; Wu et al.,
18 2001). cPcdhs play roles in many facets of neural development (Peek et al., 2017), including circuit
19 development, most notably neurite self-avoidance in vertebrates (Kostadinov and Sanes, 2015;
20 Lefebvre et al., 2012; Mountoufaris et al., 2017), and tiling (Chen et al., 2017). In self-avoidance,
21 neurites from the same neuron (sister neurites) actively avoid one another, whereas neurons from
22 different neurons can freely interact. Tiling is similar to self-avoidance, but in tiling all neurons
23 acquire the same identity, so that there is uniform repulsion among self- and non-self neurites
24 (Chen et al., 2017). Self-avoidance among sister neurites leads to the characteristic arbor structures
25 of dendritic trees, and prevents the formation of self-synapses (Kostadinov and Sanes, 2015;
26 Lefebvre et al., 2012).

27

28 The molecular mechanisms through which neurons discriminate self from non-self, differ between
29 vertebrate and most invertebrate animals. For arthropod invertebrates such as *Drosophila*
30 *melanogaster*, self-avoidance is mediated by immunoglobulin superfamily Dscam1 cell surface
31 proteins. The stochastic alternative splicing of *Dscam1* pre-mRNAs can, in principle, generate
32 19,008 distinct extracellular isoforms; the vast majority of which, based on ELISA-based binding
33 assay, mediate homophilic recognition (Miura et al., 2013; Schmucker et al., 2000; Wojtowicz et
34 al., 2004; Wojtowicz et al., 2007). Each neuron expresses a repertoire estimated at 10–50 isoforms
35 and the large number of Dscam1 isoforms ensures a low probability that any two contacting
36 neurons will have an identical or even a similar isoform repertoire thus minimizing the chance of
37 inappropriate avoidance between non-self neurons (Hattori et al., 2009).

38

39 In mammalian nervous systems cPcdh isoform expression is controlled by the unique organization
40 of three tandem gene clusters, *Pcdha*, *Pcdh β* , and *Pcdh γ* (Wu and Maniatis, 1999), with each
41 cluster containing multiple variable exons, which encode full cPcdh ectodomain regions with six
42 extracellular cadherin (EC) domains, a single transmembrane region, and a short cytoplasmic
43 extension (Figure 1A). The *Pcdha* and *Pcdh γ* gene clusters also contain three ‘constant’ exons that
44 encode cluster-specific intracellular domains. The last two variable exons in the *Pcdha* gene

45 cluster and the last three variable exons of the *Pcdh γ* gene cluster diverge in sequence from other
46 cPcdh isoforms and are referred to as ‘C-type’ cPcdhs (Wu and Maniatis, 1999; Wu et al., 2001).
47 Sequence differences further subdivide *Pcdh γ* genes into two subfamilies – *Pcdh γ A* and *Pcdh γ B*
48 (Wu and Maniatis, 1999). The full mouse cPcdh complement is comprised of 53 non-C-type
49 cPcdhs, commonly known as alternate cPcdhs (α 1–12, β 1–22, γ A1–12, and γ B1–7), whose
50 expression choices vary stochastically between cells through alternate promoter choice (Canzio
51 and Maniatis, 2019); and 5 C-type cPcdhs (α C1, α C2, γ C3, γ C4, and γ C5), which are constitutively
52 expressed. cPcdh expression, either stochastic or constitutive, varies between cell types: For
53 example, olfactory sensory neurons express ~5–10 cPcdhs stochastically; Purkinje neurons express
54 ~10 alternate cPcdhs stochastically and all five C-types constitutively (Esumi et al., 2005; Kaneko
55 et al., 2006); and serotonergic neurons express just α C2 constitutively (Canzio and Maniatis, 2019;
56 Chen et al., 2017). While the cPcdh and Dscam1 systems bear striking similarities, the relatively
57 small number of cPcdh isoforms – fewer than 60 – has presented a significant challenge to
58 generation of sufficient diversity to provide mammalian neurons with functionally unique
59 identities.

60

61 Solution biophysics and functional mutagenesis studies, have shown that cPcdhs interact in *trans*
62 through antiparallel interactions between their EC1–EC4 regions (Rubinstein et al. 2015), and
63 crystal structures of alternate α , β , and γ cPcdh *trans*-homodimers have revealed interfaces
64 involving EC1 interacting with EC4 and EC2 with EC3 (Figure 1B) (Goodman et al., 2016a;
65 Goodman et al., 2016b; Nicoludis et al., 2016; Rubinstein et al., 2015; Thu et al., 2014). cPcdhs
66 also form *cis* dimers through their membrane-proximal EC5–EC6 regions, and are presented on
67 cell surfaces as *cis* dimers (Goodman et al., 2017; Rubinstein et al., 2015; Thu et al., 2014). Crystal
68 structures of *cis*-interacting protocadherin ectodomains (Brasch et al., 2019; Goodman et al., 2017)
69 have revealed an asymmetrical interaction mode, where one molecule interacts through elements
70 of EC5 and EC6, and the other interacts exclusively through EC6 (Figure 1C). To date, structural
71 studies of C-type cPcdh interactions have not been available. Here we extend our molecular
72 understanding of cPcdhs to C-type isoforms as well, with the goal of understanding the
73 evolutionary design of the entire family.

74

75 In order to explain how about 60 cPcdh isoforms can provide a comparable or even greater level
76 of neuronal diversity as 19,000 Dscam isoforms, Rubinstein et al. (2015) proposed that cPcdhs
77 located on apposed membrane surfaces would form an extended zipper-like lattice through
78 alternating *cis* and *trans* interactions (Figure 1D). In self-interactions – between two membranes
79 with identical cPcdh repertoires – these chains would grow to form large structures, limited mainly
80 by the number of molecules (Brasch et al., 2019; Rubinstein et al., 2015). However, in non-self-
81 interactions – between two membranes with differing cPcdh repertoires – such large linear
82 assemblies would not form since even a single mismatch between expressed isoforms would
83 terminate chain assembly (Brasch et al., 2019; Rubinstein et al., 2017; Rubinstein et al., 2015).
84 This “isoform-mismatch chain-termination model” for the “barcoding” of vertebrate neurons
85 envisions the assembly of long cPcdh chains between sites of neurite-neurite contact to represent
86 the signature of “self”, which is then translated by downstream signaling that leads to self-
87 avoidance (Fan et al., 2018). X-ray crystallographic studies and cryo-electron tomography (cryo-
88 ET) studies of the full-length cPcdh ectodomains bound between the surfaces of adherent
89 liposomes revealed the existence of linear zippers thus providing strong evidence supporting the
90 validity of the model (Brasch et al., 2019). However, crucial questions remain unanswered. Here,
91 a number of them are addressed.

92

93 1) For the proposed mechanism to successfully explain neuronal barcoding, *cis* interactions must
94 be promiscuous to generate diverse repertoires of *cis*-dimeric biantennary ‘interaction units’, while
95 *trans* interactions must be highly specific so that mismatched isoforms do not inappropriately
96 enable growth of the chain through heterophilic interactions. While cell aggregation assays have
97 suggested *trans* homophilic specificity, these assays only reflect a *competition* between different
98 cell populations and thus don’t inform as to the strength of heterophilic interactions. Moreover,
99 the results of cell aggregation assays depend critically on the *relative* strengths of homophilic and
100 heterophilic interactions and thus do not inform as to actual binding affinities (Honig and Shapiro,
101 2020). It is thus necessary to establish the extent to which heterophilic *trans* interactions are truly
102 disallowed.

103

104 2) The assumption that *cis* interactions are promiscuous is based in large part on the fact that α -
105 cPcdhs and γ C4 cannot reach the cell surface without binding *in cis* to another “carrier” isoform

106 (Bonn et al., 2007; Goodman et al., 2016b; Murata et al., 2004; Schreiner and Weiner, 2010; Thu
107 et al., 2014). As is the case for *trans* interactions, the strength of *cis* interactions has only been
108 probed quantitatively in a small number of cases so that the term “promiscuous” is qualitative at
109 best. In fact, as compared to γ B and β cPcdh isoforms, most γ A-Pcdhs do not form measurable *cis*
110 homodimers in solution (Goodman et al., 2016b) (Figure 4—source data 1). Nevertheless, all γ A-
111 Pcdhs are still able to reach the cell surface when expressed alone (Thu et al., 2014). This
112 observation can be understood if the *cis* dimerization affinity of γ A-Pcdhs is large enough to enable
113 them to dimerize in the 2D membrane environment (Goodman et al., 2016b; Wu et al., 2013).
114 Nevertheless, their weak dimerization affinities suggest, more generally, that cPcdhs may exhibit
115 a range of *cis* dimerization affinities. We establish below that a wide range of affinities does in
116 fact exist and, strikingly, most homophilic *cis* interactions are weaker than their heterophilic
117 counterparts. We consider the functional implications of this novel observation in the discussion.
118

119 3) Structures have not yet been determined for complete C-type cPcdh ectodomains. Yet these
120 isoforms play unique functional roles, some of which have no apparent connection to isoform
121 diversity. For example, a single C-type isoform is sufficient for tiling which can be simply
122 understood in terms of the formation of zippers containing identical homodimers so that all
123 interacting neurons will avoid one another (Chen et al., 2017). Moreover, Garrett and coworkers
124 discovered that neuronal survival and postnatal viability is controlled solely by γ C4 suggesting a
125 function that is unique to this isoform (although it presumably requires β and/or other γ carriers to
126 reach the cell surface) (Garrett et al., 2019). Additionally, a recent paper by Iqbal and coworkers
127 has shown that genetic γ C4 variants cause a neurodevelopmental disorder which is potentially
128 linked to γ C4’s role in programmed cell death of neuronal cells (Iqbal et al., 2021). Below we
129 report extensive biophysical interaction studies of C-type isoform ectodomains and report the first
130 crystal structure of a *trans* dimer formed by γ C4. Our findings reveal that the specialized functions
131 of C-type cPcdhs probably do not involve unique structural or biophysical properties of their
132 ectodomains.

133
134 Overall, in accordance with the requirements of the isoform-mismatch chain-termination model,
135 we find that *trans*-homophilic interactions are remarkably precise, with no evidence for
136 heterophilic interactions between different cPcdh isoforms. In contrast cPcdh *cis* interactions are

137 largely promiscuous but with relatively weak intra-subfamily and, especially, homophilic
138 interactions. Possible implications of this somewhat surprising finding are considered in the
139 discussion. Our study reveals how the extraordinary demands posed by the need to assign each
140 neuron with a unique identity are met by an unprecedented level of protein-protein interaction
141 specificity.

142

143 **Results**

144 ***cPcdh trans interactions are strictly homophilic***

145 We generated biotinylated ectodomain fragments containing the *trans*-interacting EC1–4 regions
146 (Nicoludis et al., 2015; Rubinstein et al., 2015) of six representative α , β , γ A, and γ B mouse cPcdh
147 isoforms – α 7, β 6, β 8, γ A8, γ A9 and γ B2 – which include the most closely related isoforms by
148 sequence identity from the β and γ A subfamilies (β 6/8 and γ A8/9) (Rubinstein et al., 2015). These
149 molecules were coupled over independent Neutravidin-immobilized flow cells and *trans*-
150 interacting ectodomain fragments of multiple members of each mouse cPcdh subfamily, including
151 the C-types (α 4, α 7, α 12, β 6, β 8, γ A4, γ A8, γ A9, γ B2, γ B4, γ B5, α C2, γ C3, γ C4, and γ C5), were
152 then flowed over the six cPcdh surfaces to assess their binding. The surface plasmon resonance
153 (SPR) binding profiles reveal strictly homophilic binding (Figure 2A). All ectodomain fragments
154 used in these SPR experiments were confirmed to form homodimers in solution by sedimentation
155 equilibrium analytical ultracentrifugation (AUC) (Figure 2—source data 1), validating that these
156 proteins are well-behaved and active. Remarkably, no heterophilic binding was observed for any
157 of the analytes over any of the six surfaces (Figure 2A). Even β 6/8 and γ A8/9 that have 92% and
158 82% sequence identities respectively in their *trans*-binding EC1–4 regions exhibit no heterophilic
159 binding. We estimate that, for heterophilic *trans*-dimers, the lower limit for the dissociation
160 constant (K_D) would be \sim 200 μ M. Mutations designed to disrupt α 7, β 6, and γ A8 *trans* interaction
161 inhibited homophilic binding, demonstrating that the observed binding occurs via the *trans*
162 interface (Figure 2—figure supplement 1A) (Goodman et al., 2016a; Goodman et al., 2016b;
163 Rubinstein et al., 2015). This behavior is unlike that of other adhesion receptor families where,
164 whether they display homophilic or heterophilic preferences, the signal is never as binary as the
165 one shown in Figure 2 (Honig and Shapiro, 2020).

166

167 Much of the original evidence as to homophilic specificity was based on cell aggregation assays
168 (Rubinstein et al., 2015; Schreiner and Weiner, 2010; Thu et al., 2014) and it is of interest to
169 compare the results obtained from these assays to those obtained from SPR. We do this in the
170 context of examining the heterophilic binding specificity between $\beta 6_{1-4}$ and $\beta 8_{1-4}$ *trans* fragments
171 that share 92% sequence identity and differ at only five residues (Figure 2—figure supplement
172 2A), within their respective binding interfaces (Goodman et al., 2016a). Each of these residues
173 was mutated individually and in combination. Figure 2—figure supplement 2B and C display SPR
174 profiles and cell aggregation images, respectively, for wild type $\beta 6$ and $\beta 8$ and for the various
175 mutations. We first note that changing all five residues in $\beta 6$ to those of $\beta 8$ generates a mutant
176 protein with essentially wild type $\beta 8$ properties; it binds strongly to $\beta 8$ but not to $\beta 6$ as seen in
177 SPR and also forms mixed aggregates with $\beta 8$ but not $\beta 6$. In contrast, most of the single residue
178 mutants retain $\beta 6$ -like properties in both assays whereas double and triple mutants exhibit
179 intermediate behavior between $\beta 6$ and $\beta 8$. These results demonstrate that despite the 92% sequence
180 identity between $\beta 6$ and $\beta 8$, their highly specific homophilic properties can be attributed to five
181 interfacial residues. Moreover, the cell aggregation assays are consistent with the heterophilic
182 binding traces measured by SPR; cells expressing mutants that generate strong SPR signals with
183 either wild type $\beta 6$ or $\beta 8$ also form mixed aggregates with cells expressing the same wild-type
184 protein.

185
186 Of note, *trans*-interacting fragments of all four C-type cPcdhs tested showed no binding over the
187 alternate cPcdh SPR surfaces (Figure 2A). To test whether C-type cPcdhs also show strict
188 homophilic specificity with respect to each other we coupled biotinylated *trans*-interacting
189 fragments of $\alpha C2$, $\gamma C3$, $\gamma C4$, and $\gamma C5$ to SPR chips and passed the same four fragments alongside
190 alternate cPcdh *trans* fragments over these four surfaces. Only homophilic binding was observed,
191 with each of the four C-type fragments binding to its cognate partner and no other isoform (Figure
192 2B). Disrupting the $\gamma C5$ *trans* interaction with the S116R mutation (Rubinstein et al., 2015),
193 inhibited binding to the $\gamma C5$ surface, demonstrating that the observed binding occurs via the *trans*
194 interface (Figure 2—figure supplement 1B).

195

196 In contrast to the other C-type isoforms, α C1 does not mediate cell-cell interactions in cell
197 aggregation assays even when co-expressed with cPcdhs that facilitate cell-surface delivery of γ C4
198 (Thu et al., 2014). Although we have been able to produce an α C1 EC1–4 fragment the
199 recombinant molecule forms disulfide-linked multimers which are likely non-native, precluding
200 confident examination of α C1’s potential *trans* interactions. Notably, the sequence of mouse α C1
201 reveals the EC3:EC4 linker does not contain the full complement of calcium-coordinating residues,
202 which may impact the structure and binding properties of this protein (Thu et al., 2014).

203

204 Since all the cPcdh *trans* fragment molecules used in these SPR experiments homodimerize our
205 SPR data cannot be used to determine accurate binding affinities (Rich and Myszka, 2007). We
206 therefore used AUC to measure the *trans*-homodimer K_{Ds} (Figure 2—source data 1) revealing a
207 >200-fold range of binding affinities, from 2.9 μ M (α 7_{1–5}) to >500 μ M (γ C4_{1–4}). Regardless of
208 their *trans* binding affinity, all cPcdhs (except α C1) have previously been shown to effectively
209 mediate cell-cell interactions in cell aggregation assays (Schreiner and Weiner, 2010; Thu et al.,
210 2014).

211

212 ***Crystal structure of C-type cPcdh γ C4 reveals EC1–4-mediated head-to-tail trans dimer interaction***

213 The biophysical properties of C-type cPcdhs pose a number of interesting questions: Despite their
214 more divergent sequences compared with alternate cPcdhs, AUC data has confirmed that C-type
215 cPcdhs α C2, γ C3, and γ C5 form *trans*-dimers using their EC1–4 domains (Goodman et al., 2016b;
216 Rubinstein et al., 2015). However, γ C4_{1–4} behaved as a very weak dimer in AUC ($K_D > 500 \mu$ M;
217 Figure 2—source data 1), nevertheless full-length γ C4 can mediate cell aggregation when
218 delivered to the cell surface by co-expression with a ‘carrier’ cPcdh (Thu et al., 2014). In addition,
219 C-type isoforms have unique expression profile and function compared to alternate cPcdhs (Canzio
220 and Maniatis, 2019; Mountoufaris et al., 2016). However, there are no published crystal structures
221 of C-type cPcdh *trans* dimers. We therefore sought to crystallize a mouse C-type cPcdh engaged
222 in a *trans* interaction and obtained two distinct crystal forms of γ C4_{EC1–4}, one at 2.4 \AA resolution
223 (crystallized at pH 7.5) and the other with anisotropic diffraction at 4.6/3.9/3.5 \AA resolution (Figure
224 3A, Figure 3—figure supplement 1A,B, Figure 3—source data 1) (crystallized at pH 6.0). Both
225 crystal structures revealed an EC1–4-mediated head-to-tail *trans* dimer: The 4.6/3.9/3.5 \AA crystal

226 structure appears to have a fully intact *trans* interface with a total buried surface area of 3800 Å²,
227 which is a similar size to other cPcdh *trans* dimer interfaces (Goodman et al., 2016a; Goodman et
228 al., 2016b; Nicoludis et al., 2016) (Figure 3B, Figure 3—figure supplement 1B). However, the 2.4
229 Å structure had an apparently partially disrupted EC2:EC3 interface resulting in a total buried
230 surface area of just 2900 Å² (Figure 3B). The difference between the two structures may be due to
231 differences in the pH of the crystallization and its effect on the ionization state of the three
232 histidines present in the EC2:EC3 interface (Figure 3B). The differences could also reflect distinct
233 states of a dynamic interaction, as has previously been observed crystallographically (Nicoludis et
234 al., 2016; Goodman et al., 2016b) and explored computationally for other cPcdh *trans* interactions
235 (Nicoludis et al., 2019).

236

237 Despite the γ C4 *trans* dimer sharing structural similarity and the interface having similar buried
238 surface area as alternate α , β , γ A, and γ B cPcdhs and δ 2 non-clustered Pcdhs (Figure 3—source
239 data 2) (Cooper et al., 2016; Goodman et al., 2016a; Goodman et al., 2016b; Harrison et al., 2020;
240 Hudson et al., 2021; Nicoludis et al., 2016), its binding affinity is very weak. The two most
241 structurally similar molecules to γ C4 over their *trans* interacting domains, cPcdh γ B2 and non-
242 clustered Pcdh19. γ B2 and Pcdh19 have *trans* dimer K_Ds of 21.8 μM and 0.48 μM respectively
243 (Harrison et al., 2020), while that of γ C4 is >500 μM. Comparison between the γ B2 and γ C4 dimer
244 interfaces highlighted two buried charges in the γ C4 *trans* interface, E78 and D290, which could
245 potentially contribute to the low interaction affinity (Figure 3C). To test this, we mutated these
246 two residues to neutral amino acids and used AUC to determine whether the binding affinity
247 increased: The two D290 mutations we tested, D290A and D290N, had no measurable impact on
248 binding; but mutating E78 significantly increased the binding affinity with γ C4_{EC1-4} E78A showing
249 a K_D of 58 μM and γ C4_{EC1-4} E78Q, 83 μM (Figure 3D, Figure 3—figure supplement 1C). The
250 equivalent residue to E78 in γ B2 is also charged (D77) and forms a salt bridge with K340 in the
251 γ B2 dimer (Figure 3C). To assess whether generating a similar salt bridge in γ C4 would
252 compensate for the negative impact of E78 on dimer affinity we generated an S344R mutant.
253 Similar to the E78 mutants, γ C4_{EC1-4} S344R also had a stronger binding affinity than wild type
254 with a K_D of 112 μM (Figure 3D, Figure 3—figure supplement 1C). It appears then that E78 plays

255 an important role in weakening cPcdh γ C4's *trans* interaction although the functional reasons for
256 γ C4's weak *trans* interaction are unclear.

257

258 ***Clustered protocadherin cis interactions are promiscuous with a range of interaction strengths***

259 To systematically investigate cPcdh *cis* interactions, we coupled *cis*-interacting fragments of
260 mouse β 9, γ A4, γ A9, γ B2, α C2, γ C3, and γ C5 to SPR chip surfaces. *Cis*-interacting fragments of
261 three members from each of the β , γ A, and γ B subfamilies (β 1, β 6, β 9, γ A3, γ A4, γ A9, γ B2, γ B5,
262 γ B7) alongside α C2, γ C3, and γ C5 fragments were flowed over the seven surfaces to detect their
263 heterophilic binding (Figure 4A). Alternate α -cPcdhs, and the C-types α C1 and γ C4 were not
264 included in this study since EC6-containing fragments of these molecules cannot be expressed,
265 although an α 7_{EC1-5}/ γ C3_{EC6} chimera was included among the analytes to assess the role of α 7 EC5
266 (Figure 4—figure supplement 1C). Each of the analytes was also analyzed by AUC to determine
267 their homophilic *cis*-interaction behavior (Figure 4—source data 1): Four analytes, β 1₃₋₆, γ A4₃₋₆,
268 γ A9₃₋₆, and γ C3₃₋₆, are monomeric in solution as measured by AUC, therefore their SPR binding
269 profiles could be analyzed to determine their heterophilic binding affinities (Figure 4B, Figure 4—
270 figure supplement 1A,B). For the remaining analytes, due to the added complexity of their
271 homophilic *cis* interactions in solution competing with their binding to the immobilized molecules,
272 the SPR responses could not be analyzed to determine accurate K_{DS} (Rich and Myszka, 2007).

273
274 The data clearly demonstrate a wide range of *cis* dimerization affinities with strong heterophilic
275 binding signals (500–2000 RU), with much weaker homophilic binding responses typically
276 between 100–140 RU. The strongest heterophilic *cis* interactions are in the sub-micromolar range;
277 for example, γ C3/ β 9 can heterophilically *cis*-dimerize with a K_D of 0.22 μ M, while β 9₃₋₆, γ B2₃₋₆,
278 α C2₂₋₆ and γ C5₂₋₆ homodimerize with AUC-determined K_{DS} of 9–80 μ M. In addition to uniformly
279 weak homophilic interactions, within-subfamily *cis* interactions were consistently among the
280 weakest observed although a number of inter-subfamily interactions were also relatively weak
281 (Figure 4A). For example, for the β 9 surface comparatively weak binding was observed for all
282 tested β and γ A isoforms except γ A3, with the monomeric β 1, γ A4 and γ A9 producing low
283 responses that could not be fit to a binding isotherm to calculate accurate K_{DS} (Figure 4B, Figure
284 4—figure supplement 1B). In contrast, robust binding to the β 9 surface was observed for all γ B

285 and C-type isoforms. These data are consistent with the binding responses when $\beta 9$ was used as
286 an analyte over the other six surfaces, with weak to no binding observed over the $\gamma A4$ and $\gamma A9$
287 surfaces and robust responses over the $\gamma B2$, $\alpha C2$, $\gamma C3$, and $\gamma C5$ surfaces (Figure 4A). The $\gamma A4$ and
288 $\gamma A9$ surfaces showed a similar pattern of binding behaviors, with weak to no binding observed for
289 the γA and $\alpha C2$ analytes, and robust binding for the γC -cPcdhs with K_{DS} for γC_{3-6} of 2.73 and
290 9.60 μM respectively over each surface (Figure 4, Figure 4—figure supplement 1B).

291
292 Overall, these SPR data show that cPcdh *cis* binding is generally promiscuous, with measurable
293 *cis* interactions observed for 86% of pairs tested (using a 40 RU threshold). However, the wide range
294 of binding responses and homo- and hetero-dimeric K_{DS} that span 0.2201 μM to no measurable
295 interaction in solution suggests certain *cis* dimers will form preferentially to others. For the
296 heterophilic binding pairs for which K_{DS} could be determined (Figure 4B, Figure 4—figure
297 supplement 1, Figure 4—figure supplement 2), the alternate cPcdhs in particular, form markedly
298 stronger *cis* heterodimers with members of different subfamilies, particularly $\gamma C3$ and/or $\gamma C5$,
299 compared to their homodimeric and within-subfamily interactions. $\gamma C3$ also formed stronger
300 heterodimers with $\alpha C2$ than with itself or $\gamma C5$. Of note, $\alpha C2$ and $\gamma C5$ both form strong *cis*
301 homodimers with K_{DS} of 8.9 μM and 18.4 μM respectively as determined from AUC experiments
302 (Figure 4—source data 1), a magnitude similar to many of their heterodimeric interactions of 11.5
303 μM and 6.9–18.2 μM respectively (Figure 4B).

304
305 In the next section we rationalize *cis* binding preferences in terms of the structural properties of
306 *cis* dimers.

307
308 ***The asymmetric cis dimer interface and cis binding specificity***
309 The crystal structure of the $\gamma B7$ *cis* dimer revealed an asymmetric interaction, with the dimer
310 formed by one protomer engaging using surface of both EC5 and EC6 and one protomer engaging
311 using only EC6 (Goodman et al., 2017) with regions of EC6 overlapping in both EC5–6 and the
312 EC6-only interfaces for all cPcdh subfamilies (Thu et al., 2014; Goodman et al., 2017). The
313 asymmetric nature of the *cis* interaction implies that for each dimer interaction there are two
314 possible arrangements: one with protomer “1” forming the EC5–6 side and protomer “2” forming

315 the EC6-only side and the second where protomer “1” forms the EC6-only side and “2” the EC5–
316 6 side. These two configurations are distinct with different residue:residue interactions. Alternate
317 α -cPcdhs, which can only form the EC5–6 side of the *cis* dimer, require co-expression with a
318 “carrier” cPcdh from another cPcdh subfamily, which can form the EC6-only side of the *cis* dimer,
319 for robust delivery to the cell surface (Thu et al., 2014, Goodman et al., 2017). Although α -cPcdhs
320 and γ C4, which also requires a carrier for delivery to the cell surface, are likely to be extreme
321 cases, sequence analysis alongside the low homodimerization ability of many cPcdh isoforms
322 suggests many cPcdhs will more readily form one side of the *cis* interface than the other (Goodman
323 et al., 2017).

324

325 We previously suggested that γ A-cPcdhs will prefer to form the EC6-only side of the interface
326 since they have a poorly conserved EC5 interface and do not form strong homodimers in solution
327 (Figure 4—source data 1) (Goodman et al., 2017). The C-type cPcdh γ C3 also does not form *cis*
328 homodimers in solution. However, as shown in Figure 4, γ A-cPcdhs form strong heterodimers
329 with γ C3 with dissociation constants in the low-micromolar range (Figure 4B and Figure 4—figure
330 supplement 1B). Structure-guided sequence analysis for the γ A4/ γ C3 dimer in both EC6-only and
331 EC5–6 possible orientations, using the available crystal structures of the γ B7_{EC3–6} *cis* dimer and
332 monomeric γ A4_{EC3–6} (Figure 5A and Figure 5—figure supplement 1), suggests that γ C3 prefers to
333 form the EC5–6 side: γ C3 has a number of residue differences in interface residues that are
334 conserved among β , γ A and γ B cPcdhs (V/L555, R/K558, W/V562, and S/R595) that seem likely
335 to disfavor the EC6-only side of the interface and favor the EC5–6 side (Figure 5—figure
336 supplement 1B,C). Two of these residues, V555 and S595, result in a potential loss of EC6-only
337 interface buried surface area and are shared with α -cPcdhs, which cannot occupy the EC6-only
338 position (Goodman et al., 2017). Structural analysis further suggests that γ C3-specific residue
339 R558 would not be well accommodated from the EC6-only side, potentially causing van der Waals
340 clashes (Figure 5—figure supplement 1C). By contrast, from the EC5–6 side R558 is positioned
341 to form an additional salt bridge with γ A4 residue E544 and a hydrogen bond with Y532,
342 promoting dimer formation (Figure 5A; Figure 5—figure supplement 1B). γ A4 residue E544 is
343 positioned to form this salt bridge due to the EC6 A/A’ loop region adopting a different

344 arrangement in the γ A4 crystal structure to that observed for γ B2 and γ B7 in their respective crystal
345 structures (Goodman et al., 2016c; Goodman et al., 2017).

346

347 Based on our analysis, we generated mutants of both γ A4 and γ C3 targeting the EC6-only side of
348 the interface and used size exclusion-coupled multi-angle light scattering (SEC-MALS) to assess
349 their preferred orientation on γ A4/ γ C3 heterodimerization. In SEC-MALS wild type γ A4_{EC3-6} and
350 γ C3_{EC3-6} behave as monomers when run alone, and form a dimer when mixed in equimolar
351 amounts (Figure 5B; Figure 5—figure supplement 2A). The V560R mutation (γ B7 numbering, see
352 methods for sequence alignment) is based on EC6-only impaired α -cPcdhs, and has been
353 previously shown to block γ B6's homophilic *cis* interaction in solution (Goodman et al., 2017).
354 γ A4 V560R did not dimerize with wild-type γ C3, whereas γ C3 V560R could still dimerize with
355 wild type γ A4 (Figure 5B). Therefore impairing γ A4's EC6-only interface blocks γ A4/ γ C3 dimer
356 formation while impairing γ C3's EC6-only interface does not (although the dimerization appears
357 to be weaker compared to the wild type γ A4/ γ C3 *cis* interacting pairs). We also generated a γ C3-
358 like mutant of γ A4, K558R, which also targets the EC6-only interface. Like γ A4 V560R, γ A4
359 K558R also did not dimerize with wild type γ C3 in MALS and, when replicated, in SPR
360 experiments (Figure 5B, Figure 5—figure supplement 2B). The reverse mutation in γ C3, R558K,
361 inhibited dimerization with wild type γ A4 (Figure 5B). Therefore, like the α -specific R560 residue,
362 γ C3-specific R558 has distinct effects on dimerization when in γ A4 or γ C3, inhibiting
363 heterodimerization when mutated into γ A4 but promoting heterodimerization in γ C3. Together
364 these data suggest that the γ A4/ γ C3 dimer has a preferred orientation, with γ A4 predominantly
365 occupying the EC6-only position and γ C3 the EC5-6 side. Our data also account for the fact that
366 neither isoform homodimerizes in solution since the EC5-6 side would be impaired in the γ A4
367 homodimer while the EC6 side would be impaired in the γ C3 homodimer.

368

369 Next, we sought to test whether γ A4 and γ C3 preferentially adopt these specific positions in *cis*
370 interactions with a γ B isoform. To accomplish this we generated mutants of γ B7 individually
371 targeting the EC6-only interaction surface, γ B7 Y532G, and the EC5-6 side, γ B7 A570R,
372 respectively (Goodman et al., 2017) (Figure 4—source data 1). In SPR, γ B7 Y532G had only a

373 small impact on γ A4 binding, while γ B7 A570R abolished γ A4 binding (Figure 5C). In contrast,
374 γ B7 Y532G prevented γ C3 binding while γ B7 A570R showed robust γ C3 binding (Figure 5C).
375 These results suggest that γ A4/ γ B7 and γ C3/ γ B7 *cis* heterodimers also have preferred orientations
376 with γ A4 and γ C3 maintaining their preferences for the EC6-only and EC5–6 positions
377 respectively. Additionally, SPR data for the γ B7 mutants over the α C2 surface suggests α C2
378 preferentially occupies the EC6-only side in α C2/ γ B7 dimers (Figure 5C). This is notable since
379 α C2 forms robust *cis*-homodimers and therefore, like γ B7, can presumably readily occupy both
380 positions in its homophilic interactions, implying that the α C2/ γ B7 orientation preference could
381 be specific to the particular heterodimer pairing. However, since this interpretation is based on a
382 single mutation further interrogation of α C2’s interactions would be required to be conclusive. A
383 broader examination of orientation preferences among *cis* dimer pairings beyond those of
384 molecules with weak *cis* homodimer affinities, such as γ A4 and γ C3 examined here, could be
385 instructive.

386

387 **Discussion**

388 *Trans specificity* - The results of this study add to our current understanding of cPcdhs in a number
389 of ways. First, they reveal a remarkable level of specificity in *trans* homophilic interactions in the
390 sense that in no case was a heterophilic *trans* interaction detected in our SPR measurements. Prior
391 data has clearly indicated that cPcdhs exhibit a preference for homophilic *trans* interactions but
392 the extent of this specificity was not established in quantitative terms but were, rather, based on
393 cell aggregation experiments. The SPR experiments with cPcdhs reported here show no evidence
394 of cross-interaction between non-identical cPcdh isoforms. This level of specificity is unusual for
395 cell-cell recognition proteins, as significant intra-family interactions are evident in most other
396 families examined to date including type I cadherins (Katsamba et al., 2009; Vendome et al., 2014),
397 type II cadherins (Brasch et al., 2018), DIPs and Dprs (Cosmanescu et al., 2018), sidekicks
398 (Goodman et al., 2016c), and nectins (Harrison et al., 2012). Even the non-clustered δ -
399 protocadherins, which are preferentially homophilic and utilize an antiparallel EC1–4 interface
400 like the cPcdhs (Cooper et al., 2016; Harrison et al., 2020; Modak and Sotomayor, 2019), show

401 heterophilic intra-family *trans* interactions, though they show no cross-reactivity with cPcdhs
402 (Harrison et al., 2020).

403
404 High fidelity homophilic interaction is a strict requirement of the chain termination model for the
405 barcoding of vertebrate neurons and has been accomplished through the exploitation of a
406 multidomain interface of almost 4000 Å² (Nicoludis et al., 2019) that enables the positioning of
407 enough “negative constraints” (Sergeeva et al., 2020) to preclude the dimerization of about 1600
408 heterophilic pairs of 58 mouse cPcdh isoforms (Rubinstein et al., 2017). Dscams accomplish the
409 same task for thousands of isoforms by exploiting the combinatorics made possible by a three-
410 domain interface where each domain interacts largely independently with an identical domain on
411 its interacting partner (see discussion in (Zipursky and Grueber, 2013)). Although it is likely that
412 Dscams dimerize with a comparable level of homophilic specificity to that of cPcdhs, the evidence
413 is based on a semi-quantitative ELISA-type assay of recombinant multimerized isoforms
414 (Wojtowicz et al., 2007) and AUC experiments on a few select isoforms (Wu et al., 2012).

415
416 *Cis interactions* – Despite early evidence that *cis* interactions are promiscuous, the data reported
417 here indicate that this generalization needs to be significantly refined. Functional mutagenesis
418 studies have already established that alternate α cPcdhs and the C-type γ C4 do not form intra-
419 subtype *cis* interactions and can only reach the cell surface when mediated by heterophilic *cis*
420 interactions with members of other subtype families (Goodman et al., 2017; Thu et al., 2014). The
421 data presented in Figure 4 indicate that this is an extreme example of quite general behavior: intra-
422 subtype *cis* interactions are invariably weaker than inter-subtype interactions. However, unlike α
423 cPcdhs, most cPcdhs can reach the cell surface on their own. This includes β 1, all γ A-Pcdhs, and
424 γ C3 which do not form measurable homodimeric *cis* interactions in our solution-based AUC
425 experiments. We have attributed this to their presence on the restricted 2D surface of membranes
426 which can promote *cis*-dimerization (Wu et al., 2013) whereas biophysical experiments are carried
427 out in a 3D solution environment (Goodman et al., 2016b). (There may of course be other, still
428 undetermined, factors involved in cPcdh cell surface transport (Phillips et al., 2017).) Therefore,
429 although our biophysical experiments demonstrate that intra-subtype *cis* interactions are
430 comparatively weak and, in some cases undetectable in solution, intra-subtype *cis* dimers likely
431 assemble when constrained in more native membrane environments. As such, while α cPcdhs and

432 γ C4 are obligate participants in *cis*-heterodimers, at least in their cell surface transport, our data
433 show that the remaining cPcdhs are preferentially, although not exclusively, participants in *cis*-
434 heterodimers.

435

436 The *cis* binding preferences indicated by our data can be largely understood in terms of the
437 asymmetric interface discussed above. Specifically, different isoforms preferentially form one side
438 of the *cis* dimer: for example, the EC6-only side for cPcdh- γ A4 and the EC5–6 side for cPcdh-
439 γ C3. Homodimerization requires participation of single isoform on both sides of an interface
440 posing challenges in the optimization of binding affinities since, in some cases, the same residue
441 must participate in different intermolecular interactions. Given significant sequence conservation
442 in all members of an alternate cPcdh subfamily (Figure 4—figure supplement 3) even intra-
443 subfamily heterophilic interactions are more difficult to optimize relative to inter-subfamily
444 heterodimerization where there are no constraints on the two interacting surfaces. Additionally,
445 the robust cell surface delivery of many cPcdhs in cells expressing only a single isoform also
446 suggests that all carrier isoforms – β -, γ A-, and γ B-cPcdhs, plus C-types α C2, γ C3, and γ C5 – can
447 fill both the EC6 and EC5–6 roles, as *cis*-dimer formation is thought to be required for cell surface
448 export (Goodman et al., 2017; Goodman et al., 2016b; Thu et al., 2014). Therefore side preferences
449 are most likely not absolute for carrier cPcdh isoforms and may vary among individual isoform
450 and/or subtype pairings.

451

452 *Functional implications of cPcdh interactions* – The functional role of precise *trans* homophilic
453 specificity in ensuring high fidelity discrimination between neuron self and non-self has been
454 discussed previously (Rubinstein et al., 2017; Rubinstein et al., 2015) and is summarized above. It
455 is an essential feature of the chain termination model. The role of promiscuous *cis* interactions can
456 also be understood in terms of this model in that *cis* promiscuity enables the formation of a large
457 and diverse set of *cis* dimers that can only form long molecular zippers when all isoforms are
458 matched. However, the results of this study reveal strong preferences for inter-subgroup
459 heterophilic interactions whose biological rationale is uncertain. cPcdhs from the three subfamilies
460 have been shown to act cooperatively in certain neuronal contexts although whether this relates to
461 their *cis* interactions is unknown (Hasegawa et al., 2016; Ing-Esteves et al., 2018).

462

463 One possible advantage of weak homophilic *cis* interactions would be to ensure that once reaching
464 the cell surface a diverse set of *cis* dimers forms. This explanation implicitly assumes that most
465 isoforms (except for α -Pcdhs and γ C4) reach the surface as homodimers that must then quickly
466 dissociate and form more stable heterodimers. Another explanation posits that homotypic zippers
467 consisting solely of *cis*-homodimers are kinetically easier to form than heterotypic zippers since
468 in a homotypic zipper, either “wing” of the new *cis* dimer can form *trans* interactions with the
469 wing at the chain terminus. In contrast, in a hetero-dimeric zipper, only one wing can form
470 homophilic interactions with the chain terminus (Figure 1D). A preference for homotypic zippers
471 would then reduce the diversity required in the chain termination model since, in this model, it is
472 essential that all isoforms be incorporated into a growing zipper. The formation of long homotypic
473 zippers might lead to a repulsive phenotype even when mismatches are present.

474

475 However, these explanations would not fully account for interfamily heterophilic preferences. One
476 possibility is suggested by the observation that C-types are often highly expressed compared to
477 alternate cPcdhs, for example in Purkinje cells (Esumi et al., 2005; Kaneko et al., 2006). To ensure
478 sufficient diversity in growing zippers, it would then be important to ensure that zippers that are
479 formed are not overly enriched in C-type isoforms as would be accomplished through preferential
480 heterophilic *cis* interactions. This same logic would also pertain to alternate cPcdhs in cases where
481 one subfamily is more heavily expressed than another.

482

483 C-type cPcdhs have different functions than alternate cPcdhs and these are reflected in different
484 expression patterns. For example, α C2 can be alone responsible for tiling (Chen et al., 2017) (Of
485 note, in the chain termination model, a completely homophilic zipper is sufficient to initiate self-
486 avoidance facilitating tiling). On the other hand γ C4, which has a unique and crucial role in
487 neuronal survival (Garrett et al., 2019), requires co-expression with another cPcdh isoform for
488 robust cell surface expression and therefore is likely unable to act in isolation (Thu et al., 2014).
489 Furthermore, as detailed above, γ C4 has a much weaker *trans* interaction affinity than any other
490 cPcdh isoform measured to date, although it is still able to mediate cell aggregation when delivered
491 to the cell surface (Thu et al., 2014). The presence of E78 appears in large part to be responsible
492 for this weak affinity. It is unclear whether γ C4’s weak *trans* affinity plays any functional role,
493 although a weak homodimer interaction may facilitate extracellular interactions with other,

494 currently unidentified, proteins. More generally, it seems likely that different intracellular
495 interactions account for the specialized functions of C-type Pcdhs. The cytoplasmic domain plays
496 an important role in the activation of Wnt, WAVE, and other signaling cascades (Chen et al., 2009;
497 Fukuda et al., 2008; Keeler et al., 2015; Mah and Weiner, 2017; Onouchi et al., 2015; Pancho et
498 al., 2020). In some cases, the cytoplasmic domains of a subset or even a single cPcdh isoform
499 activates a specific signaling cascade. For example, cPcdh γ C3 is the only isoform able to interact
500 and inhibit Axin1, a Wnt pathway activator (Mah et al., 2016). Of note, γ -cPcdh intracellular
501 domains consist of a C-terminal constant region common to all γ isoforms (including the three γ
502 C-types) and a membrane-proximal variable region consisting of ~100 residues that could account
503 for the unique intracellular interactions and signaling of individual isoforms. Additionally it is
504 possible that extracellular interactions to molecules from other families, such as Neuroligins, may
505 account for some distinctions in function (Molumby et al., 2017; Steffen et al., 2021).

506

507 Overall, the results of this study demonstrate the remarkable tuning of the interactions among
508 clustered protocadherin family members: homophilic *trans* interactions are remarkably specific
509 despite the high level of sequence identity among family members while *cis* interactions, though
510 somewhat promiscuous, also appear designed to have binding preferences of still uncertain
511 function. These binding properties match requirements of the “isoform-mismatch chain-
512 termination model” for neuronal self-vs-non-self discrimination in which all expressed cPcdh
513 isoforms assemble into intercellular zippers formed by alternating promiscuous *cis* and matched
514 *trans* interactions with assembly size dictated by the presence or absence of mismatched isoforms.
515 It remains to be seen whether such assemblies can be observed *in vivo* and how they control
516 downstream signaling pathways.

517

518 **Materials and Methods**

519 **Protein production and purification**

520 cDNAs for mouse cPcdh ectodomain fragments, excluding the predicted signal sequences, were
521 cloned into a p α SHP-H mammalian expression vector (a kind gift from Daniel J. Leahy, John
522 Hopkins University) modified with the human Binding immunoglobulin protein (BiP;
523 MKLSLVAAMLLLSAARA) signal sequence and a C-terminal octa-histidine tag (Rubinstein et
524 al., 2015). The signal sequences were predicted using the SignalP 4.0 server (Petersen et al., 2011).
525 Point mutations were introduced into cDNA constructs using the KOD hot start polymerase
526 (Novagen) following the standard Quikchange protocol (Stratagene).

527

528 Suspension-adapted HEK293 Freestyle cells (Invitrogen) in serum free media (Invitrogen) grown
529 and maintained at 37 °C and 10% carbon dioxide were used for protein expression. FreeStyle™
530 293-F cell line has been authenticated and verified negative for mycoplasma using PCR testing
531 (ThermoFisher). The plasmid constructs were transfected into cells using polyethyleneimine
532 (Polysciences Inc.) (Baldi et al., 2012). Media was supplemented with 10 mM CaCl₂ 4 hours after
533 transfection. Conditioned media was harvested ~6 days after transfection and the secreted proteins
534 were purified using batch nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography followed
535 by size exclusion chromatography over Superdex 200 26/60 column (Cytiva) on an AKTA pure
536 fast protein liquid chromatography system (Cytiva). Purified proteins were concentrated to >2
537 mg/ml in 10 mM Tris-Cl pH 8.0, 150 mM NaCl, 3 mM CaCl₂, and 100–250 mM imidazole pH
538 8.0 and stored at 4 °C for short-term use or flash frozen in liquid nitrogen for long-term storage at
539 –80 °C.

540

541 Constructs encoding biotinylated cPcdh fragments for immobilization in SPR experiments were
542 prepared by insertion of an Avi-tag (GLNDIFEAQKIEWHE)-encoding sequence between the
543 octa-histidine tag and stop codon. These were co-transfected with a plasmid encoding the biotin-
544 Ligase BirA from *E. coli* (Lys2–Lys321) with a BiP signal sequence and a C-terminal endoplasmic
545 reticulum-retention signal (DYKDEL) (Barat and Wu, 2007). The expression and BirA plasmids
546 were mixed at a 9:1 ratio for transfection and 50 μ M Biotin (Sigma) was added to the media 4 h
547 post-transfection. Purification was carried out exactly as for the non-biotinylated constructs and
548 biotinylation was confirmed by western blot using NeutrAvidin-HRP (ThermoFisher).

549

550 **Sedimentation equilibrium analytical ultracentrifugation (AUC)**

Protein	Imidazole pH 8.0 (mM)	Spin speeds (rpm)
α_4 EC1–5	100	9000, 11000, 13000, 15000
α_7 EC1–5 L301R	100	9000, 11000, 13000, 15000
α_{12} EC1–5 (<i>poorly behaved</i>)	200	11000, 14000, 17000, 20000
γ B4 EC1–5	200	11000, 14000, 17000, 20000
γ B5 EC1–4-AVI	200	11000, 14000, 17000, 20000
γ C5 EC1–5 S116R	200	11000, 14000, 17000, 20000
β_6 EC1–4	100	9000, 11000, 13000, 15000
β_6 EC1–4-AVI tag	200	11000, 14000, 17000, 20000
β_6 EC1–4 R41N	200	11000, 14000, 17000, 20000
β_6 EC1–4 S117I	200	11000, 14000, 17000, 20000
β_6 EC1–4 L125P	200	11000, 14000, 17000, 20000
β_6 EC1–4 E369K	200	11000, 14000, 17000, 20000
β_6 EC1–4 Y371F	200	11000, 14000, 17000, 20000
β_6 EC1–4 R41N/S117I (<i>precipitates</i>)	200	11000, 14000, 17000, 20000
β_6 EC1–4 R41N/E369K	200	11000, 14000, 17000, 20000
β_6 EC1–4 S117I/L125P	200	11000, 14000, 17000, 20000
β_6 EC1–4 R41N/S117I/L125P	200	11000, 14000, 17000, 20000
β_6 EC1–4 R41N/S117I/E369K	200	11000, 14000, 17000, 20000
β_6 EC1–4 R41N/E369K/Y371F	200	11000, 14000, 17000, 20000
β_6 EC1–4 R41N/S117I/L125P/ E369K/Y371F	200	11000, 14000, 17000, 20000
β_1 EC3–6	200	12000, 16000, 20000, 24000
β_6 EC1–6	250	9000, 11000, 13000, 15000
β_9 EC3–6	200	11000, 14000, 17000, 20000
γ A3 EC3–6	200	11000, 14000, 17000, 20000
γ A9 EC3–6	200	11000, 14000, 17000, 20000
γ B7 EC3–6 A570R	200	13000, 17000, 21000, 25000
α C2 EC3–6-AVI tag	200	11000, 14000, 17000, 20000
γ C5 EC2–6	250	9000, 11000, 13000, 15000
γ C4 EC1–4	250	11000, 14000, 17000, 20000
γ C4 EC1–4 D290A	250	11000, 14000, 17000, 20000
γ C4 EC1–4 D290N	250	11000, 14000, 17000, 20000
γ C4 EC1–4 E78A	250	11000, 14000, 17000, 20000
γ C4 EC1–4 E78Q	250	11000, 14000, 17000, 20000
γ C4 EC1–4 S344R	250	11000, 14000, 17000, 20000

551 Experiments were performed in a Beckman XL-A/I analytical ultracentrifuge (Beckman-Coulter,
 552 Palo Alto CA, USA), utilizing six-cell centerpieces with straight walls, 12 mm path length and
 553 sapphire windows. Protein samples were dialyzed overnight and then diluted in 10 mM Tris-Cl
 554 pH 8.0, 150 mM NaCl, 3 mM CaCl₂ with 100–250 mM imidazole pH 8.0, as detailed in the above
 555 table. The samples were diluted to an absorbance of 0.65, 0.43 and 0.23 at 10 mm and 280 nm in
 556 channels A, B and C, respectively. For each sample, buffer was used as blank. The samples were

557 run in duplicate at four speeds as detailed in the above table. The lowest speed was held for 20 h
558 then four scans were conducted with 1 h interval, the subsequent three speeds were each held for
559 10 h followed by four scans with 1 hour interval each. Measurements were taken at 25 °C, and
560 detection was by UV at 280 nm or interference. Solvent density and protein v-bar at both
561 temperatures were determined using the program SednTerp (Alliance Protein Laboratories, Corte
562 Cancion, Thousand Oaks, CA, USA). The molecular weight of each protomer used in AUC
563 experiments, was determined by MALDI mass spectrometry. For calculation of dimeric K_D and
564 apparent molecular weight, all data were used in a global fit, using the program HeteroAnalysis,
565 (www.biotech.uconn.edu/auf). Calculation of the tetramer K_{ds} was done with the program Sedphat
566 (<http://www.analyticalultracentrifugation.com/sedphat/index.htm>).

567

568 **Surface plasmon resonance (SPR) binding experiments**

569 SPR binding experiments were performed using a Biacore T100 biosensor equipped with a Series
570 S CM4 sensor chip, immobilized with NeutrAvidin over all four flow cells. NeutrAvidin
571 immobilization was performed in HBS-P buffer, pH 7.4 at 32 °C, over all four surfaces using
572 amine-coupling chemistry as described in Katsamba et al. (2009), resulting in approximately
573 10,000 RU of NeutrAvidin immobilized (Katsamba et al., 2009). Binding experiments were
574 performed at 25 °C in a running buffer containing 10 mM Tris-Cl pH 8.0, 150 mM NaCl, 3 mM
575 CaCl₂, 20 mM imidazole, 0.25 mg/mL BSA and 0.005% (v/v) Tween-20 unless otherwise noted.
576

577 C-terminal biotinylated fragments were tethered over individual NeutrAvidin-immobilized flow
578 cells (shown in the left column of each Figures 2, 4, 5C, Figure 2—figure supplement 1, Figure
579 2—figure supplement 2B, Figure 4—figure supplement 1 and Figure 5—figure supplement 2B) at
580 2300–3000 RU, depending on the experiment, using a flow rate of 20 μ L/min. A NeutrAvidin-
581 immobilized flow cell was used as a reference in each experiment to subtract bulk refractive index
582 changes. The analytes tested in each experiment are listed at the top row. All analytes (with
583 exceptions for the *cis* interacting pairs γ C3_{3–6}/ β 9_{3–6}, in both orientations, and β 6_{1–6}/ γ C3_{3–6} in Figure
584 4A, discussed below) were tested at six concentrations ranging between 24, 8, 2.667, 0.889, 0.296,
585 and 0.099 μ M, prepared using a three-fold dilution series. γ C3_{3–6} binding over β 9_{3–6} (Figure 4A)
586 was tested at five concentrations from 8–0.099 μ M.

587 For all experiments, analyte samples were injected over the captured surfaces at 50 μ L/min for 40
588 s, followed by 180 s of dissociation phase, a running buffer wash step and a buffer injection at 100
589 μ L/min for 60 s. Protein samples were tested in order of increasing concentration, and within the
590 same experiment the entire concentration series was repeated to confirm reproducibility. Every
591 three binding cycles, buffer was used as an analyte instead of a protein sample to double reference
592 the binding responses by removing systematic noise and instrument drift. The resulting binding
593 curves were normalized for molecular weight differences according to data provided by mass spec
594 for each molecule. The data was processed using Scrubber 2.0 (BioLogic Software). To provide
595 an estimate of the number of possible heterophilic binding pairs, we have used a cut-off of 40RU,
596 which is the lowest signal that can be observed for a homodimeric *cis* fragment pair, γ B2₃₋₆.
597

598 In Figure 4A, β 6₁₋₆ and β 9₃₋₆ were tested over γ C3₃₋₆ at six concentrations ranging from 900 to 3.7
599 nM, which is 27-fold lower than the other interactions, prepared using a three-fold dilution series
600 in a running buffer containing increased concentrations of imidazole (100 mM) and BSA (0.5
601 mg/mL) to minimize nonspecific interactions. For these two interactions, although analyte samples
602 were injected over the captured surfaces at 50 μ L/min for 40s, the dissociation phase was
603 monitored for 300s to provide additional time for complex dissociation. Nevertheless, higher
604 analyte concentrations produced binding profiles that were not reproducible, most likely due to the
605 fact that bound complexes could not dissociate completely at these higher concentrations.
606

607 For the calculation of heterophilic K_{Ds} for the monomeric *cis* fragments β 1₃₋₆, γ A4₃₋₆, γ A9₃₋₆ and
608 γ C3₃₋₆ over each of the six surfaces, except β 9₃₋₆, the duplicate binding responses were fit globally,
609 using an 1:1 interaction model and a single K_D was calculated as the analyte concentration that
610 would yield 0.5 R_{max} and a fitting error, indicated in brackets. K_{Ds} lower than 24 μ M were
611 calculated using an independent R_{max}. For K_{Ds} greater 24 μ M, the R_{max} was fixed to a global value
612 determined by the R_{max} of a different cPcdh analyte tested over the same surface during the same
613 experiment that showed binding above 50% and therefore produced a more accurate R_{max}. For K_{Ds}
614 >50 μ M, a lower limit is listed since at the analyte concentrations used, (0.098-24 μ M), accurate
615 K_{Ds} could not be determined, even when the R_{max} is fixed. NB (No Binding) represents
616 interactions that did not yield any binding signal. The binding curves of γ C3₃₋₆ over the β 9₃₋₆ did
617 not come to equilibrium during the time-course of the experiment, so a kinetic analysis was

618 performed to calculate a K_D (Figure 4—figure supplement 1A). Binding of γ C3_{3–6} was tested using
619 a concentration range of 900–0.411 nM prepared using a three-fold dilution series in a running
620 buffer containing increased concentrations of imidazole (100 mM) and BSA (0.5 mg/mL) to
621 minimize any nonspecific interactions. Protein samples were injected over the captured surfaces
622 at 50 μ L/min for 90 s, followed by 420 s of dissociation phase, a running buffer wash step and a
623 buffer injection at 100 μ L/min for 60 s. Protein samples were tested in order of increasing
624 concentration in triplicate to confirm reproducibility. Every three binding cycles, buffer was used
625 as an analyte instead of a protein sample to double reference the binding responses by removing
626 systematic noise and instrument drift. The binding data was analyzed using an 1:1 interaction
627 model to calculate the kinetic parameters and the K_D .

628

629 **K562 cell aggregation assays**

630 Full-length cPcdhs β 6 and β 8 cDNAs were cloned into the pMax expression vectors encoding C-
631 terminal mCherry or mVenus tagged cPcdh proteins, then transfected into K562 cells (ATCC
632 CCL243) as previously described (Goodman et al., 2017; Thu et al., 2014). K-562 bone marrow
633 chronic myelogenous leukemia (CML) cell line has been authenticated and verified negative for
634 mycoplasma using PCR testing (ATCC). Point mutants were generated using the QuikChange
635 method (Stratagene). In brief, K562 cells were cultured at 37 °C with 5% CO₂ in DMEM with
636 GlutaMAX (GIBCO) supplemented with 10% FBS and 1% penicillin-streptomycin for two days.
637 Next, cells were counted, centrifuged, and resuspended at a density of \sim 1.5x10⁴ cells/ μ L in SF
638 Cell Line 4D-Nucleofector Solution SF with supplement according to manufacturer instructions
639 (Lonza). 2 μ g of each Pcdh expression construct were transfected into 20 μ L of the K562 cell
640 suspension by electroporation using an Amaxa 4D-Nucleofector (Lonza). Transfected cells were
641 transferred to a 24-well plate in 500 μ L of medium per well and incubated overnight at 37°C and
642 5% CO₂. Cells then were mixed, re-incubated with gentle rocking for 4 hours, then imaged with
643 an Olympus IX73 fluorescent microscope to determine the extent of aggregation.

644

645 **Size-exclusion coupled multi-angle light scattering (SEC–MALS)**

646 SEC-MALS experiments were performed using a Superdex 200 Increase 3.2/300 size exclusion
647 column on an AKTA FPLC system (Cytiva) coupled to inline static light scattering (Dawn Heleos
648 II, Wyatt Technology), differential refractive index (Optilab rEX, Wyatt Technology) and UV

649 detection. Purified cPcdh proteins were diluted to 18 μ M in running buffer (150 mM NaCl, 10 mM
650 Tris-Cl pH 8, 3 mM CaCl₂, 200 mM Imidazole pH 8) and 50 or 100 μ l samples were run at a flow
651 rate of 0.5 ml/min at room temperature. Mixtures of cPcdh fragments were prepared in the same
652 buffer at final concentrations of 18 μ M for each protein and run under the same conditions. Data
653 were analyzed using ASTRA software (Wyatt Technologies).

654

655 During SEC-MALS experiments, a dimer/monomer equilibrium is established as proteins move
656 through the size exclusion chromatography column, which is influenced by the K_D of the
657 interaction. The concentrations used in the current experiments (18 μ M for each cPcdh fragment),
658 although above the K_D of 3 μ M for the γ C3/ γ A4 *cis* interaction, are not sufficiently high for all the
659 *cis* fragments to be bound into heterodimers, leaving a significant population of molecules as
660 monomers, resulting in apparent molecular weights of \sim 76 kDa for the dimeric species compared
661 to the predicted molecular weight for a dimer of \sim 108 kDa.

662

663 **X-ray crystallography**

664 Crystallization screening of γ C4₁₋₄ using the vapor diffusion method yielded two protein crystal
665 forms: The first crystal form crystals were grown using a protein concentration of 7 mg/ml in 10%
666 (w/v) PEG8000, 20% ethylene glycol, 10% Morpheus Amino Acids (Molecular Dimensions), and
667 0.1 M Morpheus Buffer System 2 (Hepes/MOPS buffer; Molecular Dimensions) pH 7.5. No
668 additional cryoprotection was required for this crystal form. The second crystal form crystals were
669 grown using a protein concentration of 7 mg/ml in 1 M LiCl, 0.1 M Mes pH 6.0, and 10% (w/v)
670 PEG6000. The crystal used for data collection was cryo-protected in the crystallization condition
671 plus 30% (w/v) glycerol. X-ray diffraction data for each crystal form were collected at 100K from
672 single crystals at Northeastern Collaborative Access Team (NE-CAT) beamline 24ID-E at the
673 Advanced Photon Source, Argonne National Laboratory.

674

675 **γ C4₁₋₄ crystal form 1: Diffraction anisotropy and pseudosymmetry**

676 The X-ray diffraction data for the first crystal form showed strong diffraction anisotropy, with
677 relatively strong diffraction along c* and much weaker diffraction along a* and b* (Figure 3—
678 figure supplement 1A). These data were therefore truncated using ellipsoidal limits with using a
679 3.0 F/sigma cut-off along each of the three principal crystal axes as implemented in the UCLA

680 Diffraction Anisotropy Server (Strong et al., 2006) to 4.6/3.9/3.5 Å. The completeness within the
681 applied ellipsoidal resolution limits was 96.8% (Figure 3—source data 1).

682

683 ***γC4₁₋₄ crystal form 1: Crystal structure phasing and refinement***

684 The γ C4₁₋₄ crystal structure was solved by molecular replacement using Phaser (McCoy et al.,
685 2007), implemented in CCP4 (Winn et al., 2011). The γ C5_{EC1-3} crystal structure (PDB: 4ZPO)
686 modified using a sequence alignment to γ C4 with Phenix's MRage program (Liebschner et al.,
687 2019) was used as a search model. Following an initial round of rigid body refinement in Phenix
688 (Liebschner et al., 2019) the EC domain 4 from the α 7_{EC1-5} crystal structure (PDB: 5DZV) was
689 manually placed into the electron density map, using structural alignment to the EC1–3 regions as
690 a guide. The resulting model was subjected to a further round of rigid body refinement. At this
691 stage there was clear difference density for the interdomain calcium ions and covalently linked
692 glycans not present in the models. Iterative model building using Coot (Emsley et al., 2010) and
693 maximum-likelihood refinement using Phenix (Liebschner et al., 2019) was subsequently
694 conducted. The higher resolution (2.4 Å) crystal form 2 crystal structure (see below) was used as
695 a reference model in later rounds of iterative model-building and refinement to guide the local
696 geometry choices in this lower resolution structure. Final refinement statistics are given in Figure
697 3—source data 1.

698

699 ***γC4₁₋₄ crystal form 2: data processing, phasing, and refinement***

700 The γ C4₁₋₄ crystal form 2 dataset was indexed using XDS (Kabsch, 2010) and scaled using
701 AIMLESS (Evans and Murshudov, 2013). The data was spherically truncated with high resolution
702 limit of 2.4 Å. Data collection statistics are given in Figure 3—source data 1.

703

704 The γ C4₁₋₄ crystal form 2 crystal structure has two molecules in the asymmetric unit was solved
705 by molecular replacement using Phaser (McCoy et al., 2007), implemented in Phenix (Liebschner
706 et al., 2019), using the EC2–3 portion of the *trans*-dimer from the crystal form 1 crystal structure
707 early in refinement as a search model. The molecular replacement solution was then subjected to
708 an initial round of rigid body refinement using Phenix, followed by two rounds of model building
709 in Coot (Emsley et al., 2010) and maximum likelihood refinement in Phenix. The two EC4

710 domains were then manually placed in the electron density and subjected to rigid body refinement.
711 Following a further two iterative rounds of model building and refinement the two EC1 domains
712 were manually placed. Iterative model-building and refinement continued yielding the final crystal
713 structure whose statistics are given in Figure 3—source data 1.

714

715 **Structure analysis**

716 Buried surface areas were calculated using 'Protein interfaces, surfaces and assemblies' service
717 (PISA) at the European Bioinformatics Institute (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html)
718 (Krissinel and Henrick, 2007) and are given as the change in accessible surface area over both
719 protomers. Root mean square deviations over aligned C α atoms (RMSDs) between structures were
720 calculated using Pymol (Schrödinger, LLC). Crystal structure figures were made using Pymol
721 (Schrödinger, LLC).

722

723 **Sequence analysis**

724 Multiple sequence alignments were generated using Clustal Omega (Sievers et al., 2011) and
725 visualized using ESPript3.0 (Robert and Gouet, 2014). Sequence logos were generated from
726 multiple sequence alignments using WebLogo3 (Crooks et al., 2004).

727

728 ***Amino acid sequence alignment of cPcdhs γ B7, γ A4, and γ C3 EC1–6 regions***

729 CLUSTAL O (1.2.4) multiple sequence alignment
730

731 γ B7	-QPVRYSIPEELDRGSVVGKLA 732 γ A4	-EQIRYSVPEELERGSVGN 733 γ C3	STIIHYEILEERERGF 734	57
735	59			
736 γ B7	DRIDREQICKGRRKCE 737 γ A4	GRVDREGLCDRSPKCT 738 γ C3	ANLEILLEDKVRIL 739	60
740	117			
741 γ B7	DRLDREELCGTLP 742 γ A4	SAEVVV 743 γ C3	SDQINDNNPS 744	119
745	120			
746 γ B7	PGARTILES 747 γ A4	PGTRFPLPEAF 748 γ C3	DIGMNSL 749	177
750	179			
746 γ B7	PGT 747 γ A4	PGT 748 γ C3	PLE 749	180
750	237			
746 γ B7	HHMLTAVDGGDP 747 γ A4	HHVLTA 748 γ C3	PPRTGTTQLR 749	239
750	240			

731 γ B7 -QPVRYSIPEELDRGSVVGKLA
732 γ A4 -EQIRYSVPEELERGSVGN
733 γ C3 STIIHYEILEERERGF
734 ::*.. ** :** ***: . ***. . : * :* : .. * : : . :*..
735
736 γ B7 DRIDREQICKGRRKCE
737 γ A4 GRVDREGLCDRSPKCT
738 γ C3 ANLEILLEDKVRIL
739 .*:*** :* .* ** :*: :... * :*:*** :.* : : : :*:
740
741 γ B7 PGARTILES
742 γ A4 PGTRFPLPEAF
743 γ C3 DIGMNSL
744
745
746 γ B7 PGT
747 γ A4 PGT
748 γ C3 PLE
749
750 :*:***.*** * *:. * :: :*:*** *.*. * : : *: * ** : : *
57
59
60
117
119
120
177
179
180
237
239
240

786 Structure-based sequence analysis of the γ A4/ γ C3 interaction

787 Since both γ A4_{3–6} and γ C3_{3–6} are monomeric in solution but form a robust heterodimer when mixed
788 (in SPR, AUC, and SEC-MALS) we hypothesized that these molecules might have opposing *cis*
789 interaction side preferences. To facilitate hypothesis generation on the nature of their *cis*
790 heterodimer interaction we modeled the two possible γ A4/ γ C3 *cis* dimers: one with γ A4 occupying
791 the EC6-only position and γ C3 the EC5–6 position; and the second with γ C3 in the EC6-only
792 position and γ A4 in the EC5–6 position. To do this the monomeric γ A4_{EC3–6} crystal structure (PDB:
793 5SZQ) was structurally superimposed over EC6 domains with the EC6-only protomer from the
794 γ B7_{EC3–6} *cis*-dimer crystal structure (PDB: 5V5X; RMSD 0.7 Å over 91 aligned Cαs) or over EC5–
795 6 domains with the EC5–6 protomer (RMSD 1.0 Å over 194 aligned Cαs). Since γ A4 and γ B7 are
796 so structurally similar in their EC5–6 regions modeling γ A4’s *cis* interactions in this manner as a

797 basis for hypothesis generation seemed reasonable. The only region of significant structural
798 deviation within the EC5–6 regions between γ A4 and γ B7 is in the EC6 A–A' loop region which
799 has a peripheral role in the EC6-only protomer interface. For modelling γ C3 we used
800 computational mutagenesis of the γ B7 structure selecting the best-fit rotamer for each amino acid
801 from the Dunbrack rotamer library (Shapovalov and Dunbrack, 2011), implemented in UCSF
802 Chimera (Pettersen et al., 2004). No energy minimization was conducted and the models are
803 intended only for use in hypothesis generation.

804

805 ***Cis* interface mutants**

806 Our studies of Pcdh *cis* interactions we have found that mutagenesis of the *cis* interface commonly
807 has a deleterious impact on protein expression levels in our system (Goodman et al., 2017). We
808 assume this is because *cis* interaction is required for robust cell-surface delivery/secretion (Thu et
809 al., 2014), although this hasn't been specifically addressed in our HEK293 protein expression
810 system.

811

812 To test our structure-guided hypotheses regarding γ A4 and γ C3s' *cis* interactions and side
813 preferences as we tried to make a number of different *cis* interface mutants and were able to obtain
814 four different mutants (see table below). Since protein yields were generally too low for AUC and
815 SPR, MALS was used to study the impact of these mutants on γ A4/ γ C3 *cis* dimer formation.

816

Mutant protein (γB7 numbering given in parentheses)	Cis interface side targeted	Protein expression in 25 mL test
γC3 EC3–6 Y540G (Y532G equivalent)	EC6-only	No
γC3 EC3–6 V560D (L555D equivalent)	EC6-only	No
γC3 EC3–6 V565R (V560R equivalent)	EC6-only	Yes
γC3 EC3–6 A575R (A570R equivalent)	EC5–6	No
γC3 EC3–6 R563K (K558R equivalent)	Both	Yes
γA4 EC3–6 Y536G (Y532G equivalent)	EC6-only	No
γA4 EC3–6 L559D (L555D equivalent)	EC6-only	No
γA4 EC3–6 V564R (V560R equivalent)	EC6-only	Yes
γA4 EC3–6 A574R (A570R equivalent)	EC5–6	No
γA4 EC3–6 K562R (K558R equivalent)	EC6-only	Yes
β1 EC3–6 V563R (V560R equivalent)	EC6-only	No
β1 EC3–6 S573R (A570R equivalent)	EC6-only	No
β1 EC3–6 K561R (K558R equivalent)	EC5–6	No
β9 EC3–6 V563R (V560R equivalent)	EC6-only	No
β9 EC3–6 A573R (A570R equivalent)	EC6-only	No
β9 EC3–6 K561R (K558R equivalent)	EC5–6	No

818 **Accession numbers**

819 Atomic coordinates and structure factors for the γ C4 EC1–4 crystal structures are deposited in the
820 protein data bank with accession codes PDB: 7JGZ and 7RGF.

821 **Acknowledgements**

822 We thank Surajit Banerjee for help with synchrotron data collection at the APS NE-CAT 24-ID-
823 C/E beamlines, supported by NIH P41GM103403. This work was supported by the NIH (grants
824 R01MH114817 to L.S. and R01DK106548 to R.S.), the National Science Foundation (grant MCB-
825 1914542 to B.H.), the Israel Science Foundation (grant 1463/19 to R.R.) and the Israel Cancer
826 Research Fund (grant ICRF 19-203-RCDA to R.R.).

827

828 **Competing Interests**

829 The authors declare no competing interests.

830 **Supplementary Files**

831 Figure 2—figure supplements 1–2 and source data 1

832 Figure 3—figure supplement 1 and source data 1–2

833 Figure 4—figure supplements 1–3 and source data 1

834 Figure 5—figure supplements 1–2

835 **References**

836 Baldi, L., Hacker, D.L., Meerschman, C., and Wurm, F.M. (2012). Large-Scale Transfection of Mammalian
837 Cells. In *Protein Expression in Mammalian Cells: Methods and Protocols*, J.L. Hartley, ed. (Totowa, NJ:
838 Humana Press), pp. 13-26.

839 Barat, B., and Wu, A.M. (2007). Metabolic biotinylation of recombinant antibody by biotin ligase retained
840 in the endoplasmic reticulum. *Biomolecular Engineering* 24, 283-291.

841 Bonn, S., Seeburg, P.H., and Schwarz, M.K. (2007). Combinatorial Expression of α - and γ -Protocadherins
842 Alters Their Presenilin-Dependent Processing. *Molecular and Cellular Biology* 27, 4121-4132.

843 Brasch, J., Goodman, K.M., Noble, A.J., Rapp, M., Manepalli, S., Bahna, F., Daney, V.P., Bepler, T.,
844 Berger, B., Maniatis, T., *et al.* (2019). Visualization of clustered protocadherin neuronal self-recognition
845 complexes. *Nature* 569, 280-283.

846 Brasch, J., Katsamba, P.S., Harrison, O.J., Ahlsén, G., Troyanovsky, R.B., Indra, I., Kaczynska, A., Kaeser,
847 B., Troyanovsky, S., Honig, B., *et al.* (2018). Homophilic and Heterophilic Interactions of Type II
848 Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior. *Cell Reports* 23, 1840-1852.

849 Canzio, D., and Maniatis, T. (2019). The generation of a protocadherin cell-surface recognition code for
850 neural circuit assembly. *Current Opinion in Neurobiology* 59, 213-220.

851 Chen, J., Lu, Y., Meng, S., Han, M.-H., Lin, C., and Wang, X. (2009). α - and γ -Protocadherins Negatively
852 Regulate PYK2. *Journal of Biological Chemistry* 284, 2880-2890.

853 Chen, W.V., Nwakeze, C.L., Denny, C.A., O'Keeffe, S., Rieger, M.A., Mountoufaris, G., Kirner, A.,
854 Dougherty, J.D., Hen, R., Wu, Q., *et al.* (2017). Pcdhac2 is required for axonal tiling and assembly of
855 serotonergic circuitries in mice. *Science* 356, 406-411.

856 Cooper, S.R., Jontes, J.D., and Sotomayor, M. (2016). Structural determinants of adhesion by
857 Protocadherin-19 and implications for its role in epilepsy. *eLife* 5, e18529.

858 Cosmanescu, F., Katsamba, P.S., Sergeeva, A.P., Ahlsen, G., Patel, S.D., Brewer, J.J., Tan, L., Xu, S., Xiao,
859 Q., Nagarkar-Jaiswal, S., *et al.* (2018). Neuron-Subtype-Specific Expression, Interaction Affinities, and
860 Specificity Determinants of DIP/Dpr Cell Recognition Proteins. *Neuron* 100, 1385-1400.e1386.

861 Crooks, G.E., Hon, G., Chandonia, J.-M., and Brenner, S.E. (2004). WebLogo: A Sequence Logo
862 Generator. *Genome Research* 14, 1188-1190.

863 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. *Acta
864 Crystallographica Section D: Biological Crystallography* 66, 486-501.

865 Esumi, S., Kakazu, N., Taguchi, Y., Hirayama, T., Sasaki, A., Hirabayashi, T., Koide, T., Kitsukawa, T.,
866 Hamada, S., and Yagi, T. (2005). Monoallelic yet combinatorial expression of variable exons of the
867 protocadherin-alpha gene cluster in single neurons. *Nature Genetics* 37, 171-176.

868 Evans, P.R., and Murshudov, G.N. (2013). How good are my data and what is the resolution? *Acta
869 Crystallographica Section D: Biological Crystallography* 69, 1204-1214.

870 Fan, L., Lu, Y., Shen, X., Shao, H., Suo, L., and Wu, Q. (2018). Alpha protocadherins and Pyk2 kinase
871 regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in
872 mice. *eLife* 7, e35242.

873 Fukuda, E., Hamada, S., Hasegawa, S., Katori, S., Sanbo, M., Miyakawa, T., Yamamoto, T., Yamamoto,
874 H., Hirabayashi, T., and Yagi, T. (2008). Down-regulation of protocadherin- α A isoforms in mice changes
875 contextual fear conditioning and spatial working memory. *European Journal of Neuroscience* 28, 1362-
876 1376.

877 Garrett, A.M., Bosch, P.J., Steffen, D.M., Fuller, L.C., Marcucci, C.G., Koch, A.A., Bais, P., Weiner, J.A.,
878 and Burgess, R.W. (2019). CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial
879 isoform-specific role for Pcdhgc4. *PLOS Genetics* 15, e1008554.

880 Goodman, K.M., Rubinstein, R., Dan, H., Bahna, F., Manneppalli, S., Ahlsén, G., Aye Thu, C., Sampogna,
881 R.V., Maniatis, T., Honig, B., *et al.* (2017). Protocadherin *cis*-dimer architecture and recognition unit
882 diversity. *Proceedings of the National Academy of Sciences* 114, E9829-E9837.

883 Goodman, K.M., Rubinstein, R., Thu, C.A., Bahna, F., Manneppalli, S., Ahlsen, G., Rittenhouse, C.,
884 Maniatis, T., Honig, B., and Shapiro, L. (2016a). Structural Basis of Diverse Homophilic Recognition by
885 Clustered alpha- and beta-Protocadherins. *Neuron* 90, 709-723.

886 Goodman, K.M., Rubinstein, R., Thu, C.A., Manneppalli, S., Bahna, F., Ahlsén, G., Rittenhouse, C.,
887 Maniatis, T., Honig, B., and Shapiro, L. (2016b). γ -Protocadherin structural diversity and functional
888 implications. *eLife* 5, e20930.

889 Goodman, K.M., Yamagata, M., Jin, X., Manneppalli, S., Katsamba, P.S., Ahlsén, G., Sergeeva, A.P., Honig,
890 B., Sanes, J.R., and Shapiro, L. (2016c). Molecular basis of sidekick-mediated cell-cell adhesion and
891 specificity. *eLife* 5, e19058.

892 Harrison, O.J., Brasch, J., Katsamba, P.S., Ahlsen, G., Noble, A.J., Dan, H., Sampogna, R.V., Potter, C.S.,
893 Carragher, B., Honig, B., *et al.* (2020). Family-wide Structural and Biophysical Analysis of Binding
894 Interactions among Non-clustered δ -Protocadherins. *Cell Reports* 30, 2655-2671.e2657.

895 Harrison, O.J., Vendome, J., Brasch, J., Jin, X., Hong, S., Katsamba, P.S., Ahlsen, G., Troyanovsky, R.B.,
896 Troyanovsky, S.M., Honig, B., *et al.* (2012). Nectin ectodomain structures reveal a canonical adhesive
897 interface. *Nature Structural & Molecular Biology* 19, 906-915.

898 Hasegawa, S., Kumagai, M., Hagiwara, M., Nishimaru, H., Hirano, K., Kaneko, R., Okayama, A.,
899 Hirayama, T., Sanbo, M., and Hirabayashi, M. (2016). Distinct and Cooperative Functions for the

900 Protocadherin- α ,- β and- γ Clusters in Neuronal Survival and Axon Targeting. *Frontiers in Molecular*
901 *Neuroscience* *9*, 155.

902 Hattori, D., Chen, Y., Matthews, B.J., Salwinski, L., Sabatti, C., Grueber, W.B., and Zipursky, S.L. (2009).
903 Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. *Nature*
904 *461*, 644-U687.

905 Honig, B., and Shapiro, L. (2020). Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-
906 Cell Recognition. *Cell* *181*, 520-535.

907 Hudson, J.D., Tamilselvan, E., Sotomayor, M., and Cooper, S.R. (2021). A complete Protocadherin-19
908 ectodomain model for evaluating epilepsy-causing mutations and potential protein interaction sites.
909 Structure.

910 Ing-Esteves, S., Kostadinov, D., Marocha, J., Sing, A.D., Joseph, K.S., Laboulaye, M.A., Sanes, J.R., and
911 Lefebvre, J.L. (2018). Combinatorial Effects of Alpha- and Gamma-Protocadherins on Neuronal Survival
912 and Dendritic Self-Avoidance. *The Journal of Neuroscience* *38*, 2713-2729.

913 Iqbal, M., Maroofian, R., Çavdarlı, B., Riccardi, F., Field, M., Banka, S., Bubshait, D.K., Li, Y., Hertecant,
914 J., Baig, S.M., *et al.* (2021). Biallelic variants in PCDHGC4 cause a novel neurodevelopmental syndrome
915 with progressive microcephaly, seizures, and joint anomalies. *Genetics in Medicine*.

916 Kabsch, W. (2010). XDS. *Acta Crystallographica Section D: Biological Crystallography* *66*, 125-132.

917 Kaneko, R., Kato, H., Kawamura, Y., Esumi, S., Hirayama, T., Hirabayashi, T., and Yagi, T. (2006). Allelic
918 gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic
919 expression in single Purkinje cells. *Journal of Biological Chemistry* *281*, 30551-30560.

920 Katsamba, P., Carroll, K., Ahlsen, G., Bahna, F., Vendome, J., Posy, S., Rajebhosale, M., Price, S., Jessell,
921 T.M., Ben-Shaul, A., *et al.* (2009). Linking molecular affinity and cellular specificity in cadherin-mediated
922 adhesion. *Proceedings of the National Academy of Sciences* *106*, 11594-11599.

923 Keeler, A.B., Schreiner, D., and Weiner, J.A. (2015). Protein Kinase C Phosphorylation of a γ -
924 Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite
925 Arborization. *Journal of Biological Chemistry* *290*, 20674-20686.

926 Kostadinov, D., and Sanes, J.R. (2015). Protocadherin-dependent dendritic self-avoidance regulates neural
927 connectivity and circuit function. *Elife* *4*.

928 Krissinel, E., and Henrick, K. (2007). Inference of Macromolecular Assemblies from Crystalline State.
929 *Journal of Molecular Biology* *372*, 774-797.

930 Lefebvre, J.L., Kostadinov, D., Chen, W.V., Maniatis, T., and Sanes, J.R. (2012). Protocadherins mediate
931 dendritic self-avoidance in the mammalian nervous system. *Nature* *488*, 517-521.

932 Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.-
933 W., Jain, S., McCoy, A.J., *et al.* (2019). Macromolecular structure determination using X-rays, neutrons
934 and electrons: recent developments in Phenix. *Acta Crystallographica Section D* *75*, 861-877.

935 Mah, K.M., Houston, D.W., and Weiner, J.A. (2016). The gamma-Protocadherin-C3 isoform inhibits
936 canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. *Scientific Reports* *6*.

937 Mah, K.M., and Weiner, J.A. (2017). Regulation of Wnt signaling by protocadherins. *Seminars in Cell &*
938 *Developmental Biology* *69*, 158-171.

939 McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007).
940 Phaser crystallographic software. *Journal of Applied Crystallography* *40*, 658-674.

941 Miura, S.K., Martins, A., Zhang, K.X., Graveley, B.R., and Zipursky, S.L. (2013). Probabilistic Splicing of
942 Dscam1 Establishes Identity at the Level of Single Neurons. *Cell* *155*, 1166-1177.

943 Modak, D., and Sotomayor, M. (2019). Identification of an adhesive interface for the non-clustered $\delta 1$
944 protocadherin-1 involved in respiratory diseases. *Communications Biology* *2*, 354.

945 Molumby, M.J., Anderson, R.M., Newbold, D.J., Koblesky, N.K., Garrett, A.M., Schreiner, D., Radley,
946 J.J., and Weiner, J.A. (2017). γ -Protocadherins Interact with Neuroligin-1 and Negatively Regulate
947 Dendritic Spine Morphogenesis. *Cell Reports* *18*, 2702-2714.

948 Mountoufaris, G., Canzio, D., Nwakeze, C.L., Chen, W.V., and Maniatis, T. (2016). Writing, Reading, and
949 Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly.
950 *Annual Review of Cell and Developmental Biology* *34*, 471-493.

951 Mountoufaris, G., Chen, W.V., Hirabayashi, Y., O'Keeffe, S., Chevee, M., Nwakeze, C.L., Polleux, F., and
952 Maniatis, T. (2017). Multicluseter Pcdh diversity is required for mouse olfactory neural circuit assembly.
953 *Science* *356*, 411-414.

954 Murata, Y., Hamada, S., Morishita, H., Mutoh, T., and Yagi, T. (2004). Interaction with Protocadherin- γ
955 Regulates the Cell Surface Expression of Protocadherin- α . *Journal of Biological Chemistry* *279*, 49508-
956 49516.

957 Nicoludis, J.M., Green, A.G., Walujkar, S., May, E.J., Sotomayor, M., Marks, D.S., and Gaudet, R. (2019).
958 Interaction specificity of clustered protocadherins inferred from sequence covariation and structural
959 analysis. *Proceedings of the National Academy of Sciences* *116*, 17825-17830.

960 Nicoludis, J.M., Lau, S.-Y., Schaefer, C.P.I., Marks, D.S., Weihofen, W.A., and Gaudet, R. (2015).
961 Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate
962 Homophilic Specificity. *Structure* *23*, 2087-2098.

963 Nicoludis, J.M., Vogt, B.E., Green, A.G., Schaefer, C.P.I., Marks, D.S., and Gaudet, R. (2016). Antiparallel
964 protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4.
965 *eLife* *5*.

966 Onouchi, T., Kishino-Kaneko, Y., Kameshita, I., Ishida, A., and Sueyoshi, N. (2015). Regulation of
967 Ca²⁺/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) by protocadherin- γ C5 (Pcdh-
968 γ C5). *Archives of Biochemistry and Biophysics* 585, 109-120.

969 Pancho, A., Aerts, T., Mitsogiannis, M.D., and Seuntjens, E. (2020). Protocadherins at the Crossroad of
970 Signaling Pathways. *Front Mol Neurosci* 13, 117.

971 Peek, S.L., Mah, K.M., and Weiner, J.A. (2017). Regulation of neural circuit formation by protocadherins.
972 *Cellular and Molecular Life Sciences*.

973 Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal
974 peptides from transmembrane regions. *Nat Meth* 8, 785-786.

975 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E.
976 (2004). UCSF Chimera—A visualization system for exploratory research and analysis. *Journal of
977 Computational Chemistry* 25, 1605-1612.

978 Phillips, G.R., LaMassa, N., and Nie, Y.M. (2017). Clustered protocadherin trafficking. *Seminars in Cell
979 & Developmental Biology* 69, 131-139.

980 Rich, R.L., and Myszka, D.G. (2007). Survey of the year 2006 commercial optical biosensor literature.
981 *Journal of Molecular Recognition* 20, 300-366.

982 Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript
983 server. *Nucleic Acids Research* 42, W320-W324.

984 Rubinstein, R., Goodman, K.M., Maniatis, T., Shapiro, L., and Honig, B. (2017). Structural origins of
985 clustered protocadherin-mediated neuronal barcoding. *Seminars in Cell & Developmental Biology* 69, 140-
986 150.

987 Rubinstein, R., Thu, C.A., Goodman, K.M., Wolcott, H.N., Bahna, F., Manneppalli, S., Ahlsen, G., Chevee,
988 M., Halim, A., Clausen, H., *et al.* (2015). Molecular Logic of Neuronal Self-Recognition through
989 Protocadherin Domain Interactions. *Cell* 163, 629-642.

990 Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L.
991 (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. *Cell*
992 101, 671-684.

993 Schreiner, D., and Weiner, J.A. (2010). Combinatorial homophilic interaction between gamma-
994 protocadherin multimers greatly expands the molecular diversity of cell adhesion. *Proceedings of the
995 National Academy of Sciences of the United States of America* 107, 14893-14898.

996 Sergeeva, A.P., Katsamba, P.S., Cosmanescu, F., Brewer, J.J., Ahlsen, G., Manneppalli, S., Shapiro, L., and
997 Honig, B. (2020). DIP/Dpr interactions and the evolutionary design of specificity in protein families. *Nat
998 Commun* 11, 2125.

999 Shapovalov, M.V., and Dunbrack, R.L., Jr. (2011). A smoothed backbone-dependent rotamer library for
1000 proteins derived from adaptive kernel density estimates and regressions. *Structure* 19, 844-858.

1001 Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert,
1002 M., Söding, J., *et al.* (2011). Fast, scalable generation of high-quality protein multiple sequence alignments
1003 using Clustal Omega. *Molecular Systems Biology* 7, 539-539.

1004 Steffen, D.M., Ferri, S.L., Marcucci, C.G., Blocklinger, K.L., Molumby, M.J., Abel, T., and Weiner, J.A.
1005 (2021). The γ -Protocadherins Interact Physically and Functionally with Neuroligin-2 to Negatively
1006 Regulate Inhibitory Synapse Density and Are Required for Normal Social Interaction. *Molecular*
1007 *Neurobiology* 58, 2574-2589.

1008 Strong, M., Sawaya, M.R., Wang, S., Phillips, M., Cascio, D., and Eisenberg, D. (2006). Toward the
1009 structural genomics of complexes: Crystal structure of a PE/PPE protein complex from *Mycobacterium*
1010 tuberculosis. *Proceedings of the National Academy of Sciences of the United States of America* 103, 8060-
1011 8065.

1012 Thu, C.A., Chen, W.V., Rubinstein, R., Chevee, M., Wolcott, H.N., Felsovalyi, K.O., Tapia, J.C., Shapiro,
1013 L., Honig, B., and Maniatis, T. (2014). Single-Cell Identity Generated by Combinatorial Homophilic
1014 Interactions between alpha, beta, and gamma Protocadherins. *Cell* 158, 1045-1059.

1015 Vendome, J., Felsovalyi, K., Song, H., Yang, Z., Jin, X., Brasch, J., Harrison, O.J., Ahlsen, G., Bahna, F.,
1016 Kaczynska, A., *et al.* (2014). Structural and energetic determinants of adhesive binding specificity in type
1017 I cadherins. *Proceedings of the National Academy of Sciences of the United States of America* 111, E4175-
1018 E4184.

1019 Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel,
1020 E.B., Leslie, A.G.W., McCoy, A., *et al.* (2011). Overview of the CCP4 suite and current developments.
1021 *Acta Crystallographica Section D* 67, 235-242.

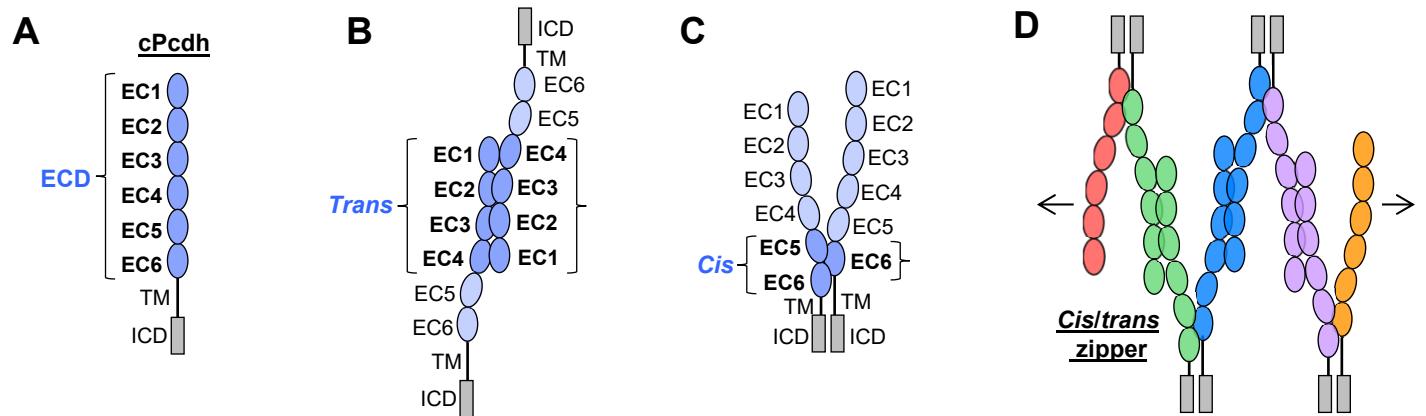
1022 Wojtowicz, W.M., Flanagan, J.J., Millard, S.S., and Zipursky, S.L. (2004). Alternative splicing of
1023 Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding.
1024 *Cell* 118, 619-633.

1025 Wojtowicz, W.M., Wu, W., Andre, I., Qian, B., Baker, D., and Zipursky, S.L. (2007). A vast repertoire of
1026 Dscam binding Specificities arises from modular interactions of variable ig domains. *Cell* 130, 1134-1145.

1027 Wu, Q., and Maniatis, T. (1999). A striking organization of a large family of human neural cadherin-like
1028 cell adhesion genes. *Cell* 97, 779-790.

1029 Wu, Q., Zhang, T., Cheng, J.F., Kim, Y., Grimwood, J., Schmutz, J., Dickson, M., Noonan, J.P., Zhang,
1030 M.Q., Myers, R.M., *et al.* (2001). Comparative DNA sequence analysis of mouse and human protocadherin
1031 gene clusters. *Genome Research* 11, 389-404.

1032 Wu, W., Ahlsen, G., Baker, D., Shapiro, L., and Zipursky, S.L. (2012). Complementary Chimeric Isoforms
1033 Reveal Dscam1 Binding Specificity In Vivo. *Neuron* 74, 261-268.


1034 Wu, Y., Honig, B., and Ben-Shaul, A. (2013). Theory and Simulations of Adhesion Receptor Dimerization
1035 on Membrane Surfaces. *Biophysical Journal* *104*, 1221-1229.

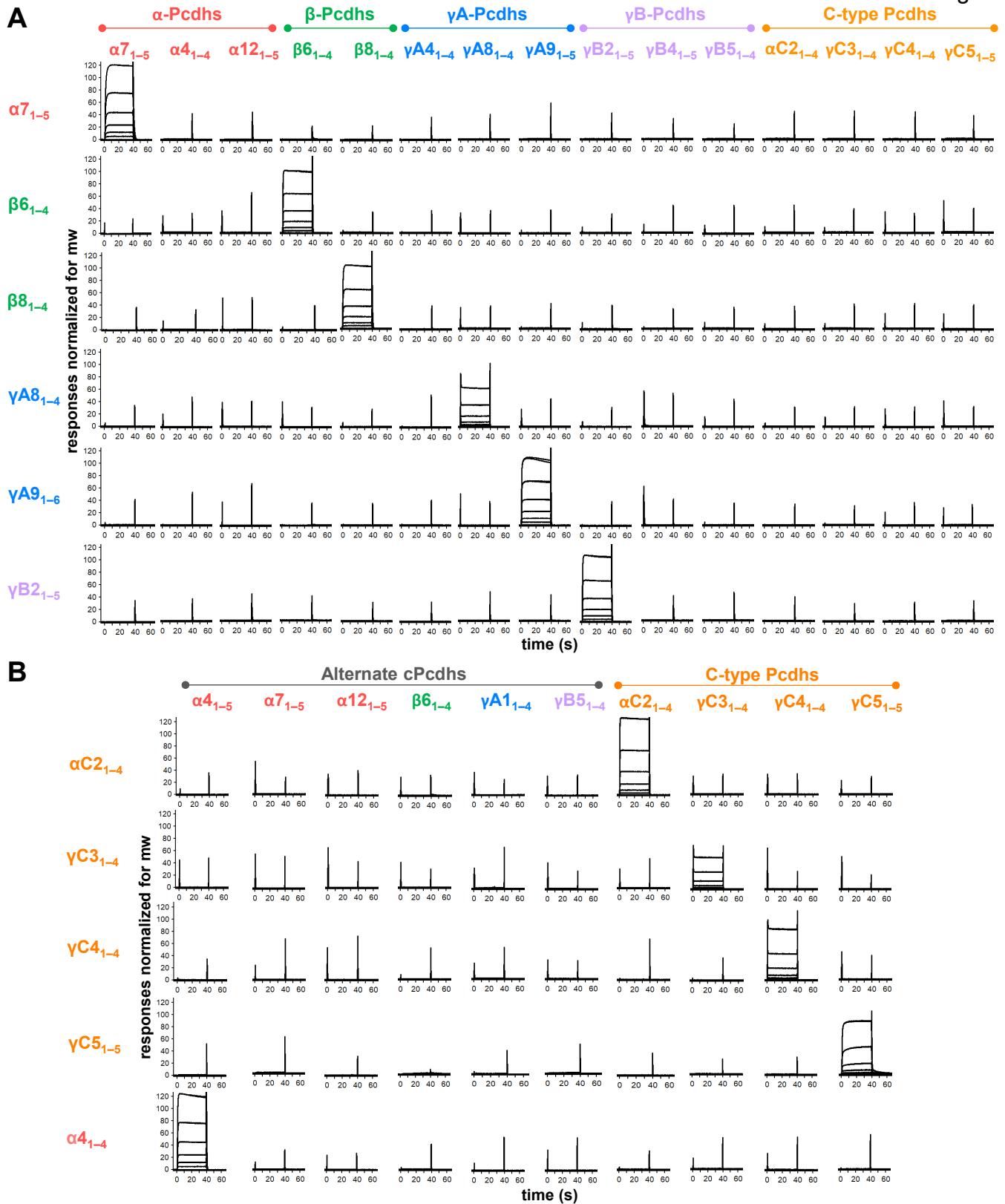
1036 Zipursky, S.L., and Grueber, W.B. (2013). The Molecular Basis of Self-Avoidance. In *Annual Review of*
1037 *Neuroscience*, Vol 36, S.E. Hyman, ed., pp. 547-568.

1038

1039

Figure 1

Figure 1: cPcdh domain organization and extracellular interactions


(A) Schematic depicting the domain organization of cPcdhs. EC, extracellular cadherin domain; TM, transmembrane domain; ECD, ectodomain; ICD, intracellular domain.

(B) Schematic of two cPcdhs interacting via the EC1–4 *trans* interface.

(C) Schematic of two cPcdhs interacting via the EC5–6/EC6 *cis* interface.

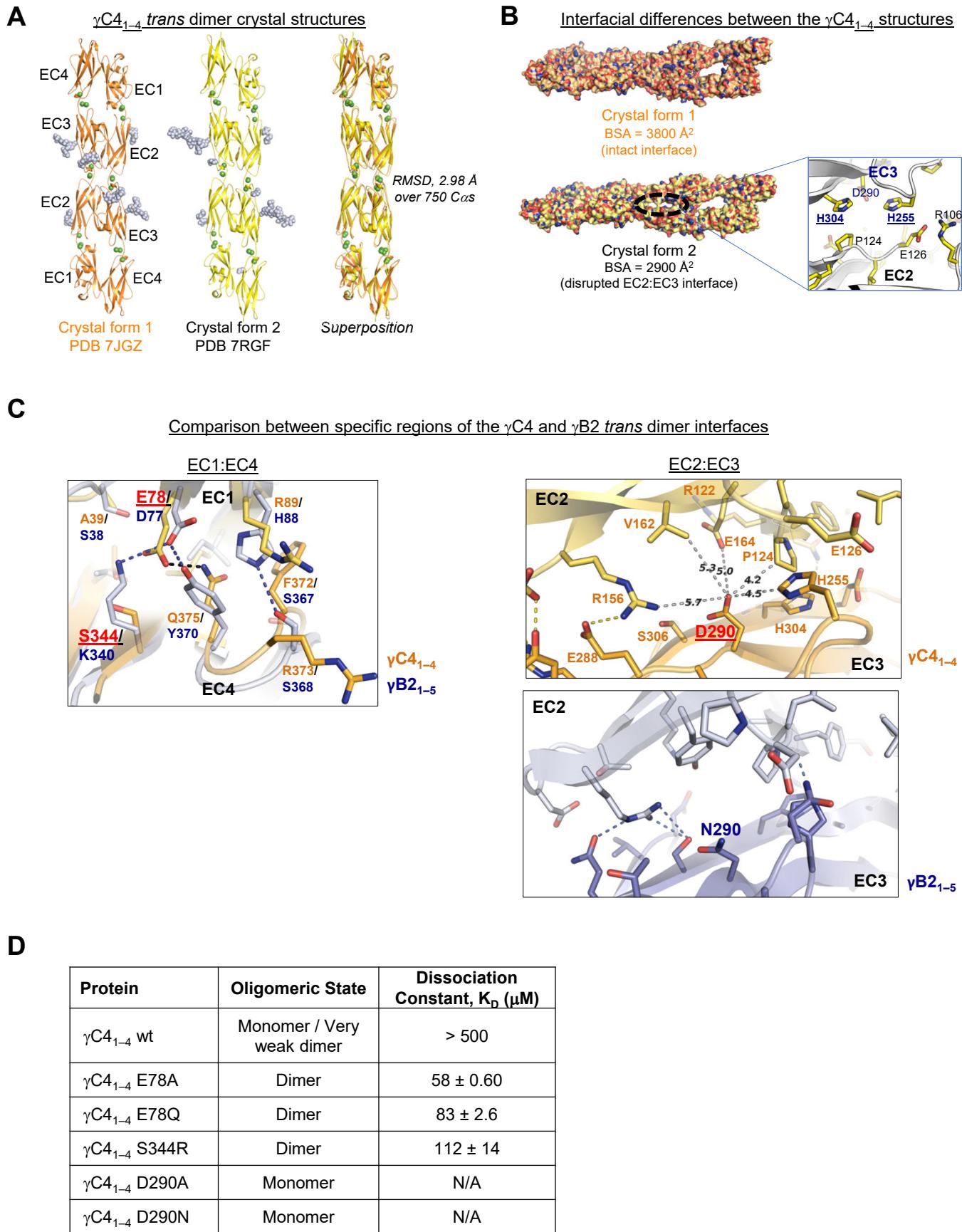

(D) Schematic depiction of the *cis/trans* cPcdh zipper comprising multiple cPcdh isoforms (various colors) engaged in homophilic *trans* interactions and promiscuous *cis* interactions as required for the proposed “isoform-mismatch chain-termination model” of cPcdh-mediated neuronal self-recognition and self-avoidance.

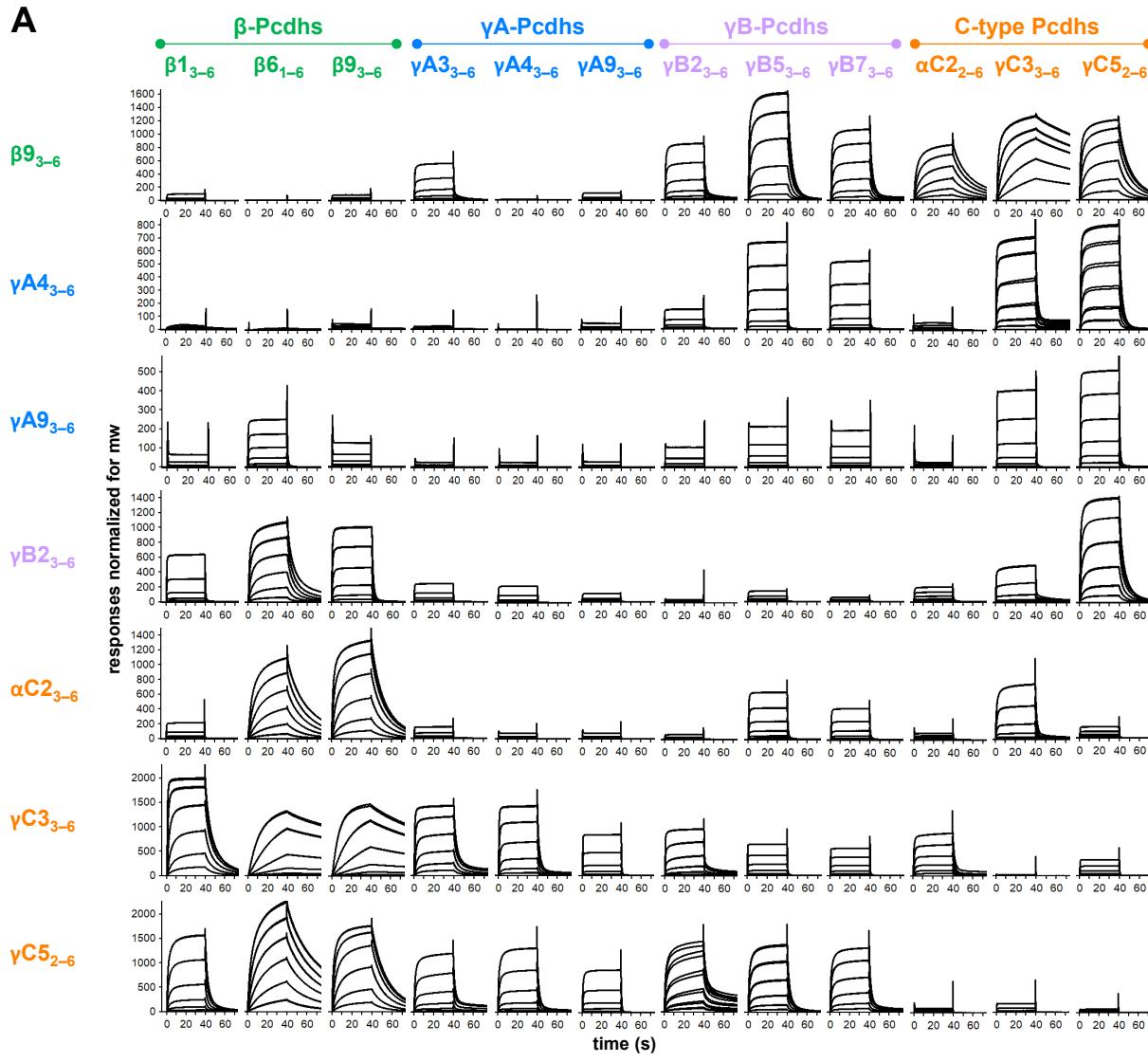
Figure 2

Figure 2: cPcdhs show strict homophilic specificity in their *trans* interactions

(A) SPR binding profiles of cPcdh *trans* fragment analytes from all cPcdh subfamilies (denoted in the top row) flowed over six surfaces coated with alternate cPcdh *trans* fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight.

(B) SPR binding profiles of cPcdh *trans* fragment analytes from all cPcdh subfamilies (shown in columns) flowed over individual surfaces coated with C-type and $\alpha 4$ cPcdh *trans* fragments (rows). Responses over all surfaces are drawn on the same scale and normalized for molecular weight.

Figure 3: C-type cPcdh γ C4 adopts an EC1–4-mediated head-to-tail *trans* dimer like alternate cPcdhs with a comparatively weak dimer affinity


(A) Ribbon diagrams of the γ C4_{EC1–4} *trans* dimer crystal structures obtained from two different crystal forms. Bound calcium ions are shown as green spheres and glycans are shown in pale blue spheres.

(B) The two crystal structures have a markedly different *trans* interface buried surface area (BSA). *Left*, Surface views of the two *trans* dimer crystal structures highlight the difference, with a gap apparent in the EC2:EC3 region of the interface in crystal form 2 that is absent from crystal form 1. Surfaces are colored by atom type with the carbons colored orange for crystal form 1 and yellow for crystal form 2. *Right*, Close up view of the gap region in the crystal form 2 dimer with the side chains depicted as sticks. The intact crystal form 1 γ C4 dimer is similar overall to those of the published intact alternate α , β , γ A, and γ B cPcdhs and the published δ 2 non-clustered (nc) Pcdh *trans* dimers (root mean square deviation over aligned C α s (RMSD) 2.4–4.5 Å; Figure 3—source data 2). The published crystal structures of γ A8, γ A1, and γ B3 also show partially disrupted *trans* interfaces though in differing regions of the interface (Goodman et al., 2016b, Nicoludis et al., 2016).

(C) Comparison between the (i) EC1:EC4 and (ii) EC2:EC3 regions of the γ C4 (orange) and γ B2 (blue, PDB 5T9T) *trans* dimer interfaces. (i) Structural alignment of the EC1:EC4 portion of the γ C4 and γ B2 *trans* dimers highlights a possible destabilizing role for γ C4 residue E78 since unlike its counterpart in γ B2 (D77) it is not juxtaposed with a basic residue. (ii) Similarly, an additional negatively charged residue (D290) which occupies a central position in the γ C4 EC2:EC3 interface may also contribute to γ C4's comparatively weak *trans* dimer interaction. Distances between the D290 side chain and its nearest contacts are shown as dashed grey lines with distances given in Angstroms.

(D) Sedimentation equilibrium AUC experiments were conducted on γ C4 EC1–4 wild type (wt) and interface mutants to assess whether E78 and D290 negatively impact *trans* dimerization. Table details the oligomeric state and dissociation constants for each protein tested.

Figure 4

B

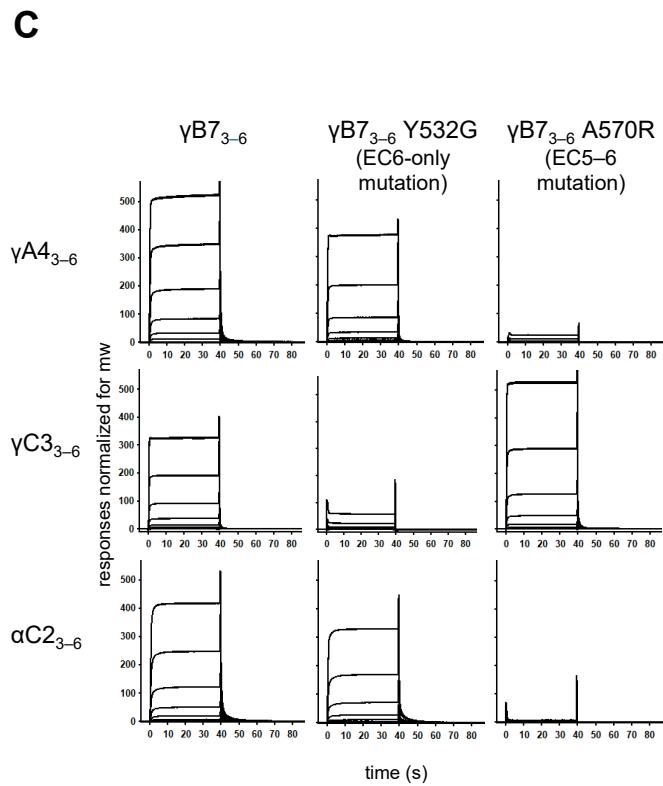
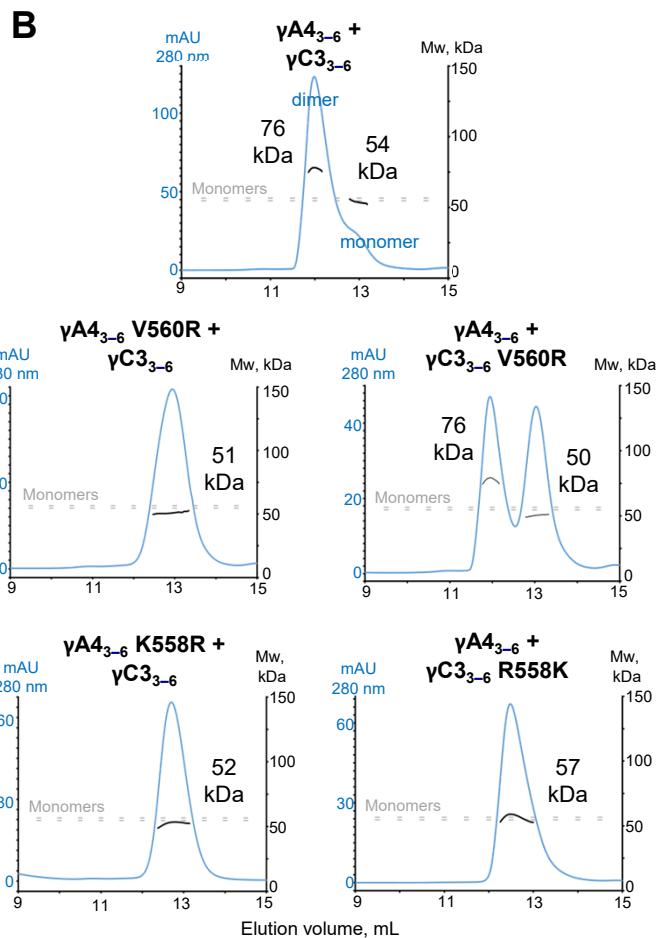
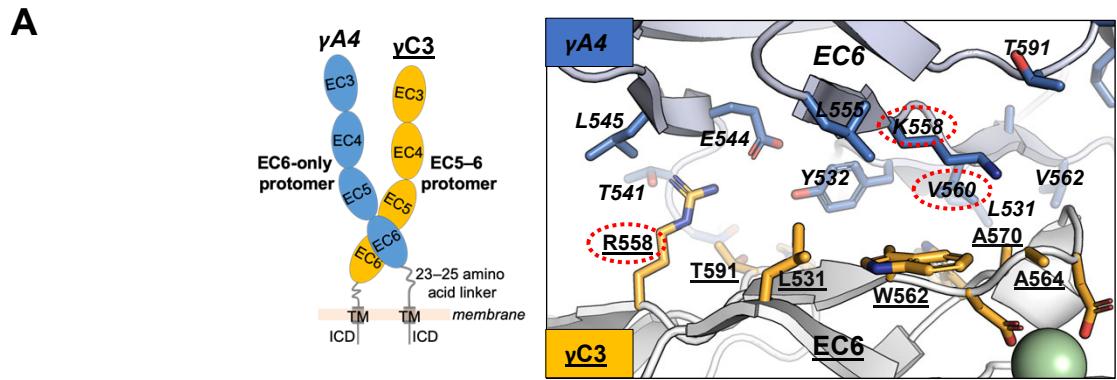
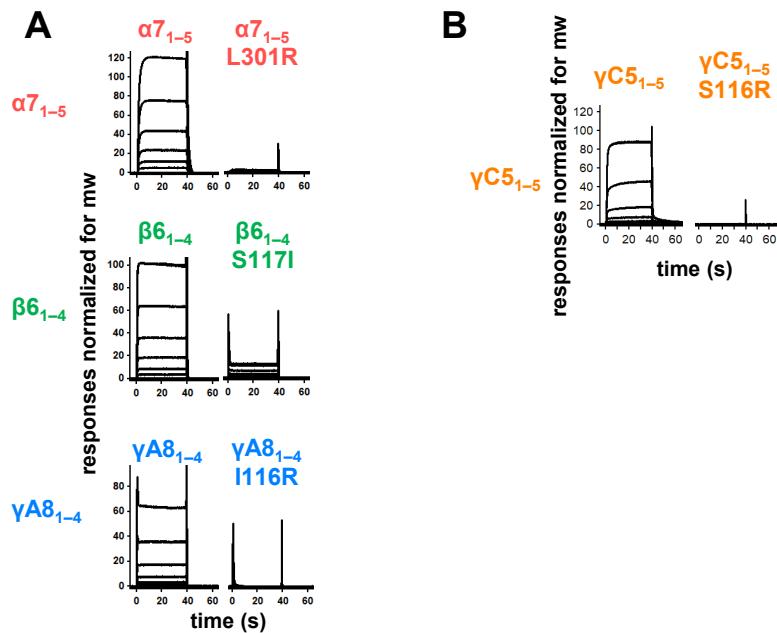



Cis dimer	K _D for heterophilic <i>cis</i> interactions (μM)			
	β1 ₃₋₆	γA4 ₃₋₆	γA9 ₃₋₆	γC3 ₃₋₆
β9 ₃₋₆	NB	NB	NB	0.2201(2)
γA4 ₃₋₆	>50		>50	2.73(1)
γA9 ₃₋₆	>50	>50		9.60(3)
γB2 ₃₋₆	25.69(8)	44.0(6)	>50	20.00(7)
αC2 ₃₋₆	>50	>50	>50	11.51(1)
γC3 ₃₋₆	1.116(4)	3.47(2)	14.5(2)	
γC5 ₂₋₆	6.91(3)	7.74(4)	18.2(2)	>50

Figure 4: cPcdh *cis* interactions are promiscuous with a preference for interfamily heterodimers

(A) SPR binding profiles of cPcdh *cis* fragment analytes from all cPcdh subfamilies except alphas (shown in columns) flowed over individual surfaces coated with cPcdh *cis* fragments. Binding profiles for each surface are individually scaled and responses are normalized for molecular weight.

(B) Table of dissociation constants calculated from the SPR data for the four monomeric analytes. The number in brackets represents the error of the fit based on analysis of duplicate responses. Binding signals were not detected for interactions labeled NB, while >50, represents interactions with K_{Ds} > 50 μM, where an accurate K_D cannot be determined.

Figure 5

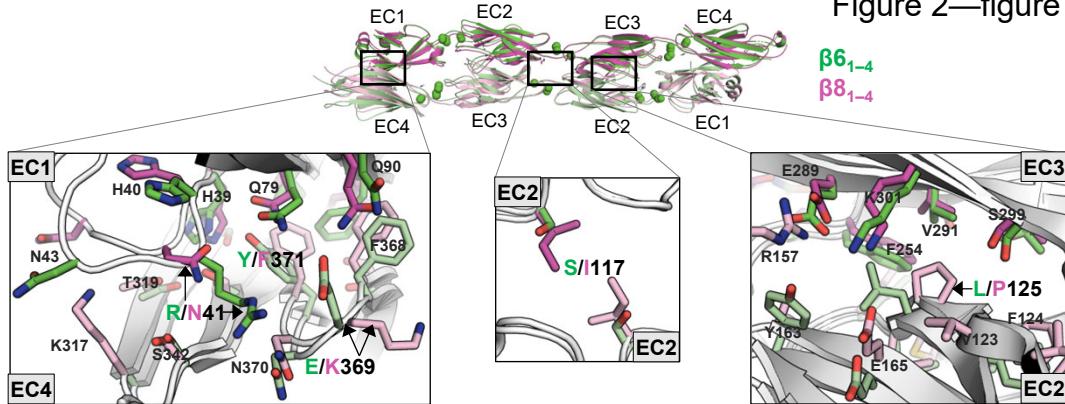

Figure 5: γ A4 preferentially forms the EC6-only side and γ C3 the EC5–6 side in *cis* dimers

(A) Structural model of γ A4/ γ C3 *cis* dimer based on γ B7_{EC3-6} *cis* dimer and γ A4_{EC3-6} crystal structures (PDBs: 5V5X and 5SZQ). γ A4 is shown adopting the EC6-only side (blue protomer) and γ C3 is shown adopting the EC5–6 side (yellow protomer). Left, schematic of the γ A4/ γ C3 EC3–6 *cis* dimer. Right, close-up view of the EC6:EC6 interface from the modeled *cis* dimer showing interfacial residue side chains. Bound calcium ions are shown as green spheres. Residues which were mutated in the panel B are circled in red. γ B7 crystal structure numbering is used for both γ A4 and γ C3 residues. See methods for γ A4 and γ C3 alignment. Please note the model shown here is solely for hypothesis generation, since it is unlikely to be completely accurate. See methods for further details of structural modeling.

(B) *Top*, SEC-MALS data for an equimolar mixture of wild-type γ A4_{EC3-6} and γ C3_{EC3-6} showing dimer formation. Plot shows size exclusion absorbance at 280 nm trace (left axis), molecular weight of the eluant peaks (right axis), and the monomer molecular weights of γ A4_{EC3-6} and γ C3_{EC3-6} measured by mass spectrometry – 54.5 kDa and 56.5 kDa respectively – as dashed grey lines. Average molecular weight of the molecules in the dimer and monomer eluant peaks are labeled. *Middle*, SEC-MALS data for V560R mutants, which target the EC6-only side of the interface. *Bottom*, SEC-MALS data for residue 558 mutants. The γ C3-like K558R mutation in γ A4 inhibits heterodimer formation with wild-type γ C3. Similarly, the γ A4-like R558K in γ C3 inhibits dimerization with wild-type γ A4.

(C) SPR binding profiles for γ B7_{EC3-6} wild type and *cis* interface mutants flowed over three individual wild-type *cis* fragment surfaces. The two mutations specifically target one side of the *cis* interface.

Figure 2—figure supplement 1


Figure 2—figure supplement 1: *Trans* interface mutants demonstrate homophilic interactions observed in SPR are mediated by the *trans* dimer interface

(A) SPR binding curves for wild-type and *trans* mutant alternate cPcdhs flowed over their respective immobilized wild-type molecule.

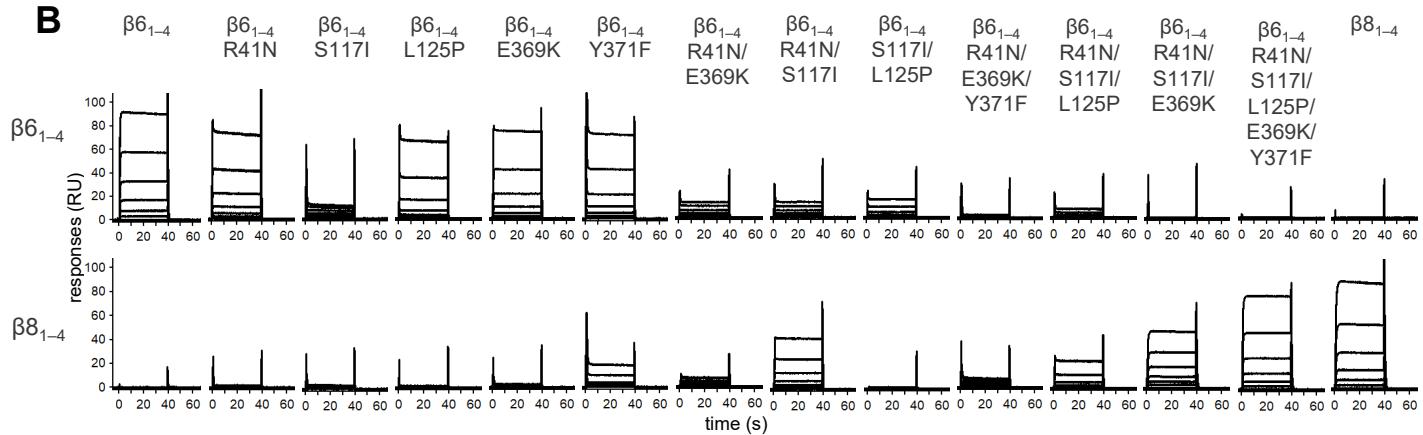
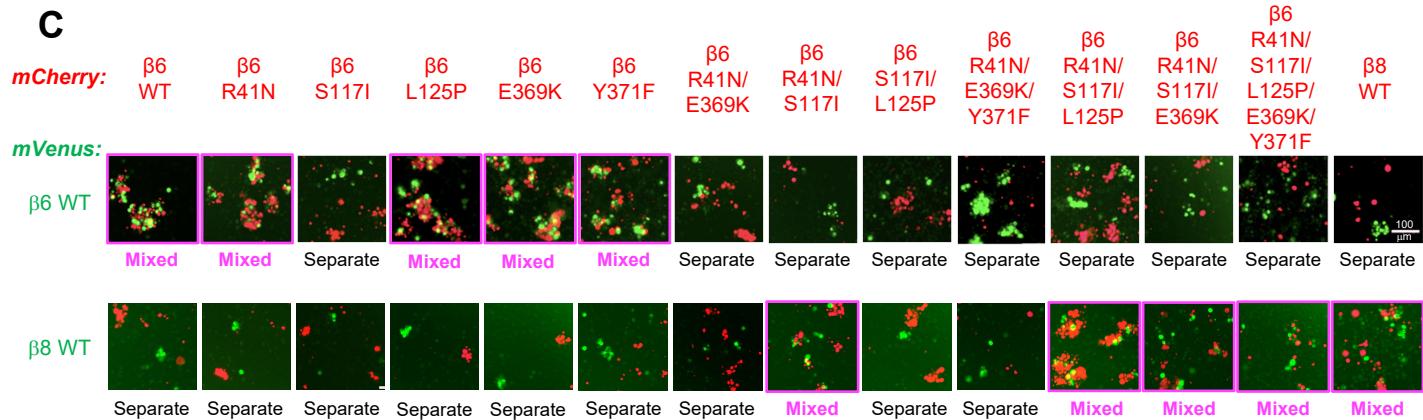

(B) SPR binding curves for wild-type and *trans* mutant C-type cPcdh $\gamma C5$ flowed over immobilized wild-type $\gamma C5$.

Figure 2—figure supplement 2

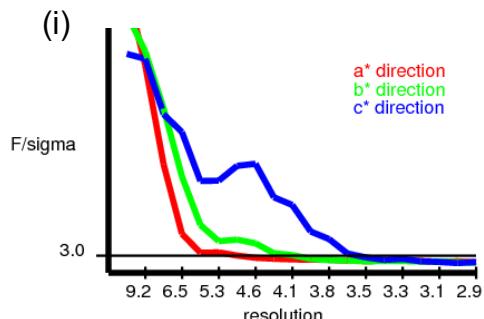

A

B

C

Figure 2—figure supplement 2: Mutagenesis experiments reveal role in *trans* specificity for the five interfacial residue differences between close pair $\beta 6_{1-4}$ and $\beta 8_{1-4}$

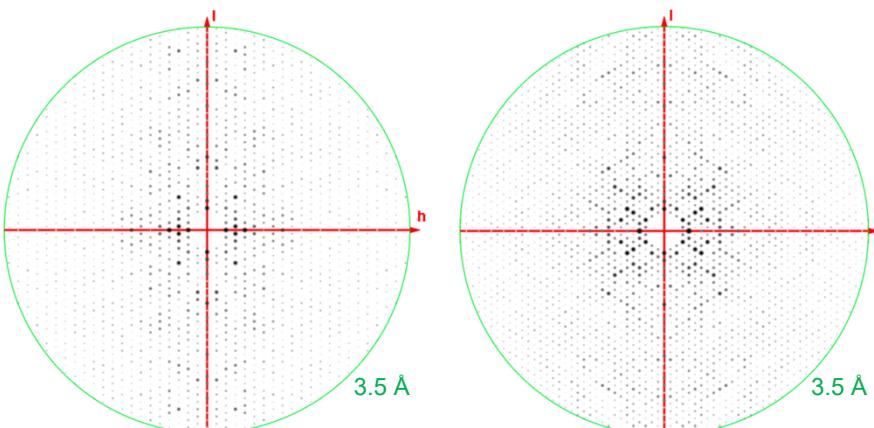
A. Structural superposition of the $\beta 6_{1-4}$ and $\beta 8_{1-4}$ *trans* dimer crystal structures (PDBs: 5DZX and 5DZY) shown in ribbon depiction above, with close-up views of the *trans* interfacial regions containing the five interfacial residues that vary between $\beta 6_{1-4}$ and $\beta 8_{1-4}$ shown below. The two protomers forming the $\beta 6_{1-4}$ dimer are colored green and pale green respectively. The $\beta 8_{1-4}$ dimer is colored magenta/light pink. Bound calcium ions are shown as green spheres. Interfacial residue side chains are shown in the close-up views. The five variable residues are labelled with the $\beta 6_{1-4}$ amino acid given in green and the $\beta 8_{1-4}$ amino acid in magenta: R/N41 is in EC1; E/K369 and Y/F371 are in EC4; S/I117 is in EC2 and self-interacts at the *trans* dimer center of symmetry; and L/P125 is also in EC2.


B. SPR binding profiles of $\beta 6$ *trans* interface mutants converting $\beta 6_{1-4}$ to $\beta 8_{1-4}$ and the wild-type molecules (shown in columns) were flowed over surfaces coated with wild-type $\beta 6_{1-4}$ or wild-type $\beta 8_{1-4}$ (rows).

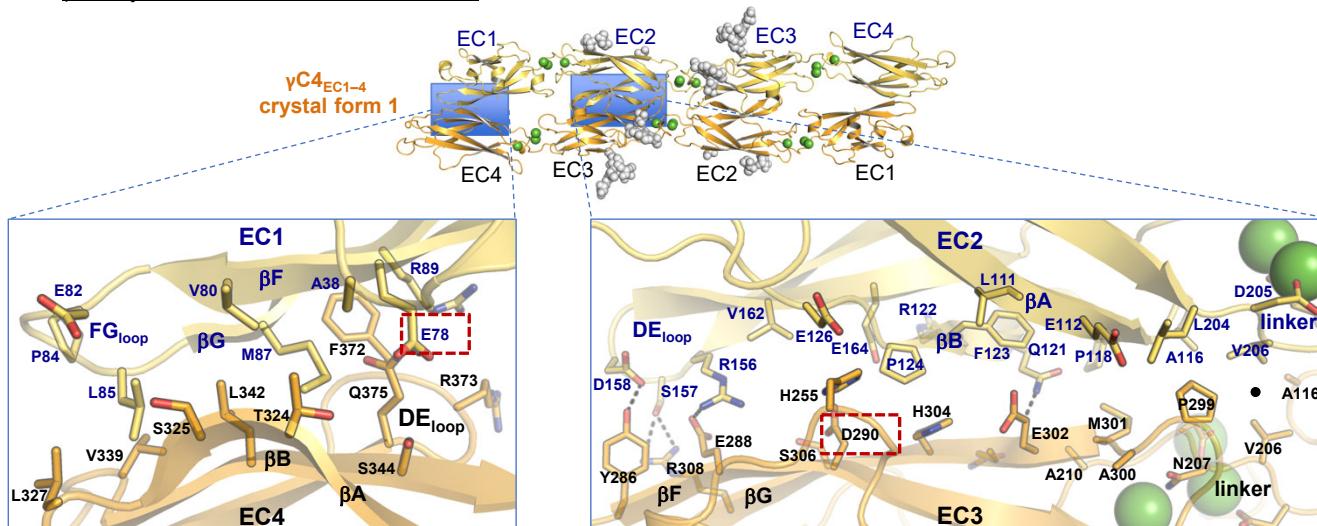
C. Results of the K562 co-aggregation assay where cells transfected with *mCherry* labeled $\beta 6$ and $\beta 8$ wild-types (WT) and the same *trans*-specificity mutants as in (B) were each mixed with cells transfected with *mVenus* labeled $\beta 6$ and $\beta 8$ wild-types (WT). Experiments where the red and green cells co-aggregate demonstrating interaction between the *mCherry*-labeled WT or mutant cPcdh and the *mVenus*-labeled WT cPcdh are labeled “mixed” and highlighted with magenta boxes. Scale bar, 100 μ M.

Figure 3—figure supplement 1

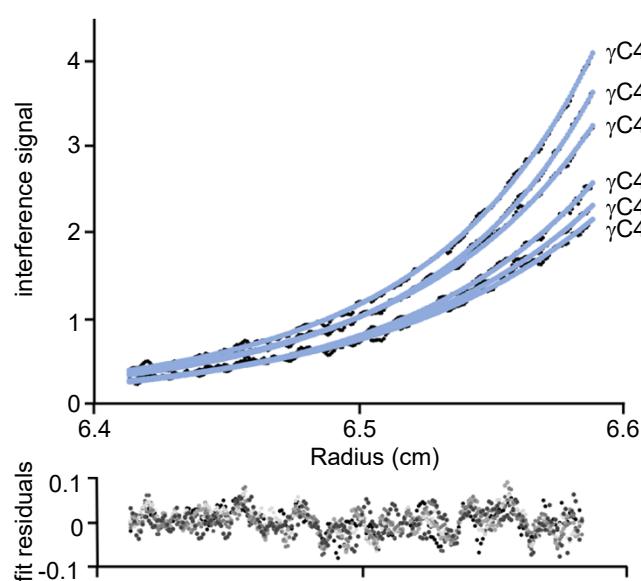
A


γ C4_{EC1-4} crystal form 1 diffraction anisotropy

The recommended resolution limits along a*,b*,c* are
4.6 Ång 3.9 Ång 3.5 Ång


These are the resolutions at which F/sigma drops below an arbitrary cutoff of 3.0

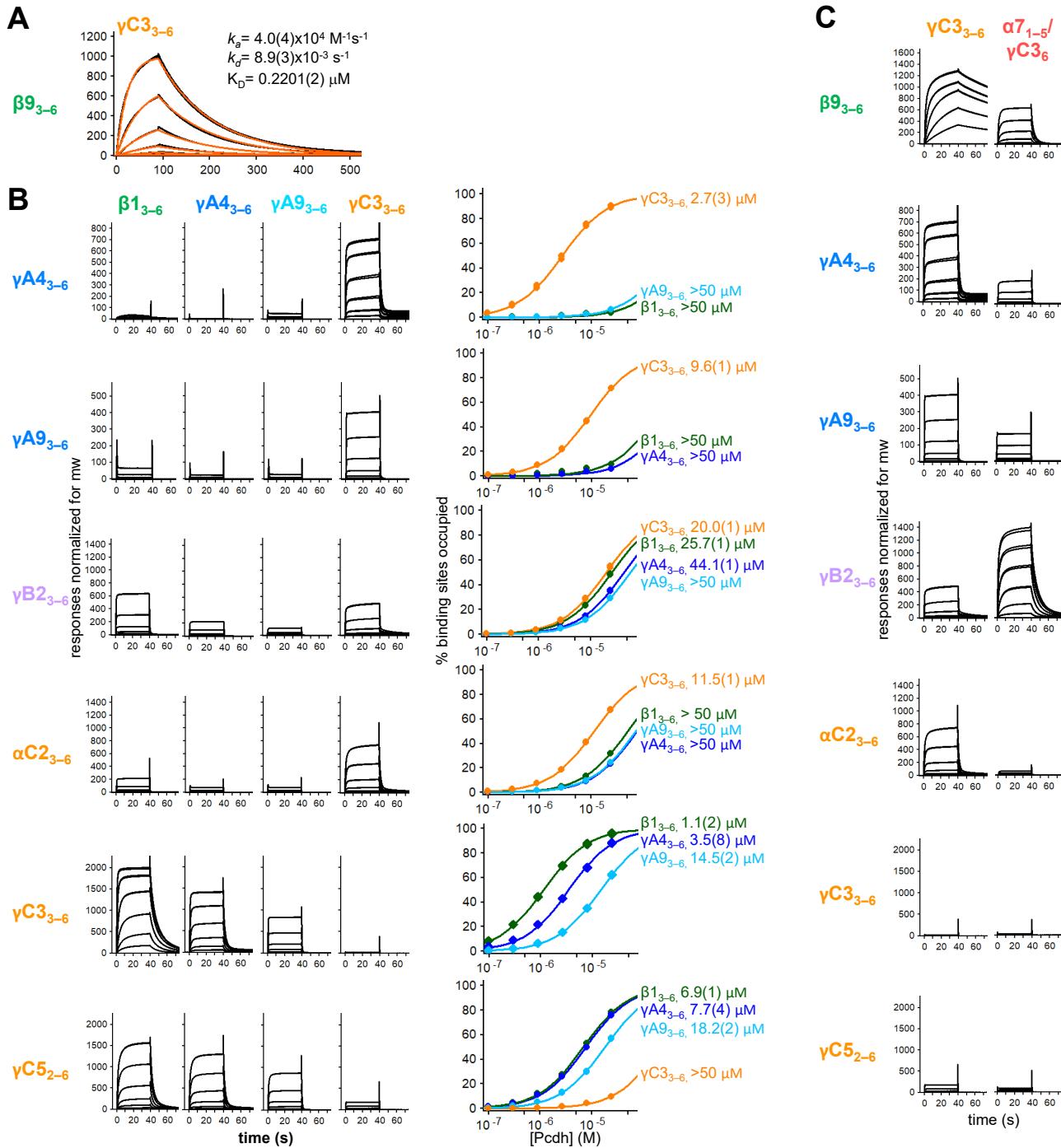
(ii)


B

γ C4 crystal form 1 *trans* dimer interface

C

AUC curves for γ C4 wild type and *trans* interface mutants

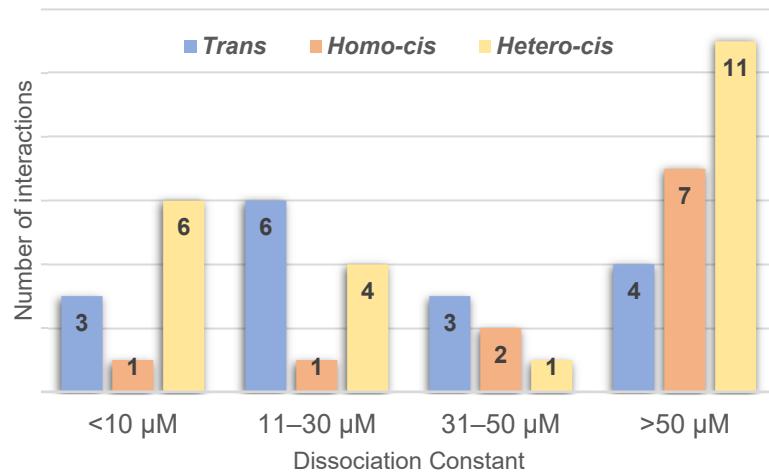

Figure 3—figure supplement 1: γ C4 *trans* dimer crystal structures and *trans* interface analysis

(A) Our crystallization experiments with γ C4_{EC1-4} yielded two distinct crystal forms the first of which showed significant X-ray diffraction anisotropy. (i) UCLA Diffraction Anisotropy Server (Strong et al., 2006) plot shows the F/sigma by resolution along the a*, b* and c* axes. (ii) Synthetic precession photographs of the X-ray diffraction in the k=0 plane (left) and the h=0 plane (right) showing the comparatively stronger/weaker diffraction.

(B) Close up views of the EC1:EC4 and EC2:EC3 interfacial regions from the first crystal form. One protomer in the symmetric dimer is colored yellow the other orange. Interfacial residues are labeled, side chains are shown in stick representation and dashed black lines depict potential interfacial hydrogen bond interactions. The two charged residues, E78 and D290, we selected for mutagenesis experiments to see whether they play a destabilizing role in the γ C4 *trans* interaction are marked with red dashed boxes.

(C) Representative plot of AUC data for the wild type (wt) and mutant γ C4 EC1-4 molecules. Raw data are shown in black circles, and the non-linear fits to a monomer-to-dimer model are shown as blue lines. The residuals between the data and fits are shown in the plot below. Table detailing the oligomeric state and dissociation constants determined from the AUC data is shown in Figure 3.

Figure 4—figure supplement 1


Figure 4—figure supplement 1: Calculation of *cis* interaction dissociation constants and the impact of an α -Pcdh EC5 on family-wide *cis* interactions

(A) Kinetic binding analysis of $\gamma C3_{3-6}$ analyte binding over a $\beta 9_{3-6}$ covered surface. Data is shown in black, and the red traces represent the fit to an 1:1 binding model.

(B) *Left*, SPR binding profiles from Figure 4 for the four monomeric *cis* fragment analytes over all six *cis* fragment surfaces. *Right*, fit of the binding data for these four analytes to 1:1 binding isotherms to calculate K_{Ds} . $\gamma A4_{3-6}$ and $\gamma A9_{3-6}$ are monomeric and they are not included in the binding isotherms over their respective surface.

(C) SPR binding profiles for $\gamma C3_{3-6}$ (from Figure 4) and an $\alpha 7_{1-5} / \gamma C3_6$ chimera flowed over the immobilized *cis* fragment surfaces. Binding profiles for each surface are individually scaled as in Figure 4.

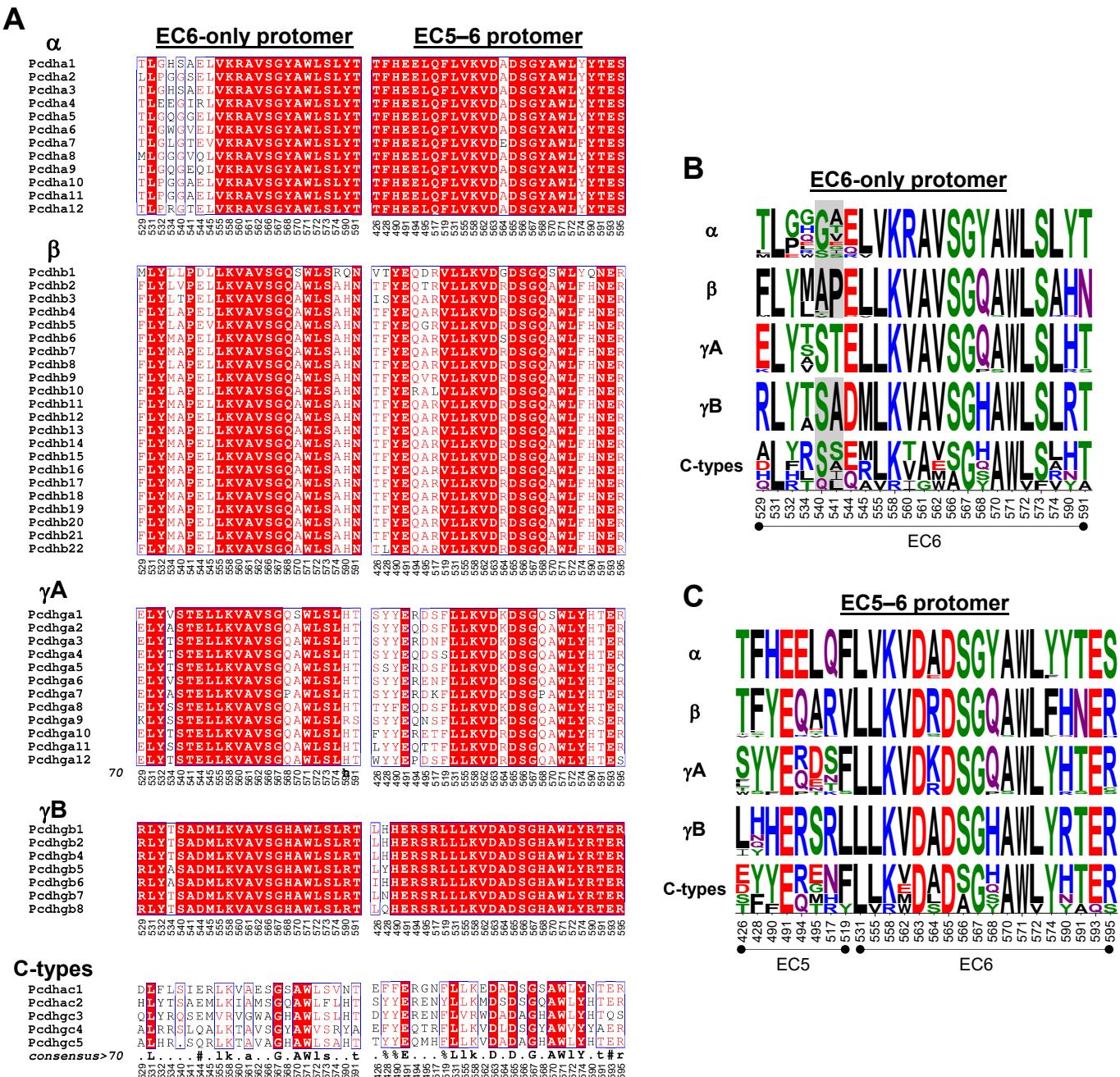
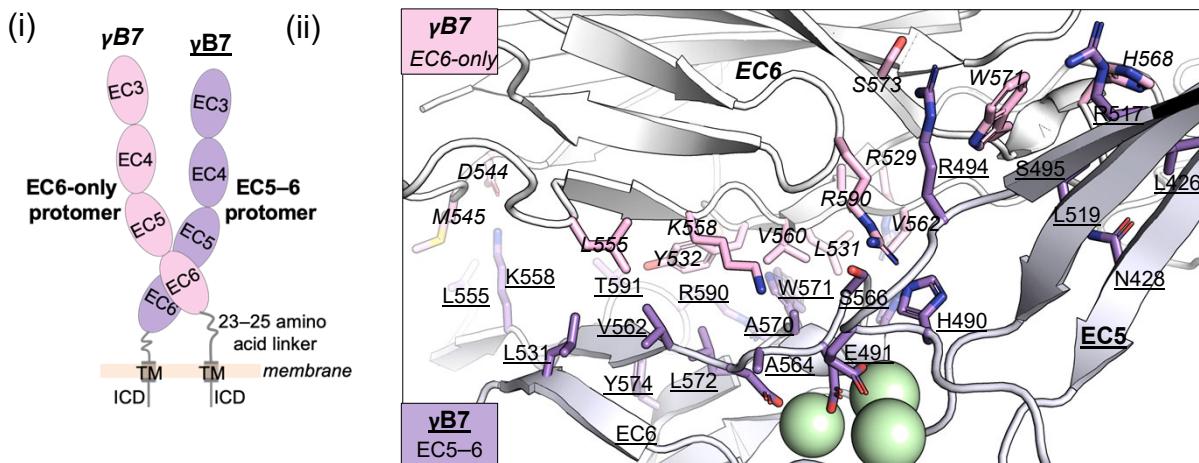

Figure 4—figure supplement 2

Figure 4—figure supplement 2: Range of cPcdh *cis* and *trans* Dissociation constants, K_D s

Chart shows the cPcdh *trans* dimer, homophilic *cis* dimer, and heterophilic *cis* dimer interactions for which we have determined binding affinities divided into four subgroups based on their dissociation constant. The *trans* and homophilic *cis* dimer affinities were determined using AUC (Figure 2—source data 1 and Figure 4—source data 1) and the heterophilic *cis* dimer affinities were determined using SPR (Figure 4B). Of the interactions in the >50 μM group one *trans* interaction and four homophilic *cis* interactions are monomeric in solution (> 500 μM K_D in AUC). Three of the 11 heterophilic *cis* interactions in the >50 μM group show no binding in our SPR experiments based on a 40 RU binding threshold.

Figure 4—figure supplement 3

Figure 4—figure supplement 3: Amino acid sequence alignment reveals conservation of *cis* interfacial residues within the alternate cPcdh subfamilies


(A) Amino acid sequence alignments of *cis* interfacial residues from the EC6-only and EC5–6 surfaces for all 58 mouse cPcdhs subdivided by subfamily. Completely conserved residues are highlighted in red with white lettering. Residues 540 and 541 are included in the EC6-only alignments since the crystal structure of γ A4 EC3–6 (PDB: 5SZQ) revealed a distinct EC6 A-A'loop architecture to that observed in the γ B2, 4, and 7 (PDBs: 5SZR, 6E6B, and 5V5X) *cis* fragment crystal structures that would place these residues in the EC6-only interface if maintained in *cis* interactions.

(B) Sequence logos based on the sequence alignment shown in **(A)** for the EC6-only *cis* interfacial residues from each of the five cPcdh subfamilies highlighting the similarities and conserved differences between the subfamilies. Residues 540 and 541 are included for all isoforms but greyed out for the non- γ A isoforms since their involvement may be γ A-specific. NB: Previous studies have shown that α -Pcdhs have an impaired EC6-only interface (Thu et al., 2014; Goodman et al., 2017).

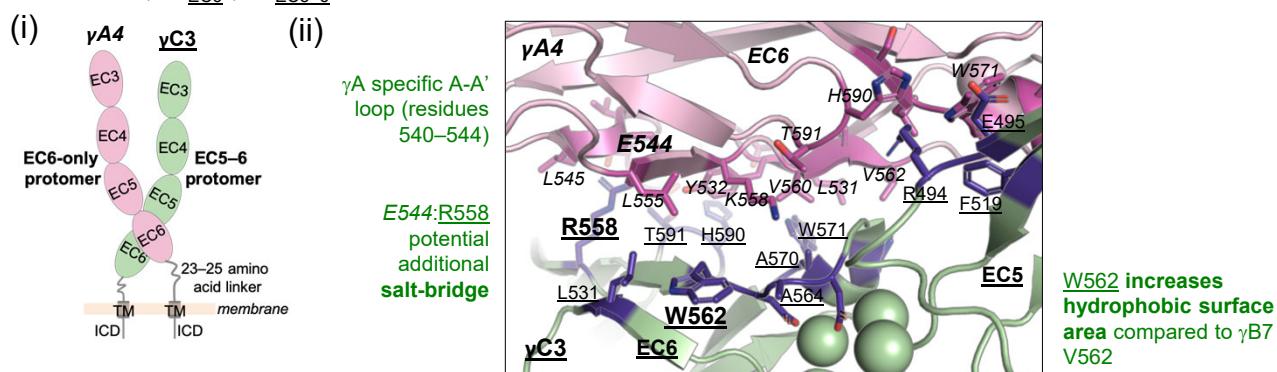
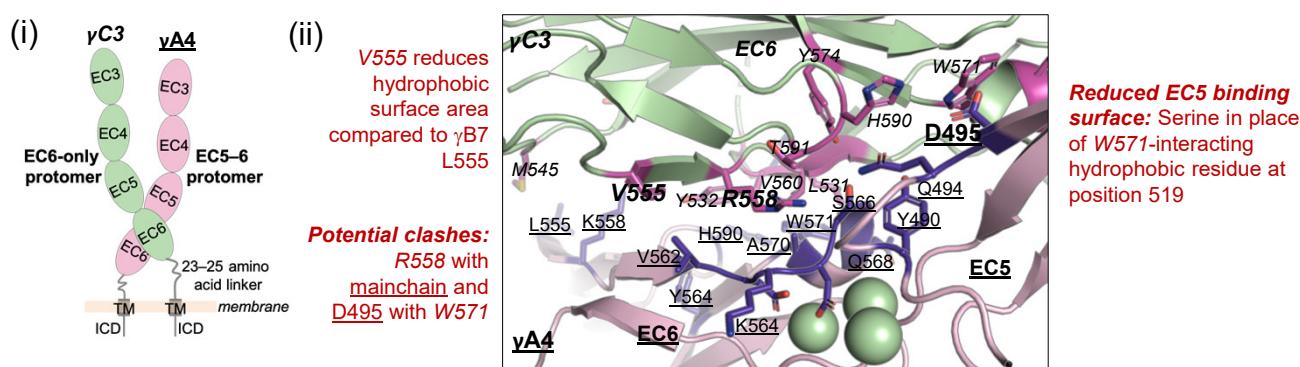

(C) Sequence logos for the EC5–6 *cis* interfacial residues from each of the five cPcdh subfamilies

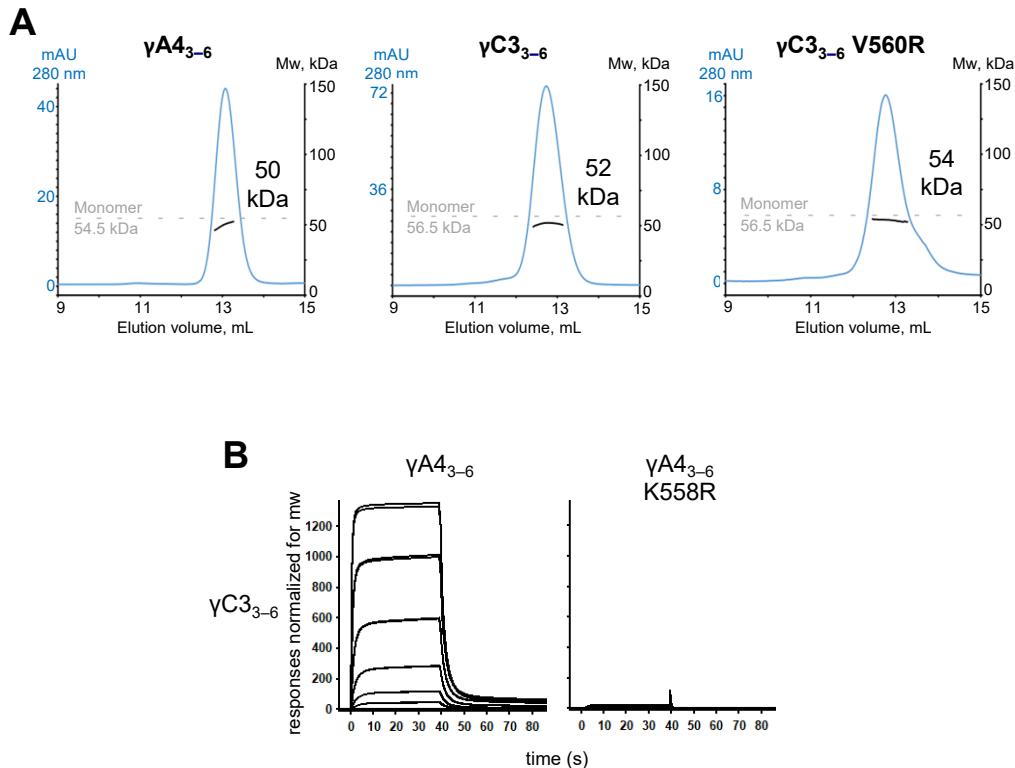
Figure 5—figure supplement 1

A γ B7 *cis* dimer interface

B Modeled γ A4_{EC6}/ γ C3_{EC5-6} *cis* dimer interface

C Modeled γ C3_{EC6}/ γ A4_{EC5-6} *cis* dimer interface




Figure 5—figure supplement 1: Structure-guided sequence analysis of γ A4 and γ C3 *cis* interactions

(A) (i) Schematic of the asymmetric γ B7_{EC3-6} *cis* dimer crystal structure. (ii) Close-up view of the γ B7 *cis* interface: Interfacial residue side chains are shown in pink for the EC6-only protomer and purple for the EC5-6 protomer. Bound calcium ions are shown as green spheres.

(B) (i) Schematic of the γ A4_{EC6}/ γ C3_{EC5-6} *cis* dimer. (ii) Model of the γ A4_{EC6}/ γ C3_{EC5-6} *cis* dimer interaction generated using structural alignment of EC6 from the monomeric γ A4 EC3-6 crystal structure (PDB 5SZQ) to the γ B7 EC3-6 *cis* dimer structure for the EC6-only side and computational mutagenesis of γ B7 to γ C3 selecting the best-fit rotamer (without energy minimization) for the EC5-6 side. The model suggests that this will be the preferred orientation for the γ A4/ γ C3 *cis* dimer interaction. Favorable residue differences between γ B7 from (A) and γ A4/ γ C3 in this orientation are noted in green. Please note the model shown here is only used for hypothesis generation, since it is unlikely to be completely accurate.

(C) (i) Schematic of the γ C3_{EC6}/ γ A4_{EC5-6} *cis* dimer. (ii) Model of the γ C3_{EC6}/ γ A4_{EC5-6} *cis* dimer generated using computational mutagenesis of γ B7 to γ C3 selecting the best-fit rotamer (without energy minimization) for the EC6-only side and structural alignment of EC5-6 from the γ A4 EC3-6 crystal structure to the γ B7 EC3-6 *cis* dimer structure for the EC5-6 side. The model suggests that this orientation for the γ A4/ γ C3 *cis* dimer interaction will be disfavored. Unfavorable residue differences between γ B7 and γ A4/ γ C3 in this orientation are noted in red. Please note the model shown here is unlikely to be completely accurate and is simply for hypothesis generation.

Figure 5—figure supplement 2

Figure 5—figure supplement 2: γ A4 and γ C3 *cis*-fragments behave as monomers in SEC-MALS and mutating γ A4 to make it more like γ C3 prevents γ A4/ γ C3 *cis*-heterodimerization

(A) SEC-MALS data for wild-type γ A4₃₋₆, wild-type γ C3₃₋₆, and γ C3₃₋₆ V560R showing all three molecules are monomeric in SEC-MALS, consistent with their behavior in sedimentation equilibrium AUC. Plots show size exclusion absorbance at 280 nm trace in blue (left axis), molecular weight of the eluant peak in black (right axis), and the monomer molecular weight of γ A4₃₋₆ or γ C3₃₋₆ measured by mass spectrometry – 54.5 kDa and 56.5 kDa respectively – as dashed grey lines. Average molecular weight of the molecules in the eluant peaks are labeled.

(B) SPR binding profiles for γ A4₃₋₆ wild type and γ A4₃₋₆ with γ C3-like *cis* interface mutation K558R flowed over immobilized wild-type γ C3₃₋₆. Loss of γ C3₃₋₆ interaction in the presence of the K558R mutation is consistent with the SEC-MALS results shown in Figure 5.

Key Resources Table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
strain, strain background (<i>E.Coli</i>)	One shot Top10 Competent Cells	Invitrogen	C4040-06	Plasmid production
cell line (<i>Homo Sapiens</i>)	FreeStyle™ 293-F cells	Thermo Fisher Scientific	R79007	Cell line for protein expression
cell line (<i>Homo Sapiens</i>)	K-562 bone marrow chronic myelogenous leukemia (CML) cells	ATCC	ATCC CCL-243	Cell line for cell - aggregation assays
transfected construct (<i>M. musculus</i>)	$\alpha 4_{1-5}$	this paper		Pcdha4 EC1-5, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\alpha 7_{1-5}$	Rubinstein et al., 2015		
transfected construct (<i>M. musculus</i>)	$\alpha 12_{1-5}$	this paper		Pcdha12 EC1-5, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\beta 6_{1-4}$	Goodman et al., 2016a		
transfected construct (<i>M. musculus</i>)	$\beta 8_{1-4}$	Goodman et al., 2016a		
transfected construct (<i>M. musculus</i>)	$\gamma A 1_{1-4}$	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	$\gamma A 4_{1-4}$	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	$\gamma A 8_{1-4}$	Rubinstein et al., 2015		
transfected construct (<i>M. musculus</i>)	$\gamma A 9_{1-5}$	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	$\gamma B 2_{1-5}$	Goodman et al., 2016b		

transfected construct (<i>M. musculus</i>)	$\gamma B4_{1-5}$	this paper		Pcdh γ B4 EC1-5, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma B5_{1-4}$	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	$\alpha C2_{1-4}$	Rubinstein et al., 2015		
transfected construct (<i>M. musculus</i>)	$\gamma C3_{1-4}$	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	$\gamma C4_{1-4}$	this paper		Pcdh γ C4 EC1-4, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C5_{1-5}$	Rubinstein et al., 2015		
transfected construct (<i>M. musculus</i>)	$\alpha 7_{1-5}$ -AVI	this paper		Biotinylated Pcdh α 7 EC1-5, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\beta 6_{1-4}$ -AVI	this paper		Biotinylated Pcdh β 6 EC1-4, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\beta 8_{1-4}$ -AVI	this paper		Biotinylated Pcdh β 8 EC1-4, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma A8_{1-4}$ -AVI	this paper		Biotinylated Pcdh γ A8 EC1-4, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma A9_{1-5}$ -AVI	this paper		Biotinylated Pcdh γ A9 EC1-5, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma B2_{1-5}$ -AVI	this paper		Biotinylated Pcdh γ B2 EC1-5, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\alpha C2_{1-4}$ -AVI	this paper		Biotinylated Pcdh α C2 EC1-4, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C3_{1-4}$ -AVI	this paper		Biotinylated Pcdh γ C3 EC1-4, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C4_{1-4}$ -AVI	this paper		Biotinylated Pcdh γ C4 EC1-4, Honig/Shapiro labs

transfected construct (<i>M. musculus</i>)	γ C5 ₁₋₅ -AVI	this paper		Biotinylated Pcdh γ C5 EC1-5, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	α 4 ₁₋₄ -AVI	this paper		Biotinylated Pcdh α 4 EC1-4, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	α 7 ₁₋₅ L301R	this paper		Pcdh α 7 EC1-5 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ A8 ₁₋₄ I116R*	Rubinstein et al., 2015		Pcdh γ A8 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ R41N	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ C5 ₁₋₅ S116R	this paper		Pcdh γ C5 EC1-5 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ S117I	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ L125P	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ E369K	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ Y371F	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ R41N/S117I	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ R41N/E369K	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ S117I/L125P	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ R41N/S117I/L125P	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 6 ₁₋₄ R41N/S117I/E369K	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs

transfected construct (<i>M. musculus</i>)	$\beta 6_{1-4}$ R41N/S117I/Y371F	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\beta 6_{1-4}$ R41N/S117I/L125P/E3 69K/Y371F	this paper		Pcdh β 6 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C4_{1-4}$ E78A	this paper		Pcdh γ C4 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C4_{1-4}$ E78Q	this paper		Pcdh γ C4 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C4_{1-4}$ S344R	this paper		Pcdh γ C4 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C4_{1-4}$ D290A	this paper		Pcdh γ C4 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma C4_{1-4}$ D290N	this paper		Pcdh γ C4 EC1-4 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\beta 1_{3-6}$	this paper		Pcdh β 1 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\beta 6_{1-6}$	this paper		Pcdh β 6 EC1-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\beta 9_{3-6}$	this paper		Pcdh β 9 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma A3_{3-6}$	this paper		Pcdh γ A3 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma A4_{3-6}$	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	$\gamma A9_{3-6}$	this paper		Pcdh γ A9 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	$\gamma B2_{3-6}$	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	$\gamma B5_{3-6}$	Goodman et al., 2016b		

transfected construct (<i>M. musculus</i>)	γ B7 ₃₋₆	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	α C2 ₂₋₆	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	α 7 ₁₋₅ / γ C3 ₆ chimera	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	γ C3 ₃₋₆	Goodman et al., 2016b		
transfected construct (<i>M. musculus</i>)	γ C5 ₂₋₆	this paper		Pcdh γ C5 EC2-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	β 9 ₃₋₆ -AVI	this paper		Biotinylated Pcdh β 9 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ A4 ₃₋₆ -AVI	this paper		Biotinylated Pcdh γ A4 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ A9 ₃₋₆ -AVI	this paper		Biotinylated Pcdh γ A9 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ B2 ₃₋₆ -AVI	this paper		Biotinylated Pcdh γ B2 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	α C2 ₃₋₆ -AVI	this paper		Biotinylated Pcdh α C2 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ C3 ₃₋₆ -AVI	this paper		Biotinylated Pcdh γ C3 EC3-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ C5 ₂₋₆ -AVI	this paper		Biotinylated Pcdh γ C5 EC2-6, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ A4 ₃₋₆ V560R	this paper		Pcdh γ A4 EC3-6 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ C3 ₃₋₆ V560R	this paper		Pcdh γ C3 EC3-6 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ A4 ₃₋₆ K558R	this paper		Pcdh γ A4 EC3-6 mutant, Honig/Shapiro labs

transfected construct (<i>M. musculus</i>)	γ C3 ₃₋₆ R558K	this paper		Pcdh γ C3 EC3-6 mutant, Honig/Shapiro labs
transfected construct (<i>M. musculus</i>)	γ B7 ₃₋₆ Y532G	Goodman et al., 2017		
transfected construct (<i>M. musculus</i>)	γ B7 ₃₋₆ A570R	this paper		Pcdh γ B7 EC3-6 mutant, Honig/Shapiro labs
peptide, recombinant protein	NeutrAvidin-HRP	Thermo Fisher Scientific	31030	Biotinylated protein western blot
peptide, recombinant protein	NeutrAvidin protein	Thermo Fisher Scientific	31000	SPR assays
peptide, recombinant protein	BSA	Sigma Aldrich	A7906	SPR assays
commercial assay or kit	Spin Miniprep Kit	Qiagen	27106	
commercial assay or kit	Hi-speed Plasmid Maxi Kit	Qiagen	12663	
commercial assay or kit	SF Cell Line 4D-Nucleofector® X Kit S	Lonza	V4XC-2032	
commercial assay or kit	Amine-coupling kit	Cytiva	BR100050	SPR experiments
commercial assay or kit	Morpheus Amino Acids	Molecular Dimensions	MD2-100-77	Crystallography
commercial assay or kit	Morpheus Buffer System II	Molecular Dimensions	MD2-100-101	Crystallography
chemical compound	Polyethylenimine	Polysciences	24765-2	transfection
chemical compound	Biotin	Sigma Aldrich	B4501	protein biotinylation
chemical compound	Tris Base	Fisher Scientific	BP152-5	
chemical compound	Sodium Chloride	Fisher Scientific	S271-10	
chemical compound	Calcium Chloride Dihydrate	JT Baker	1336-01	

chemical compound	Imidazole	ACROS	301870025	
chemical compound	HEPES	Sigma Aldrich	H3375	
chemical compound	Tween-20	Sigma Aldrich	P7949	
chemical compound	Sodium Acetate	Sigma Aldrich	S7545	
chemical compound	IMAC Sepharose 6 Fast Flow	Cytiva	17092109	
chemical compound	Penicillin Streptomycin	Thermo Fisher Scientific	15070063	
chemical compound	PEG 6,000	Sigma Aldrich	81260	
chemical compound	PEG 8,000	Sigma Aldrich	89510	
chemical compound	Ethylene Glycol	Fluka	03760	
chemical compound	Lithium Chloride	Sigma Aldrich	L8895	
chemical compound	MES	Sigma Aldrich	M3671	
chemical compound	Glycerol	ACROS	332031000	
software, algorithm	UCLA Diffraction Anisotropy Server	Strong et al., 2006		https://srv.mbi.ucla.edu/Anisoscal/
software, algorithm	SednTerp	Thomas Laue		http://bitcwiki.sr.unh.edu/index.php/Main_Page
software, algorithm	HeteroAnalysis	Cole et al., 2008		https://core.uconn.edu/auf
software, algorithm	Scrubber 2.0	BioLogic Software		http://www.biologic.com.au
software, algorithm	Phaser	McCoy et al., 2007		Implemented in CCP4 or Phenix (see below)
software, algorithm	CCP4	Winn et al., 2011		https://www ccp4.ac.uk/
software, algorithm	Phenix	Liebschner et al., 2019		http://www.hkl-xray.com/

software, algorithm	XDS	Kabsch, 2010		http://xds.mpimf-heidelberg.mpg.de
software, algorithm	AIMLESS	Evans and Murshudov, 2013		http://www CCP4.ac.uk
software, algorithm	Coot	Emsley et al, 2010		https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
software, algorithm	PISA	Krissinel and Henrick, 2007		http://www.ebi.ac.uk/pdbe/protint/pistart.html
software, algorithm	Pymol	Schrödinger		https://pymol.org
software, algorithm	UCSF Chimera	Pettersen et al, 2004		https://www.cgl.ucsf.edu/chimera/
software, algorithm	Clustal Omega	Sievers et al., 2011		https://www.ebi.ac.uk/Tools/msa/clustalo/
software, algorithm	WebLogo 3.0	Crooks et al 2004		http://weblogo.threplusone.com/
software, algorithm	SignalP 4.0	Peterson et al, 2011		https://services.healthtech.dtu.dk/service.php?SignalP-5.0
software, algorithm	ASTRA	Wyatt		https://www.wyatt.com/products/software/astra.html
other	Freestyle™ 23 Expression Media	Thermo Fisher Scientific	12338-018	protein expression media
other	Opti-MEM™ Reduced Serum Media	Thermo Fisher Scientific	31985-070	protein expression media
other	Series S CM4 chip	Cytiva	BR100539	Biacore assays
other	Fetal Bovine Serum	Thermo Fisher Scientific	16141079	cell-aggregation assays media
other	DMEM with GlutaMAX	Thermo Fisher Scientific	10569010	cell-aggregation assays media