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Abstract: DNA-wrapped single walled carbon nanotube (SWNT) conjugates have distinct optical 
properties leading to their use in biosensing and imaging applications. A critical limitation in the 
development of DNA-SWNT sensors is the current inability to predict unique DNA sequences that 
confer a strong analyte-specific optical response to these sensors. Here, near-infrared (nIR) 
fluorescence response datasets for ~100 DNA-SWNT conjugates, narrowed down by a selective 
evolution protocol starting from a pool of ~1010 unique DNA-SWNT candidates, are used to train 
machine learning (ML) models to predict DNA sequences with strong optical response to 
neurotransmitter serotonin. First, classifier models based on convolutional neural networks (CNN) 
are trained on sequence features to classify DNA ligands as either high response or low response 
to serotonin. Second, support vector machine (SVM) regression models are trained to predict relative 
optical response values for DNA sequences. Finally, we demonstrate with validation experiments 
that integrating the predictions of ensembles of the highest quality neural network classifiers 
(convolutional or artificial) and SVM regression models leads to the best predictions of both high and 
low response sequences. With our ML approaches, we discovered five DNA-SWNT sensors with 
higher fluorescence intensity response to serotonin than obtained previously. Overall, the explored 
ML approaches, shown to predict useful DNA sequences, can be used for discovery of DNA-based 
sensors and nanobiotechnologies.  

Keywords: single walled carbon nanotubes, DNA-nanotube conjugates, optical sensors, serotonin, 
machine learning 

Introduction 

Single walled carbon nanotubes (SWNT) are constituent parts of many hybrid material 
systems designed for nanotechnology applications, such as sensing, biological imaging, electronics, 
and gene delivery.1–10. Noncovalent polymer adsorption is a widely used method to functionalize 
SWNTs, while also solubilizing them in aqueous environments by forming a “corona phase” on the 
SWNT surface. A variety of polymers have been used for SWNT functionalization, including nucleic 
acids, peptides, surfactants, lipids, and peptoids.11–20 Among those, nucleic acid functionalized 
SWNT conjugates are the most ubiquitous and arguably the most technologically useful in important 
applications, including optical sensing of biologically important analytes,1,2 polynucleotide 
(DNA/RNA) delivery for genetic transformation applications,7,21 and for chirality sorting of multi-
chirality SWNT samples into chirality-pure constituents.22–27  

DNA sequence plays an essential role in DNA-SWNT conjugates that optically sense 
analytes and is solely responsible for analyte-specific molecular recognition. An effective sequence 



2 
 

must simultaneously bind with high affinity to the analyte and the underlying SWNT surface to result 
in a significant selective change of the SWNT near-infrared (nIR) fluorescence response, ΔF/F, in 
the presence of the target analyte. Prior work has found that as little as a single nucleotide 
substitution in a DNA sequence can abolish sensor response to a target analyte.2 

Most DNA-SWNT-based sensors are generated using either pre-existing molecular 
recognition elements28,29 or low-throughput screening approaches, in which fewer than a hundred 
DNA sequences are screened for fluorescence modulation by target analytes.2,30 The latter 
approach, characterized by random successful parameter hits, relies upon the fortuitous discovery 
of candidate sensors. While this approach can be useful for starting new directions of research, it is 
not a sustainable method for optimizing identified sensing technologies or to develop sensors for 
elusive analytes. In a recent advance, we started addressing this challenge: we developed a method 
(called SELEC) by which to ‘evolve’ ssDNA-SWNT based molecular recognition towards an analyte 
of interest, with selectivity that increases with each round of evolution.31 In this approach, ~1010 
unique ssDNA strands can be evolved for molecular recognition of target analytes while still 
adsorbed to the surface of a nanomaterial.  

The datasets generated by the SELEC approach contain rich information on DNA sequences 
that confer analyte selectivity and SWNT binding affinity. Herein, we leverage these unique datasets 
to guide our selection of a dataset of ~100 DNA-SWNT conjugates for which we determine ΔF/F nIR 
fluorescence response to the chosen analyte. The resulting dataset is used to develop machine 
learning (ML) models that learn and make predictions of useful ssDNA sequences - which previously 
eluded experimental validation - that bind to and optically sense the chosen analyte on SWNT 
surfaces. The model predictions are examined in validation experiments, the results of which are 
then used to retrain models and predict DNA sequences that produce higher ∆F/F response to the 
target analyte. While our approach could be applied to other analytes, we here demonstrate our 
approach for serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter with many roles in the central 
nervous system32 and outside the brain.33 As serotonin biosensing is of great importance, many 
recent efforts have been devoted to its sensor development.28,31,34,35 

Results and Discussion  

Classifying DNA sequences in DNA-SWNT conjugates based on their optical response to 
serotonin. We first sought to train and test classifier models for predicting 18-nucleotide (nt) long 
ssDNA sequences with a high relative nIR fluorescence response to serotonin following conjugation 
to SWNT. First, models were trained on an initial dataset of 96 unique ssDNA sequences, identified 
by previous SELEC experiments. This initial dataset was selected from a library of all possible ~1010 
18-nt ssDNA sequences that competitively bind to either SWNT (control samples) or SWNT in the 
presence of serotonin (experimental samples).31 The SELEC protocol, schematically shown in 
Figure 1a, was performed for several selection rounds, each of which provided datasets of selected 
DNA sequences and their abundance. The 96 sequences, primarily the most abundant sequences 
from the experimental and control groups from SELEC rounds 3 to 6, were chosen for follow-up 
serotonin response spectroscopic measurements, thus forming the initial dataset for model training. 
nIR fluorescence emission was measured for those 96 unique ssDNA-SWNT conjugates before and 
after the addition of 100 µM serotonin; these data were already reported in Ref.31 and are provided 
in Figure 1b and S9 and Table S1. The response of conjugates to serotonin was calculated from 
the fluorescence emission spectra for the (8,6) chirality dominant peak (~1195 nm center 
wavelength) as ∆F/F = (Fa-F)/F, where F is the fluorescence signal before addition of serotonin, and 
Fa is the fluorescence signal after the addition of serotonin (Figure 1a). The measured ∆F/F values 
for sequences in the initial dataset range from 0.2 to 1.9.  The initial dataset, colored according to 
the SELEC group it belongs to (experimental, control, or neither), is also shown in Figure S9. 
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Figure 1. Approach to learning which DNA sequences in DNA-SWNT conjugates provide high response 
to serotonin. a) A selective evolution protocol, SELEC, performed for up to 6 rounds, experimentally identified 
ssDNAs with high affinity for SWNTs and, separately, SWNTs in the presence of serotonin. Some of the high-
affinity ssDNAs are selected for follow up fluorescence emission spectroscopy experiments of ssDNA-SWNT 
conjugates before and after the addition of 100 µM of serotonin. b) The optical response, ΔF/F, of 96 unique 
ssDNA-SWNT conjugates to 100 µM serotonin; the data also include duplicate measurements for 4 of the 
sequences. c) The main computational approach. DNA sequences are pre-processed into either binary psv1 
format or a simple binary array. The sequences are split in two classes of optical response, according to ΔF/F-
based threshold values. The sequences and their ΔF/F values are used to train classification and regression 
models. The models of highest quality are used to predict other sequences with high and low response to 
serotonin, which are tested in validation experiments. The obtained experimental data are then used to 
generate further models.  

 

 

Using the approach in Figure 1c, convolutional neural network (CNN) classifier models were 
trained and tested on the obtained dataset of 96 DNA sequences and their corresponding ∆F/F 
values (Table S1, Figure 1b). The dataset was split into two classes of sequences based on the 
response to serotonin, namely, class 1 sequences with a strong response to serotonin (∆F/F 
threshold t1 > 0.9), and class 0 sequences with a low response to serotonin (variable threshold ∆F/F 
values of t0 < 0.85, 0.8, 0.7, 0.6, and 0.5). The thresholds were selected to examine how we can best 
identify sequences that lead to DNA-SWNT conjugates with either an exceptionally high response 
or an exceptionally low response to target analyte, which is the information that one would ideally 
want for practical applications of DNA-SWNT sensors. The choice of threshold t1 > 0.9 leads to class 
1 containing 32% of sequences from the total dataset (31 out of 96 sequences). The variable 
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threshold t0 allows examining the effects of dataset size and balance on ML model quality and 
stability: larger thresholds should lead to more sequences in class 0, imbalanced classes, more 
stable models, and learning of sequences with intermediate response to serotonin, while lower 
thresholds should lead to fewer datapoints in class 0, more balanced classes, less stable models, 
and learning of sequences with very low response to serotonin. Input for CNN models consisted of 
ssDNA sequences, converted to position specific vector (psv1) form with binary values (example 
shown in Figure S1). The output of trained CNN models are probabilities for the input sequences to 
belong to class 0 and class 1 (independent).   

 

 

Figure 2. Performance of a representative CNN model trained on the initial dataset. a) Evaluation of a 
representative CNN M1 model trained on the initial dataset, using t1 > 0.9 and t0 < 0.85. b) The optical response, 
ΔF/F, of ssDNA-SWNT conjugates to 100 µM serotonin, obtained for 20 other ssDNA sequences, predicted 
by model M1 to have high response (labeled positive) and low response (labeled negative) to serotonin. 
Sequences with ΔF/F values exceeding 1.9, the highest values in the initial dataset, are marked with green 
circles. c) Percentage of sequences in R6E, R5E, R6C, and R5C SELEC datasets predicted by model M1 to 
be high responders to serotonin. The percentage is calculated for the first 300 SELEC data sequences in the 
given experimental/control dataset that are not in the corresponding control/experimental dataset.   

 

 

Quality parameters for one of the best CNN models trained on the initial dataset, model M1, 
are provided in Figure 2a. For M1, values of the area under the receiver operating curve (AUC) were 
0.59 for predicting class 0 sequences, and 0.64 for predicting class 1 sequences, while 
precision/recall were 0.81/0.5 and 0.76/0.57 for predicting class 0 and class 1 ssDNA sequences, 
respectively. Models were sensitive to removal of several sequences from input, especially class 1 
sequences, as observed when seeking a high-quality CNN model trained on a truncated initial 
dataset of only 93 datapoints. Quality parameters for a representative model M1B, prepared with 93 
datapoints from the initial dataset, are reported in Figure S2. Overall, while the CNN approach is 
giving good but not exceptional quality parameters, we decided to use it for classifying DNA 
sequences because several other ML methods tested, including AdaBoost, logistic regression, 
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support vector classification, and random forest, led to unusable models. These latter methods 
consistently led to class 0 and class 1 probabilities of 0.5 ± 0.2, indicating a poor differentiation 
between sequences with high and low response to serotonin for models trained with these methods 
(Table S2). Separately, we choose psv1 encoding of sequences over other types of encoding 
reported by others36 that we also tested herein. Specifically, we found that term frequency vectors 
with sequence patterns 1, 2, 3, and 4 nucleotides in length (tfv1, tfv2, tfv3, and tfv4), frequently resulted 
in zero values in confusion matrices for testing sequences (simultaneous zero values for true 
positives and false positives). Null values in confusion matrices were noted in 90% of models for tfv1, 
100% of models for tfv2 and tfv3, and 82% of models for tfv4 encoding (Table S3).  

We next examined the predictions of model M1 for the most abundant DNAs from control and 
experimental SELEC datasets. We used model M1 to classify the 300 most abundant DNA 
sequences from round 6 and round 5 experimental (R6E/R5E) and control (R6C/R5C) SELEC 
datasets, excluding any overlapping sequences found in both experimental and control datasets from 
the same rounds. Model M1 predicts 41.7%/37.7% of R6E/R5E sequences and 26%/34% of 
R6C/R5C sequences to have high ∆F/F response to serotonin (Figure 2c). Since experimental 
dataset sequences were selected based on their high affinity for SWNTs in the presence of serotonin, 
in contrast to the control dataset sequences, our expectations were that experimental datasets 
contain more of the serotonin responsive sequences. These expectations agree with the predictions 
reported in Figure 2c. 

To test the quality of model M1 predictions, 20 DNA sequences were selected from the 300 
most abundant sequences in the R6E SELEC dataset for experimental validation measurements. 
According to model M1 probabilities for these sequences to be in classes 0 or 1, 15 of the sequences 
are predicted to have high response to serotonin, while the remaining 5 are predicted to have low 
response to serotonin (Table S4). Figure 2b and Table S4 provide the experimentally-measured 
∆F/F values for the selected DNA sequences. Interestingly, 12 out of 15 predicted high-response 
sequences had ∆F/F values greater than the class 1 threshold, t1 > 0.9 (80%, obtained from 12 out 
of 15 sequences). Furthermore, the validation experiments identified two sequences with ∆F/F 
values of 2.1 and 2.7, and thus a higher response to serotonin than observed for all the sequences 
within the initial dataset. These sequences correspond to ID#90 (8 reads, ∆F/F = 2.1) and ID#115 (7 
reads, ∆F/F = 2.7), based on the read numbers in the R6E dataset. Separately, 3 out of 5 predicted 
low-response sequences measured ∆F/F values lower than the class 0 threshold, t0 < 0.85. Overall, 
predicted probability and experimental ΔF/F values do not have a statistically significant correlation 
(Figure S3).  
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Figure 3. Performance of CNN models using the expanded dataset. a) Evaluation of a representative CNN 
M2 model trained on the expanded dataset, using t1 > 0.9 and t0 < 0.85. b) ROC curves of model M2 when 
predicting class 0 and class 1 sequences. c)  The optical response ΔF/F of ssDNA-SWNT conjugates to 100 
µM serotonin, obtained for 40 ssDNA sequences. Sequences with ΔF/F values exceeding 1.9, the highest 
value in the initial dataset, are marked with green circles. 

 

Performance of single CNN models trained on our expanded dataset. To examine if inclusion 
of additional experimental data points can produce more predictive models, we trained a second 
representative CNN model M2 on the expanded dataset of 113 sequences, which combined the initial 
dataset (singly measured sequences in Figure 1b and Table S1) and the additional experimental 
data from the first set of validation experiments (Figure 2b and Table S4). A representative model 
M2 has an accuracy of 0.64, AUC values of 0.71 for predicting class 0 sequences, and 0.75 for 
predicting class 1 sequences, while precision/recall are 0.77/0.59 and 0.53/0.73 for predicting class 
0 and class 1 ssDNA sequences, respectively. In addition to improved AUC values, the M2 model 
has significantly improved ROC curves in comparison to models M1 and M1B (Figures 3b, S2).  

To test the quality of model M2 predictions, 40 DNA sequences were selected from 280 
untested most abundant sequences in the R6E dataset for the next round of experimental validation 
measurements. Of those 40 DNA sequences, half were predicted by M2 to have a low response 
(labeled as negative) and the other half were predicted to have a high response (labeled as positive) 
(Figure S4). Figure 3c and Table S4 provide the experimentally-measured ∆F/F values for the 
selected DNA sequences. Model M2 overestimates false positive sequences, since only 7 out of 20 
sequences (35%) predicted to have high response to serotonin actually have ∆F/F greater than the 
class 1 threshold of t1 = 0.9, while the remaining 13 out of 20 sequences (65%) have ∆F/F < 0.9. 
Single models such as M2 could potentially be predicting sequences with responses similar to 
randomly chosen sequences. Of practical relevance, model M2 predicted two previously 
undiscovered sequences from the R6E evolution group with a very strong response to serotonin, 
with ∆F/F values of 2.5 and 2.9. Interestingly, these sequences correspond to ID#264 (6 reads, ∆F/F 
= 2.5) and ID#156 (7 reads, ∆F/F = 2.9), based on the read numbers in the R6E evolution group. 
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Separately, while all the sequences predicted to have a low response to serotonin had ∆F/F < 1.3, 
only 9 out of 20 sequences (45%) have ∆F/F values smaller than the class 0 threshold of t0 = 0.85. 

 

 

Figure 4. Stochasticity of CNN models. a) Distribution of accuracy values for 200 CNN models with psv1 

input, obtained using different random states for several t0 values. b) Distribution of f1 score values for 200 
CNN models, obtained using different random states for t0 = 0.7. c) Dependence of model stability on dataset 
size. AUC values for nine CNN models trained on 100, 200, 500 and 1,000 sequences in each of two classes, 
extracted from R6C (class 0) and R6E (class 1) SELEC datasets. Each model has a different random state 
variable.  

 

Predicting high response DNAs from combined classification and regression models. When 
training models M1 and M2, we noted their stochastic behavior and dependence on the random state 
variable (different training/testing dataset splits) selected during the training procedure. To 
characterize the stochasticity of these models trained on our sparse datasets of ~100 sequences, 
we next analyzed their accuracy and f1 scores. The analysis was performed on 200 CNN models 
trained on the expanded dataset using different random state variables and several t0 threshold 
values (0.5, 0.6, 0.7, 0.8, 0.85). Distributions of these models’ accuracies and f1 scores, shown in 
Figures 4a-b and S5, range from 0.4 to 0.93 and 0.2 to 0.9, respectively. While these distributions 
span a wide range, most models have accuracies and f1 scores higher than 0.5 and should thus be 
predictive. Furthermore, more than half of the models in Figure 4b have accuracy and f1 scores 
higher than 0.6. Interestingly, the predictions of high response sequences are of higher quality for 
lower thresholds t0 (Figure S5, Table S6). Model stochasticity decreases and model stability 
increases once the datasets contain 500 or more sequences per class (Figure 4c, input sequences 
selected from SELEC datasets).  

With the objective of predicting DNA sequences with the highest ΔF/F values, we next trained 
regression models, which predict ΔF/F values based on the DNA sequence input. The regression 
models were trained using the support vector machine (SVM) regression algorithm with radial basis 
function (RBF) and sigmoid kernels, based on successful applications of these algorithms for 
sequence input.37 One of the best SVM RBF regression models, trained on the expanded dataset 
with sequences with ΔF/F > 0.9 and ΔF/F < 0.6, is shown in Figure 5a. There is a high correlation 
between ΔF/F values of test sequences obtained experimentally and those predicted by this SVM 
model, with r2 = 0.448 and the Pearson coefficient rPearson = 0.67 (p-value = 0.001). However, as with 
classification models, the quality of regression models also depends on the random state variable. 
This dependence is noted in distributions of r2 values for 200 models obtained with SVM RBF and 
SVM sigmoid methods, different random state variables, and different t0 values (Figure 5b-c). For 
both SVM RBF and SVM sigmoid methods, r2 values range from negative values to 0.5, with SVM 
RBF models being on average of higher quality than SVM sigmoid models.   
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Figure 5. SVM regression models for predicting ΔF/F values of ssDNA-SWNT conjugates. a) Comparison 
of experimentally measured ΔF/F values and ΔF/F values predicted by one of the best SVM RBF regression 
models, trained using the expanded dataset and thresholds t1 > 0.9 and t0 < 0.6 for one selected random state 
variable. b) Distribution of r2 values for 200 SVM RBF models, obtained using different random state variables. 
c) Distribution of r2 values for 200 SVM sigmoid models, obtained using different random state variables.  

 

Given the large number of high-quality classification and regression models obtained, we 
next assessed whether combining the predictions of these models could be used to determine DNA 
sequences with high and low response to serotonin. For this purpose, CNN models were trained on 
input data with thresholds t1 = 0.9 and t0 = 0.5 or 0.6, which resulted in f10 and f11 > 0.6. These were 
next used to predict high and low response sequences from a set of 3,000 most abundant previously 
untested R6E sequences. Separately, the best regression models with r2 > 0.45, trained using the 
expanded dataset and sequences within thresholds t1 > 0.9 and t0 < 0.5, were used to predicted ΔF/F 
values for the same 3,000 sequences. After ranking the sequences according to their regression-
predicted ΔF/F values, we extracted the top 10 sequences that are also classified as high response 
with the CNN models, by having consistently high/low probabilities to be in class 1/class0 (Figure 
6a). For comparison, we also extracted the bottom 10 ranked sequences, which are also classified 
as low responders to serotonin based on having consistently low/high probabilities to be in class 
1/class0 (Figure 6a). The probabilities of these 20 sequences to be in class 1/class 0 were also 
determined by the ensemble of multilayer perceptron artificial neural network (MLP-ANN) models, 
shown in Figure S8; the ensemble included the models trained on input data with thresholds t1 = 0.9 
and t0 = 0.7, which f10 and f11 scores greater than 0.6. The probabilities obtained from the MLP-ANN 
models (Figure S8) closely followed the trends of probabilities from the CNN models (Figure 6a). 
The performance of the above top 10 and bottom 10 sequences, labeled as positive and negative, 
was then examined experimentally (Figure 6b and Table S7). 6 out of 10 positive sequences (60%) 
had ∆F/F response greater than the class 1 threshold of t1 = 0.9, and one of them had ∆F/F = 2.1 
(Figure S6), exceeding the highest value in the initial dataset (1.9). Furthermore, 9 out of 10 negative 
sequences (90%) had ∆F/F response smaller than the class 1 threshold of t1 = 0.9. There is a 
statistically significant correlation between experimentally measured and predicted ∆F/F values 
(Figure 6c), with Pearson correlation coefficient of rPearson = 0.5 and p-value of 0.02.  
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Figure 6. Predicting DNA sequence response to serotonin from multiple high-quality classification and 
regression models.  a) Probabilities of 20 DNA sequences to be high response (class 1) or low response 
(class 0) to serotonin; these sequences were selected based on predictions of multiple high-quality 
classification and regression models, as described in the text. b) The optical response, ΔF/F, of ssDNA-SWNT 
conjugates to 100 µM serotonin, obtained for the same 20 ssDNA sequences. The sequence with ΔF/F value 
exceeding 1.9, the highest value in the initial dataset, is marked with a green circle. c)  Comparison of 
experimentally measured and predicted ∆F/F values for the same 20 ssDNA sequences. 

 

Conclusions 

In this work, we apply machine learning methods towards discovery of DNA-SWNT sensors 
of serotonin with high nIR fluorescence response to serotonin. In prior sensor design efforts, we 
experimentally tested the serotonin response of 96 DNA-SWNT sensors, which were chosen by the 
abundance (read numbers in library) of each DNA sequence in the experimental and control libraries 
from SELEC experiments. This previous selection method assumes the best predictor of sensor 
sensitivity and selectivity is the sequence abundance, which excludes the characterization of low 
abundance DNA sequences. Here, we demonstrate that ML models can improve on this abundance-
based selection. Specifically, ML models can autonomously learn the correlation between DNA 
sequences and fluorescence responses to analyte and thus assist and improve the selection of better 
sensor candidates. Choosing the abundant sequences from SELEC experiments increases the 
chance that the initial dataset for ML model training will contain a large proportion of high response 
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sequences, which is less likely to be obtained for a dataset of completely randomly chosen 
sequences. 

ML models can learn the correlations from datasets of already experimentally tested 
sequences and predict promising DNA sequences. After testing multiple ML methods, we find that 
convolutional neural network classifier models provide the most meaningful results when trained on 
sparse datasets of ~100 DNA sequences, a size typical for sensor search efforts. At first, we train 
and test two single CNN classifier models and use them to predict high response DNA sequences 
for experimental validation. Even though the prediction accuracies calculated from testing data differ 
from the accuracies measured in experiments, these models still predicted multiple DNA sequences 
with higher response to serotonin than those previously achieved experimentally. Furthermore, we 
trained and tested regression models on DNA sequence input to predict the relative nIR fluorescence 
response of these sequences.  

Through analyses of model quality parameters for multiple models obtained with different 
training/testing data splitting, we show that both classification and regression models trained on our 
sparse datasets are stochastic. However, the majority of models are predictive, since most models 
have accuracies greater than 50%. Further analyses of model stochasticity dependence on dataset 
size indicate that model stability can be achieved with datasets of 500 molecules per class. Since 
obtaining such large datasets in experiments is difficult, we instead explore integrating the 
predictions of multiple highest quality artificial or convolutional neural network classifiers and SVM 
regression models, inspired by model ensembling approaches,38 and demonstrate an effective 
increase in the success of this ML approach. We experimentally validate that our integrated approach 
leads to 60% correct predictions for high responding sequences and 90% correct predictions for low 
responding sequences, supporting the utility of our method for predicting promising DNA sequences 
and accelerating sensor discovery. Separately, we show that a simpler principal component analysis 
(PCA) approach appears to be predictive in analysis plots but exhibits a poor correlation between 
predictions and validation experiments (Figure S7), in contrast to the successful artificial and 
convolutional neural network classifiers and SVM regression models. Furthermore, many sequence 
patterns are reported in high-response sequences, but most have low abundance (Table S8), further 
confirming the benefit of using ML models when making predictions of high response sequences 
from existing experimental datasets.   

 

Table 1. DNA-SWNT sensors for serotonin identified in the present study. The ID numbers and the 
numbers of reads are obtained from the R6E SELEC dataset31.

 

Overall, our ML approaches led to discovery of five serotonin DNA-SWNT sensors, identified 
in Table 1. Importantly, these sensors all had higher response than sensors previously identified 
experimentally using only manual screening of the highest-abundance sequences in the R6E SELEC 
library (∆F/F = 1.9). Furthermore, the ability to predict DNA sequences that do not respond to 
serotonin (or any analyte of interest such as interfering agents) with our models is also important for 
sensor design. Taken together, our results suggest ML approaches can rapidly identify DNA 
sequences that are great responders for the target analyte and could significantly expedite the 
development of technologies dependent on DNA-SWNT conjugates, including biosensors, 
bioelectronics, and chirality separation of SWNTs.  
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Methods/Experimental 

Dataset encoding and ML models. Datasets used to train and test the initial ML models consisted 
of ssDNA sequences and their corresponding ΔF/F values, obtained in experiments reported and 
described in Ref.31 This dataset is also listed in Table S1. ssDNAs consisted of 18-nt variable 
segment flanked by two C6-mers from each side. Sequences of 18-nt variable segments of ssDNAs 
were considered as input data for our models. Several encodings of input data were considered, 
including position specific vectors (1-gram, labeled as psv1 and shown in Figure S1) and term 
frequency vectors (1-, 2-, 3-, or 4-gram, labeled as tfv1, tfv2, tfv3, and tfv4 and described in Table S3). 
The dataset from Table S1 was split into binary classes, where class 0 contains DNA sequences 
with low response to serotonin and class 1 contains DNA sequences with high response to serotonin. 
The threshold value to define class 0, t0, was varied as a parameter (t0 < 0.85, 0.8, 0.7, 0.6, or 0.5).  
The threshold value to define class 1, t1, was held fixed at t1 = 0.9. This threshold selection leads to 
a reasonable balance of class sequences, as required for model training and testing.  

Performance of several ML classifier models were tested, including AdaBoost, logistic 
regression, support vector classification linear, and random forest. For these models, sequences 
were expressed as 1 × 72 binary arrays, obtained by sequential listing of psv1 matrix columns into a 
1-dimensional array. Separately, we tested the performance of convolutional neural network (CNN) 
models on psv1 and term frequency vector input, successful in previous predictions of DNA and RNA 
sequence specificities39. All our models were trained to predict the probability of the input sequence 
having high or a low response to serotonin. ML models were trained using scikit-learn library, and 
CNN models were constructed with Keras and TensorFlow 2 used as backend. ML and CNN models 
were trained using the initial dataset (Table S1). Since the best performance was observed for CNN 
models with psv1 encoding, the models for extended datasets were generated only with the CNN 
approach.  

All the codes for training ML classification and regression models are freely available on 
GitHub (https://github.com/vukoviclab/DNAsensor). 

Evaluation Metrics. Our CNN models were trained to predict the response of 18-nt DNA sequences 
to serotonin, or equivalently, to predict these sequences’ probabilities to belong to class 0 or class 1 
molecules. In these models, probabilities for sequences to belong to class 0 and probabilities for 
sequences to belong to class 1 were evaluated independently. Predicted high response sequences 
were determined according to the criterion that normalized class 1 probabilities, defined as 
probability (class1) / [probability (class 0) + probability (class 1)], are greater than 0.5. 

For each prepared model, we calculated multiple metrics including accuracy, precision, 
recall, f1 score, ROC curves, and areas under the ROC curves (AUC), and monitored the number of 
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). TP/FP values 
are numbers of test sequences correctly/incorrectly predicted to have high response to serotonin by 
the models, and TN/FN values are numbers of test sequences correctly/incorrectly predicted to have 
low response to serotonin by the models. Accuracy was calculated as Ac = 
(TP+TN)/(TP+TN+FP+FN), precision was calculated as Prec = TP/(TP+FP), and recall was 
calculated as R = TP/(TP+FN), and f1 score = (2Prec∙R)/(Prec+R), according to their standard 
definitions. For ML models, single values of precision, recall, and f1 values were evaluated. For CNN 
models, two values of precision, recall, and f1 scores were reported, allowing the independent 
assessment of prediction quality for sequences with low and high response to serotonin.  

Performance of all the models was also examined with the receiver operating characteristic 
(ROC) curves, and the areas under ROC curves (AUC). For each CNN model, two ROC curves and 
AUC values were obtained, one reporting the prediction quality for test sequences with low response 

https://github.com/vukoviclab/DNAsensor
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to serotonin (AUC0), and the other reporting the prediction quality for test sequences with high 
response to serotonin (AUC1).  

For most of the datasets (with defined encoding and classification thresholds), 200 models 
were generated with different random states (different training/testing data splitting). For some sets 
of the trained models, we report the following evaluations related to model quality metrics: mean, 
standard deviation, minimum, 25%, 50% and 75% percentile values, and maximum.  

PCA analysis. 200 most abundant sequences from R6E and R6C SELEC datasets were analyzed 
using principal component analysis (PCA) within scikit-learn library. Locations of some of the 
experimentally tested sequences were then examined in the above determined PCA space.  

Motif search. Sequences from the expanded dataset (used to train and test model M2) were split in 
two classes: sequences that recognize serotonin (positive, ΔF/F > 0.9) and sequences that do not 
recognize serotonin (negative, ΔF/F < 0.85). These two classes were used to search for DNA 
sequence motifs associated with serotonin recognition using MERCI software.40 In the search, 
minimal occurrence frequency for positive sequences fP and the maximal occurrence frequency for 
negative sequences fN were set to 3 and zero, and the maximum motif length was set to 18. 

 

ssDNA-SWCNT suspension preparation.  ssDNA-functionalized SWNT suspensions were 
generated with the following protocol: 1 mg of HiPCo SWNT (NanoIntegris) was added to 0.9 mL of 
PBS buffer, and the solution was mixed with 100 μL of 1 mM ssDNA. We prepared colloidal 
suspensions of SWNTs with the initial 96 ssDNA sequences (Table S1) and all the subsequent 
sequences (Tables S4, S5, S7) comprising variable 18-nt sequences flanked by two C6-mers from 
each side. The resulting mixture was bath-sonicated for 2 min and tip-sonicated for 10 min at 5-W 
power in an ice bath. After sonication, the black ssDNA-SWNT suspension was centrifuged for 30 
min at 16,100g to precipitate nondispersed SWNT, and the supernatant containing solubilized 
ssDNA-SWNT was collected. The supernatant was spin-filtered with 100-kDa MWCO centrifugal 
filters at 6,000 rpm for 5 min with DNase-free water to remove unbound ssDNA, and the purified 
solution at the top of the filter was collected. This spin filtration to remove unbound ssDNA was 
repeated three times. The ssDNA-SWNT suspension was diluted with PBS buffer and stored at 4°C 
until use. The concentration of the ssDNA-SWNT suspension was calculated by measuring its 
absorbance at 632 nm with an extinction coefficient for SWNT of 0.036 (mg/L)−1 cm−1.   

Fluorescence response measurement of sensors to serotonin. Fluorescence spectra of 99 μL 
ssDNA-SWNT suspensions (10 mg/L) in PBS were measured before and 10 s after the addition of 
1 μL of 10 mM serotonin solution for a final serotonin concentration of 100 μM. We analyzed the 
fluorescence intensity change of the (8,6) SWNT chirality peak (~1195 nm) in this study. ∆F/F was 

calculated as ∆F/F = (Fa − F)/F based on the baseline fluorescence intensity before analyte addition 

(F) and the fluorescence intensity 10 s after analyte addition for the (8,6) SWNT chirality (~1195 nm) 
(Fa). All the values of ∆F/F for sequences in the initial and validation datasets were obtained as a 
mean of technical triplicates measurements, which were normally in high agreement. ΔF/F readout 
for DNA-SWNT sensors was based on (8,6) peak intensity rather than the integrated intensity, even 
though both choices lead to the same qualitative trend. Yet, (8,6) peak is more sensitive than the 
integrated intensity; for example, the ΔF/F for E3-P6 DNA sequence (Table S7) is 207% when using 
the (8,6) peak, and 86% when using the integrated intensity. ∆F/F values for the initial 96 ssDNA 
sequences, ranging from 0 to 1.9, represent the fluorescence response for the 96 most abundant 
sequences from the experimental and control groups for SELEC rounds 3 to 6. ∆F/F values of an 
additional 100 sequences, tested in validation experiments, are reported in Tables S4, S5, and S7. 
We note that our datasets for building ML models do not distinguish the response of two enantiomers 
in DNA-wrapped (8,6) SWNT ∆F/F measurements. DNA sequences are classified as high response 
in the experimentally obtained datasets as long as at least one of the DNA-wrapped SWNT 
enantiomers has high response to serotonin. Therefore, if the ratio of (8,6) enantiomers in the SWNT 
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sample is changed, DNA-SWNT samples made with the high-response sequences could have a 
different ∆F/F response to serotonin. 
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