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Abstract: DNA-wrapped single walled carbon nanotube (SWNT) conjugates have distinct optical
properties leading to their use in biosensing and imaging applications. A critical limitation in the
development of DNA-SWNT sensors is the current inability to predict unique DNA sequences that
confer a strong analyte-specific optical response to these sensors. Here, near-infrared (nIR)
fluorescence response datasets for ~100 DNA-SWNT conjugates, narrowed down by a selective
evolution protocol starting from a pool of ~10"° unique DNA-SWNT candidates, are used to train
machine learning (ML) models to predict DNA sequences with strong optical response to
neurotransmitter serotonin. First, classifier models based on convolutional neural networks (CNN)
are trained on sequence features to classify DNA ligands as either high response or low response
to serotonin. Second, support vector machine (SVM) regression models are trained to predict relative
optical response values for DNA sequences. Finally, we demonstrate with validation experiments
that integrating the predictions of ensembles of the highest quality neural network classifiers
(convolutional or artificial) and SVM regression models leads to the best predictions of both high and
low response sequences. With our ML approaches, we discovered five DNA-SWNT sensors with
higher fluorescence intensity response to serotonin than obtained previously. Overall, the explored
ML approaches, shown to predict useful DNA sequences, can be used for discovery of DNA-based
sensors and nanobiotechnologies.

Keywords: single walled carbon nanotubes, DNA-nanotube conjugates, optical sensors, serotonin,
machine learning

Introduction

Single walled carbon nanotubes (SWNT) are constituent parts of many hybrid material
systems designed for nanotechnology applications, such as sensing, biological imaging, electronics,
and gene delivery.""°. Noncovalent polymer adsorption is a widely used method to functionalize
SWNTs, while also solubilizing them in aqueous environments by forming a “corona phase” on the
SWNT surface. A variety of polymers have been used for SWNT functionalization, including nucleic
acids, peptides, surfactants, lipids, and peptoids."™2° Among those, nucleic acid functionalized
SWNT conjugates are the most ubiquitous and arguably the most technologically useful in important
applications, including optical sensing of biologically important analytes,’? polynucleotide
(DNA/RNA) delivery for genetic transformation applications,”?' and for chirality sorting of muilti-
chirality SWNT samples into chirality-pure constituents.?2-

DNA sequence plays an essential role in DNA-SWNT conjugates that optically sense
analytes and is solely responsible for analyte-specific molecular recognition. An effective sequence

1



must simultaneously bind with high affinity to the analyte and the underlying SWNT surface to result
in a significant selective change of the SWNT near-infrared (nIR) fluorescence response, AF/F, in
the presence of the target analyte. Prior work has found that as little as a single nucleotide
substitution in a DNA sequence can abolish sensor response to a target analyte.?

Most DNA-SWNT-based sensors are generated using either pre-existing molecular
recognition elements?®2° or low-throughput screening approaches, in which fewer than a hundred
DNA sequences are screened for fluorescence modulation by target analytes.?*° The latter
approach, characterized by random successful parameter hits, relies upon the fortuitous discovery
of candidate sensors. While this approach can be useful for starting new directions of research, it is
not a sustainable method for optimizing identified sensing technologies or to develop sensors for
elusive analytes. In a recent advance, we started addressing this challenge: we developed a method
(called SELEC) by which to ‘evolve’ ssDNA-SWNT based molecular recognition towards an analyte
of interest, with selectivity that increases with each round of evolution.?' In this approach, ~10°
unique ssDNA strands can be evolved for molecular recognition of target analytes while still
adsorbed to the surface of a nanomaterial.

The datasets generated by the SELEC approach contain rich information on DNA sequences
that confer analyte selectivity and SWNT binding affinity. Herein, we leverage these unique datasets
to guide our selection of a dataset of ~100 DNA-SWNT conjugates for which we determine AF/F nIR
fluorescence response to the chosen analyte. The resulting dataset is used to develop machine
learning (ML) models that learn and make predictions of useful ssDNA sequences - which previously
eluded experimental validation - that bind to and optically sense the chosen analyte on SWNT
surfaces. The model predictions are examined in validation experiments, the results of which are
then used to retrain models and predict DNA sequences that produce higher AF/F response to the
target analyte. While our approach could be applied to other analytes, we here demonstrate our
approach for serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter with many roles in the central
nervous system® and outside the brain.®®* As serotonin biosensing is of great importance, many
recent efforts have been devoted to its sensor development.?8:31:34.35

Results and Discussion

Classifying DNA sequences in DNA-SWNT conjugates based on their optical response to
serotonin. We first sought to train and test classifier models for predicting 18-nucleotide (nt) long
ssDNA sequences with a high relative nIR fluorescence response to serotonin following conjugation
to SWNT. First, models were trained on an initial dataset of 96 unique ssDNA sequences, identified
by previous SELEC experiments. This initial dataset was selected from a library of all possible ~10°
18-nt ssDNA sequences that competitively bind to either SWNT (control samples) or SWNT in the
presence of serotonin (experimental samples).®' The SELEC protocol, schematically shown in
Figure 1a, was performed for several selection rounds, each of which provided datasets of selected
DNA sequences and their abundance. The 96 sequences, primarily the most abundant sequences
from the experimental and control groups from SELEC rounds 3 to 6, were chosen for follow-up
serotonin response spectroscopic measurements, thus forming the initial dataset for model training.
nIR fluorescence emission was measured for those 96 unique ssDNA-SWNT conjugates before and
after the addition of 100 uM serotonin; these data were already reported in Ref.®' and are provided
in Figure 1b and S9 and Table S1. The response of conjugates to serotonin was calculated from
the fluorescence emission spectra for the (8,6) chirality dominant peak (~1195 nm center
wavelength) as AF/F = (Fa-F)/F, where F is the fluorescence signal before addition of serotonin, and
Fa is the fluorescence signal after the addition of serotonin (Figure 1a). The measured AF/F values
for sequences in the initial dataset range from 0.2 to 1.9. The initial dataset, colored according to
the SELEC group it belongs to (experimental, control, or neither), is also shown in Figure S9.
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Figure 1. Approach to learning which DNA sequences in DNA-SWNT conjugates provide high response
to serotonin. a) A selective evolution protocol, SELEC, performed for up to 6 rounds, experimentally identified
ssDNAs with high affinity for SWNTs and, separately, SWNTs in the presence of serotonin. Some of the high-
affinity ssDNAs are selected for follow up fluorescence emission spectroscopy experiments of ssDNA-SWNT
conjugates before and after the addition of 100 uM of serotonin. b) The optical response, AF/F, of 96 unique
ssDNA-SWNT conjugates to 100 uM serotonin; the data also include duplicate measurements for 4 of the
sequences. ¢) The main computational approach. DNA sequences are pre-processed into either binary psv+
format or a simple binary array. The sequences are split in two classes of optical response, according to AF/F-
based threshold values. The sequences and their AF/F values are used to train classification and regression
models. The models of highest quality are used to predict other sequences with high and low response to
serotonin, which are tested in validation experiments. The obtained experimental data are then used to
generate further models.

Using the approach in Figure 1¢, convolutional neural network (CNN) classifier models were
trained and tested on the obtained dataset of 96 DNA sequences and their corresponding AF/F
values (Table S1, Figure 1b). The dataset was split into two classes of sequences based on the
response to serotonin, namely, class 1 sequences with a strong response to serotonin (AF/F
threshold t1 > 0.9), and class 0 sequences with a low response to serotonin (variable threshold AF/F
values of tp < 0.85, 0.8, 0.7, 0.6, and 0.5). The thresholds were selected to examine how we can best
identify sequences that lead to DNA-SWNT conjugates with either an exceptionally high response
or an exceptionally low response to target analyte, which is the information that one would ideally
want for practical applications of DNA-SWNT sensors. The choice of threshold t1 > 0.9 leads to class
1 containing 32% of sequences from the total dataset (31 out of 96 sequences). The variable
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threshold to allows examining the effects of dataset size and balance on ML model quality and
stability: larger thresholds should lead to more sequences in class 0, imbalanced classes, more
stable models, and learning of sequences with intermediate response to serotonin, while lower
thresholds should lead to fewer datapoints in class 0, more balanced classes, less stable models,
and learning of sequences with very low response to serotonin. Input for CNN models consisted of
ssDNA sequences, converted to position specific vector (psv1) form with binary values (example
shown in Figure S$1). The output of trained CNN models are probabilities for the input sequences to
belong to class 0 and class 1 (independent).
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Figure 2. Performance of a representative CNN model trained on the initial dataset. a) Evaluation of a
representative CNN M+ model trained on the initial dataset, using t1> 0.9 and to < 0.85. b) The optical response,
AF/F, of ssDNA-SWNT conjugates to 100 yM serotonin, obtained for 20 other ssDNA sequences, predicted
by model M1 to have high response (labeled positive) and low response (labeled negative) to serotonin.
Sequences with AF/F values exceeding 1.9, the highest values in the initial dataset, are marked with green
circles. c) Percentage of sequences in R6E, R5E, R6C, and R5C SELEC datasets predicted by model M+ to
be high responders to serotonin. The percentage is calculated for the first 300 SELEC data sequences in the
given experimental/control dataset that are not in the corresponding control/experimental dataset.

Quality parameters for one of the best CNN models trained on the initial dataset, model My,
are provided in Figure 2a. For M1, values of the area under the receiver operating curve (AUC) were
0.59 for predicting class 0 sequences, and 0.64 for predicting class 1 sequences, while
precision/recall were 0.81/0.5 and 0.76/0.57 for predicting class 0 and class 1 ssDNA sequences,
respectively. Models were sensitive to removal of several sequences from input, especially class 1
sequences, as observed when seeking a high-quality CNN model trained on a truncated initial
dataset of only 93 datapoints. Quality parameters for a representative model M+g, prepared with 93
datapoints from the initial dataset, are reported in Figure S2. Overall, while the CNN approach is
giving good but not exceptional quality parameters, we decided to use it for classifying DNA
sequences because several other ML methods tested, including AdaBoost, logistic regression,
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support vector classification, and random forest, led to unusable models. These latter methods
consistently led to class 0 and class 1 probabilities of 0.5 £ 0.2, indicating a poor differentiation
between sequences with high and low response to serotonin for models trained with these methods
(Table S2). Separately, we choose psvs encoding of sequences over other types of encoding
reported by others® that we also tested herein. Specifically, we found that term frequency vectors
with sequence patterns 1, 2, 3, and 4 nucleotides in length (tfv., tfv,, tfvs, and tfvs), frequently resulted
in zero values in confusion matrices for testing sequences (simultaneous zero values for true
positives and false positives). Null values in confusion matrices were noted in 90% of models for tfv4,
100% of models for tfv, and tfvs, and 82% of models for tfv4 encoding (Table S3).

We next examined the predictions of model M+ for the most abundant DNAs from control and
experimental SELEC datasets. We used model M, to classify the 300 most abundant DNA
sequences from round 6 and round 5 experimental (R6E/R5E) and control (R6C/R5C) SELEC
datasets, excluding any overlapping sequences found in both experimental and control datasets from
the same rounds. Model M predicts 41.7%/37.7% of RG6E/R5E sequences and 26%/34% of
R6C/R5C sequences to have high AF/F response to serotonin (Figure 2c). Since experimental
dataset sequences were selected based on their high affinity for SWNTs in the presence of serotonin,
in contrast to the control dataset sequences, our expectations were that experimental datasets
contain more of the serotonin responsive sequences. These expectations agree with the predictions
reported in Figure 2c.

To test the quality of model My predictions, 20 DNA sequences were selected from the 300
most abundant sequences in the R6E SELEC dataset for experimental validation measurements.
According to model M+ probabilities for these sequences to be in classes 0 or 1, 15 of the sequences
are predicted to have high response to serotonin, while the remaining 5 are predicted to have low
response to serotonin (Table S4). Figure 2b and Table S4 provide the experimentally-measured
AF/F values for the selected DNA sequences. Interestingly, 12 out of 15 predicted high-response
sequences had AF/F values greater than the class 1 threshold, t1> 0.9 (80%, obtained from 12 out
of 15 sequences). Furthermore, the validation experiments identified two sequences with AF/F
values of 2.1 and 2.7, and thus a higher response to serotonin than observed for all the sequences
within the initial dataset. These sequences correspond to ID#90 (8 reads, AF/F = 2.1) and ID#115 (7
reads, AF/F = 2.7), based on the read numbers in the R6E dataset. Separately, 3 out of 5 predicted
low-response sequences measured AF/F values lower than the class 0 threshold, to < 0.85. Overall,
predicted probability and experimental AF/F values do not have a statistically significant correlation
(Figure S3).
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Figure 3. Performance of CNN models using the expanded dataset. a) Evaluation of a representative CNN
Mz model trained on the expanded dataset, using t1 > 0.9 and to < 0.85. b) ROC curves of model M2 when
predicting class 0 and class 1 sequences. ¢) The optical response AF/F of ssDNA-SWNT conjugates to 100
MM serotonin, obtained for 40 ssDNA sequences. Sequences with AF/F values exceeding 1.9, the highest
value in the initial dataset, are marked with green circles.

Performance of single CNN models trained on our expanded dataset. To examine if inclusion
of additional experimental data points can produce more predictive models, we trained a second
representative CNN model Mz on the expanded dataset of 113 sequences, which combined the initial
dataset (singly measured sequences in Figure 1b and Table S1) and the additional experimental
data from the first set of validation experiments (Figure 2b and Table S4). A representative model
M. has an accuracy of 0.64, AUC values of 0.71 for predicting class 0 sequences, and 0.75 for
predicting class 1 sequences, while precision/recall are 0.77/0.59 and 0.53/0.73 for predicting class
0 and class 1 ssDNA sequences, respectively. In addition to improved AUC values, the M2 model
has significantly improved ROC curves in comparison to models My and M+g (Figures 3b, S2).

To test the quality of model M. predictions, 40 DNA sequences were selected from 280
untested most abundant sequences in the R6E dataset for the next round of experimental validation
measurements. Of those 40 DNA sequences, half were predicted by M, to have a low response
(labeled as negative) and the other half were predicted to have a high response (labeled as positive)
(Figure S4). Figure 3c and Table S4 provide the experimentally-measured AF/F values for the
selected DNA sequences. Model M; overestimates false positive sequences, since only 7 out of 20
sequences (35%) predicted to have high response to serotonin actually have AF/F greater than the
class 1 threshold of t; = 0.9, while the remaining 13 out of 20 sequences (65%) have AF/F < 0.9.
Single models such as M. could potentially be predicting sequences with responses similar to
randomly chosen sequences. Of practical relevance, model M predicted two previously
undiscovered sequences from the R6E evolution group with a very strong response to serotonin,
with AF/F values of 2.5 and 2.9. Interestingly, these sequences correspond to ID#264 (6 reads, AF/F
= 2.5) and ID#156 (7 reads, AF/F = 2.9), based on the read numbers in the R6E evolution group.



Separately, while all the sequences predicted to have a low response to serotonin had AF/F < 1.3,
only 9 out of 20 sequences (45%) have AF/F values smaller than the class 0 threshold of to = 0.85.
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Figure 4. Stochasticity of CNN models. a) Distribution of accuracy values for 200 CNN models with psv1
input, obtained using different random states for several to values. b) Distribution of ' score values for 200
CNN models, obtained using different random states for to = 0.7. ¢) Dependence of model stability on dataset
size. AUC values for nine CNN models trained on 100, 200, 500 and 1,000 sequences in each of two classes,
extracted from R6C (class 0) and R6E (class 1) SELEC datasets. Each model has a different random state
variable.

Predicting high response DNAs from combined classification and regression models. \When
training models M1 and M., we noted their stochastic behavior and dependence on the random state
variable (different training/testing dataset splits) selected during the training procedure. To
characterize the stochasticity of these models trained on our sparse datasets of ~100 sequences,
we next analyzed their accuracy and f' scores. The analysis was performed on 200 CNN models
trained on the expanded dataset using different random state variables and several t, threshold
values (0.5, 0.6, 0.7, 0.8, 0.85). Distributions of these models’ accuracies and f' scores, shown in
Figures 4a-b and S5, range from 0.4 to 0.93 and 0.2 to 0.9, respectively. While these distributions
span a wide range, most models have accuracies and f' scores higher than 0.5 and should thus be
predictive. Furthermore, more than half of the models in Figure 4b have accuracy and f' scores
higher than 0.6. Interestingly, the predictions of high response sequences are of higher quality for
lower thresholds to (Figure S5, Table S6). Model stochasticity decreases and model stability
increases once the datasets contain 500 or more sequences per class (Figure 4c, input sequences
selected from SELEC datasets).

With the objective of predicting DNA sequences with the highest AF/F values, we next trained
regression models, which predict AF/F values based on the DNA sequence input. The regression
models were trained using the support vector machine (SVM) regression algorithm with radial basis
function (RBF) and sigmoid kernels, based on successful applications of these algorithms for
sequence input.®” One of the best SVM RBF regression models, trained on the expanded dataset
with sequences with AF/F > 0.9 and AF/F < 0.6, is shown in Figure 5a. There is a high correlation
between AF/F values of test sequences obtained experimentally and those predicted by this SVM
model, with r? = 0.448 and the Pearson coefficient rpearson = 0.67 (p-value = 0.001). However, as with
classification models, the quality of regression models also depends on the random state variable.
This dependence is noted in distributions of r? values for 200 models obtained with SVM RBF and
SVM sigmoid methods, different random state variables, and different t, values (Figure 5b-c). For
both SVM RBF and SVM sigmoid methods, r? values range from negative values to 0.5, with SVM
RBF models being on average of higher quality than SVM sigmoid models.
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Figure 5. SVM regression models for predicting AF/F values of ssDNA-SWNT conjugates. a) Comparison
of experimentally measured AF/F values and AF/F values predicted by one of the best SVM RBF regression
models, trained using the expanded dataset and thresholds t1 > 0.9 and to < 0.6 for one selected random state
variable. b) Distribution of r2 values for 200 SVM RBF models, obtained using different random state variables.
c) Distribution of r2 values for 200 SVM sigmoid models, obtained using different random state variables.

Given the large number of high-quality classification and regression models obtained, we
next assessed whether combining the predictions of these models could be used to determine DNA
sequences with high and low response to serotonin. For this purpose, CNN models were trained on
input data with thresholds t1 = 0.9 and to = 0.5 or 0.6, which resulted in f'oand f'1 > 0.6. These were
next used to predict high and low response sequences from a set of 3,000 most abundant previously
untested R6E sequences. Separately, the best regression models with r? > 0.45, trained using the
expanded dataset and sequences within thresholds t1 > 0.9 and to < 0.5, were used to predicted AF/F
values for the same 3,000 sequences. After ranking the sequences according to their regression-
predicted AF/F values, we extracted the top 10 sequences that are also classified as high response
with the CNN models, by having consistently high/low probabilities to be in class 1/classO (Figure
6a). For comparison, we also extracted the bottom 10 ranked sequences, which are also classified
as low responders to serotonin based on having consistently low/high probabilities to be in class
1/classO (Figure 6a). The probabilities of these 20 sequences to be in class 1/class 0 were also
determined by the ensemble of multilayer perceptron artificial neural network (MLP-ANN) models,
shown in Figure S8; the ensemble included the models trained on input data with thresholds t; = 0.9
and to= 0.7, which f'g and 'y scores greater than 0.6. The probabilities obtained from the MLP-ANN
models (Figure S8) closely followed the trends of probabilities from the CNN models (Figure 6a).
The performance of the above top 10 and bottom 10 sequences, labeled as positive and negative,
was then examined experimentally (Figure 6b and Table S7). 6 out of 10 positive sequences (60%)
had AF/F response greater than the class 1 threshold of t; = 0.9, and one of them had AF/F = 2.1
(Figure S6), exceeding the highest value in the initial dataset (1.9). Furthermore, 9 out of 10 negative
sequences (90%) had AF/F response smaller than the class 1 threshold of t1 = 0.9. There is a
statistically significant correlation between experimentally measured and predicted AF/F values
(Figure 6¢), with Pearson correlation coefficient of rpearson = 0.5 and p-value of 0.02.
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Figure 6. Predicting DNA sequence response to serotonin from multiple high-quality classification and
regression models. a) Probabilities of 20 DNA sequences to be high response (class 1) or low response
(class 0) to serotonin; these sequences were selected based on predictions of multiple high-quality
classification and regression models, as described in the text. b) The optical response, AF/F, of sSDNA-SWNT
conjugates to 100 uM serotonin, obtained for the same 20 ssDNA sequences. The sequence with AF/F value
exceeding 1.9, the highest value in the initial dataset, is marked with a green circle. ¢) Comparison of
experimentally measured and predicted AF/F values for the same 20 ssDNA sequences.

Conclusions

In this work, we apply machine learning methods towards discovery of DNA-SWNT sensors
of serotonin with high nIR fluorescence response to serotonin. In prior sensor design efforts, we
experimentally tested the serotonin response of 96 DNA-SWNT sensors, which were chosen by the
abundance (read numbers in library) of each DNA sequence in the experimental and control libraries
from SELEC experiments. This previous selection method assumes the best predictor of sensor
sensitivity and selectivity is the sequence abundance, which excludes the characterization of low
abundance DNA sequences. Here, we demonstrate that ML models can improve on this abundance-
based selection. Specifically, ML models can autonomously learn the correlation between DNA
sequences and fluorescence responses to analyte and thus assist and improve the selection of better
sensor candidates. Choosing the abundant sequences from SELEC experiments increases the
chance that the initial dataset for ML model training will contain a large proportion of high response



sequences, which is less likely to be obtained for a dataset of completely randomly chosen
sequences.

ML models can learn the correlations from datasets of already experimentally tested
sequences and predict promising DNA sequences. After testing multiple ML methods, we find that
convolutional neural network classifier models provide the most meaningful results when trained on
sparse datasets of ~100 DNA sequences, a size typical for sensor search efforts. At first, we train
and test two single CNN classifier models and use them to predict high response DNA sequences
for experimental validation. Even though the prediction accuracies calculated from testing data differ
from the accuracies measured in experiments, these models still predicted multiple DNA sequences
with higher response to serotonin than those previously achieved experimentally. Furthermore, we
trained and tested regression models on DNA sequence input to predict the relative nIR fluorescence
response of these sequences.

Through analyses of model quality parameters for multiple models obtained with different
training/testing data splitting, we show that both classification and regression models trained on our
sparse datasets are stochastic. However, the majority of models are predictive, since most models
have accuracies greater than 50%. Further analyses of model stochasticity dependence on dataset
size indicate that model stability can be achieved with datasets of 500 molecules per class. Since
obtaining such large datasets in experiments is difficult, we instead explore integrating the
predictions of multiple highest quality artificial or convolutional neural network classifiers and SVM
regression models, inspired by model ensembling approaches,*® and demonstrate an effective
increase in the success of this ML approach. We experimentally validate that our integrated approach
leads to 60% correct predictions for high responding sequences and 90% correct predictions for low
responding sequences, supporting the utility of our method for predicting promising DNA sequences
and accelerating sensor discovery. Separately, we show that a simpler principal component analysis
(PCA) approach appears to be predictive in analysis plots but exhibits a poor correlation between
predictions and validation experiments (Figure S7), in contrast to the successful artificial and
convolutional neural network classifiers and SVM regression models. Furthermore, many sequence
patterns are reported in high-response sequences, but most have low abundance (Table S8), further
confirming the benefit of using ML models when making predictions of high response sequences
from existing experimental datasets.

Table 1. DNA-SWNT sensors for serotonin identified in the present study. The ID numbers and the
numbers of reads are obtained from the R6E SELEC dataset3'.

sequence AFIF ID in R6E #reads:
dataset (sequencing)
CCCCCCAAGGCAACCAGACGTCCGCCCCCC 2.103 90 8
CCCCCCGACCCACACCAACCAGTGCCCCCC 2713 115 7
CCCCCCAGCCCTTCACCACCAACTCCCCCC 2917 156 7
CCCCCCAACACAAGACAACGCGTGCCCCCC 2538 264 6
CCCCCCGACCCAAAGCCAACACCTCCCCCC 2.072 473 5

Overall, our ML approaches led to discovery of five serotonin DNA-SWNT sensors, identified
in Table 1. Importantly, these sensors all had higher response than sensors previously identified
experimentally using only manual screening of the highest-abundance sequences in the R6E SELEC
library (AF/F = 1.9). Furthermore, the ability to predict DNA sequences that do not respond to
serotonin (or any analyte of interest such as interfering agents) with our models is also important for
sensor design. Taken together, our results suggest ML approaches can rapidly identify DNA
sequences that are great responders for the target analyte and could significantly expedite the
development of technologies dependent on DNA-SWNT conjugates, including biosensors,
bioelectronics, and chirality separation of SWNTs.
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Methods/Experimental

Dataset encoding and ML models. Datasets used to train and test the initial ML models consisted
of ssDNA sequences and their corresponding AF/F values, obtained in experiments reported and
described in Ref.?' This dataset is also listed in Table S1. ssDNAs consisted of 18-nt variable
segment flanked by two Ce-mers from each side. Sequences of 18-nt variable segments of ssDNAs
were considered as input data for our models. Several encodings of input data were considered,
including position specific vectors (1-gram, labeled as psvs and shown in Figure S1) and term
frequency vectors (1-, 2-, 3-, or 4-gram, labeled as tfvy, tfvy, tfvs, and tfvs and described in Table S3).
The dataset from Table S1 was split into binary classes, where class 0 contains DNA sequences
with low response to serotonin and class 1 contains DNA sequences with high response to serotonin.
The threshold value to define class 0, to, was varied as a parameter (to < 0.85, 0.8, 0.7, 0.6, or 0.5).
The threshold value to define class 1, ti, was held fixed at t1 = 0.9. This threshold selection leads to
a reasonable balance of class sequences, as required for model training and testing.

Performance of several ML classifier models were tested, including AdaBoost, logistic
regression, support vector classification linear, and random forest. For these models, sequences
were expressed as 1 x 72 binary arrays, obtained by sequential listing of psvi matrix columns into a
1-dimensional array. Separately, we tested the performance of convolutional neural network (CNN)
models on psv1 and term frequency vector input, successful in previous predictions of DNA and RNA
sequence specificities®®. All our models were trained to predict the probability of the input sequence
having high or a low response to serotonin. ML models were trained using scikit-learn library, and
CNN models were constructed with Keras and TensorFlow 2 used as backend. ML and CNN models
were trained using the initial dataset (Table $1). Since the best performance was observed for CNN
models with psvi encoding, the models for extended datasets were generated only with the CNN
approach.

All the codes for training ML classification and regression models are freely available on
GitHub (https://github.com/vukoviclab/DNAsensor).

Evaluation Metrics. Our CNN models were trained to predict the response of 18-nt DNA sequences
to serotonin, or equivalently, to predict these sequences’ probabilities to belong to class 0 or class 1
molecules. In these models, probabilities for sequences to belong to class 0 and probabilities for
sequences to belong to class 1 were evaluated independently. Predicted high response sequences
were determined according to the criterion that normalized class 1 probabilities, defined as
probability (class1) / [probability (class 0) + probability (class 1)], are greater than 0.5.

For each prepared model, we calculated multiple metrics including accuracy, precision,
recall, f' score, ROC curves, and areas under the ROC curves (AUC), and monitored the number of
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). TP/FP values
are numbers of test sequences correctly/incorrectly predicted to have high response to serotonin by
the models, and TN/FN values are numbers of test sequences correctly/incorrectly predicted to have
low response to serotonin by the models. Accuracy was calculated as Ac =
(TP+TN)/(TP+TN+FP+FN), precision was calculated as Prec = TP/(TP+FP), and recall was
calculated as R = TP/(TP+FN), and f' score = (2Prec'R)/(Prec+R), according to their standard
definitions. For ML models, single values of precision, recall, and f' values were evaluated. For CNN
models, two values of precision, recall, and f' scores were reported, allowing the independent
assessment of prediction quality for sequences with low and high response to serotonin.

Performance of all the models was also examined with the receiver operating characteristic
(ROC) curves, and the areas under ROC curves (AUC). For each CNN model, two ROC curves and
AUC values were obtained, one reporting the prediction quality for test sequences with low response
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to serotonin (AUCo), and the other reporting the prediction quality for test sequences with high
response to serotonin (AUC1).

For most of the datasets (with defined encoding and classification thresholds), 200 models
were generated with different random states (different training/testing data splitting). For some sets
of the trained models, we report the following evaluations related to model quality metrics: mean,
standard deviation, minimum, 25%, 50% and 75% percentile values, and maximum.

PCA analysis. 200 most abundant sequences from R6E and R6C SELEC datasets were analyzed
using principal component analysis (PCA) within scikit-learn library. Locations of some of the
experimentally tested sequences were then examined in the above determined PCA space.

Motif search. Sequences from the expanded dataset (used to train and test model M) were split in
two classes: sequences that recognize serotonin (positive, AF/F > 0.9) and sequences that do not
recognize serotonin (negative, AF/F < 0.85). These two classes were used to search for DNA
sequence motifs associated with serotonin recognition using MERCI software.®® In the search,
minimal occurrence frequency for positive sequences fp and the maximal occurrence frequency for
negative sequences fy were set to 3 and zero, and the maximum motif length was set to 18.

ssDNA-SWCNT suspension preparation. ssDNA-functionalized SWNT suspensions were
generated with the following protocol: 1 mg of HIPCo SWNT (Nanolntegris) was added to 0.9 mL of
PBS buffer, and the solution was mixed with 100 yL of 1 mM ssDNA. We prepared colloidal
suspensions of SWNTs with the initial 96 ssDNA sequences (Table S1) and all the subsequent
sequences (Tables S4, S5, S7) comprising variable 18-nt sequences flanked by two Ce-mers from
each side. The resulting mixture was bath-sonicated for 2 min and tip-sonicated for 10 min at 5-W
power in an ice bath. After sonication, the black ssDNA-SWNT suspension was centrifuged for 30
min at 16,100g to precipitate nondispersed SWNT, and the supernatant containing solubilized
ssDNA-SWNT was collected. The supernatant was spin-filtered with 100-kDa MWCO centrifugal
filters at 6,000 rpm for 5 min with DNase-free water to remove unbound ssDNA, and the purified
solution at the top of the filter was collected. This spin filtration to remove unbound ssDNA was
repeated three times. The ssDNA-SWNT suspension was diluted with PBS buffer and stored at 4°C
until use. The concentration of the ssDNA-SWNT suspension was calculated by measuring its
absorbance at 632 nm with an extinction coefficient for SWNT of 0.036 (mg/L)™* cm™.

Fluorescence response measurement of sensors to serotonin. Fluorescence spectra of 99 uL
ssDNA-SWNT suspensions (10 mg/L) in PBS were measured before and 10 s after the addition of
1 uL of 10 mM serotonin solution for a final serotonin concentration of 100 uM. We analyzed the
fluorescence intensity change of the (8,6) SWNT chirality peak (~1195 nm) in this study. AF/F was
calculated as AF/F = (Fa — F)/F based on the baseline fluorescence intensity before analyte addition
(F) and the fluorescence intensity 10 s after analyte addition for the (8,6) SWNT chirality (~1195 nm)
(Fa). All the values of AF/F for sequences in the initial and validation datasets were obtained as a
mean of technical triplicates measurements, which were normally in high agreement. AF/F readout
for DNA-SWNT sensors was based on (8,6) peak intensity rather than the integrated intensity, even
though both choices lead to the same qualitative trend. Yet, (8,6) peak is more sensitive than the
integrated intensity; for example, the AF/F for E3-P6 DNA sequence (Table S7) is 207% when using
the (8,6) peak, and 86% when using the integrated intensity. AF/F values for the initial 96 ssDNA
sequences, ranging from 0 to 1.9, represent the fluorescence response for the 96 most abundant
sequences from the experimental and control groups for SELEC rounds 3 to 6. AF/F values of an
additional 100 sequences, tested in validation experiments, are reported in Tables S4, S5, and S7.
We note that our datasets for building ML models do not distinguish the response of two enantiomers
in DNA-wrapped (8,6) SWNT AF/F measurements. DNA sequences are classified as high response
in the experimentally obtained datasets as long as at least one of the DNA-wrapped SWNT
enantiomers has high response to serotonin. Therefore, if the ratio of (8,6) enantiomers in the SWNT
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sample is changed, DNA-SWNT samples made with the high-response sequences could have a
different AF/F response to serotonin.
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