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ABSTRACT

In many applied fields incomplete covariate vectors are commonly encountered. It is well known that this
canbeproblematicwhenmaking inferenceonmodel parameters, but its impact onpredictionperformance
is less understood. We develop a method based on covariate dependent random partition models that
seamlessly handles missing covariates while completely avoiding any type of imputation. The method
we develop allows in-sample as well as out-of-sample predictions, even if the missing pattern in the new
subjects’ incomplete covariate vector was not seen in the training data. Any data type, including categorical
or continuous covariates are permitted. In simulation studies, the proposed method compares favorably.
We illustrate themethod in two application examples. Supplementarymaterials for this article are available
here.

ARTICLE HISTORY

Received June 2020
Revised September 2021

KEYWORDS

Bayesian nonparametrics;
Dependent random partition
models; Indicator-missing;
Pattern missing

1. Introduction

We introduce an approach for prediction with missing covari-
ates, that is, regression with a variable-dimension covariate vec-
tor. The proposed model does not require any notion of imput-
ing or substituting missing covariates. Instead we start with a
distribution for a random partition based on available covari-
ates, and then add a cluster-specific sampling model for the
response. The result is an elegant and uncomplicated variable-
dimension regression approach.

Missing observations are regularly encountered in data-
driven research (Daniels and Hogan 2008, Molenberghs et al.
2014). Because of this, there is a rich literature dedicated to
methods that have been developed to accommodate them.
These methods range from being ad-hoc like the complete-
case approach which simply deletes subjects/units exhibiting
missing observations, to more statistically sound procedures
like (multiple) imputation which probabilistically “fills” in
the missing values (see Rubin 1987, Little and Rubin 2002,
van Buuren 2012, or Molenberghs et al. 2014). Most of the
statistical literature dedicated tomissing observations is focused
on missing response values and their impact on inference for
model parameters. The focus of this work is on incomplete
covariate vectors and their impact on prediction accuracy.
Even though incomplete predictor vectors are also common in
practice (White and Carlin 2010) and can have adverse effects
on prediction accuracy (destructive if an influential predictor
is missing; see e.g. Mercaldo and Blume 2020), the missing
observations literature is less developed for this case.

In the presence of missing covariates the complete-case
approach is still an option, but o�en performs poorly when pre-
diction is of interest (Mercaldo and Blume 2020). Somemultiple
imputation methods that were developed for missing response
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values can also be employed for missing covariates. Focusing
on methods that allow mixed data types, multiple imputation
by chained equations (MICE), which employs conditionally
specified models, can be used to impute missing covariates one-
at-a-time (vanBuuren 2012). This approach is somewhat ad-hoc
as there is no guarantee that the conditionally specified models
produce a valid joint model for the covariates. To avoid this, Xu,
Daniels, and Winterstein (2016) employed Bayesian additive
regression trees (BART) to impute missing covariates based
on the MICE framework. Although their approach produces
a valid joint distribution, the order of the conditional models
impacts the imputations. Similarly, Burgette and Reiter (2010)
employed classification and regression trees (CART) to impute
within a MICE type algorithm which permits more flexibility in
the conditional distributions, while Stekhoven and Bühlmann
(2012) used random forests to carry out imputation. Recently,
Storlie et al. (2020) built a flexible yet complex Bayesian
nonparametric model to carry out imputation. Their approach
jointly models mixed-type covariates and includes a variable
selection component making the procedure more robust. All
these andmost othermultiple imputation type approaches focus
on inference for model parameters. If prediction is tangentially
considered, then the complications that arise when predicting
based on multiple imputation are not considered. For example,
procedures based onmultiple imputation are problematic when
out-of-sample prediction is desired as it is not possible to
connect a response to the vector of covariates when carrying out
imputation (a response does not exist). This has been shown to
negatively impact predictive performance (Moons et al. 2006).
Considering these limitations, our interest lies in developing a
procedure that avoids imputation while still providing a good
and flexible model for the available data.
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The so-called missing indicator approach (Little 1992, Jones
1996, van der Heijden et al. 2006) has been developed to avoid
the sometimes unverifiable assumptions ofmultiple imputation.
But these methods must be used with care in practice as they
are prone to producing biased estimates, and as a result, poor
predictions (see van der Heijden et al. 2006; Groenwold et al.
2012). Also, under this approach, there is no clear way to handle
the case of a new subject in out-of-sample prediction exhibiting
a differentmissing pattern than those found in the training data.

Our approach to incorporating missing covariates in a
predictionmodel stems from a completely different perspective.
We start with a covariate-dependent random partition model
that naturally allows formissing values in the covariates, and can
accommodate mixed-type covariates. Adding a cluster-specific
sampling model to the random partition defines a posterior
predictive distribution that makes out-of-sample prediction
straightforward. Covariate-dependent random partitions are
particularly well suited for prediction, as they permit complex
interactions and nonlinear associations between covariates and
responses, simply by including corresponding clusters in the
partition. Perhaps, the missing data method whose focus is
most similar to what we develop is found in Kapelner and Bleich
(2015). They use BART to implement predictions and employ
a missing indicator when constructing trees (i.e., the trees are
not used as a tool to impute). Although their motivation is
similar to ours, our approach is based on a random partition
model (rather than deterministic partition creation), which
permits more flexibility in how covariates interact and accounts
for all uncertainties. Throughout we assume that missing
data are missing at random (MAR), with some exceptions.
Simple MNAR due to a detection limit, for example, is easily
accommodated by introducing an additional binary covariate.

The remainder of the article is organized as follows. In
Section 2, we provide background associated with covariate
dependent product partition models. Section 3 describes our
extension that permits incomplete covariates vectors of varying
dimensions. Section 4 contains a simulation study while data
applications are described in Section 5. Some concluding
remarks are provided in Section 6.

2. A Covariate-Dependent Product PartitionModel

We build on a covariate-dependent partition model proposed
byMüller, Quintana, and Rosner (2011). We introduce notation
by way of a brief review of their approach. For more details see
Müller, Quintana, and Rosner (2011), Park and Dunson (2010),
or Quintana, Loschi, and Page (2018).

Let i = 1, . . . ,m index m experimental units. Let ρm =

{S1, . . . , Skm} denote a partition (or clustering) of the m units
into km nonempty and exhaustive subsets so that {1, . . . ,m} =
⋃

j Sj, for disjoint subsets Sj. To simplify notation we omit
the subscript m for ρ unless explicitly needed. A common
alternative representation of ρ introduces cluster membership
indicators ci = j if i ∈ Sj. Let xi = (xi1, . . . , xip) denote a
1× p covariate vector measured on unit i and x = {x1, . . . , xm}.
Further, let x⋆

j = {xi : i ∈ Sj} denote covariate vectors

arranged by clusters. We will generally use a superscript “⋆” to
mark cluster-specific entities. The covariate-dependent product
partitionmodel (PPMx) prior onρ formalizes the idea that units

with similar covariate values aremore likely a priori to belong to
the same cluster than units with dissimilar covariate values. The
prior consists of two set functions. The first, called a cohesion
function and denoted by c(Sj | M) ≥ 0 for Sj ⊂ {1, . . . ,m}

and hyper-parameter M, measures prior belief associated with
the co-clustering of the elements of Sj. The second, called a
similarity function and denoted by g(x⋆

j | ξ) and parame-

terized by ξ , formalizes the “closeness” of the xi’s in a cluster
by producing larger values of g(x⋆

j | ξ) for xi’s that are more

similar. The similarity function in the PPMx plays a similar role
to that of the impurity functionwhen building trees usingCART
(Classification And Regression Trees). See, for example, Sutton
(2005, sec. 2.4). With the similarity and cohesion functions, the
form of the PPMx prior is the following product:

p(ρ | x,M, ξ) ∝

km
∏

j=1

c(Sj | M)g(x⋆
j | ξ). (1)

The cohesion function we employ in what follows is c(Sj |

M) = M × (|Sj| − 1)! for some positive M and | · |

denoting cardinality. This cohesion is commonly employed as
the corresponding prior p(ρ) is identical to the popular Chi-
nese restaurant process (Aldous 1985; Broderick, Jordan, and
Pitman 2013). Regarding possible similarity functions, Müller,
Quintana, and Rosner (2011) discussed choices for different
covariate data types (continuous, ordinal, or categorical), and
suggest using

g(x⋆
j | ξ) =

∫

∏

i∈Sj

q(xi | ζ j)q(ζ j | ξ)dζ j (2)

where q(xi | ζ j) and q(ζ j | ξ) are a conjugate pair whose
form depends on the type of covariate and ξ is a fixed “hyper-
parameter”. With a conjugate pair, the integral in (2) can be
evaluated in closed form. For example, in the numerical exper-
iments in Section 4 and data applications in Section 5 we use
q(· | ζj) = N(·; ζj, v2x) and q(ζj) = N(ζj;mx, s2x). This results
in ξ = (v2x,mx, s2x) and g(x⋆

j | ξ) = Nnj(mxjnj , s
2
xJnj + v2xInj)

where jnj is a nj-dimensional vector of ones, Jnj is a nj × nj
matrix of ones, and Inj is a nj-dimensional identity matrix. For
simplicity, we use (2) for scalar covariates only and construct
g(·) for multivariate xi using separate similarity functions gℓ for
each covariate and set g(x⋆

j | ξ) =
∏p

ℓ=1 gℓ(x
⋆
jℓ | ξ)where x⋆

jℓ =

{xiℓ : i ∈ Sj}. See Page and Quintana (2018) for more discussion
on other possible specifications for the similarity function.

For a given cluster arrangement ρ, we complete the model
construction with a sampling model for the response yi by
introducing cluster-specific parameters θ⋆ = (θ⋆

1, . . . , θ
⋆
km

) and
assuming conditional independence at the observation level.
Letting yi denote the ith response and y = (y1, . . . , ym) this leads
to the following model:

p(y, ρ, θ⋆ | x,M, ξ) = p(y | ρ, θ⋆) p(ρ | x,M, ξ)p(θ⋆)

∝

km
∏

j=1











∏

i∈Sj

p(yi | θ⋆
j )



 p(θ⋆
j )







× p(ρ | x,M, ξ),

(3)
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where p(θ⋆) is a prior distribution for θ⋆ whose components
are assumed to be independent and identically distributed. The
model can be written in hierarchical form using latent cluster
membership indicators,

yi | θ⋆, ci = j
ind
∼ p(yi | θ⋆

j )

θ⋆
j | ρ

iid
∼ p(θ⋆

j | ρ)

p(ρ = {S1, . . . , Skm} | x,M, ξ) ∝
∏km

j=1 c(Sj | M)g(x⋆
j | ξ).

(4)

The exact form of sampling model p(yi | θ⋆
j ) depends on the

type of response. For example, in the data applications in Sec-
tion 5 we consider both a continuous and binary response. The
former naturally leads to using a Normal sampling model while
the later to a probit regression-type sampling model. Finally,
neither the independence nor the iid assumption in the first two
lines of (4) are strictly needed for the upcoming discussion, and
could be relaxed.

3. PPMxWithMissing Covariates

We extend the PPMx model (4) to allow for variable dimension
covariate vectors. In short, we generalize the similarity function
g(x⋆

j ) in the prior for the random partition to use only avail-

able covariates. We introduce this construction next. This will
eventually lead to a variable-dimension covariate regression.We
refer to the proposedmodel in general, and the implied variable-
dimension covariate regression as VDReg.

3.1. RandomPartitionsWith Variable-Dimension

Covariates

To develop an extension of the PPMxmodel that accommodates
missing covariates, denote by Oi the collection of covariate
indices that are observed for subject i. The ith subject’s observed
covariate vector can be now denoted as xoi = {xiℓ : ℓ ∈ Oi} and
the collection of observed covariate vectors that belong to the
jth cluster is x⋆o

j = {xoi : i ∈ Sj} = {xiℓ : ℓ ∈ Oi, i ∈ Sj}.
Then missing covariates can be accommodated in the PPMx
by evaluating the similarity function gℓ using only subjects i ∈

Cjℓ = {i : i ∈ Sj, ℓ ∈ Oi}, i.e., those with observed covariate
ℓ. Letting x⋆o

jℓ = {xiℓ : i ∈ Cjℓ}, we define a modified similarity

function as

g̃(x⋆o
j | ξ)

def
=

p
∏

ℓ=1

g̃ℓ(x
⋆o
jℓ | ξ ℓ)

def
=

p
∏

ℓ=1
∫

∏

i∈Cjℓ

q(xiℓ | ζ jℓ) dq(ζ jℓ | ξ ℓ). (5)

Importantly, in the presence of missing covariates, the simi-
larity function for the ℓth covariate is evaluated based only on
subjects for which the covariate is measured. In other words,
missing values are simply skipped over when evaluating the
similarity function. As a result, no imputation (implicit or not)
is being employed. Xu et al. (2019) used a similar strategy when
using the PPMx in a basket trial design, but without any notion
of prediction.

We note briefly that in the context of variable selectionQuin-
tana,Müller, and Papoila (2015) considered similarity functions
that are similar in form to (5), but with each cluster selecting a
cluster-specific subset of covariates. Importantly, in that appli-
cation Cjℓ is a random cluster-specific parameter that includes
the subset of covariates that were selected for the jth cluster. In
that case it is important that g(x⋆

jℓ) be scaled such that g(x⋆
jℓ) >

1 for x⋆
jℓ that are judged to be very similar and g(x⋆

jℓ) < 1

for very diverse x⋆
jℓ. That is, g(·) needs to be centered around

1, lest it would introduce an inappropriate prior probability
for including a variable. Quintana, Müller, and Papoila (2015)
introduced an additional factor to ensure such scaling.However,
this issue does not arise here, since Cjℓ is fixed, that is, inference
is conditioned on the observed covariates.

3.2. Variable Dimension Covariate Regression (VDReg)

An important feature of the PPMx prior on partitions is the
flexibility in capturing the role of covariates in the predictive
distribution which we now discuss. The new similarity function
in (5) easily accommodates incomplete covariate vectors when
making predictions for “new” individuals, even if the pattern of
missingness has not been observed among individuals included
in the training dataset. To see this, consider the predictive
multinomial probabilities that the (m + 1)st subject belongs to
one of the groups h = 1, . . . , km conditional on ρm:

p(cm+1 = h | ρm, x
o, xom+1)

∝







c(Sh ∪ {m + 1})g̃(x⋆o
h ∪ {xom+1})

c(Sh)g̃(x
⋆o
h )

for h = 1, . . . , km

c({m + 1})g̃({xom+1}) for h = km + 1,

(6)

where g̃(x⋆o
h ∪ {xom+1}) is computed including i = m + 1 in Sh.

That is, letting C̃jℓ = {i : i ∈ Sj ∪ {m + 1} and ℓ ∈ Oi}, we
define

g̃(x⋆o
h ∪ {xom+1}) =

p
∏

ℓ=1

∫











∏

i∈C̃jℓ

q(xiℓ | ζ hℓ)











dq(ζ hℓ | ξ ℓ).

(7)
Thus, any missing covariate for the (m+ 1)st subject is handled
in (7) by simply skipping over those missing values, and there-
fore, the similarity can always be evaluated. In the extreme case
of a “new” subject with an entirelymissing covariate vector, then
x⋆o
h ∪{xom+1} = x⋆o

h implying that g̃(x⋆o
h ∪{xom+1}) = g̃(x⋆o

h ) and
thus the conditional probabilities for the cluster membership
indicator in (11) reduce to those whenmaking predictions using
the PPM.

To allow for prediction we add the sampling model (4) (first
two lines) to include responses yi. In the full model, posterior
predictive probabilities (11) for the cluster membership cm+1

imply a flexible regression for ym+1 on xom+1. In words, the
regression is described as a locally weighted mixture of predic-
tions under different clusters, with the local weighting induced
by (11) and all being marginalized with respect to posterior
uncertainty on the clustering. The local weighting introduces
the regression on xom+1, with the desired feature of allowing vari-
able dimension xom+1. This is because only observed covariates
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Figure 1. Regression with variable dimension covariates, for data (x1i , x2i , yi)with
black, blue, and red indicating data linked to three imputed clusters. The plot shows
the posterior predictive regression f (x1 , x2) = E(yn+1 | xn+1,1 = x1 , xn+1,2 =
x2 , data) for a futuredatapointwithboth, (x1, x2)observed (gray response surface),
f (x1 , •) for a data point (x1 , •) with missing x2 (red curve) and f for a future
observation without available covariates (green bullet on the Y-axis).

are used in (11). Formally, let wj(x
o
m+1; x⋆o

j ) = p(cm+1 = h |

ρm, x
o, xom+1), and let fj(ym+1; y⋆

j ) =
∫

p(ym+1 | cm+1 =

j, y⋆
j , θ

⋆
j ) dp(θ

⋆
j | y⋆

j ). We get a locally weighted regression

p(ym+1 | x, y, xm+1, ρm) =

km
∑

j=1

wj(xm+1; x
⋆
j ) fj(ym+1; y

⋆
j ), (8)

and finally

p(ym+1 | xo, y, xom+1) = Eρ







km
∑

j=1

wj(xm+1; x
⋆
j )fj(ym+1; y

⋆
j ) | y







.

(9)
Expression (8) clearly exposes how the variable dimension
covariate regression is implemented by using weights wj that
only make use of available covariates. The final equation
averages over the unknown partition, with respect to p(ρm |

y, xo). The regression (9) concisely summarizes the proposed
approach to implement variable dimension covariate regression.
In summary, by the implied posterior predictive distribution
(9) the proposed model defines a variable dimension covariate
regression. This is illustrated in Figure 1.

For the upcoming simulation studies and ozone data exam-
ple, we implement the model for continuous outcomes yi and
continuous covariates xiℓ, using a normal sampling model p(yi |

ci = j, θ⋆
j = (µ⋆

j , σ
2⋆
j )) = N(µ⋆

j , σ
2⋆
j ) with a conjugate normal

prior on the location parameter and a uniform prior on cluster-
specific standard deviations σ ⋆

j . For the cohesion function, we

use c(Sj | M) = M(|Sj| − 1)!. The similarity functions are
specified using (5), with q(xiℓ | ζ jℓ) and q(ζ jℓ | ξ) correspond-
ing to the Normal–Normal pair detailed in Section 2 with fixed
values for ξ = (v2x,mx, s2x) and other sampling model hyper-
parameters. For later reference, we summarize the complete

VDReg model with these choices:

yi | µ∗, σ 2∗, ci = j ∼ N(µ∗
j , σ

2∗
j ) for i = 1, . . . ,m

(µ∗
j | ρ) ∼ N(µ0, σ

2
0 ) for j = 1, . . . , km

(σ ⋆
j | ρ) ∼ Uniform(0, aσ ) for j = 1, . . . , km

µ0 ∼ N(m0, v2)
σ0 ∼ Uniform(0, aσ0)

p(ρ = {S1, . . . , Skm} | xo,M, ξ) ∝
∏km

j=1 c(Sj | M)g̃(x⋆o
j | ξ).

(10)

The uniform prior on cluster-specific standard deviations
follows suggestions in Gelman (2006). The function g̃(·) in the
last line is where the model accommodates variable-dimension
covariate vectors using (7) to define a similarity function on
the basis of available covariates only. This is at the heart of the
proposed VDReg model.

3.3. Posterior Computation

Fitting the model detailed in Equation (10) requires an MCMC
algorithm that samples from the joint posterior distribution of
model parameters. Our approach is to employ a hybrid Gibbs-
sampler with Metropolis steps that is based on algorithm 8 of
Neal (2000). Based on Algorithm 8, the full conditional proba-
bility of ci for h = 1, . . . , k−i

m (where k−i
m denotes the number of

clusters a�er having removed the ith observation) is

Pr(ci = h|−) ∝










N(yi;µ⋆
h, σ

2⋆
h )

c(S−i
h ∪ {i})g̃(x⋆o(−i)

h ∪ {xoi })

c(S−i
h )g̃(x⋆o(−i)

h )
for h = 1, . . . , k−i

m

N(yi;µ⋆
new,h, σ

2⋆
new,h)c({i})g̃({x

o
i }) for h = k−i

m + 1,

(11)

where µ⋆
new,h, and σ 2⋆

new,h are drawn from their respective prior
distributions. Themain difference between the cluster probabil-
ities in (11) for complete data and that formissing data is that an
indicator matrix that identifies which covariate values are miss-
ing must be carried along. To update the variance components
(σ 2⋆

1 , . . . , σ 2⋆
km
, σ 2

0 ), we use a randomwalkMetropolis step with a
Normal proposal density. Themeans in both levels ofmodel (10)
(µ⋆1, . . . ,µ

⋆
km
,µ0) are updated with a Gibbs step as their full

conditionals are Normal and can be derived using well-known
arguments.

Introducing a missingness indicator in the MCMC algo-
rithm does not seem to adversely affect its behavior relative
to an algorithm with no missing covariate values. For exam-
ple, the rate of convergence and the mixing is comparable,
in our experience, to posterior sampling of mixture models
when there is no missingness. It is worth mentioning that as p
and/or m increase, the algorithm’s speed decreases. In fact, for
a moderate number of covariates (30–50), it might be worth
exploring alternative computing approaches for m > 1000.
This is actually a problem that is not exclusive of VDReg,
but is shared by many related approaches that are based on
updating cluster membership indicators in a random partition
model.
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4. Numerical Experiments

We conduct two simulation studies. The first is carried out to
assess how predictions are affected by (a) an increase in the
number of covariates and the missingness rate, (b) different
types of missingness, and (c) how informative covariates are in
forming clusters. Datasets in the first simulation are generated
using clusters that are covariate dependent. The second exper-
iment is conducted to study how the VDReg method performs
when datasets are not created using covariate informed clusters.

4.1. Simulation Study 1

4.1.1. Simulation Scenarios

Wegenerate datawith 100 testing and 100 training observations.
Wedescribe next the generation of covariates, responses, and the
missing data.

Covariates: datasets are generated with a varying number of
covariates, p ∈ {2, 4, 10}. Specific values for the covariates are
generated using four p-dimensional Gaussian distributions,
thus creating km = 4 covariate dependent clusters. For
example, when p = 2, we use four bivariate normals,
N(mj,Vj), with mj = (1, 1), (1,−1), (−1, 1), and (−1,−1)
to generate 200 sets of covariate values xi (50 in each cluster).
Similarly, with p = 4, we use mj = (1, 1, 1, 1), (1,−1, 1,−1),
(−1, 1,−1, 1), and (−1,−1,−1,−1), to create km = 4 clusters
with 50 observations each. And lastly, for p = 10, we use
mj = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (1,−1, 1,−1, 1,−1, 1,−1, 1,−1),
(−1, 1,−1, 1,−1, 1,−1, 1,−1, 1), and (−1,−1,−1,−1,−1,−1,
−1,−1,−1,−1). Notice that as p increases km = 4 remains
constant, but the clusters become sparser in the covariate space.
To study how the overlap among clusters (“cluster noise”) affects
prediction results, the covariance matrix Vj used to generate
covariates is set as Vj = s2Ip with s2 ∈ {0.252, 0.52, 0.752}.
Under s2 = 0.252, the clusters are well separated, while for s2 =

0.52 the clusters are adjacent, and for s2 = 0.752 the clusters
overlap substantially. Figure 1 in the online supplementary
material displays the cluster configuration for each of the s2

when p = 2. This describes the generation of the covariates xi.

Responses: yi are generated as p(yi | si = j) = N(µ⋆
j , σ

2⋆
j ). We

use µ⋆
j = −1,−0.5, 0, and 0.5 for observations in clusters j = 1

through 4, respectively. To study how heterogeneity of variances
across clusters impacts inference we use two sets of simulations,
one with σ 2⋆

j = 0.252 for all j, and one with σ ⋆
j = 0.1, 0.25, 0.5

and 0.75, respectively for j = 1, . . . , 4.

Missing values: in the covariates are inserted as follows. For

each covariate a specific fraction (approximately) of values are

randomly selected to be classified as missing. We consider two

types of missingness. The first is missing at random (MAR)

and the second missing not at random (MNAR). Generating

both types of missing is facilitated using the ampute function

found in the mice R-package (van Buuren and Groothuis-

Oudshoorn 2011). ForMNAR, theampute function is used for

each covariate with the missing probabilities being a function of

the covariate value (see Schouten, Lugtig and Vink 2018 for spe-

cific details regarding the function used to produce probability

of missing). The ampute function is also applied separately to

each covariate for the MAR case where each covariate entry is

equally likely to be classified as missing.

In summary, we generate data under simulation truths

varying the following factors: (A) type of missing (MAR or

MNAR), (B)missing fraction (0%, 10%, 25%, 50%), (C) number
of covariates (p = 2, 4 and 10), (D) cluster noise (s2 ∈

{0.252, 0.52, 0.752}), and (E) heteroscedasticity (yes, no).
Comparison. As mentioned, each created dataset is com-

prised of 200 observations (50 in each cluster). Then each

dataset is randomly split into 100 training and 100 test observa-

tions. For each simulated dataset we implement inference under

the following models and approaches: (a) BART: The method

detailed in Kapelner and Bleich (2015) and carried out using the

bartMachine package (Kapelner and Bleich 2016) in R; (b)

MI: Based on 10 imputed datasets via the complete function

of the mi package (Su et al. 2011) from the statistical so�ware R

(R Core Team 2018); (c) PSM: Pattern submodel approach using

method in Mercaldo and Blume (2020) and code available at

https://github.com/sarahmercaldo/MissingDataAndPrediction.
(D) VDReg: model (10)

When fitting the VDReg model (10) covariates are stan-

dardized to zero mean and unit variance and the similarity

parameters are set to v2x = 0.5, mx = 0, and s2x = 1. Finally,

fixed hyperparameters are m0 = 0, v2 = 102, aσ = 1

and aσ0 = 2. These values for hyperparameters were selected

since the mean response for these data is relatively close to zero

(−0.25 approximately) relative to the standard deviation (less

that 1). With these prior specifications, we fit model (10) by

collecting 1000 MCMC samples a�er discarding the first 25,000

as burn-in and thinning by 25 (i.e., 50,000 total MCMC draws

are sampled). All computation for model (10) is carried using

the gaussian_ppmx function that is part of the ppmSuite

R-package version 0.1.7 (Page 2021).
In order tomake out-of-sample predictions usingMI, covari-

ates in training and testing data were joined, and imputationwas
carried out based only on this joined matrix (i.e., the response
associated with training data was not included in the imputa-
tion). Default parameter values for the BART and PSM proce-
dures are used.

To compare each method’s ability to fit the data, we use the

MSE (mean squared error), MSE = 1
100

∑100
i=1(Yoi − Ŷoi)

2,

where i indexes the 100 training observations (Yo) and Ŷoi is
the fitted value for the i observation. MSE quantifies in-sample
prediction which may be a type of prediction that is of interest.
We also include the MSPE (mean squared prediction error)
which measures the out-of-sample predictive performance of
the models, MSPE = 1

100

∑100
i=1(Ypi − Ŷpi)

2, where i indexes

the 100 testing observations (Yp) and Ŷpi = E(Ypi | Yo).
Results. Before describing simulation results, we note that

under a missing rate of 50% and p = 10 covariates the so�ware
used to fit the PSM model exceeds an internal computational
limit and aborts in error. As a result, PSM is not included in
this scenario. We found that the simulation results are similar
under the various combinations of data being MNAR or MAR,
and whether or not we assume heteroscadasticity. We therefore
present only results under MNAR and heteroscedasticity, and
summarize other results in Section 1 of the supplementary
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Figure 2. MSE results from simulation study when missing is not at random and s2 is not constant across clusters. All methods except MI have the smallest MSE in at least
on instance. VDReg’s MSE tends to decrease as the missing percentage increases or as the number of covariates decreases. BART and PSM tend to fit the data better as the
number of covariates increases.

material. Figures 2 and 3 display MSE and MSPE as a function
of the number of covariates, missing fraction and cluster noise.

Focusing on the MSE values first, notice that under 0%
missing fraction, BART fits the data best and the other
procedures are similar with cluster noise impacting MI and
PSM the most (which is to be expected). However, with
increasing missing rate VDReg reports the best model fit, with
the differences between procedures increasing with a higher
missing fraction, cluster noise and p. Generally speaking, MI
tends to perform least favorably (as one might expect of a very
generic method).

Regarding MSPE, results are very similar across procedures
when there are no missing values, with relative performance
under VDReg looking increasingly better with increasing
cluster noise and p. With increasing missing rate the prediction
accuracy of the PSM and MI degrades the most (which
was expected). VDReg and BART generally predict better as
the number of covariates increases. Overall, VDReg is least
impacted by an increase in the missing fraction and cluster
noise. The simulation study indicates that VDReg performs

favorably in accommodating missing values relative to BART,
MI, and PSM, regardless of the type of missingness (see
Figures 2–7 in the supplementary material).

4.2. Simulation Study 2

Wenow consider a simulation scenario based on the data gener-
ating mechanism found in Friedman (1991); see also Chipman,
George and McCulloch (2010). These data do not originate
from clusters that are covariate informed. As in Section 4.1, we
consider the generation of covariates, responses, and themissing
data individually.
Covariates: fix p = 10 and create covariate values using

xi1, . . . , xip
iid
∼ Uniform(0, 1).

Responses: yi are generated use yi = f (xi) + ǫi where

f (xi) = 10 sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5.

Notice that xi6, . . . , xi10 are noise covariates as they do not
contribute to the response value. We consider two different ǫi
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Figure 3. MSPE results from simulation studywhenmissing is not at random and s2 is not constant across clusters. VDReg and BART’s MSPE values decrease as the number
of covariates increases with VDReg outperforming BART. PSM seems to break down with more than four covariates with 50%missing. As expected MI performs the worst.

terms. The first is the iid case so that ǫi
iid
∼ N(0, 1). The second

error terms depends on xi such that ǫi
ind
∼ N(0, exp(xi1))

Missing values: in the covariates are inserted using the same
procedure as described in Section 4.1.

Comparison.As in Section 4.1, each synthetic dataset is com-
prised of 100 training and 100 testing observations and the
same competingmethods are included.When fitting theVDReg
model in this numerical study we do not standardize covariates
and as such, we set v2x = 0.05, mx = 0.5, and s2x = 0.05. In
addition, sampling model hyper-parameters are set to m0 = 0,
v2 = 102, aσ = 2, and aσ0 = 2. The same metrics in Section 4.1
are used to compare the four methods. Results are provided in
Figures 4 and 5.

Results. Focusing on the MSE values, it can be easily seen
from Figure 4 that VDReg outperforms the other methods. It
seems that BART andMI aremore severely impacted bymissing
covariates. That said, PSM is not even available for percent
missing more than 25%. Focusing now on the MSPE values in
Figure 5, it also appears that MSPE is not influenced much by

idiosyncratic noise that depends on x1 (unlike MSE values). In
addition, it seems that PSM andMI perform the best when there
are no missing covariates. This is to be expected as the linear
model that they employ is the correct sampling model. As the
amount of missing increases however, MI and PSM are themost
severely impacted. In fact, it appears that the PSM is not a viable
option formore than 10%missing. VDReg performs better than
BART across the board and is comparable to PSM with 10%
missing and better for any percent missing greater than 10%.
Among the procedures,MI and BART seem to be impacted least
by the type of missingness.

5. Application Examples

5.1. Ozone Data

We consider a small environmental dataset that is publicly avail-
able. This dataset consists of 112 measurements of maximum
daily ozone in Rennes. In addition, temperature (T), nebulosity
(Ne), and projection of wind speed vectors (Vx) were measured
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Figure 4. MSE results from the second simulation study. VDReg fit the data better than all the othermethods in all scenarios. PSM breaks down if percentmissing is greater
than 25%.

three times daily (9:00, 12:00, and 15:00 hours) resulting in
nine covariates. There are 16 locations for which the response
(maximum daily ozone measurements) is missing. This could
be handled with any of the existing methods in the literature
focused on missing responses. However, for the sake of simplic-
ity we remove these observations. Figure 6 displays the amount
of missing for each covariate and the missing patterns. Notice
that there are a number of missing patterns that appear only one
time and only 14.6% of observations are complete cases.

The 96 observations are divided in training and test datasets
by randomly selecting 75 observations as training data and treat-
ing the remaining 21 as test data. The procedure of randomly
splitting into training and test data is repeated 100 times, and
each time we fit the training data and make predictions for the
testing data using BART,MI, PSM, andVDReg (see the previous
section for a brief description of the methods). For each of
the fits MSE and MSPE is calculated. Also, in order to further
study how increasing p impacts the out-of-sample prediction
performance we repeat the described process again using only
p = 2 covariates (temperature at 9:00 and 12:00), then p = 3
(temperature at 9:00, 12:00 and 15:00), and next sequentially

adding nebulosity and then projection of wind speed vectors
for each time during the day. Since ozone values range between
42 and 166 we set the sampling model hyper-parameters to
m0 = 0, v2 = 102, aσ = 10, and aσ0 = 10. The similarity
inputs used and the number of MCMC samples collected for
each cross-validation dataset correspond to those employed in
the simulation study of Section 4.1.

The average MSE and MSPE values over the 100 cross-
validation datasets are provided in Figures 7 and 8. From Fig-
ure 7 notice that theMSE values for the VDRegmodel are lower
than BART, MI, or PSM regardless of the number of covariates
that are considered. In terms of out-of-sample prediction, it
seems that VDReg has the lowestMSPE among the fivemethods
regardless of the number of covariates. It seems that the PSM
method performed the worst with performance decaying dras-
tically as the number of covariates is increased.

5.2. Prostate Cancer Data

We consider data from a prostate cancer study that was analyzed
in Deng et al. (2016), who employ two variations of imputation
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Figure 5. MSPE results from the second simulation study. PSM and MI had the lowest MSPE with no missing covariates. As the percent missing increases, all methods
degrade in out-of-sample prediction with VDReg performing the best with percent missing greater than 10%.

Figure 6. Missing rates and patterns associatedwith the ozone dataset. The left plot displays the percentmissing for each covariate. In the right plot, each row corresponds
to a missing pattern with cells colored in dark gray indicating the covariate is missing. The histogram in the right margin of the right plot corresponds to the fraction of
observations for each missing pattern.
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Figure 7. MSE values averaged over 100 cross-validation datasets based on ozone
data

Figure 8. MSPE values averaged over 100 cross-validation datasets based on ozone
data (values of PSM for p = 7 − 9 are beyond the plotting limits).

to accommodate missing covariates. The dataset is publicly
available (GEOGDS3289) and is based on 99 subjects, including
34 benign and 65 malignant epithelium samples, each with
20,000 biomarkers. We code the response as yi = 1 for benign
samples and yi = 0 formalignant. Besides aminor adaptation of
(10) for the binary response in the sampling model, the VDReg
model can be employed without alterations. We use a latent
probit score, that is, p(yi = 1 | ci = j,µ⋆) = 	(µ⋆

j ) (with

	(·) denoting a standard normal c.d.f.), and otherwise leave
(10) unchanged. Of the 20,000 biomarkers, Deng et al. (2016)
focused on three (FAM178A, IMAGE:813259 and UGP2) that
are known to be associated with the response. The missing rates
of the three covariates are 31.3%, 45.5%, and 26.3%, respectively.
Deng et al. (2016) used multiple imputation methods based on
2107 biomarkers that do not have any missing values and then
using the imputed datasets, fit a logistic regression model and
report estimates of the regression coefficients.

Since our focus is on prediction, we instead split the 99
subjects into 75 training and 24 testing observations and fit the
VDRegmodel usingm0 = 0, v2 = 102, aσ = 1, and aσ0 = 2 and
standardized each of the three covariates to have mean zero and

Table 1. Cross validation results based on the prostate cancer data. Each of the
100 cross-validation datasets were comprised of 75 training and 24 testing obser-
vations.

In Sample Prediction Out Sample Prediction

Method % Correct Tjur R2 % Correct Tjur R2

BART 0.81 0.29 0.70 0.16
PSM 0.79 0.39 0.70 0.24
VDReg 0.99 0.44 0.71 0.14

NOTE: Results presented in the table are averages over the 100 cross-validation
datasets.

standard deviation one. Standardizing the covariates facilitates
selecting values for the similarity andwe employmx = 0, s2x = 1
and v2x = 0.5. Splitting the dataset into training and testing
observations was carried out 100 times and for each split we
evaluated within sample and out of sample predictions. It took
approximately 55 seconds to sample 150,000 MCMC iterates, of
which 1000 were retained a�er discarding the initial 100,000 as
burn-in and thinning by 50. Results are shown in Table 1. In
addition to prediction rates, we report Tjur’s R2 (Tjur 2009).
Thismetric compares the average estimated probability of being
in the benign group for subjects with benign samples to the
average estimated probability of being in the malignant group
for subjects withmalignant samples. As this number approaches
one, it is an indication of superior model fit. For comparison, we
also include results under BART and PSM (as in Section 5.1).
VDReg compares favorably to the other two methods in terms
of in-sample prediction rate and Tjur’s R2 value. For out-of-
sample prediction, VDReg does slightly better than the other
two methods, but with worse Tjur’s R2.

Last, by way of comparison with the imputation methods
used inDeng et al. (2016), using the estimated logistic regression
coefficients reported in Deng et al. (2016), we predicted cancer
status for the 26 complete cases found in the dataset. We then
fit VDReg to all 99 observations and also predicted the cancer
status of the 26 complete cases. Of these 26 predicted outcomes,
the VDReg was correct for 88% of them compared to 69% based
on the imputation methods.

6. Conclusions

We have extended the PPMx random partition model to allow
formissing covariate values without resorting to any imputation
or substitution. This is particularly useful when the main infer-
ential target is prediction. The proposed approach facilitates
out-of-sample predictions with any subset of covariates.

Some limitations remain, and provide opportunities for
further generalizations. In the current form the model does
not include any notion of variable selection or transformation.
While independent variable selection is straightforward to add,
the use of partially missing covariate vectors would complicate
any approach that involves dependent priors over variables.
Similarly, the use of any transformation or projections of the
joint covariate vector is not straightforward in the presence
of missing covariates without imputation. In preliminary
results not shown, we explored the proposed method in the
case when the underlying data structure is such that only a
small number of covariates inform the partition relative to
the total number measured. We found that the PPMx model
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in these circumstances is not as competitive as the BART
approach, as indicated in our simulation study. In the case of
a scenario with many covariates, we suggest first employing
some dimension reduction or variable selection technique
(one option is described in Page, Quintana, and Rosner 2021),
and a�erwards applying our approach based only on those
covariates that are useful.
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