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The Dependent Dirichlet Process and
Related Models
Fernando A. Quintana, Peter Müller, Alejandro Jara and Steven N. MacEachern

Abstract. Standard regression approaches assume that some finite number
of the response distribution characteristics, such as location and scale, change
as a (parametric or nonparametric) function of predictors. However, it is not
always appropriate to assume a location/scale representation, where the error
distribution has unchanging shape over the predictor space. In fact, it often
happens in applied research that the distribution of responses under study
changes with predictors in ways that cannot be reasonably represented by a
finite dimensional functional form. This can seriously affect the answers to
the scientific questions of interest, and therefore more general approaches are
indeed needed. This gives rise to the study of fully nonparametric regression
models. We review some of the main Bayesian approaches that have been
employed to define probability models where the complete response distri-
bution may vary flexibly with predictors. We focus on developments based on
modifications of the Dirichlet process, historically termed dependent Dirich-
let processes, and some of the extensions that have been proposed to tackle
this general problem using nonparametric approaches.

Key words and phrases: Related random probability distributions, Bayesian
nonparametrics, nonparametric regression, quantile regression.

1. INTRODUCTION

We review the popular class of dependent Dirichlet pro-
cess (DDP) models. These define a widely used fully non-
parametric Bayesian regression for a response y ∈ Y ,
based on a set of predictors x ∈ X ⊆ R

p . Despite a bar-
rage of related literature over the past 25 years, to date
there is no good review of such models. This paper fills
this gap.
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Fully nonparametric regression can be seen as an exten-
sion of traditional regression models, where, starting from
some elements in X and a corresponding set of responses
in Y , the goal is to model the distribution of y given x.
Standard linear regression models proceed under the as-
sumption of a Gaussian distribution for y | x with a mean
modeled as a linear combination of x. Further extensions
of this idea to exponential families gave rise to the popular
class of generalized linear models, where a transforma-
tion of the mean response is modeled as a linear combi-
nation of x. Many other similar extensions are available.
We focus on a nonparametric version of this idea, which
involves going beyond the notion that the effect of predic-
tors is restricted to change some particular functional of
the response distribution, such as the mean, a quantile, or
the parameters in a generalized linear model.

The fully nonparametric regression problem that we
focus on arises when we assume that yi | Fxi

ind
∼ Fxi

,
i = 1, . . . , n. The parameter of interest is the complete
set of predictor-dependent random probability measures
F = {Fx : x ∈ X }, where Fx is a probability measure
defined on the response sample space Y , whose elements
can flexibly change with the values of the predictors x,
that is, the entire shape of the distribution can change
with x. From a Bayesian point of view, the fully non-
parametric regression model is completed by defining a
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prior distribution for F , which is taken to be the proba-
bility law of a probability measure-valued stochastic pro-
cess with index x. At the risk of abusing notation, we use
from now on the same symbol to refer to the probability
measure and its cumulative distribution function (CDF).
The distinction should be clear from the context.

Several popular approaches have been developed to
formalize Bayesian inference for such nonparametric re-
gression. These include additive random tree models like
the BART (Chipman, George and McCulloch, 2010), ap-
proaches based on basis expansions such as wavelet re-
gression and more. Also, there is of course extensive lit-
erature on non-Bayesian approaches to nonparametric re-
gression. Many of these approaches are based on a model
of the form

yi = f (xi) + ǫi, i = 1, . . . , n,

with E(ǫi) = 0, and are concerned with finding a func-
tion f : X → Y such that ‖yi − f (xi)‖ is small, for f

in some some class, often represented as being spanned
by some basis functions. Such methods include the fol-
lowing: Under local averaging f (x) is estimated from
those yi’s such that xi is “close” to x; local modeling
estimates f (x) by locally fitting some function or kernel
such as a Gaussian function or a polynomial; global mod-
eling or least squares estimation finds f that minimizes
1
n

∑
i=1 ‖yi − f (xi)‖

2 in the class; and penalized model-

ing is based on finding f that minimizes 1
n

∑
i=1 ‖yi −

f (xi)‖
2 + Jn(f ) in the class, where Jn(f ) is a penal-

ization term, such as Jn(f ) = λn

∫
X

|f ′′(t)|2 dt . See, for
example, Györfi et al. (2002), Klemelä (2014), Faraway
(2016) and references within. Many of these classical fre-
quentist approaches could be construed to imply nonpara-
metric Bayesian models, but they are not usually cast as
prior probability models for a family F of random prob-
ability measures indexed by covariates.

In the Bayesian nonparametric (BNP) literature, the
problem of defining priors over related random probabil-
ity distributions has received increasing attention over the
past few years. To date, most of the BNP priors to account
for the dependence of a set of probability distributions on
predictors are generalizations and extensions of the cel-
ebrated Dirichlet process (DP) (Ferguson, 1973, 1974)
and Dirichlet process mixture (DPM) models (Lo, 1984).
A DPM model defines a random probability measure as

(1) f (y | G) =

∫

�
ψ(y, θ)G(dθ), y ∈ Y ,

where ψ(•, θ) is a continuous density function, for every
θ ∈ �, and G is a discrete random probability measure
with a DP prior. If G is DP with parameters (M,G0),
where M ∈ R

+
0 and G0 is a probability measure on �,

written as G | M,G0 ∼ DP(MG0), then the trajectories of

the process can be a.s. represented by the stick-breaking
representation (Sethuraman, 1994):

(2) G(B) =

∞∑

h=1

whδθh
(B),

where B is any measurable set, δθ (·) is the Dirac measure
at θ , wh = Vh

∏
ℓ<h(1 − Vℓ), with Vh | M

iid
∼ Be(1,M),

θh | G0
iid
∼ G0, and the {wh} and {θh} collections are inde-

pendent. Discussion of properties and applications of DPs
can be found, for instance, in Müller et al. (2015). Many
BNP priors for nonparametric regressions F = {Fx : x ∈

X } are based on extensions of model (1). They incor-
porate dependence on predictors via the mixing distribu-
tion in (1), by replacing G with Gx , and the prior speci-
fication problem is related to the modeling of the collec-
tion of predictor-dependent mixing probability measures
{Gx : x ∈ X }.

Consider first the simplest case, where a finite number
of dependent RPMs G = {Gj , j = 1, . . . , J } are judged
to be exchangeable so that the prior model p(G) should
accordingly be invariant with respect to all permutations
of the indices. Consider, for example, an application to
borrowing strength across J related clinical studies. This
can be achieved, for example, through joint modeling of
study-specific effects distributions Gj for j = 1, . . . , J .
A main aim here is that subjects under study j1 should
inform inference about subjects enrolled in a different
but related study j2 	= j1. Two extreme modeling choices
would be (i) to pool all patients and assume one common
effects distribution, or (ii) to assume J distinct distribu-
tions with independent priors. Formally, the earlier choice
assumes Gj ≡ G, j = 1, . . . , J , with a prior p(G), such
as G ∼ DP(M,G0). The latter assumes Gj ∼ p(Gj ), in-
dependently, j = 1, . . . , J . We refer to the two choices
as extremes since the first choice implies maximum bor-
rowing of strength, and the other choice implies no bor-
rowing of strength. In most applications, the desired level
of borrowing strength is somewhere in-between these two
extremes.

Figure 1 illustrates the two modeling approaches. Note
that in Figure 1 we added a hyperparameter η to index the
prior model p(Gj | η) and p(G | η), which was implic-
itly assumed fixed. The use of a random hyperparameter
η allows for some borrowing of strength even in the case
of conditionally independent p(Gj | η). Learning across
studies can happen through learning about the hyperpa-
rameter η. However, the nature of the learning across stud-
ies is determined by the parametric form of η. This is il-
lustrated in Figure 2. Assume Gj ∼ DP(M,G⋆

η), indepen-
dently, j = 1,2, and a base measure G⋆

η = N(m,B) with
unknown hyperparameter η = (m,B). In this case, pre-
diction for a future study G3 can not possibly learn about
the multimodality of G1 and G2, beyond general location
and orientation.
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FIG. 1. One common RPM G (panel a) versus distinct RPMs Gj , independent across studies (panel b). Here η is a fixed hyperparameter.

The previous simple example illustrates the need to
develop classes of models with the ability to relate col-
lections of nonparametric distributions in more complex
fashions. When this collection is indexed by a set of pre-
dictors x ∈ X , the nonparametric regression approach
mentioned earlier arises, and the definition of a prior on
this collection enables one to borrow information across
the distributions for responses, Fx . For modeling, one im-
portant property is the notion of distributions changing
smoothly with respect to x ∈ X , just as is the case of
generalized linear models in the scale of the transformed
mean. The smoothness could be expressed as continuity
of Fx (with respect to some conveniently chosen topol-
ogy) or as the notion that Fx “approaches” Fx0 as x →

x0, for instance, Corr{Fx(A),Fx0(A)} → 1 as x → x0
for any event A. Many of the models to be discussed later
satisfy some version of this property.

An early reference on predictor-dependent DP models
is Cifarelli and Regazzini (1978), who defined a model
for related probability measures by introducing a regres-
sion model in the centering measure of a collection of in-
dependent DP random measures. This approach is used,
for example, by Muliere and Petrone (1993), who con-
sidered a linear regression model for the centering distri-
bution of the form G0

x ≡ N(x′β,σ 2), where β ∈ R
p is a

vector of regression coefficients, and N(µ,σ 2) stands for

a normal distribution with mean µ and variance σ 2. This
is the type of construction illustrated in Figure 2. Similar
models were discussed by Mira and Petrone (1996) and
Giudici, Mezzetti and Muliere (2003). Linking the related
nonparametric models through a regression on the base-
line parameters of nonparametric models, however, limits
the nature of the trajectories and the type of dependent
processes that can be thus generated. Indeed, realizations
of the resulting process G = {Gx : x ∈ X } are not contin-
uous as a function of the predictors. The very limited type
of association structure motivated the development of al-
ternative extensions of the DP model to a prior for G. In
this paper, we provide an overview of the main construc-
tions of such predictor-dependent extensions of DP priors
and their main properties. The discussion centers on dif-
ferent ways of constructing the nonparametric component
of models. A few of the many successful types of applica-
tions that have been proposed are mentioned. In review-
ing the various models to be presented, we discuss some
of the main corresponding works without attempting to
provide a complete catalog of references. We include a
brief discussion of other popular constructions of depen-
dent DP random measures, without the explicit notion of
a conditioning covariate x.

While we focus on DP-based constructions, we note
that several interesting alternatives to develop predictor-
driven random probability measures have been considered

FIG. 2. Gj ∼ DP(M,G⋆) with common G⋆ = N(m,B). Learning across studies is restricted to the parametric form of η. The obvious common
structure of G1 and G2 as defining three well separated clusters can not be learned by the model, which is restricted to learning through the
common hyperparameters η.
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in the recent literature. Tokdar, Zhu and Ghosh (2010) de-
velop a logistic Gaussian process that allows for smoothly
varying dependence on conditioning variables. Still us-
ing Gaussian process priors, but starting from a rather
different construction, Jara and Hanson (2011) proposed
another alternative, putting the Gaussian process prior
on the (logit transformation) of the branch probabilities
in a Pólya tree prior (Lavine, 1992). Another covariate-
dependent extension of the Pólya tree model was intro-
duced in Trippa, Müller and Johnson (2011) who define
a dependent multivariate process for the branch probabil-
ities based on a simple gamma process construction.

Finally, although issues pertaining to the implementa-
tion of posterior simulation are relevant for practical ap-
plication of these methods, our discussion does not fo-
cus on computational aspects. In Section 2, we describe
MacEachern’s dependent Dirichlet process (DDP) and its
basic properties. In Section 3, we discuss the main varia-
tions and alternative constructions to MacEachern’s DDP.
In Section 4, we discuss approaches to handle endoge-
nous predictors. In Section 5, we discuss the implied par-
tition structure of DDP models. In Section 6 we illustrate
the main approaches. A final discussion in Section 7 con-
cludes the article, including some thoughts on future re-
search directions.

2. DEPENDENT DIRICHLET PROCESS (DDP)

We start our discussion with the general definition of
DDP and then give details for popular special cases.

2.1 General Definition

MacEachern (1999, 2000) introduced the DDP model
as a flexible class of predictor-dependent random prob-
ability distributions. The key idea behind the DDP con-
struction is to define a set of random measures that are
marginally (i.e., for every possible predictor value x ∈

X ) DP-distributed random measures. In this framework,
dependence is introduced through a modification of the
stick–breaking representation of each element in the set,

(3) Gx(•) =

∞∑

h=1

{
Vh(x)

∏

ℓ<h

[
1 − Vℓ(x)

]}

︸ ︷︷ ︸
wh(x)

δθh(x)(•),

where Vh(x), h ∈ N, are [0,1]-valued independent
stochastic processes with index set X and Be(1,Mx)

marginal distributions, and θh(x), h ∈ N, are independent
stochastic processes with index set X and G0

x marginal
distributions. The processes associated to the weights and
atoms are independent. From an intuitive viewpoint, the
constructed DDP can be thought of as taking an ordinary
DP and modifying some of its components (i.e., weights
and atoms) according to the type of desired indexing or
functional dependence of predictors x ∈ X . Conditions

on the Vh(x) and θh(x) processes can be established
to ensure smoothness of the resulting random measures
Gx(•) when x ranges over X .

Canonical DDP construction. MacEachern (1999,
2000) defined and provided a canonical construction of
the DDP by using transformations of two independent
sets of stochastic processes, Z

Vh

X
= {ZV

h (x) : x ∈ X },
and Z

θh

X
= {Zθ

h(x) : x ∈ X }, for h ≥ 1, the former used
for defining {Vh(x)}, and the latter for defining {θh(x)}.
To induce the desired marginal distributions for {Vh(x)}

and {θh(x)}, MacEachern resorted to the well-known in-
verse transformation method (see, e.g., Devroye, 1986).
For instance, let Z(x) denote a zero-mean Gaussian pro-
cess on X = R having constant variance σ 2. Let �(·) and
B(·) denote the cumulative distribution functions of the
N(0,1) and Be(1,M) distributions, respectively. Then
V (x) = B−1(�(σ−1Z(x))) is a stochastic process on X

that satisfies V (x) ∼ Be(1,M) for all x ∈ X . The same
type of transformation can be applied to construct suit-
able atom processes {θh(x), h ≥ 1} such that θh(x) ∼ G0
for all x ∈ X and h ≥ 1.

Practical application of this general model requires
specification of its various components, which has tradi-
tionally motivated the adoption of some specific forms.
The most commonly used DDPs assume that covariate
dependence is introduced either in the atoms or weights,
leaving the other as a collection of random variables ex-
hibiting no covariate indexing, so that the basic DP defini-
tion is partially modified but the distributional properties
retained. We review these forms in the next section.

Support and an alternative definition. One particularity
of MacEachern’s DDP definition is that given the sets of
stochastic processes, Z

Vh

X
= {ZV

h (x) : x ∈ X } and Z
θh

X
=

{Zθ
h(x) : x ∈ X }, and all other parameters involved in

the transformations described above, the collection of de-
pendent probability distributions given in (3) are not ran-
dom: they are just deterministic functions of these quan-
tities. To facilitate the study of theoretical properties of
the DDP, Barrientos, Jara and Quintana (2012) gave an
alternative definition. This alternative definition exploits
the connection between copulas and stochastic processes.
Since under certain regularity conditions a stochastic pro-
cess is completely characterized by its finite-dimensional
distributions, it is possible –and useful– to define stochas-
tic processes with given marginal distributions via copu-
las. The basic idea is to specify the collection of finite di-
mensional distributions of a process through a collection
of copulas and marginal distributions.

Copulas are functions that are useful for describing and
understanding the dependence structure between random
variables. If H is a d-variate CDF with marginal CDFs
given by F1, . . . ,Fd , then by Sklar’s theorem (Sklar,
1959), there exists a copula function C : [0,1]d −→ [0,1]

such that H(t1, . . . , td) = C(F1(t1), . . . ,Fd(td)), for all
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t1, . . . , td ∈ R, and this representation is unique if the
marginal distributions are absolutely continuous. Thus by
the probability integral transform, a copula function is
a d-variate CDF on [0,1]d with uniform marginals on
[0,1], which fully captures the dependence among the
associated random variables, irrespective of the marginal
distributions.

Let CV
X

= {CV
x1,...,xd

: x1, . . . ,xd ∈ X , d > 1} and
Cθ

X
= {Cθ

x1,...,xd
: x1, . . . ,xd ∈ X , d > 1} be two sets

of copulas satisfying Kolmogorov’s consistency condi-
tions. In Barrientos, Jara and Quintana’s (2012) definition,
Vh(x), h ∈ N, are [0,1]-valued independent stochastic
processes with index set X , with common finite dimen-
sional distributions determined by the set of copulas CV

X
,

and Be(1,Mx) marginal distributions. Similarly, θh(x),
h ∈ N, are independent stochastic processes with index
set X , with common finite dimensional distributions de-
termined by the set of copulas Cθ

X
, and G0

x marginal dis-
tributions. This alternative construction produces a defini-
tion of the DDP exactly as in (3), and in particular, the in-
terpretation of the DDP obtained as modifying a basic DP
persists. Furthermore, based on this alternative definition,
Barrientos, Jara and Quintana (2012) established basic
properties of MacEachern’s DDP and other dependent-
stick breaking processes. Specifically, they provided suf-
ficient conditions for the full weak support of different
versions of the process and also to ensure smoothness
of trajectories of Gx(•) as x ranges over X . In addi-
tion, they also characterized the Hellinger and Kullback–
Leibler support of mixtures induced by different versions
of the DDP and extended the results to the general class
of dependent stick-breaking processes.

2.2 The Single-Weights DDP

MacEachern considered the case of common weights
across the values of x, also referred to as “single-weights”
DDP model, defined as

(4)

Gx(•) =

∞∑

h=1

{
Vh

∏

ℓ<h

[1 − Vℓ]

}

︸ ︷︷ ︸
wh

δθh(x)(•)

=

∞∑

h=1

whδθh(x)(•),

where the Vh’s are i.i.d. Be(1,M) random variables,
which are common across all levels of x. The θh(x)’s are
independent stochastic processes with index set X and
marginal distributions G0

x . In the literature, to this day,
this is the most popular form of DDP, mainly due to the
fact that posterior simulation can be implemented using
the same type of sampling algorithms available for the
case of the DP.

2.2.1 The ANOVA-DDP and linear DDP models. One
of the earliest versions of DDP models was the ANOVA-
DDP of De Iorio et al. (2004). Let y = (y1, . . . , yn) be a
vector of responses (possibly vector-valued) for each of
n subjects, and suppose that x = (x1, . . . ,xn) is a cor-
responding set of covariates. Assume each xi is in turn
a vector of c categorical covariates, xi = (xi1, . . . , xic).
Interpret xi as factors in an ANOVA model, and let di de-
note corresponding design vectors. Assume then that xi

contains all the desired main effects and interactions, as
well as desired identifiability constraints. Note that the
covariate space X in this setup is discrete, and so we
have a finite number of RPMs. The idea of the ANOVA-
DDP models is to encode the covariate dependence in
the form of simple linear regressions for the atom pro-
cesses {θh(x) : x ∈ X }. Specifically, this approach uses
θh(x) = λ′

hdx for h ≥ 1 where {λh : h ≥ 1} is a sequence
of i.i.d. random vectors with distribution G0 and dx is
the design vector that corresponds to a generic combi-
nation of observed factorial covariates x. The model just
described implies that (4) becomes

Gx(•) =

∞∑

h=1

whδλ′
hdx

(•),

that is, a DP mixture of linear models λ′
hdx . Each element

of the collection G = {Gx : x ∈ X } has a DP prior distri-
bution with atoms given by {λ′

hdx : h ≥ 1}. The elements
of G are correlated because they share a common set of
weights and the atoms are originated as linear combina-
tions computed from a single set of parameters, namely
{wh : h ≥ 1} and {λh : h ≥ 1}.

To accommodate a continuous response, De Iorio et al.
(2004) extended the above construction through a convo-
lution with a continuous kernel, for example, a normal
kernel, leading to

yi | Gxi

ind
∼

∫
N(yi | µ,φ)dGxi

(µ)

=

∫
N

(
yi | λ′dxi

, φ
)
dG(λ).

The model can be restated by breaking the mixture with
the introduction of latent parameters:

(5)
yi | λi, φ ∼ N

(
λ′

idi, φ
)
, λ1, . . . , λn | G

iid
∼ G,

G ∼ DP(M,G0).

The last expression highlights the nature of the model as
just a DP mixture of, in this case, normal linear models.
The same simplification is possible whenever the atoms
{θh(x) : x ∈ X } are indexed by a finite-dimensional pa-
rameter vector, like the linear model θh(x) = λ′

hdx in this
case. The model in (5) is completed with a suitable prior
for the precision parameter φ, for example, φ ∼ Ga(a, b)

if a scalar, or φ ∼ Wishart(ν, S) if a matrix. The above
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model can be easily modified to mix over scale parame-
ters as well. An immediate consequence of (5) is that the
induced marginal distribution for a single response y with
design vector dx then becomes a flexible infinite mixture
model:

(6) y ∼

∞∑

h=1

whN
(
y | λ′

hdx, φ
)
.

We remark here that the hierarchical structure leading to
(5) reflects a common practice in the use and application
of the DDP. Since marginally each element of the G fam-
ily is almost surely discrete (because it is drawn from a
DP), models for discrete outcomes are frequently built on
convolving the DPs with a continuous kernel, thus yield-
ing a mixture of continuous distributions, which is itself
a continuous distribution. In the ANOVA-DDP model of
De Iorio et al. (2004), the normal kernel plays precisely
this role.

De la Cruz-Mesía, Quintana and Müller (2007) ap-
plied the ANOVA-DDP construction to model random
effects for longitudinal hormone profiles of pregnant
women, where the dependence was on a normal/abnormal
pregnancy indicator. This setting was particularly use-
ful for classification purposes. More recently, Gutiérrez
et al. (2019) use the ANOVA-DDP framework to pro-
pose a multiple testing procedure for comparing several
treatments against a control. A further extension of the
ANOVA-DDP construction was given in De Iorio et al.
(2009), who considered the modeling of nonproportional
hazards for survival analysis. They considered a cancer
clinical trial, where interest centered on whether high
doses of a treatment are more effective than lower doses.
The data included additional discrete and continuous co-
variates, so the model was under the extended ANCOVA-
style framework that adds linear combinations of contin-
uous covariates to the ANOVA factorial design.

This same idea can be extended to linear combinations
of any given set of covariates, giving rise to the linear
DDP (LDDP). Specifically, such models involve a linear
combination of a set of covariates, as in, for example, gen-
eral linear models, and so the infinite mixture on the right-
hand side of (6) becomes

∑∞
h=1 whN(y | λ′

hx, φ), where
x is now the generic value of the (typically vector-valued)
covariate. As earlier, the weights {wh} follow a DP-style
stick-breaking specification. An analogous expression for
a more general kernel function k can be immediately de-
rived. The same type of construction was explored in Jara
et al. (2010) in the context of doubly censored outcomes.
Their model involves an interval-valued response, corre-
sponding to the observed onset and event times (cavities
in the teeth of children from Flanders, Belgium, in their
example). Associated with each such response is a latent
bivariate vector of true onset and event times, and these
are modeled (in the logarithmic scale) using a linear DDP

defined in terms of covariates that include deciduous sec-
ond molars health status and the age at which children
started brushing.

2.2.2 Spatial DDP. Gelfand, Kottas and MacEachern
(2005) define what can be interpreted as a spatial case
of a common weight DDP (4) for Gs , with s ∈ D ⊂ R

d

being spatial locations and θh(s) generated by a baseline
GP, as in the common-weight DDP. However, the focus
is not on Gs as in (4), but instead on θD ∼

∑
whδθh,D

,
where θh,D = {θh(s), s ∈ D}. Let s = (s1, . . . , sn) denote
a set of n locations at which observations y = (y1, . . . , yn)

are made. They consider repeated observations yt , t =

1, . . . , T , with occasion-specific covariates xt . Writing a
mixture with respect to a DP random measure as a hierar-
chical model, they assume

yt | θ t ,β, τ 2 ind
∼ N

(
x′

tβ + θ t , τ
2I

)
, θ t | Gη iid

∼ Gη,

Gη ∼ DP
(
M,G

η
0

)
,

where G
η
0 ≡ N(0, σ 2H (η)) and H (η) is a suitable covari-

ance function depending on hyperparameters η.
Dunson and Herring (2006) considered a model for a

collection of random functions based on a finite set of
latent trajectories described by Gaussian processes. The
observations are thus seen as arising from the convolu-
tion of a smooth latent trajectory and a noisy Gaussian
process. Their motivation came from the study of the re-
lationship between disinfection by-products in the water
in early pregnancy and later outcomes. Specifically, de-
noting by gi the stochastic process, that is, {gi(t) : t > 0},
associated with subject 1 ≤ i ≤ n, Dunson and Herring
(2006) assume that

gi = γi + ǫi, γi
iid
∼ G, ǫi

iid
∼ GP

(
H (η)

)
,

where γi is the latent trajectory, and GP(H (η)) denotes
a Gaussian process with covariance function H (η). Their
approach specifies the RPM G as G(·) =

∑k
h=1 phδ�h

(·)

with �h ∼ GP(H (ηκh
)), that is, a finite mixture of atoms

given by Gaussian processes with suitable covariance
functions. By choosing κh = κ for all h and (p1, . . . ,

pk) ∼ Dir(M/k, . . . ,M/k), the resulting RPM G ap-
proaches G(·) =

∑∞
h=1 whδ�h

(·) as k → ∞ with DP-style
weights (see, e.g., Green and Richardson, 2001).

2.2.3 Dynamic DDP. The DDP framework has also
been used to model dynamic phenomena, by means of
a sequence of random distributions that evolve in time.
Caron et al. (2008) considered a dynamic linear model
formulation to solve this problem, where the state and ob-
servation noise distributions where modeled as DP mix-
tures using two independent DPs so that the mean of the
underlying processes is allowed to change in time.

Rodriguez and ter Horst (2008) considered a related
model, based on a DDP formulation, where now the atoms
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in the infinite mixture are allowed to change in time. Let-
ting yit denote the ith observation at time 1 ≤ t ≤ T , they
proposed the model

yit | Gt ∼

∫
N

(
F ′

itθ t , σ
2)

dGt

(
θ t , σ

2)
,

Gt (·) =

∞∑

h=1

whδ(θ∗
ht ,σ

∗2
h )(·),

θ∗
ht ∼ N

(
H tθ

∗
h,t−1, σ

∗2
h W t

)
,

completed with conjugate priors for σ ∗2
h and θ∗

h,0. Ma-
trices F it , H t and W t are assumed known and can be
used to represent many patterns such as trends, periodic-
ity, etc. The resulting model for G = {Gt : 1 ≤ t ≤ T } is
thus a DDP, where the components of the atoms control-
ling the distribution means evolve in time in an autore-
gressive fashion.

Di Lucca et al. (2013) considered a model for a se-
quence of random variables {yt : t ≥ 1} featuring a
general autoregressive formulation by means of yt |

(yt−1, . . . , yt−p) = y ∼ Gy and the problem of defining
a prior for G = {Gy : y ∈ Y }. They discussed a general
prior DDP model of the form Gy(·) =

∑∞
h=1 wh(y)δy(·).

Lau and So (2008) considered similar types of model,
where each atom can be expressed as an infinite mixture
of autoregressions of order p. Di Lucca et al. (2013) fo-
cused on the particular single-weights case and an order
p = 1 process where the atom processes are expressed as
simple linear autoregression: θh(y) = βh + αhy. The full
model in this case can be expressed as

(7)

yt | yt−1 = y,αt , βt , σ
2 ∼ N

(
βt + αty,σ 2)

,

(βt , αt) | G
iid
∼ G,

G ∼ DP(M,G0).

However, they also considered the case when atoms
are defined as θh(y) = b + ahy + OU(ρ, τ 2), where
OU(ρ, τ 2) denotes the Ornstein–Uhlenbeck process, a
particular Gaussian process with covariance function of
the form Cov[θ(s), θ(t)] = τ 2ρ|s−t |. Di Lucca et al.
(2013) extended this approach for sequences of binary
outcomes defined in terms of an autoregressive process
Zt with a flexible DDP prior distribution, where depen-
dence is on the previous p binary responses.

An interesting variation of a dynamic DDP construc-
tion is proposed by Ascolani, Lijoi and Ruggiero (2021)
who define a family G = {Gt , t ≥ 0} of dependent ran-
dom probability measures indexed by time. Their con-
struction is motivated by a Fleming–Viot process. The
random probability measures Gt share some, but not all
atoms. The set Dt of atoms in the original G0 which are
shared in Gt is defined as a pure death process over time.
Importantly, each Gt marginally remains a DP random

measure. They refer to the model as the Fleming–Viot-
DDP. In Prünster and Ruggiero (2013) this construction
is applied to model market shares over time. Mena and
Ruggiero (2016) construct another common-atoms DDP
over time by setting up a Wrights–Fisher diffusion on
the fractions vt,ℓ in the stick-breaking construction of the
marginal DP prior for Gt .

2.3 The Single-Atoms DDP

A parallel construction to the common weights DDP
in the previous section considers a set of common atoms
across all values of x. This is the so called “single-atoms”
DDP model, for which (3) takes the form

(8) Gx(•) =

∞∑

h=1

{
Vh(x)

∏

ℓ<h

[
1 − Vℓ(x)

]}

︸ ︷︷ ︸
wh(x)

δθh
(•),

where Vh(x), h ∈ N, are [0,1]-valued independent
stochastic processes with index set X and marginal dis-
tributions Be(1,Mx). The locations θh, h ∈ N, are inde-
pendent with marginal distributions G0, and the {Vh(x)}

and {θh} collections are mutually independent.
Under the single-atoms model, all the covariate-

dependence is expressed through the weights of the stick-
breaking representation. One advantage of doing so is
that, unlike the single-weights case, the implied prior
probability model on partitions changes with the values
of x ∈ X . This is important when the implied partition
is of interest. Another important feature is that problems
related to extrapolation of θh(x) are avoided, which could
otherwise arise for inference for a new value of x beyond
the range of the observed data. This is the case because
under the single-atoms DDP all atoms are linked with ob-
served data, in contrast to the single-weights DDP which
includes atoms for new covariate values that are not linked
with any observed data.

Duan, Guindani and Gelfand (2007) describe a model
motivated by the analysis of spatially varying responses.
Let {y(s) : s ∈ D} be a stochastic process indexed by lo-
cations in a set D ⊂ R

d , and let s1, . . . , sn the locations at
which observations are collected. Their general construc-
tion involves a RPM G over the space of surfaces of D

having finite-dimensionals adopting the following form:
for any s1, . . . , sn ∈ D and A1, . . . ,An Borel-measurable
sets in R,

P
(
y(s1) ∈ A1, . . . , y(sn) ∈ An

)

=

∞∑

i1=1

· · ·

∞∑

in=1

pi(s1),...,i(sn)δθi(s1)
(s1) · · · δθi(sn)

(sn),

where the θj ’s are i.i.d. from G0 and the weights
{pi(s1),...,i(sn)} determine the site-specific joint selection
probabilities. Conditions can be given so that the above
specification follows a DP at any given location.
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Always in the spatial context, specifically of model-
ing for hurricane surface wind fields, Reich and Fuentes
(2007) propose a general framework that includes the
single-atoms DDP as a special case. Their model is spe-
cially designed for spatial dependence as well, so that
the covariates are geographical coordinates. Letting s de-
note such coordinates, their construction involves weights
computed as w1(s) = V1(s) and wh(s) = Vh(s)

∏h−1
ℓ=1(1−

Vℓ(s)) for h > 1, where Vh(s) = ωh(s)Vh, and Vh
iid
∼

Beta(a, b). The function ωh(s) is centered at knot ψh =

(ψh1,ψh2), and the spread is controlled by parameters
eh = (eh1, eh2). Reich and Fuentes (2007) discuss several
possible choices for the ωh functions and related parame-
ters.

Griffin and Steel (2006) define another interesting vari-
ation of the basic DDP by keeping both sets of parame-
ters, locations and the fractions (Vh), unchanged across x.
They use instead permutations of how the weights are
matched with locations. The permutations change with x.
One advantage of such models is the fact that the sup-
port of Gx remains constant over x, a feature that can
be important for extrapolation beyond the observed data.
A modification of this idea was explored by Griffin and
Steel (2010) to generate what they called the DP regres-
sion smoother. The construction is centered over a class
of regression models, and dependence is on the weights.
More recently, similar ideas are used by Griffin and Steel
(2011) to construct a family of prior distributions for a se-
quence of time dependent general RPMs that include the
DDP setting as a special case. Another simple sequence of
time-dependent DDPs was proposed by Gutiérrez, Mena
and Ruggiero (2016), with a Markov chain structure for
the sequence of time-varying sticks, and with application
to the analysis of air quality data.

3. VARIATIONS OF MACEACHERN’S DDP

In this section, we discuss a variety of models extend-
ing the original definition (3). Many of these extensions
are based on constructing independent weights and atoms
processes indexed by covariates, but that do not necessar-
ily produce a DP-distributed random measure. From an
intuitive viewpoint, these classes of models can be seen
as taking the basic DP construction and altering some of
their basic components in terms of predictors x ∈ X to a
form that may differ from the initial distributional proper-
ties. While this typically modifies the marginal DP prop-
erty, the extra flexibility allows one to tailor the properties
of the model to fit specific applications.

3.1 Weighted Mixture of DPs (WMDP)

Dunson, Pillai and Park (2007) proposed a data-based
prior using the observed predictors x1, . . . ,xn. For every

x ∈ X ⊂ R
p , they considered the following construction

Gx(•) =

n∑

j=1

(
γjK(x,xj )∑n
ℓ=1 γℓK(x,xℓ)

)
Gj (•),

with

γj | κ
iid
∼ Ŵ(κ,nκ), Gj | M,G0

iid
∼ DP(M,G0),

where K : X × X −→ R
+ is a bounded kernel func-

tion. The choice of K impacts the degree of borrowing of
information from the neighbors in estimating the distri-
bution at any particular predictor value x. Some choices
are discussed in the original technical report. In the paper,
they considered

(9)
K

(
x,x′

)
= exp

{
ψ

∥∥x − x′
∥∥2}

,

ψ | µψ , σ 2
ψ ∼ LN

(
µψ , σ 2

ψ

)
,

where LN(a, b) denotes the log-normal distribution with
parameters a ∈ R and b > 0. With this choice, the re-
sulting model for a given x borrows more heavily from
those Gj ’s for which the corresponding xj is close to x.
One primary application of this particular construction is
in the context of density regression that is, in measuring
how a probability distribution on the space of responses
Y changes according to predictors x ∈ X .

3.2 Kernel Stick-Breaking

The kernel stick-breaking process (KSBP) was intro-
duced by Dunson and Park (2008). For all x ∈ X ⊂ R

p ,
the KSBP is defined as follows:

(10)

Gx(•) =

∞∑

h=1

{
W(x;Ŵh,Vh)

∏

ℓ<h

(
1 − W(x;Ŵℓ,Vℓ)

)}

× Gh(•),

where W(x;Ŵh,Vh) = VhK(x,Ŵh), with K : X ×

X −→ [0,1], for example, as given in (9), Vh | ah, bh
ind
∼

Be(ah, bh), Ŵh | H
iid
∼ H (random kernel locations), and

Gh | G
iid
∼ G (random probability measures). The KSBP

thus begins with an infinite sequence of basis random dis-
tributions {Gh} and then constructs covariate-dependent
random measures by mixing according to distance from
the random locations Ŵh, with stick-breaking probabilities
that are defined as a kernel multiplied by Beta-distributed
weights. It is also possible to simplify the definition of
KSBP, adopting the particular form

Gx(•) =

∞∑

h=1

{
W(x;Ŵh,Vh)

∏

ℓ<h

(
(
1 − W(x;Ŵℓ,Vℓ)

)}

× δθh
(•),

where W(x;Ŵh,Vh) = VhK(x,Ŵh), with K : X ×

X −→ [0,1], Vh | M
iid
∼ Be(1,M), Ŵh | H

iid
∼ H (ran-

dom kernel locations), and θh | G0
iid
∼ G0. This amounts
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to replacing the random measure Gh(•) defined in (10) by
just a single atom θh. Compared to the former, this latter
version of KSBP greatly reduces model complexity while
still retaining some flexibility.

3.3 Probit and Logit Stick-Breaking

Chung and Dunson (2009) introduced a modification of
the stick-breaking representation for DPs where the Beta
random variables are replaced by normally distributed
random variables transformed using the standard normal
CDF. They refer to the resulting measure as the probit-
stick breaking (PSB) process. The PSB is defined by

(11) G(•) =

∞∑

h=1

{
�(ηh)

∏

ℓ<h

(
1 − �(ηℓ)

)}
δθh

(•),

where ηh | µ
iid
∼ N(µ,1) and θh | G0

iid
∼ G0. If µ = 0, (11)

reduces to a regular DP with M = 1, that is, uniformly dis-
tributed sticks. Chung and Dunson (2009) also consider a
covariate-dependent version of the PSB to model sets of
related probability distributions. This is done by replac-
ing the ηh variables with suitable stochastic processes or
regression functions. For instance, if {ηh(x) : x ∈ X } de-
note independent Gaussian processes with unit variance,
a dependent PSB can be defined as

(12)

Gx(•) =

∞∑

h=1

{
�

(
ηh(x)

) ∏

ℓ<h

[
1 − �

(
ηℓ(x)

)]}
δθh

(•).

A similar modification can be obtained by taking ηh(x) =

xT γ h. More generally, let ηh(x) = αh + fh(x) with αh ∼

N(µ,1) and fh : Rp → R an unknown regression func-
tion, characterized by finitely many parameters φh, with
φh ∼ H . Denote this model as PSBP(µ,H ,G0). One
main focus of the proposal in Chung and Dunson (2009)
was variable selection. To that end, they assume the model

y | x ∼ f (y | x) =

∫
N

(
y | x′β, τ−1)

dPX (β, τ ),

PX = {Px : x ∈ X } ∼ PSBP(µ,H ,G0),

where the variable selection structure is here introduced
in H and in G0, and by considering inclusion/exclusion
indicators at the level of the atoms in (12). See further dis-
cussion on PSBP in Rodríguez and Dunson (2011). A re-
lated construction, termed the logit-stick breaking process
was proposed in Ren et al. (2011), which essentially re-
places the probit by a logit link in (11). Applications of
logit-stick breaking processes to density regression can be
found in Rigon and Durante (2021).

3.4 Hierarchical Mixture of DP

Consider again the case X = {1, . . . , J }, as in the ex-
ample presented in Section 1, and let G = {Gx : x ∈

X } = {G1, . . . ,GJ }. Motivated by the need to borrow

strength across related studies (a situation also arising
in applications of meta-analysis), Müller, Quintana and
Rosner (2004) proposed a hierarchical DP model. In this
construction, the probability distribution for group j is
a weighted mixture of independent random measures.
Specifically, the probability model for a group is defined
as a mixture of a common distribution H0, shared by all
groups, and an idiosyncratic component Hj , which is spe-
cific to each group,

(13) Gj (•) = ǫH0(•) + (1 − ǫ)Hj (•),

where ǫ ∈ [0,1] controls the level of dependence in the
set G, and H0, H1, . . . ,HJ are assumed to be indepen-
dent DPs. The two extreme cases depicted in Figure 1
correspond to ǫ = 1 for panel (a), that is, a single com-
mon measure, and ǫ = 0 for panel (b), that is, indepen-
dent model and no borrowing of strength. Model (13)
represents then a tradeoff between these two extreme op-
tions, allowing one to borrow strength through the com-
mon part, while retaining flexibility for the study-specific
part of the model. More recently, Wang and Rosner (2019)
used this construction to propose a propensity score-based
mixture model to combine subject-level information from
randomized and registry studies, their goal being infer-
ence on a causal treatment effect.

Extending (13) to the case of continuous predictors can
be easily accomplished by combining a study index, j ,
continuous predictors z, and setting up

Gj,z(•) = ǫH0,z(•) + (1 − ǫ)Hj,z(•),

where H0,z, H1,z, . . . ,HJ,z are now independent
MacEachern’s DDPs based on the continuous predic-
tors z, incorporating dependence on predictors as in the
LDDP or ANCOVA-DDP of Section 2.2.1, according to
the available covariates types. The construction is eas-
ily modified to allow for study-specific variation in the
weight assigned to the idiosyncratic component Hj by
replacing ǫ with ǫj .

A clever variation of this construction is introduced
in Kolossiatis, Griffin and Steel (2013) who chose the
weight ǫ to ensure that Gj remains marginally a DP again.
A more general version of the same construction appears
in Camerlenghi et al. (2019a).

3.5 Hierarchical DP of Teh et al. (2006)

In the context of X = {1, . . . , J }, Teh et al. (2006) pro-
posed a model that induces an ANOVA type of depen-
dence. In their construction, referred to as the hierarchical
DP (HDP), the random probability measure for the j th
group Gj , j = 1, . . . , J , is a DP conditional on a com-
mon measure G, which in turn is also a DP,

(14)
Gj | Mj ,G

ind
∼ DP(Mj ,G), j = 1, . . . , J,

G | M,G0 ∼ DP(M,G0).
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A main motivation behind the particular form adopted in
(14) was to provide a model that allows for sharing clus-
ters among related subpopulations. Teh et al. (2006) con-
sider the analysis of text, where a primary goal was to
share clusters among various documents within a clus-
ter, and also to share clusters among various corpora.
The HDP facilitates the construction of clusters at vari-
ous levels, due to its hierarchical formulation. In fact, this
clustering structure can be described in terms of a Chi-
nese restaurant franchise, where at each of a collection
of restaurants customers sit at tables organized by dishes,
and dishes can be ordered from a global menu available to
all restaurants. This construction, if restricted to a single
restaurant, reduces to the usual Chinese restaurant pro-
cess (Aldous, 1985) that is colloquially used to describe
the DP.

3.6 The Nested DP

Also in the context of X = {1, . . . , J }, Rodríguez,
Dunson and Gelfand (2008) proposed an alternative
model, referred to as the nested DP. In their construc-
tion the law of the random probability measure for the
j th group Gj , j = 1, . . . , J , is an infinite mixture of tra-
jectories of DPs,

(15)
Gj

ind
∼

∞∑

h=1

πhδG∗
h
(•), j = 1, . . . , J,

G∗
h | M2,H

iid
∼ DP(M2,H),

where πh = Vh

∏
ℓ<h(1−Vℓ), with Vh | M1

iid
∼ Be(1,M1),

for h = 1,2, . . . . The main motivation behind (15) was
to construct a clustering of individuals across the differ-
ent groups, for example, patients within different medi-
cal centers. The NDP model aims to simultaneously clus-
ter patients within centers, borrowing information across
centers for which similar clusters are detected, and to
cluster different centers. This is then a type of multilevel
clustering.

By way of comparison, it can be noted that in the
HDP of Teh et al. (2006), the random measures in G =

{G1, . . . ,GJ } share the same atoms but assign them dif-
ferent weights, while in the NDP two distributions Gj1

and Gj2 either share both atoms and weights (i.e., they
are identical) or share nothing at all. Thus, the NDP al-
lows for clusters at the level of the responses and also at
the level of distributions, while the HDP allows for clus-
ters only at the level of observations.

One of the limitations of the NDP is that for any two
random measures Gj1 , Gj2 it supports only the two ex-
treme cases of either all atoms and weights shared, that is,
Gj1 = Gj2 , or no atoms shared, but does not allow any in-
termediate configuration with some atoms being shared.
As a consequence, whenever there are ties of atoms be-
tween Gj1 and Gj2 , the nested structure forces the two

random distributions to be identical. For a discussion of
this problem, see Camerlenghi et al. (2019a) who intro-
duce the latent nested process as a more general hierarchi-
cal prior for random probability measures that avoids this
restriction. More recently, Beraha, Guglielmi and Quin-
tana (2020) propose the semi-hierarchical DP as an alter-
native solution to the limitations inherent to latent nested
processes, with the added benefit of computationally ef-
ficient implementations to the comparison and clustering
of potentially many subpopulations.

Like any discrete random probability measure, the NDP
can be used to define random partitions. Model (15) could
be written in short as Gj ∼ DP{M1,DP(M2,H)}. The
outer DP, with total mass M1 gives rise to a partition
of X . Consider now samples yji ∼ Gj , i = 1, . . . , nj .
The inner DP gives rise to random partitions of Yj =

{1, . . . , ni}, that is, the NDP defines a nested partition of
X and Yj , with the prior for the random partitions for
Yj and Yj ′ being equal in distribution when Gj = Gj ′ .
Curiously, exactly the same random nested partition on
X and Yj is implied by the enriched DP (EDP) defined
in Wade, Mongelluzzo and Petrone (2011). The EDP de-
fines a random probability measure for pairs (xi, yi) as
PX(xi)PY |X(yi | xi), which, as discrete random probabil-
ity measures, gives rise to the same random nested parti-
tion.

3.7 The Product of Independent DPs

Alternatively, Gelfand and Kottas (2001) proposed an
approach based on the product of independent random
measures. In this construction the distribution for the j th
group Gj , j = 1, . . . , J , is given by

Gj (•) ≡ Hj (•)
∏

ℓ<j

Hℓ(•), j = 1, . . . , J,

where

Hj | Mj ,H0j
ind
∼ DP(Mj ,H0j ), j = 1, . . . , J.

The motivation for this construction arises from the need
to define models that induce stochastic ordering for the
random group specific distributions Gj . The ordering
holds with probability 1 in the prior and so is also sat-
isfied a posteriori.

3.8 Other Constructions

Chung and Dunson (2009) proposed a similar construc-
tion, referred to as the local DP, where the stick-breaking
weights selected to define the probability weights depend
on a set of random locations and their distances to a given
predicted value. In this construction, the support points
also depend on predictors.

Fuentes-García, Mena and Walker (2009) considered a
dependent variation of geometric-weights stick-breaking
processes (Mena, Ruggiero and Walker, 2011). In this
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construction, the stick-breaking weights are replaced by
their expected value, thus reducing the number of param-
eters.

Petrone, Guindani and Gelfand (2009) proposed a hy-
brid variation of the Dirichlet process that can be also ex-
tended to more general discrete random probability mea-
sures. Their construction was motivated by functional
data analysis. In their context, different curves are ex-
pressed as a mixture of a smaller set of canonical curves,
where the level of borrowing strength (local clustering)
can vary over different portions of the curves.

Another type of construction stems from the fact that
the Dirichlet process is also a special case of a normalized
random measure with independent increments (NRMI),
as described in Regazzini, Lijoi and Prünster (2003). This
means that if F has a DP distribution, then it can be ex-
pressed in the form

F(•) =
µ(•)

µ(�)
,

where � is the space where the DP is defined, and µ is a
completely random measure on (�,B(�)), that is, for any
collection of disjoint sets A1,A2, . . . in B(�), the Borel
σ -field in �, the random variables µ(A1),µ(A2), . . .

are independent, and µ(
⋃∞

j=1 Aj ) =
∑∞

j=1 µ(Aj ) holds
true a.s. See, for example, James, Lijoi and Prünster
(2009). As shown in Ferguson (1973), the Dirichlet pro-
cess arises as the normalized version of a Gamma pro-
cess. Barrios et al. (2013), Favaro and Teh (2013) and
Argiento, Guglielmi and Pievatolo (2010) discuss mod-
eling with mixtures of NRMIs, and in particular discuss
practical implementation of posterior simulation for such
models. See additional MCMC implementation details in
Favaro and Teh (2013). Building on related ideas, Epifani
and Lijoi (2010) and Leisen and Lijoi (2011), proposed
dependent neutral to the right processes and correlated
two-parameter Poisson–Dirichlet processes, respectively,
by considering suitable Lévy copulas. The general class
of dependent and/or correlated normalized completely
random measures has been discussed, for instance, by
Griffin, Kolossiatis and Steel (2013) and by Lijoi, Nipoti
and Prünster (2014). Griffin and Leisen (2017) discuss
various aspects of Lévy copulas and their connections to
several popular models. In particular, they use them to de-
fine compound random measures. DDPs defined by in-
troducing dependence in NRMIs have also been explored
in the literature. Lin, Grimson and Fisher (2010) used
this idea to propose a Markov chain of Dirichlet pro-
cesses, and other extensions to normalized random mea-
sured are described in Chen, Ding and Buntine (2012) and
in Chen et al. (2013). Finally, Camerlenghi et al. (2019b)
study properties of some general hierarchical processes
obtained via normalization, including the HDPs discussed
earlier in Section 3.5.

4. THE INDUCED CONDITIONAL DENSITY

APPROACH

The approaches described so far yield valid inferences
when the set of predictors x are fixed by design or are
random but exogenous. Notice that the exogeneity as-
sumption permits us to focus on the problem of condi-
tional density estimation, regardless of the data generat-
ing mechanism of the predictors, that is, if they are ran-
domly generated or fixed by design (see, e.g., Barndorff-
Nielsen, 1973, 1978). Under the presence of endogenous
predictors, both the response and the predictors should be
modeled jointly.

In the context of continuous responses and predictors,
Müller, Erkanli and West (1996) proposed a DPM of
multivariate Gaussian distributions for the complete data
d i = (yi,xi)

′, i = 1, . . . , n, and looked at the induced
conditional distributions. Although Müller, Erkanli and
West (1996) focused on the mean function only, m(x) =

E(y | x), their method can be easily extended to provide
inferences for the conditional density at covariate level x.
The model is given by

d i | G
iid
∼

∫
Nk(d i | µ,�) dG(µ,�),

and

G | M,G0 ∼ DP(M,G0),

where k = p + 1 is the dimension of the complete data
vector d i , and the baseline distribution G0 is the con-
jugate normal-inverted-Wishart (IW) distribution G0 ≡

Nk(µ | m1, κ
−1
0 �)× IWk(� | ν1,	1). The model is com-

pleted with conditionally conjugate priors and hyperpriors
on m1, κ0 and 	 , and, if desired, a gamma hyperprior on
M . The model induces a weight-dependent mixture model
for the regression,

(16) fx(y) =

∞∑

h=1

ωh(x)N
(
y | β0h + x′βh, σ

2
h

)
,

where

ωh(x) =
whNp(x | µ2h,�22h)∑∞
ℓ=1 wℓNp(x | µ2ℓ,�22ℓ)

, h = 1,2, . . . ,

β0h = µ1h − �12h�
−1
22hµ2h, βh = �12h�

−1
22h, and σ 2

h =

σ 2
11h − �12h�

−1
22h�21h. Here, the weights wh follow the

usual DP stick-breaking construction, and the remaining
elements arise from the standard partition of the vectors
of means and (co)variance matrices given by

µh =

(
µ1h

µ2h

)
and �h =

(
σ 2

11h �12h

�21h �22h

)
,

respectively.
The induced conditional density approach of Müller,

Erkanli and West (1996) can be easily extended to han-
dle mixed continuous, xC , and discrete predictors, xD ,
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by considering a DPM model of product of appropriate
kernels for discrete kD and continuous kD variables,

(17)

d i | G
iid
∼

∫
kD(xiD | θ1)kC(yi,xC | θ2) dG(θ1, θ2),

that is, assuming a multiplicative structure in the joint
model for (y,xD,xC) that mimics conditional indepen-
dence of (y,xC) and xD given suitable parameter vectors
θ1 and θ2. Similar types of models, but looking only at the
induced partition structures, are discussed in Müller and
Quintana (2010). In particular, Müller, Quintana and Ros-
ner (2011) proposed a version of (17) that may be viewed
as integrating out the random measure G in (17), retain-
ing only the random partition model, while still allowing
for covariate dependence in the prior. This approach ex-
ploits the connection between the DP and product par-
tition models. See, for example, Quintana and Iglesias
(2003).

We introduced the conditional density regression ap-
proach assuming endogenous predictors, when the con-
struction of a joint probability model for (yi,xi) is nat-
ural. However, the same construction can be used to
achieve the desired smooth locally weighted mixture of
linear regressions even when the xi are exogenous, or
even if they are not random at all. The choice of model
depends largely on properties of the model and ease of
prior specification, tempered by computational concerns.

5. IMPLIED RANDOM PARTITIONS AND OTHER

USES OF THE DDP MODEL

One of the common applications of the DP mixture
model (1) is to define a random partition and allow sta-
tistical inference on such partitions. Consider an equiva-
lent statement of i.i.d. sampling from (1) as a hierarchical
model

(18) yi | θi ∼ p(yi | θi) and θi ∼ G,

i = 1, . . . , n. The discrete nature of the DP random mea-
sure G implies positive probabilities of ties among the
θi with K ≤ N unique values {θ⋆

1 , . . . , θ⋆
K}. Defining

Sj = {i : θi = θ⋆
j } defines a partition {1, . . . , n} =

⋃
• j Sj .

A common application of the DP mixture model is to de-
rive inference on such partitions ρ = {S1, . . . , SK}, and
interpret the partitioning subsets as meaningful subpop-
ulations of the experimental units (e.g., patient subpop-
ulations). In anticipation of the upcoming generalization
to the DDP, we introduce a slightly different but equiv-
alent definition of the clusters Sj . Recall the representa-
tion (2) of a DP random measure, G =

∑
whδθ̃h

. Then
the non-empty sets Rh = {i : θi = θ̃h} describe the same
partition ρ. We switched from indexing clusters by their
common unique θi values to identifying clusters by the
matching atoms in G. Similarly we can set up a model

for independent sampling using a DDP prior. Specifically,
consider

(19) yi | θi ∼ p(yi | θi) and θi | xi = x ∼ Gx,

i = 1, . . . , n, with a DDP prior on G = {Gx, x ∈ X}.
For the moment assume a categorical covariate xi ∈

{1, . . . , nx}, and let Gx , x = 1, . . . , nx denote the
(marginal) random measures, and let Ix = {i : xi = x}

denote the subpopulation with covariate x. First, by the
earlier argument the model implies a random partition
ρx of Ix , marginally, for each x. Indexing clusters by
the corresponding atom in Gx implicitly defines a joint
prior on {ρx, x ∈ X}, or, alternatively, defines a partition
of {1, . . . , n} with clusters Sj that cut across Ix . In par-
ticular, the model implies a joint prior on (ρx, ρx′) for
any x 	= x′, and it allows for shared clusters across sub-
populations. Different assumptions on various model as-
pects, such as dispersion in the baseline distribution, or
total mass parameter, would have a practical effect on the
this joint prior. Curiously, in contrast to the DP mixture
model, the DDP model is not commonly used for infer-
ence on these implied random partition(s).

Another feature of the DDP model is inference about
distributional homogeneity. To be specific, consider again
the context of independent sampling in (18) with a cate-
gorical covariate x ∈ {1, . . . , nx} and let fx(y) =

∫
p(y |

θ) dGx(θ) denote the implied marginal distribution of
yi | xi = x. In many applications investigators might be
interested in the event fx = fx′ for x 	= x′. While the
DDP prior, short of a pathological special case, implies
zero prior probability for exact equality, posterior in-
ference includes meaningful posterior probabilities for
{d(fx, fx′) > ǫ} for any well defined distance of the two
distributions. Specifics would depend on particular appli-
cations. Related summaries, for example, by displaying
posterior means for fx over x are shown in some papers
using DDP priors for density regression. See, for example,
Gutiérrez et al. (2019).

6. APPLICATION TO AUTOREGRESSIVE MODELS

We illustrate some of the nonparametric regression
models based on DDP models. We implement inference
under the ANOVA-DDP or LDDP model (5) and con-
ditional density regression as in (16) to model (auto-
)regression on xt = yt−1 in time series data. We specif-
ically employ the LDDP model

(20)

yt | yt−1 = y,βt0, βt1, σ
2
t ∼ N

(
βt0 + βt1y,σ 2

t

)
,

(
βt0, βt1, σ

2
t

)
| G

iid
∼ G,

G ∼ DP
(
M,G0(· | η)

)
,

where t = 2, . . . , n, that is, we mix over the linear coef-
ficients and the variance. The dependence in (20) is con-
veyed through linear functions of the first lagged response
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FIG. 3. Old Faithful Geyser data: Posterior estimated Gx , that is, posterior predictive densities (mean and point-wise 95% HPD intervals) for the
waiting times at lagged times (a) yt−1 = 43, (b) yt−1 = 55, (c) yt−1 = 71, (d) yt−1 = 78, (e) yt−1 = 83 and (f) yt−1 = 96, including 95% HPD
credibility bands. The red curve shows inference under the LDDP model. The green curve shows inference under the conditional density approach.

in the atoms, keeping common weights. Here, G0(· | η) is
the centering measure with hyperparameters η. Following
Jara et al. (2011), we use G0 ≡ N2(β | µb,Sb)Ŵ(σ−2 |

τ1/2, τ2/2), and complete the prior specification as

M | a0, b0 ∼ Ŵ(a0, b0),

τ2 | τs1, τs2 ∼ Ŵ(τs1/2, τs2/2),

µb | m0,S0 ∼ Np(m0,S0),

Sb | ν,	 ∼ IWp(ν,	).

For this illustration, we consider the Old Faithful geyser
data (Härdle, 1991), available as part of the datasets

library available in R, which includes n = 272 observa-
tions on eruption times (in minutes) and times between
eruptions. In the following, we compare inference results
under model (20) with inference under density regression,
as in (16), again using xt = yt−1, and taking the waiting
times between eruptions as the variable yt of interest. Re-
call that a conditional density approach is based on a DPM
model for {(yt , yt−1) : t = 2, . . . , n}.

In all cases, we used hyperparameters as in Jara et al.
(2011). Results for the analysis are shown in Figure 3. In
particular, we show a comparison of posterior inference
for Gx for (a) yt−1 = 43, (b) yt−1 = 55, (c) yt−1 = 71,
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FIG. 4. Old Faithful Geyser data: Estimated quantile curves for the posterior predictive densities under (a) LDDP model, and (b) Conditional
model. Each curve corresponds to the indicated quantiles of Gx as a function of lagged xt = yt−1 values, corresponding to 5% (black), 25% (red),
50% (green), 75% (blue) and 95% (light blue) quantiles.

(d) yt−1 = 78, (e) yt−1 = 83 and (f) yt−1 = 96, including
95% HPD credibility bands. The points at which predic-
tions were made correspond to the empirical quintiles of
the observed waiting times plus the endpoints of the em-
pirical range. While there are some model-specific differ-
ences in the estimated distributions Gx , they both agree
on the bimodal nature. Results from both models suggest
that the bimodal feature changes as the lagged value for
prediction increases, moving from right to left skewness.
This finding is more markedly seen in the conditional ap-
proach than in the LDDP case. Another point worth not-
ing is that both models produce similar estimates of Gx

in a range roughly covering the central quintiles, but as
the lagged values veer off from the center of the empirical
range the differences among the corresponding estimates
become more marked.

To further illustrate how the posterior predictive den-
sities change with lagged waiting times, we show how
quantiles change as a function of yt−1 values. Figure 4
shows the resulting curves, estimated over a suitable grid
of lagged waiting times, for the three quartiles plus the
5% and 95% quantiles. The LDDP model, shown in panel
(a), gives rise to patterns that exhibit strong linearly de-
creasing trends, with a slight increase in the correspond-
ing slopes for higher quantiles. The conditional model is
shown in panel (b), and even though there is still a global
decreasing trend, the curves are not nearly linear. In fact,
they are not even monotonic, suggesting some marked
nonlinear features of the data that are not so evidently
found under the LDDP model.

7. CONCLUDING REMARKS

DDPs have come a long way since they were originally
proposed. By its very definition, a DDP has the potential
to incorporate covariate indexing (dependence) either in
the atoms or the weights or both. The results in Barrientos,
Jara and Quintana (2012) show that under full support of
the stochastic processes that are used to convey covari-
ate dependence, the resulting DDP has full support in the
space F = {Fx : x ∈ X }. This holds true for all of the
basic DDP constructions: single-atoms, single-weights,
and with dependence in both. A natural question is then:
which DDP version is the best? There is no final an-
swer to this question, although DDPs with dependence in
both atoms and weights are less commonly found, mostly
due to the computational complexity related to their im-
plementation. An exception to this is the conditional ap-
proach described in Section 4. In broad terms, the single-
weights models are typically easier to fit, as the standard
algorithms designed to implement posterior simulation in
the context of DPs can be applied with relatively minor
adjustments. See, for example, the computational aspects
in De Iorio et al. (2004). The same applies for the LDDP.
On the other hand, the single-atoms models are typically
less attractive from a computational viewpoint, mainly
due to how covariate dependence is encoded in the defini-
tion of the weight processes {wh(x) : x ∈ X }. However,
the single-atoms DDP allows for the prior probability dis-
tribution on the partitions to change with x, a feature that
is not supported by the single-weights DDP. For a for-
mal description of this feature, let G = {Gx : x ∈ X } de-
note the family of random probability measures with DDP
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prior, as before. Let ρx denote the partition of {1, . . . , n}

that is implied by a hypothetical sample from Gx , of
size n. Under the single-weights DDP, p(ρx | G) is in-
variant across x; but not so under the single-atoms DDP.
This is the case since the prior on the random partition ρx

is determined by the weights in Gx .
Models for dependent probability distributions do not

easily allow for the incorporation of existing prior infor-
mation about arbitrary functionals. A modeler is unlikely
to have prior knowledge about all aspects of a collec-
tion of probability measures, but could have real histor-
ical prior information about specific functionals (such as
the mean or quantile functions). For example, such infor-
mation could be obtained as the product of applying para-
metric or (classical) nonparametric approaches to previ-
ous data. Furthermore, even in models for single (non-
dependent) probability measures, the derivation of the in-
duced distribution for arbitrary functionals is challenging
and, thus, usually not exploited. This makes the prior elic-
itation process difficult. We refer the reader to Lijoi and
Prünster (2009) for an exhaustive summary of existing re-
sults concerning distributional properties of functional of
single and discrete random probability measures.

In the context of a single probability measure, Kessler,
Hoff and Dunson (2015) proposed a clever construction
of a BNP model with a given distribution on a finite set
of functionals. Their approach is based on the conditional
distribution of a standard BNP prior, given the function-
als of interest. A Metropolis–Hastings MCMC algorithm
is proposed to explore the posterior distribution under the
marginally specified BNP model, where the standard BNP
model is used as a candidate generating model, and that
is closely related to the well-known importance-sampling
approach for assessing prior sensitivity. Their MCMC al-
gorithm is developed for DP-based models and relies on
the marginalization of the random probability measure.
Thus, a Monte Carlo approximation of the functionals of
interest is employed at any step of the MCMC algorithm
to obtain approximated posterior samples of the function-
als of interest. The study of extensions of the approach
proposed by Kessler, Hoff and Dunson (2015) to the con-
text of sets of predictor-dependent probability measures is
a topic of interest for future research.

An interesting topic has been recently brought up by
Campbell et al. (2019). They introduced a relaxed version
of the notion of exchangeability, local exchangeability,
which considers bounded changes in total variation norm
of the distribution of observations under permutations of
data having nearby covariate values. This notion gener-
alizes that of exchangeability and partial exchangeability.
The work by Campbell et al. (2019) discusses conditions
under which a version of de Finetti’s theorem holds in
such a way that a DDP is the corresponding de Finetti
measure, that is, conditional independence of the observa-
tions under a DDP is still true. The study of extensions and

applications of these and related results is another topic of
interest for future research.

The bulk of work on the DDP and related methods fo-
cuses on the family of conditional distributions G = {Gx :

x ∈ X } and models where an observation y is associ-
ated with a single value of the covariate x. When data are
longitudinal, spatial or functional, the observations may
be considered to have dependence that cannot be cap-
tured by the marginal distributions Gx . See, for example,
Xu, MacEachern and Xu (2015) who separate dependence
in financial data series from the marginal distributions.
Many open questions remain in this direction.

Finally, the idea of introducing dependence through
normalization, for example, as mentioned earlier in Sec-
tion 3.8 can be further exploited and extended to more
general cases, including going beyond the context of
DDPs.
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