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Abstract—Live migration of Virtual machines (VMs) has become a regular tool for edge and cloud operators to facilitate system
maintenance, fault tolerance, and load balancing, with little impact on running instances. However, the potential security risks of live
migration of VMs are still obscure. In this paper, we expose a new vulnerability in the existing VM live migration approaches, especially
the post-copy approach. The entire live migration mechanism relies upon reliable TCP connectivity for the transfer of the VM state. We
demonstrate that, if the host server is vulnerable to off-path TCP attacks, the loss of TCP reliability leads to VM live migration failure.
We demonstrate that, by intentionally aborting the TCP connection, attackers can cause unrecoverable memory inconsistency for
post-copy, leading to a significant increase in downtime and performance degradation of the running VM. Additionally, we present
detailed techniques to reset the migration connection under heavy networking traffic. We also propose effective defenses to secure the
VM live migration. Our experimental results demonstrate that memory inconsistencies could be devastating to some applications, and it
only takes a few minutes to reset a heavy migration connection.

Index Terms—Virtual Machine, Live Migration, TCP Reset Attack.
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1 INTRODUCTION

Virtual machine (VM) live migration is the process of mov-
ing a running VM between two different physical machines
with minimal disruption to the VM’s normal operations.
As a powerful tool for system maintenance [6], load bal-
ancing [52], fault tolerance [38], energy saving [39], [11],
and performance enhancement [5], VM live migration has
been widely used in edge computing [51], [42], [4] and
mainstream cloud services [32]. The procedure of live mi-
gration includes the transfer of all memory pages and
hardware state over a pre-established TCP connection. One
primary method used by the existing tools is the pre-copy
approach [10], which first iteratively copies all memory
pages as well as those pages dirtied in the previous iteration.
The VM is kept running until the last iteration, when pre-
copy pauses the VM and then finishes copying the rest of
the memory pages. The total length of time for the last
procedure in pre-copy, known as service downtime, reaches
up to many seconds [57] depending on the copying rate and
intensity of memory activities. To reduce service downtime,
the post-copy approach [23] was recently proposed. The post-
copy approach immediately suspends the source VM and
copies the minimum execution states. The VM is quickly
resumed at the destination side, and memory pages are
then transferred. Using the post-copy approach, a significant
amount of service downtime could be saved, and various
hypervisors have already integrated this mechanism.

While researchers have made numerous efforts to im-
prove the performance of VM live migration, little attention
has been paid to the security implications of live migration.
One potential reason is that, currently, live migration is not
made available to non-admin users in the cloud or edge

environment. Moreover, the confidentiality of the process
can be safeguarded using encrypted live migration [65], [43].
This can further secure the migration process, preventing
adversaries in the middle of a network to hijack or falsify
memory pages.

In this paper, we present a new vulnerability in the
existing VM live migration caused by the insecure TCP
channel established for the transfer of memory pages. We
demonstrate that a vanilla TCP-RST attack could lead to
devastating and unrecoverable consequences for today’s
VM live migrations, especially post-copy-based approaches.
By inducing a reset of the TCP connection of a post-copy
live migration, adversaries can force a VM to enter into
an inconsistent memory state, causing failures and unpre-
dictable behavior. The reason is that post-copy immediately
stops the VM on the source and starts running the VM on
the destination server without any checks as to the integrity
of the transfer process. The consequence of terminating the
TCP connection is that the VM on the destination server
becomes unresponsive or in many cases crashes. This is due
to missing parts of the memory did not transfer properly
from the source. Meanwhile, the newly modified memory
pages on the destination server are also unavailable to the
stopped VM on the source, resulting in memory inconsisten-
cies. Such a vulnerability is caused by the design of post-copy
rather than the actual implementation in the hypervisor. The
lack of protection in existing hypervisors’ implementation
further exacerbates this problem, making the consequences
severe and the remote VM image unrecoverable. Further-
more, the TCP reset attack could also significantly increase
the service downtime and degrade the performance of the
running VM, for both pre-copy and post-copy live migration
approaches.
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We analyze in depth the possible approaches to launch
the TCP reset attack on VM live migration. In particular,
we propose a new method to discover the timing of a
migration process as well as the destination port number.
Attackers can infer that useful information by intentionally
initiating fake migration requests. In some cases, attackers
are even able to hinder the migration connection from being
established. While the process of VM live migration includes
heavy networking traffic, we further propose an enhanced
algorithm that exploits the challenge ACK vulnerability [7]
to reset the migration connection. Experimental results show
that our attack can break the migration in a few minutes.
In terms of defense strategies, we present two possible
mechanisms to mitigate the TCP reset vulnerability from
becoming a serious threat for live migration in cloud and
edge environments. We implement a prototype by modify-
ing QEMU and the Linux kernel.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background of VM live migration
and describes the reset threat to TCP connections. Section 3
presents the vulnerability in VM live migration process, and
details the method to reset the migration connection within
heavy networking traffic. Section 4 shows the evaluation
of our attack on VM live migration from different aspects.
Section 5 discusses several potential defense mechanisms.
Section 6 surveys related work, and finally Section 7 con-
cludes.

2 BACKGROUND

2.1 VM Live Migration
Clark et al. [10] first proposed VM live migration as a
procedure of migrating an entire OS as well as all of its ap-
plications as one unit from one host machine to another over
a reliable connection (typical a TCP connection). In the rest
of the paper, we use TCP as a practical example. All states
and system resources of the original VM, including memory,
storage, and network connectivity, are transferred from the
source to the destination. While the key procedure for VM
live migration is the transfer of the main memory state, two
major approaches, pre-copy [10] and post-copy [23], [24], are
widely deployed. Based on those two approaches, a body
of works [53], [28], [25] further improve the performance of
VM live migration.

2.1.1 Pre-copy
Typically, a pre-copy-based VM live migration involves four
steps. First, the source server and destination server enter
into a ready-for-migration mode. In particular, the desti-
nation side should be listening at a specified port. The
TCP connection is then established on that port once the
migration command is issued. After that, the memory of
the source VM will be copied in an iterative fashion. It
first transfers all the pages to the target server. During this
iteration, some pages become dirty. The migration process
then continues to repeatedly copy those newly generated
dirty pages. After several rounds, if the page dirtying rate is
continuously faster than the rate of copying, the iterative
copying will not converge. Then, the source VM would
be suspended, and the rest of the inconsistent memory is
copied. Finally, the VM on the destination side is activated,

and the source VM is paused. As we see, the VM must be
taken down to finish the migration. The amount of service
downtime depends on the running workloads as well as the
bandwidth of the TCP connection. The downtime could be
huge if there is a large changing rate for dirty pages.

2.1.2 Post-copy
Different from pre-copy, which starts with copying memory
pages, post-copy first stops the source VM. During this
downtime, only minimum execution states needed by the
VM to start (e.g., the processor state) are copied. After this
minimum copying, the VM is immediately resumed on the
target side. Then, post-copy copies the memory pages from
the source to the destination. Several techniques could be
applied to fetch memory: (1) demand paging, which transfers
the pages that page faults are generated by the resumed VM;
(2) active pushing, which actively pushes the VM’s pages
to the target; and (3) prepaging, which predicts the pages
that might be accessed by the running VM and transfers the
pages before they are faulted. Compared with the pre-copy
approach, post-copy can significantly reduce service down-
time, and thus has recently been implemented in various
hypervisors, including Xen and KVM.

2.2 TCP Reset Attack

A TCP connection is defined by a four-tuple <source IP
address; destination IP address; source port
number; destination port number>. Some features
like sequence numbers and acknowledgment numbers are
utilized to ensure a reliable connection. Normally, attackers
need to obtain all four tuples as well as a valid sequence
number to interfere with the connection. While the TCP
protocol was not initially designed for security concerns,
vulnerabilities exist for attackers to infer the four tuples and
sequence numbers. One type of those malicious attacks is
the TCP reset attack. By forging TCP packets with specific
flags, attackers can terminate an existing TCP connection.

2.2.1 Blind Reset Attack
RFC 5961 [49] defines two types of blind reset attacks: using
SYN bit or RST bit. Before RFC 5961, if the sequence number
of an incoming SYN or RST packet is in the valid receive
window, the receiver would reset this connection. The blind
in-window reset attack was first described by Watson [58]:
with the knowledge of the four tuples, attackers can reset
the connection if the sequence number of the crafted packet
is in the window. As a result, a brute-force attacker can
simply send one packet in each possible window. A TCP
connection uses a 32-bit number recording the next expected
in-order sequence number, and another 32-bit number for
the last accepted sequence number. A 16-bit number is used
to report the receive window size (wsize), which has the
largest value, 216. The total number of packets required for
the attack is 232/wsize, which could be conducted within
several seconds in a high-speed networking environment.

RFC 5961 suggests a tight handling of incoming reset
packets. For an SYN packet, regardless of the sequence
number, the receiver sends back an ACK packet (known as
a challenge ACK) to request an RST packet with the correct
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sequence number from the sender to terminate the connec-
tion. For an RST packet, the receiver would simply drop the
packet if the sequence number is outside of the valid receive
window. For an in-window RST packet, an ACK packet with
the correct sequence number would be sent to confirm the
loss of connection. With the implementation following RFC
5961, a blind attacker can only terminate the TCP connection
with a matching packet. The possibility of a blind attack is
significantly reduced to 1/232.

2.2.2 Side-channel TCP Attacks
Even when strictly following RFC 5961, previous works
have shown that off-path attacks are still possible by
leveraging various information leaked from specific side-
channels [45], [46], [21], [14], [13]. While those works rely on
a form of malware on the client side, a more recent work [7]
uncovers a new vulnerability ([CVE-2016-5696]) and allows
blind off-path reset and data injection attacks.

The vulnerability is raised because of the challenge ACK.
As introduced above, RFC 5961 handles incoming packets
in a strict way. A challenge ACK is sent in various situa-
tions. Moreover, to save system and bandwidth resources
for sending ACK packets, RFC 5961 introduces a challenge
ACK throttling mechanism. A global maximum number
of challenge ACKs (shared by all TCP connections in the
server) is set to 100 by default in a 1-second interval (on
Linux). To exploit the vulnerability, an attacker can abuse a
regular TCP connection to measure the remaining challenge
ACK counters, while simultaneously sending probe packets.
If the crafted packet triggers a challenge ACK, the number
of remaining challenge ACKs would be less than 100. The
work [7] shows that attackers can infer the four tuples as
well as the sequence and ACK numbers in an idle or slow
TCP connection.

Linux kernel maintainers soon released several patches
to defend against the challenge ACK vulnerability. For
instance, the limit is raised from 100 to 1,000 by setting
sysctl knobs. However, huge amounts of servers are still
left unpatched. Previous work [47] shows that less than
40% of servers of Alexa Top 1 million websites are patched
after six months of the releasing of the patch. Also, such a
vulnerability were exploited on TCP connections with light
or even idle traffics. Heavy connections, such as VM live
migration, are believed to be safe under such exploitation.

3 THREATS IN VM LIVE MIGRATION

The TCP-RST attack is a DoS (Denial-of-Service) attack
attempts to terminate an active TCP session. It has long
ignored by cybercrime organizations or secure-services
providers due to its limited effects. According to a recent
report from Akamai [1], TCP reset attacks only account
for about 1 percent of all DoS attack activities. For most
applications, a successful TCP-RST attack causes a lost
connection, but a simple re-establishment of the connection
could solve the issue. On the other side, while numerous
research efforts have been made to improve the performance
of VM live migration, little attention has been paid to the
security aspects. The reason is that live migration cannot be
initiated by normal users in the cloud or edge environment.
Hence, it is generally believed that the existing approach
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Fig. 1: Post-copy VM Live Migration.

is secure enough, and many protection mechanisms are not
taken seriously.

In this section, we argue that the TCP-RST attack could
lead to devastating and unrecoverable consequences for
post-copy-based VM live migrations. The termination of a
TCP connection would cause a VM to enter into an inconsis-
tent memory state. Besides, while one remarkable advantage
for post-copy is the short service downtime, we show that
the TCP reset attack could significantly increase service
downtime. Also, the performance of the running VM might
be affected for both pre-copy and post-copy live migration
approaches. We first present the vulnerability overview for
post-copy and pre-copy VM live migration. We then detail the
procedure to launch the TCP reset attack on the VM live
migration.

3.1 Vulnerability Overview
3.1.1 Post-copy
Post-copy stops the source VM immediately after the TCP
connection is established, and runs the VM on the target
as soon as possible by transferring the minimum processor
states. This strategy greatly reduces the service downtime.
The rest of the memory pages are actively transferred from
the source to the target, and the destination node will be halt
if particular required pages are being transferred. Figure 1
shows a snapshot of memory page statuses at one time. In
this procedure, the case ∂ represents memory pages that
have been transferred from the source to the target. Since
the VM is running on the target server at the same time that
memory pages are copying (as the case of ∏), pages that
have been transferred might be modified (as the case of ∑),
and new dirty pages are generated (as the case of π).
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If attackers can terminate the underlying connection at
this point, in the current hypervisor implementation, the
VM on the target server would become unresponsive im-
mediately and cannot be recovered. Particularly, for a TCP
connection, this can be achieved by successfully launching
a TCP RST attack. In some cases, the VM would crash. The
reason is that part of the memory is still on the source (like
the case of ∏ in Figure 1). There is no way to resume the
target VM. On the other side, the source VM still remains
stopped. As we see, the service encounters an outage since
both VMs are forced to shutdown. The bigger problem is
inconsistent memory: all newly generated dirty pages in the
target VM (as the cases of ∑ and π) are lost. This disastrous
scenario is similar to a sudden power loss.

3.1.2 Pre-copy
In the scenario of pre-copy, the damage might be less than
in post-copy migration. Similarly, once the TCP connection
is reset, the destination VM crashes; however, the source
VM is still alive and holds an entire up-to-date memory and
processor states. In modern hypervisor implementation, the
whole migration procedure must be restarted. Since migra-
tion is typically used as a tool to improve the performance
of the VM or upgrade the server, such an attack would
waste pre-copy’s total migration time, consume system re-
sources, and degrade the performance. In particular, the
service downtime of pre-copy is much larger than post-copy.
If the TCP-RST attack happens during the downtime, the
downtime would be significantly increased because both
VMs are shutdown.

3.2 Attacking VM Live Migration
3.2.1 Threat Model
The attacker sets its target on destroying VM live migration
in the edge or cloud environment by resetting the TCP
connection. We assume that the attacker knows several IP
addresses of the servers in the target cloud or the nodes
in the target edge environment. By monitoring these IP
addresses, the attacker attempts to block the migration from
the source server to the destination server. We also assume
that at least one server is vulnerable to the blind reset attack
or side-channel reset attack mentioned in Section 2. The
attacker can send crafted packets with spoofed IP address to
the target servers. Additionally, the server has an open port
(e.g., port 22) that allows the attacker to build a legitimate
TCP connection (note that the attacker does not need to
have a valid SSH connection with credential exchanged).
In the cloud environment, bandwidth between servers is
limited. To ensure the quality of services of other servers,
administrators would not allow a migration to consume
all network resources. Thus, we assume that the migration
process has a constant but limited speed.

3.2.2 Possibilities of TCP RST Attacks
The ability to send crafted RST packets is the pre-requisite
for launching TCP reset attacks. First, in an edge environ-
ment, attackers can use their own devices to send packets to
the target edge node since edge computing is performed in
an open environment where any nearby users can connect
to edge nodes or devices.

Fig. 2: Number of RST packets per second in clouds.

We further investigate whether the firewalls of cloud
vendors would drop the RST packets for safety purposes
or not. We choose two most popular clouds, Google Cloud
Platform (GCP) and Amazon Web Services (AWS). We build
a small tool to flood crafted reset packets into our subscribed
instances, and measure the number of receiving packets
using tcpdump. We choose the time interval of one second
and repeat the experiment for 60 times. For AWS, we use
a t2.micro instance in Amazon EC2. For GCP, we run an
instance with 1 vCPU and default other configurations.
We test a limited number of RST packets from inside and
outside the clouds. From the outside, we send the crafted
packets from our own servers. Inside the cloud, we send the
packets from another rented instance.

Figure 2 illustrates our results. Both cloud services accept
crafted RST packets. In GCP, the number of RST packets
could be more than 100,000 per second from the inside
and outside. For EC2, the number of RST packets from the
outside could be more than 60,000 per second. While the
number of RST packets from the inside is smaller than from
the outside in EC2, we can still send about 23,000 packets
per second. The cause of this difference might be that the
outgoing traffic of our t2.micro is limited.

The live migration of VM could be applied either inside
one data center or across different data center sites. For
across site migration, once the cloud does not block RST
packets, the migration procedure is vulnerable to TCP reset
attacks. For migration inside a cloud, attackers need to rent
instances inside the clouds. However, in these two clouds,
the VMMs (Virtual Machine Managers) block packets with
spoofed inner IP addresses at the guest level. Under such
a circumstance, an attacker needs to either rent a dedicated
server where it can fully control the hypervisor, or compro-
mise the VMM of the subscribed attacking instance. Such
an exploitation is still feasible to achieve [12], [34], since the
security vulnerabilities of VMMs have been reported on a
regular basis due to the complexity of VMMs.

Finally, packet header encryption techniques like
IPsec [16] cannot prevent attackers from resetting the con-
nection as attackers do not need to know the exact value
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of the packet but send multiple crafted packets with one
of them matches the correct information. Any high-level
encryption solutions such as SSL/TLS do not help as they
function in or above the transport layer.

3.2.3 Catch Timing and Four Tuples
Unlike a long-lived and idle TCP connection, VM live mi-
gration is a short procedure with heavy traffic. Thus, the
first step for an efficient attack is to catch the timing of
live migration. While several previous works [33], [15] have
demonstrated multiple different methods (both internal and
external) to uncover the timing of the migration process, we
further introduce a new way to expose such timing infor-
mation. As mentioned in Section 2, before the migration,
the destination needs to enter into a ready-for-migration
mode by listening to a specific port. This port is opened for
accepting a migration request. One critical problem is that
modern migration implementation ignores authentication,
which means that anyone who knows the destination IP
address and port number can initiate the migration.

The attacker can launch fake migration requests (on the
attacking machine) to all ports of the target server. In order
to catch the timing, the attacker can conduct the scan on
a regular basis. In most periods, the scanner should fail
to establish any migration connections because the port is
closed. If the attacker succeeds in building the migration
connection with the target server, the source VM would
be unable to initiate the migration, since all preparatory
operations on the target would have been occupied by the
fake migration. Once the attacker disconnects with the target
server, the target VM simply crashes, which is similar to
the reset attack on pre-copy VM live migration. Otherwise,
if the attacker discovers a newly opened port but is unable
to build the migration connection, he has high confidence
that this port is opened for VM live migration. In this way,
the attacker can obtain the timing as well as the target port
number. Besides, similar approach or previously described
method [7] could be utilized to explore the rest of the tuples.

3.2.4 Resetting the Connection
After confirming the four tuples of an ongoing migration,
the attacker can start to reset the TCP connection by abus-
ing the vulnerabilities in either the source server or the
destination server. Previous research has shown multiple
methods to obtain the correct sequence number by off-path
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attackers [8], [21], [22], [46], [45]. Here we mainly discuss
the exploitation of TCP blind attack and the challenge ACK
vulnerability. The identification of the vulnerability of the
server is straightforward. Attackers can build a legitimate
TCP connection with the target and attempt to terminate the
connection using in-window RST packets. If the in-window
RST packet can cut the connection, the attacker can launch a
blind reset attack. Otherwise, if the target server only replies
with 100 challenge ACKs per second, it means the server has
a challenge ACK vulnerability.

Blind reset attack. If the server does not deploy the
implementation of TCP following the recommended stan-
dard RFC 5961, resetting the TCP connection is easy. An in-
window RST packet can reset the connection. Hence, with
the knowledge of four tuples of the connection, the attacker
simply floods the RST packets with sequence numbers in-
creased by the window size. Once the attacker can brute-
force all the sequence number spaces, the connection is ter-
minated. For example, suppose the window size is around
10,000, and the attacker needs to flood 232/10000 ⇡ 420, 000
RST packets. With 20,000 RST packets sent per second, a
reset attack could be achieved in merely 21 seconds.

Side-channel reset attacks on the source. In the case
that the source server is vulnerable to CVE-2016-5696, the
attacker can conduct a reset attack on the source server
following the previous work [7], as in the case of I illus-
trated in Figure 3. While VM live migration generates huge
traffic from the source to the target, the backward traffic
is relatively idle. The target merely replies with regular
ACKs (which would not consume the limit of challenge
ACKs) corresponding to the data packets. The sequence
number of the backward traffic is invariable. We briefly
list the attacking procedures here. The basic idea is to
send multiple spoofed packets and 100 in-window non-
spoofed packets (in the legitimate connection) per second.
If the number of replied ACKs is less than 100, it means
the spoofed packets trigger challenge ACKs. The detailed
steps are: (1) Synchronize with the clock on the server to
ensure that all packets sent from the attacker arrive within
the same 1-second interval. (2) Identify the approximate
sequence number range, which is the range of window size
multiplied by the number of packets sent. (3) Narrow down
the sequence number space to a single block (estimated
window) through binary searching. Finally, (4) flood RST
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Fig. 5: Attack on Post-copy Live Migration.

packets in that block.
Side-channel reset attacks on the destination. Attacking

the target server (as in the case of II in Figure 3) is much
more difficult than the source server case. The heavy traffic
makes the sequence number vary rapidly, leaving the previ-
ous method [7] no chance to shrink the sequence number
into a window after catching the approximate sequence
number.

In order to the achieve the attack, we conduct two exper-
iments to figure out the pattern of the change of sequence
number in VM live migration. We run different workloads
on the source VM. We then fix the throughput of migra-
tion to 8.54 Mbps, and start the migration with different
migration approaches. Five workloads are chosen with the
pre-copy option: (1) Idle without workloads; (2) CacheBench
benchmark; (3) Idle loop; (4) Stress benchmark; and (5) Stress
with memory configuration. One workload has the post-copy
option: (6) Idle. We measure the change of sequence number
in one second for a total of 50 instances. Figure 4(a) shows
the boxplot result. As we see, except for few outliers, the
change of sequence number is almost the same in all cases:
around 10.6 ⇤ 106 per second. In our second experiment, we
set the speed limit of migration to 17.08 Mbps, 33.82 Mbps,
and 50.56 Mbps. The results in Figure 4(b) demonstrate that
the change of sequence number is linear to the speed limit.
Overall, we have two major observations: (1) the change
of sequence number is quite constant and only related to
the migration speed; (2) The change of sequence number is
irrelevant to the workloads running in the VM or migration
approaches.

After understanding these two features, the attacker can
launch the reset attack on migration. The basic idea is to
obtain the rough speed of live migration and track the step
that the sequence number changes per second at the same
time. Specifically, the attacker can reset the migration with
three procedures, as depicted in Algorithm 1. This algorithm
is designed to reset a connection with heavy traffic.

The first two steps are similar to the attack on the source
server: get synchronized with the target server, and iden-
tify the approximate sequence number range. After that,

Algorithm 1 Identify and stalk the correct sequence number
range

1: procedure SEQUENCE NUMBER STALKING(s0l, s
0
u)

2: stepo  5⇥ (s0u - s0l);
3: su,l  s0u,l + stepo;
4: range (su - sl);
5: Step profiling:
6: while range hit() do
7: count count+ 1;
8: wait(1);
9: step stepo/count;

10: su,l  su,l + step;
11: Micro tuning:
12: while range unmeet() do
13: if range hit() then
14: binary cut range();
15: else if range miss() then
16: left shift range();
17: if range miss() for 3 times then
18: adjust step();
19: if adjust step() for 3 times then
20: su,l  s0u,l + stepo;
21: step stepo/(count + 1);
22: goto Micro tuning.
23: su,l  su,l + step;
24: wait(1);
25: Connection reset:
26: for i in 20 do
27: flood(sl, su)
28: wait(1);
29: if failed then
30: goto Micro tunning.

assuming the attacker sends 4,000 packets per second with
a block size 10,000, the range is 40,000,000. Then the attacker
can increase the sequence numbers of those probe packets
with a relatively large size (e.g., 5 times the range), and
simply waits for the next hit, as described in Lines 5⇠10.
This procedure, step profiling, could obtain an approximate
value of the speed by dividing the increased size by time
consumption.

Lines 11⇠24 present the next procedure, micro tuning.
This step is the most critical one, and has two goals: (1)
this step is responsible for adjusting the speed as accurate
as possible; (2) after this step, the attacker should narrow
down the range to an acceptable small value, so that he is
able to flood RST packets to cover all the sequence numbers
in that range. To achieve those two goals, the attacker can
first assume that the estimated speed is smaller than the
actual speed. Then, every time the sequence number is hit
in the range, the attacker cuts the range to the second half
part (Lines 13⇠14), which could promise a future hit if the
assumption is correct. If the sequence number is not hit in
the next second, the attacker slightly shifts the range to
the left (Lines 15⇠16). If the sequence number still cannot
hit within the range in a few times (e.g., 3), the attacker
can then slightly reduce the estimated speed (e.g., 1%), as
shown in Lines 17⇠18. If the hit does not come even after
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several speed adjustments, it is highly probable that the
assumption is incorrect. The attacker should recalculate the
estimated speed, and repeat the micro tuning (Lines 19⇠22).
The procedure is repeatedly conducted until the range is cut
to a 2-4 block size.

The last procedure is connection reset, in which the at-
tacker can flood RST packets with brute-force all possible
sequence numbers. The attacker may need several tries to
reset the connection, since the RST packet needs to hit the
exactly correct sequence number. Another issue for this step
is that errors exist between the estimated speed and actual
speed. After a few trials, the stalk might be lost. Under such
scenarios, the attacker needs to restart the next round of
micro tuning to resume the tracking of the correct sequence
number.

4 EVALUATIONS

In this section, we present the evaluation from three aspects:
(1) the attacking consequences on VM live migration in
existing hypervisors; (2) the attacking effects on the run-
ning VM; and (3) the effectiveness of our proposed reset
algorithm.

4.1 Attacking Consequences
We first demonstrate that the TCP reset attack can cause
the devastating consequences we expect. Our experiments
are conducted on QEMU version 2.6. We also test QEMU
2.8 and 2.9, which give similar results. We use two Ubuntu
servers with Linux kernel 4.4 with independent, public IP
addresses. Our destination server is equipped with an Intel
Xeon CPU E5-2690 with 2.60GHz frequency, and the source
server is equipped with an Intel Xeon W3550 CPU.

We first start our modified malicious QEMU (scanner) to
periodically monitor the targeted server (destination) with
one-minute-intervals. Then we initiate the setup prepara-
tion on both source and destination servers and start the
live migration with the post-copy approach. If our scanner
successfully establishes the migration connection with the
target, the source server would be failed on the migration
connection. The VM on the target would be crashed if
our scanner breaks the connection. Otherwise, we launch

the TCP-RST attack on the destination server using our
proposed algorithm. The migration runs into errors imme-
diately once the attack succeeds. The destination VM is
crashed immediately, which is demonstrated in Figure 5(a).
In some cases, the destination VM would not be crashed,
but totally unresponsive. Figure 5(b) shows the status of the
source VM. We can clearly see that the migration status is
failed. Also, the source VM is on a paused state waiting
for the migration to finish. The result of pre-copy is quite
similar. The difference is that the source VM is still running
after the attack, but the target VM is crashed.

4.2 Attacking Impact
We conduct the TCP reset attack in three different scenarios
to demonstrate that resetting the VM live migration could
lead to (1) memory inconsistence on the victim VM; (2)
significant increases to the service downtime; and (3) per-
formance downgrade on the application on the victim VM.
To ensure that the connection is reset at the same time for a
fair comparison, we use tcpdump to get the correct backward
sequence number (from the destination to the source) and
reset the connection in all three cases.

4.2.1 Memory inconsistence
To expose the memory inconsistence problem, we build a
simple application to simulate the online transaction system.
The application calculates the Fibonacci number using Fn =
Fn�1 + Fn�2. The source VM only holds the initial value 0.
We create a toy server that listens for incoming requests. For
every two seconds, the victim VM sends a request to the toy
server asking for the next value Fn�1. Based on a counter
(used as the index) maintained in the toy server, the server
sends the value to our victim VM.

The request from the victim VM guarantees that the
application would have no action when the victim is down
in the downtime period. Also, the toy server replies with
exactly 100 requests. The victim VM keeps the generated
sequence in memory until the toy server no longer replies to
the next corresponding value. We present the results on post-
copy-based live migration, which suffers from the memory
inconsistence problem.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 06,2022 at 18:19:54 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2982900, IEEE
Transactions on Cloud Computing

8

(a) 8.54 Mpbs. (b) 17.08 Mpbs. (c) 33.82 Mpbs. (d) 50.56 Mpbs.

Fig. 9: Attacks on VM Live Migration with different throughput.

For the attack case, after the victim VM starts calculating
the Fibonacci sequence, we launch the TCP reset attack. At
this time, the victim VM on the source server is paused. The
VM immediately runs in the destination server and keeps
sending requests to our toy server. Once the reset attack
succeeds, the VM on the destination is crashed. We modify
the hypervisor so that it initiates another migration request
immediately once observing the failure of the migration.

As demonstrated in Figure 6, the generated sequence
when the VM is under a TCP reset attack is represented by
the grey dotted line. When the victim VM is paused, it only
obtained the value 5, which is the fifth Fibonacci number.
Then the crashed VM in the first migration keeps sending
requests to the toy server, and obtains the 15th number.
After this VM is crashed, the re-migration soon opens a new
VM running in the destination server. However, the memory
of this new VM stays at the fifth Fibonacci number and
begins to calculate the sixth one. From the perspective of the
toy server, it treats the VM as calculating the 16th number
because the requests sent by the crashed VM consumes 10
counts. As a result, it sends the value 610 to the server. The
calculated value in the running VM is 615, which is wrong.
Even worse, since the next number is computed by this
incorrect “Fibonacci” value, all of the following results are
also incorrect due to the memory inconsistence. As we see,
compared with the black solid line representing the correct
Fibonacci number, the number of the generated sequence
under attack is obviously less than 100. Also, all calculated
numbers after the fifth one are incorrect. While this is just a
simple application, the problem could be much more serious
in realistic applications, such as online trading.

4.2.2 Downtime Increases
In this experiment, we write a program to repeatedly obtain
the difference between the current time and the time that
the program is started. The program runs on the victim VM
and constantly writes the time difference into a file. We use
post-copy as the migration method. For pre-copy, if the attack
succeeds when the source VM is down, the result is similar.
The re-migration happens immediately once the failure of
migration is detected. Figure 7 presents the results. Without
an attack, the program resumes working at 35s after the
migration. Under a TCP-RST attack, although the migration
happens almost at the same time (about 5s), the program is
resumed at 104s. The downtime under attack is more than
three times compared with a successful migration. Note
that the re-migration starts immediately in this experiment.

Otherwise, the increase of downtime could be much more
serious.

4.2.3 Performance Impact
We use the time of compiling the Linux kernel to evaluate
the performance. We run some background workloads in
the source server to simulate the resource contention in the
cloud environment. The workload on the source is heavy,
and the VM is needed to migrate to another server. We
choose the pre-copy approach since the VM is still running,
even while under attack. We measure the time for compil-
ing the Linux kernel 4.4 on three scenarios: (1) The VM
successfully migrates to the destination server, and (2) The
migration is failed due to the TCP reset attack. As a result,
the victim VM is kept running in the source server; (3) the
migration fails because of the attack, and a re-migration
follows immediately.

We present the time consumption for all three scenar-
ios in Figure 8. If the migration is failed, the time for
compiling the kernel is about 1,169 seconds, since the VM
is always running in the source server suffering heavy
resource contentions. If the migration succeeds, running it in
the destination could save massive amounts of time (about
500 seconds). The re-migration incurs a worse performance
compared to the successful migration since the VM is forced
to run longer in the source server.

4.3 Effectiveness of the Reset Attack
As we mentioned before, if an attacker can send 20,000 RST
packets per second, several seconds would be enough to
reset a TCP connection in a server whose TCP implementa-
tion does not follow RFC 5961. We have also demonstrated
that such a requirement is easily fulfilled in Section 3. Here,
we conduct experiments to investigate the effectiveness of
launching TCP reset attack on the destination server.

The first two procedures (synchronization and finding
the approximate sequence number range) are the same as
previous work [7], which can be achieved in less than one
minute. We do not repeat similar experiments. Instead, we
measure the time consumption for the proposed algorithm
(Algorithm 1). We start recording the time once the approx-
imate sequence number range is identified. We initiate the
migration with the pre-copy option and conduct experiments
under four different throughput scenarios: 8.54 Mpbs, 17.08
Mbps, 33.82 Mbps, and 50.56 Mbps. For each speed, we
launch the reset attack 10 consecutive times, and each attack
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does not stop until it successfully resets the connections.
To infer the approximate sequence number range, we send
4,000 crafted RST packets per second.

We illustrate the results of our experiments in Figure 9.
We break down the time consumption for each phase: step
profiling (phase 1), micro tuning (phase 2), and connection
reset (phase 3). As we mentioned in Section 3, one round
of phase 3 might be failed to reset the connection due to
the heavy traffic. We list the number of rounds in phase 3
above each bar. The total time is less than 80 seconds when
the throughput is 8.54 mpbs. Also, the difficulty to reset the
connection is raised as the throughput increases: the average
time to reset a migration with a 50.56 mpbs throughput
exceeds two minutes. Since the total migration time lasts
tens of minutes (migrating the disk involves more time),
attackers would be able to reset the migration connection. In
particular, phase 1 takes about 10 seconds to roughly profile
the step size of the variation of sequence numbers. Phase 2
consumes much more time to refine the speed and narrow
down the range of sequence numbers. In some cases (as the
seventh bar in Figure 9(a)), the attacker needs to recalculate
the estimated speed in phase 1, and restarts phase 2, which
almost doubles the time. In the last phase, resetting the
connection by flooding RST packets requires a little luck.
While sometimes it merely takes seconds to succeed, it takes
at most five rounds to reset the migration when the through-
put is 50.56 mpbs. Though our experiments are limited by
the bandwidth of our servers, the results demonstrate that
enhancing the speed of migration could make the migration
safer to some extent.

5 POTENTIAL MITIGATION APPROACHES

The unrecoverable consequences in the post-copy based
live migration are caused by those newly updated mem-
ory pages in the destination node (those pages remain
unchanged in the source). Thus, the termination of the
underlying connection (e.g., a TCP connection) will cause
the memory inconsistency problem. A complete solution
involves an enhancement (e.g., simultaneously updating the
memory pages at the source by adding multiple check-
points) or even a redesign on the post-copy based live
migration. We leave the detailed design and implementation
as our future work. In the following, we discuss several
potential mitigation approaches from different perspectives.

A complete fix involves an enhancement (e.g., simul-
taneously updating the memory pages at the source by
adding multiple checkpoints) or even a redesign on the post-
copy based live migration. We leave the detailed design
and implementation as our future work. In the following,
we discuss several potential mitigation approaches from
different perspectives.

The first method of increasing the difficulty to mount
such attacks is to hide the timing information of live migra-
tion. For example, blocking attackers from probing specific
ports would largely mitigate such threats in realistic sce-
narios. The enforcement of authentication on live migration
can also greatly reduce the attack surface. However, in
practice, since live migration will inevitably incur system
overheads and thus degrade the server’s performance, a

few techniques have been proposed to detect the migration
process [33], [15]

An intuitive approach to avoiding the unrecoverable
negatives caused by unexpected interruptions is to re-
establish the TCP connection. The migration could be re-
sumed immediately instead of rebooting the instance or
re-setting the whole migration step. This approach, which
can effectively prevent the memory inconsistency problem,
involves non-trivial engineering efforts. First, after receiving
the RST packet from an attacker, the server hosting the
source VM simply closes the TCP connection. To resume
the migration process, a new TCP connection must be
established. This is totally different from resuming a hang
connection due to poor networking conditions. Even worse,
the target server is unable to determine if the connection
is closed or suffers from packet losses caused by a bad
networking condition. From the perspective of the target
server, it cannot know the termination of the connection,
and hangs in a blocking state until the TCP keepalives timeout
is reached. Also, the target server is unable to differentiate
cases in which the connection is closed or suffering from
a bad networking environment where packets are simply
lost. Those cases make it difficult to design a valid auto re-
connection mechanism. Second, the migration process must
be careful to record the copying step of memory pages on
both source and target sides. From the perspective of the
source server, the number of accepted packets on-the-fly is
unknown. A naive re-transmitting strategy might lead to
overlaps or losses of memory, which would crash the target
VM. Finally, re-establishing the TCP connection does not
fundamentally solve the problem. Malicious attackers can
keep attacking the migration and terminate the re-connected
TCP connection. The results could significantly increase VM
downtime or degrade performance on both sides.

Another strategy is ignoring the TCP RST packets when
the migration is in progress. By discarding the RST packet,
attackers are unable to cut the TCP connection by crafting
reset packets. To reduce the abjective effects, the prohibition
of TCP RST packets should be restricted within the specific
migration connection. This could be achieved by recording
the four tuples, <source IP address, source port
number, destination IP address, destination
port address>. Once the data transfer starts, the
hypervisor can block the RST packets by setting a firewall
rule (e.g., setting an iptables rule), which does not require
any change to the kernel code. One issue is that iptables
suffers a significant performance penalty [18]. Particularly,
if multiple migrations are conducted simultaneously, each
networking packet, including those non-RST packets, must
be checked by all iptables rules, one by one.

Another option is to reply a challenge ACK when the
RST packet hits the exactly correct sequence number. Other-
wise, the TCP works as usual. Such a method can maintain
the integrity of the original TCP. Also, it only affects the
performance of processing RST packets. However, such a
method involves the modification of the kernel.

We implement the defense mechanism by preventing the
reset of the TCP connection for the migration stream. We
modify the Linux kernel with version 4.4 and QEMU 2.6.
We create a pseudo file in procfs to record the four tuples
of the migration connection. The pseudo file is mounted
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with root permission so that only the system administrator
can view and modify it. The four tuples are recorded when
the migration connection is established, and is maintained
in a map form. During the migration, instead of resetting
the connection, the incoming RST packet with the correct
sequence number would trigger a challenge ACK. All other
functionalities of TCP are left unchanged. Obviously, the ef-
fects of the defense are just like the case without a TCP reset
attack. In our evaluation experiments, our implementation
works as expected to provide effective protection.

6 RELATED WORK

In this section, we list some research efforts that inspire our
work and compare our work with previous research. We
mainly discuss research works in the following three areas.

6.1 VM Live Migration
VM live migration with pre-copy was first proposed in
2005 [10]. Then, several new approaches based on pre-
copy were proposed to improve performance, including the
Fast Transparent Migration [40], Delta Compression Tech-
niques [53], Sandpiper [59], and MiG [48]. In addition, Liu et
al. [36] designed a novel approach by adopting checkpoint-
ing/recovery and trace/replay technology. Instead of trans-
ferring the dirty memory pages, their method transfers the
execution log of the source VM, which can save up to 31.5%
on the total migration time. Hou et al. [26] designed an
application-assisted live migration framework that migrates
VMs running Java applications by skipping the transfer of
garbage in Java memory. Their approach can save up to
over 90% downtime. Voorsluys et al. [57] studied the impact
of VM live migration on the performance of applications
running inside the Xen hypervisor, and demonstrated an
acceptable overhead incurred by the migration process.
Then, Hines [23], [24] presented the design, implementation,
and evaluation of post-copy VM live migration in 2009.
Ali [37] designed XvMotion, allowing VM migration over
long distances. Instead of improving the performance, our
work aims to avoid performance downgrades by fixing
potential vulnerabilities.

While major research efforts have been put into enhanc-
ing the performance of VM live migration, few works focus
on the security of VM migration. Perez et al. [44] presented
a brief introduction on the potential threats suffered by
VM live migration. The prerequisite for attacking VM live
migration is the ability to detect the migration process.
König et al. [33] showed that the round trip time of ICMP
packets could be utilized by outside attackers to detect the
migration process. Fiebig [15] further demonstrated that
the migration process could be detected by a combination
of delay measurements by ICMP pings and time-lag de-
tection with the NTP. In particular, they presented several
internal approaches for detecting the process since VM live
migration affects a server’s performance. While we present a
novel approach for exploiting flaws in existing hypervisors’
implementations, the above methods are complementary for
us to confirm the detection result.

Another serious issue is the lack of encryption in VM live
migration. Several works have been proposed on both sides

of the issue [65], [43]. Oberheide et al. [41] developed a
tool to perform man-in-the-middle attacks on the VM live
migration by manipulating the memory on the network.
As a result, encryption has been introduced in VM live
migration, and KVM has supported live migration on TLS.
However, despite those protections, TCP-RST attacks occur
in the transportation layer, and thus can still cause the
unrecoverable effects on VM live migration.

6.2 TCP Attacks
The security of TCP, especially in off-path attacks, always
receives much attention. Gilad et al. [21] performed several
off-path attacks on based on a global IP-ID counter that
allows an attacker to learn the sequence numbers of the
client and server in a TCP connection. Several works [46],
[45], [8] abuse OS packet counters to determine whether the
guessed sequence number is correct. Gilad et al. [22] also
proposed techniques to infer the TCP connection and four-
tuples between two hosts. While those techniques could be
utilized to attack VM live migration, we leverage the blind
reset attack and TCP challenge ACK vulnerability in this
paper. In addition to cracking the sequence number, there
are also several other security issues for TCP. Alexander et
al. [3] presented a novel technique for estimating the RTT
latency between two off-path hosts. Ensafi et al. [14] showed
that it is even possible for an attacker to port scan a network
from outside the firewall. Abramov et al. [2] presented ACK-
Storm DoS attacks that could reach a level of 400,000 am-
plifications against popular websites. Different from those
works focusing on vulnerabilities in TCP protocol, we study
the devastating consequences on VM caused by TCP reset
attacks.

6.3 Denial-of-Service Attacks on Clouds
DoS attacks on clouds are also closely related to our work.
For instance, multiple attacks [64], [35], [17], [19], [20], [30],
[31], [29] can cause exhaustion of the shared infrastructure
resources in data centers, and lead to forced shutdowns
for servers on the same rack or on the same power dis-
tribution unit. Varadarajan et al. proposed resource-freeing
attacks [54], in which attackers can gain extra utilization by
freeing up resources used by victims’s instances. Zhang et
al. [67] showed that memory DoS attacks can cause 38⇥ de-
lay for an E-commerce website. Huang et al. [27] proposed
cascading performance attacks to exhaust a hypervisor’s
I/O processing capability. For those DoS attacks, attackers
usually exploit specific techniques to co-locate multiple con-
trolled instances on the same physical server to amplify the
attack’s effects. Techniques like cache [62], memory bus [60],
networking [50], and system process statistics [55] have
been proved to achieve co-residence in clouds. Furthermore,
attackers can achieve a malicious instance co-resident with
the target VM and launch side-channel attacks. Zhang et
al. [69], [70] showed several approaches for extracting pri-
vate keys and collecting potentially sensitive application
data on co-resident instances. Although multiple defense
mechanisms have also been proposed [71], [61], [68], [9],
[66], [72], two previous works [63], [56] show that it is
still practical (and cheap) to achieve co-residence in existing
mainstream cloud services. While our proposed attack does
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not require co-resident instance with the target VM, we
believe co-residence techniques could be helpful since it
can provide insider information. We plan to explore in this
direction in the future. Also, our work demonstrates that
resetting the TCP connection of post-copy migration could
generate similar effects of a power outage.

7 CONCLUSION

Virtual machine live migration has become popular because
of its diverse use-cases for cloud vendors and power-users
alike. It offers a scalable mechanism to maintain low-level
systems, manage faults and balance workloads among dif-
ferent physical servers. In this paper, we demonstrate that
by disrupting the robustness of the underlying network
substrate using a successful TCP reset attack, an adver-
sary can cause unrecoverable memory inconsistency prob-
lems. This is especially true for post-copy-based migration
approaches. In addition, terminating the TCP connection
could also cause significant service downtime and affect the
running VM’s performance. We further detail a procedure
for resetting the migration connection utilizing heavy traffic.
This procedure includes a novel technique to measure and
expose the timing of the migration process, and a new
method to off-path attack the TCP connection. Our evalu-
ation demonstrates that the attack is effective and able to
cause the expected devastating consequences.
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