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Singular angular magnetoresistance and sharp resonant features
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We report high-resolution angular magnetoresistance (AMR) experiments performed on crystals of ReO3 with
high mobility (>100 000 cm2/V s at 2 K) and extremely low residual resistivity (5–8 n� cm). The Fermi surface,
comprised of intersecting cylinders, supports open orbits. The resistivity ρxx in a magnetic field B = 9 T displays
a singular pattern of behavior. With E ‖ x̂ and B initially ‖ ẑ, tilting B in the longitudinal kz-kx plane leads to a
steep decrease in ρxx by a factor of 40. However, if B is tilted in the transverse ky-kz plane, ρxx increases steeply by
a factor of 8. Using the Shockley-Chambers tube integral approach, we show that, in ReO3, the singular behavior
results from the rapid conversion of closed to open orbits, resulting in opposite signs for AMR in orthogonal
planes. The floor values of ρxx in both AMR scans are identified with specific sets of open and closed orbits.
Also, the “completion angle” γc detected in the AMR is shown to be an intrinsic geometric feature that provides
a new way to measure the Fermi radius kF . However, additional sharp resonant features that appear at very small
tilt angles in the longitudinal AMR scans are not explained by the tube integral approach.
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I. INTRODUCTION

The past decade has witnessed renewed interest in
semimetals and metals that exhibit unusually high carrier
mobilities. In the Dirac semimetal Cd3As2, the mobility μ

can attain 107 cm2/V s [1]. The large-μ semimetal WTe2

displays nonsaturating magnetoresistance in magnetic fields
up to 60 T [2]. The Weyl semimetals TaAs, NbAs, and NbP
have mobilities exceeding 150 000 cm2/V s. These enhanced
μ may result from a very small effective mass in the vicinity of
avoided band crossings and protection from carrier scattering.
In metals, the Fermi energy is remote from such band cross-
ings, but high-mobility candidates have also been identified,
e.g., PdCoO2, PtCoO2 [3–6], and Pd3Pb [7]. For Fermi sur-
faces that are multiply connected, angular magnetoresistance
(AMR) is a powerful tool for unraveling how connectivity
affects transport. Although AMR is most frequently employed
to map the angular variation of the Shubnikov–de Haas (SdH)
period, e.g., in Sr2RuO4 [8] and the Bechgaard salts, it can
also uncover surprising features unrelated to SdH oscilla-
tions. The Yamaji angle detected in the Bechgaard salts is a
well-known example [9,10]. A more recent example is the
existence of ultranarrow peaks in the AMR of the magnetic
Weyl semimetal CeAlGe when B is aligned with symmetry
axes [11].

Here we report novel features observed in the AMR of
crystals of ReO3 that exhibit extremely low residual resis-
tivities. ReO3 is the archetypal example of a metal in which
the Fermi surface (FS) forms a three-dimensional (3D) jungle-
gym network of intersecting cylinders plus two small closed
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surfaces [12–14]. Early experiments on ReO3 are reported in
Refs. [15–19]. A recent angle-resolved photoemission exper-
iment obtains close agreement of the observed Fermi surface
with ab initio calculations employing WIEN2K within the gen-
eralized gradient approximation (GGA) [20]. From a modern
viewpoint, ReO3 has some interesting features. The lattice
structure, comprised of a Re ion surrounded by six nearest-
neighbor O ions, is the simplest expression of a 3D Lieb
lattice [21]. A hallmark of Lieb lattices is the existence of flat
bands caused by wave-function interference [22,23]. In ReO3,
flat bands are prominent along X -M, but they lie too far from
the Fermi level (by 1 eV) to affect transport directly.

We have grown crystals in which the residual resistivity ρ00

is 5–8 n� cm at 2 K (comparable to that in PdCoO2 [3] and
6–10 times lower than in ultrapure Au). At 2 K, μ is estimated
to be >100 000 cm2/Vs. This corresponds to a transport mean
free path of 25 μm. In these crystals, we have uncovered
a singular feature in the AMR. With axes x, y, and z fixed
parallel to the cylinders’ axes, and the electric field E ‖ x̂
(Fig. 1), we observe the longitudinal resistivity ρxx to decrease
by a factor of ∼40 when B (fixed at 9 T) is tilted towards
E. However, if B is tilted in the plane orthogonal to E, ρxx

exhibits a 10-fold increase. The extreme anisotropy in the re-
sponse of ρ to slight angular deviations from the singular point
(θ, χ ) = (0, 0) (B ‖ ẑ) has not been reported previously in
any metal to our knowledge. All the AMR curves investigated
(as well as the Hall response) display a sharp discontinuity at
a characteristic angle γc � 29◦. Moreover, we observe weak
features in the scans versus θ (sharp resonances) suggestive of
enhanced scattering at specific tilt angles 1.1◦ and 2.2◦.

We describe a semiclassical model based on open orbits
on the jungle-gym Fermi surface (FS) that emphasizes the
connectivity of the orbits in tilted B and the key role of orbital
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FIG. 1. (a) Crystals of ReO3 showing a characteristic brilliant
pink hue in reflected light. The cubic cell parameter a is 3.748 Å.
(b) Sketch of the jungle-gym FS sheet in an extended zone scheme
with eight Brillouin zones (BZs) shown. The reciprocal-lattice vector
K = 2π/a denotes the size of the cubic BZ, and k f = 0.23 K is the
cylinder radius. With B ‖ z, closed cyclotron orbits form around the
cross-sections of the FS in the kx-ky plane. At different kz, the orbits
change from closed and electronlike (four yellow loops) to closed
and holelike (green loop). The inset shows the field tilt-angles θ and
χ relative to axes (x, y, z). (c) Plot of the resistivity ρ vs T with B =
0. The residual value ρ00, measured in four crystals, is 5–8 n� cm
(inset). (d) Log-log plot of �ρ vs T where �ρ(T ) = ρ(T ) − ρ00.
A linear fit (red line) over 20 < T < 80 K gives �ρ = T η with
η = 3.1 ± 0.2.

links that convert closed to open orbits. The model accounts
for the opposite signs of the AMR versus θ and χ , as well as
the physical meaning of γc which we call the “completion”
angle. However, it is inadequate for explaining the cusplike
sensitivity at very small tilt angles or the appearance of sharp
resonances.

II. EXPERIMENTAL RESULTS

Crystals of ReO3 were grown by double-pass chemical
vapor transport. A silica tube of inner diameter 14 mm and
length 30 cm was loaded with 1 g of ReO3 powder and 25
mg of iodine flakes and sealed under vacuum. The tube was
inserted into a three-zone horizontal tube furnace in which
the temperature was slowly raised over 6 h to 500 ◦C (hot
end) and 450 ◦C (cool end). After 4 days of vapor transport,
the furnace was cooled over 10 h to 290 K. Vapor transport,
again using iodine, was then repeated to enhance the crystal
purity. Large, red, platelike crystals up to 1 cm on a side
were harvested at the cold end [Fig. 1(a)]. The phase purity
and crystal structure of ground crystals were determined by
powder x-ray diffraction using a Bruker D8 Advance Eco with
Cu Kα radiation and a LynxEye-XE detector. The cubic cell
parameter a is 3.748 Å.

Figure 1(b) shows a sketch of the jungle-gym FS, using
the value of the Fermi radius kF = 0.386 Å−1 derived from
Refs. [15–17]. In the profile of the zero-B resistivity ρ versus
T [Fig. 1(c)], ρ maintains its ultralow residual value ρ00

(inset) to an unusually high T ∼ 20 K, implying that phonon

scattering is suppressed until T exceeds ∼20 K. The residual
resistivity ratio ρ(300 K)/ρ00 is 1500. The T -dependent part
�ρ(T ) = ρ(T ) − ρ00 fits well to T η up to 80 K [Fig. 1(d)]
with an exponent η � 3.1 ± 0.2, much reduced from that in
the Bloch law (T 3 versus T 5). See the case of PdCoO2 [3] as
well.

We selected crystals with optimal rectangular shape
(1.0 × 0.5 mm2 in area) and mechanically polished the
broad faces with fine sandpaper to reduce the thicknesses to
80–100 μm. The edges of the broad face are aligned (to a
precision of ±1◦) with kx and ky of the lattice. In all field-tilt
measurements, we define the x, y, and z axes to be anchored
to the kx, ky, and kz axes of the lattice, respectively [Fig. 1(b)].
Both the electric field E and the (spatially averaged) current
density 〈J〉 are ‖ x̂. The contact resistances of the Ag paint
contacts were under 2 �.

We estimated the carrier mobility (≈ 105 cm2/V s at 2 K)
by measuring the field dependence of the resistivity tensor up
to 9 T at zero tilt angle and inverting it to produce σxx(B)
and σxy(B). The average carrier mobility may be estimated
by the inverse of the field at which σxy(B) exhibits a sharp
peak (see Fig. 7). In two samples, this value was 0.16 T
(corresponding to a mobility of 60 000 cm2/V s) and 0.08 T
(125 000 cm2/V s). In Sec. III, we use the zero-field con-
ductivity (1/ρ00) and the Fermi surface dimensions reported
by Refs. [15–19] to calculate the electron mobility as μ =
90 000 cm2/V s.

The sample platform was tilted using a horizontal rotator in
a Quantum Design PPMS equipped with a 9-T magnet. The
field tilt angles θ and χ defined in Fig. 1(b) were measured
with a transverse Hall sensor (Lakeshore HGT 2101-10) to
a resolution of ±0.03◦. The four-probe measurements of re-
sistances were performed using a Keithley 6221 dc current
source and 2182a nanovoltmeter in Delta mode using current
pulses of 5–10 mA.

When B is tilted by θ in the longitudinal x-z plane with
χ fixed at 0, ρxx(θ, 0) displays sharp maxima at θ = 0◦
and 180◦. Figure 2(a) plots ρxx(θ, 0) versus θ measured at
T = 1.9 K (red curve). We call this the longitudinal AMR
(LAMR) curve. In the polar plot, the LAMR curve describes
two very narrow plumes directed along θ = 0◦ and 180◦ [red
curves in Fig. 2(b)]. An expanded view of the LAMR curve
is shown in a semilog scale in Fig. 2(c). As θ increases from
0, ρxx decreases steeply by a factor of ∼40 [semilog plot in
Fig. 2(c)]. A characteristic angle γc ∼ 29◦ (which we call the
“completion” angle) is prominently seen in all AMR curves
investigated. In the LAMR scan, ρxx(θ, 0) displays a rounded
step-drop to the “floor” value ρL,fl, where it remains until
θ → 150◦. We have ρL,fl � 20 × ρ00.

The transverse AMR (TAMR) curve plotting ρxx(0, χ ) ver-
sus χ with B lying in the transverse y-z plane is radically
different [blue curve in Fig. 2(a)]. At small tilt angle (|χ | <

15◦), ρxx increases steeply to a peak value 8–10× higher
than at χ = 0. Further increase of χ to γc leads to a steep
decrease to a resistivity floor value ρT,fl that is 10× larger
than the floor value ρL,fl in the LAMR [see the semilog plot in
Fig. 2(c)]. We estimate ρT,fl = 4.5 × ρL,fl 
 ρ00. The polar
plot of the TAMR curve [blue curve in Fig. 2(b)] shows an
eight-petal floral pattern with C4 symmetry weakly broken by
misalignment.
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FIG. 2. (a) The singular, anisotropic angular magnetoresistance ρxx (θ, χ ) measured at T = 1.9 K with E ‖ x̂ and |B| fixed at 9 T. The
LAMR curve (in red) plots ρxx (θ, 0) vs θ with B lying in the (longitudinal) x-z plane at angle θ = ∠(B, ẑ). The TAMR curve (blue) plots
ρ(0, χ ) vs χ with B in the transverse y-z plane at angle χ = ∠(B, ẑ). A slight misalignment causes a weak breaking of mirror symmetry
about χ = 0 or θ = 0 (see the text). The singular AMR complicates determination of ρxx (θ, χ ) at (θ, χ ) = (0, 0). Panel (b) shows the polar
plot of the TAMR and LAMR curves. The TAMR curve (blue) displays C4 symmetry. However, the LAMR curve (red) exhibits C2 symmetry
because, with E fixed ‖ x̂, ρxx (0, 0) 
 ρxx (π/2, 0) [the latter is equal to ρzz(0, 0)]. Panel (c) is an expanded view of the curves of LAMR (red)
and TAMR (blue) in a semilog plot. The TAMR curve shows a steep decrease at the completion angle γc. The step decrease in the LAMR
curve is milder but still well resolved. Panel (a) shows an expanded view of the LAMR curve ρxx (θ, 0) at 1.9 K with |B| fixed at 6 T (blue
curve), 7.5 T (red), and 9 T (gray). In all three curves, sharp resonant features are observed at θ = 0◦, ±1.1◦, and ±2.2◦.

In principle, the sharp maximum in ρxx at θ = 0 in the
LAMR curve must equal the minimum in the TAMR at
χ = 0. In our experiment, however, a residual misalignment
leads to a difference of a factor of 4. The singular behav-
ior in the vicinity of (θ, χ ) = (0, 0) amplifies errors caused
by angular misalignments of ±1◦ (the difficulty is roughly
similar to aligning the tips of two sharp needles). The traces
in Fig. 2 result from progressive alignment improvements in
repeated scans. The misalignment also accounts for slight
deviations from C4 symmetry in the polar plot of the TAMR
curve.

Returning to the LAMR curve, we resolve weak, ultra-
narrow resonant features at small θ . The expanded view in
Fig. 2(d) displays three LAMR scans measured at 1.9 K with
|B| fixed at 6, 7.5, and 9 T. In each curve, ρxx displays distinct
peaks with ultranarrow widths (∼0.1◦) centered at θ = 0◦,
±1.1◦, and ±2.2◦. The peak amplitudes are strongest at 0◦
and ±2.2◦. Because their angular positions are independent
of B, they are unrelated to quantization of the magnetic flux.
We discuss their origin below.

To complement the longitudinal resistivity, we have also
performed Hall measurements. In Fig. 3(a), the green curve
plots the angular Hall resistivity ρyx(θ, 0) versus θ in the
LAMR experiment (ρyx depends on B cos θ so it is even in
θ ). At the angle γc, ρyx displays a remarkable step-decrease
that involves a sign change. Inverting the resistivity matrix
ρi j (θ, 0), we obtain the conductivity matrix σi j (θ, 0). The
curves of σxx (red) and σxy (green) are plotted in Fig. 3(b).
As θ increases from 0, the conductivity σxx(θ, 0) increases
monotonically up to γc, above which it becomes nearly in-
dependent of θ . The more interesting Hall curve σxy(θ, 0) is
initially negative at θ = 0. It displays a broad minimum near
12◦ and then increases steeply to positive values above 16◦.
At γc, however, σxy suffers a giant discontinuity, ending back
at a large negative value that slowly increases in magnitude as
θ → 45◦.

In our analysis (next section), we have focused on un-
derstanding the diagonal conductivity element σxx. The Hall
conductivity σxy is more difficult to analyze because the com-
peting holelike and electronlike contributions demand better
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(a)
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FIG. 3. (a) Comparison of the angular Hall resistivity ρyx (θ, 0)
(green curve) and ρxx (θ, 0) (red curve) measured vs θ (setting χ = 0)
at 1.9 K with |B| fixed at 9 T. Initially, ρyx is electron-type at θ = 0,
but changes to holelike near 16◦. At γc, ρyx undergoes a stepwise
change, involving a second sign-change. The curves for the inferred
conductivity σxx (red curve) and Hall conductivity σxy (green) are
plotted in panel (b). At small θ , σxy is negative. Near 16◦, it changes
sign and increases steeply before suffering a large discontinuous
jump at γc to return to negative values.

estimates of the Hall currents. The interesting Hall behavior is
deferred for further investigation.

III. SEMICLASSICAL MODEL

Given the C4 symmetry of the lattice, the sign differ-
ence of the AMR scans versus θ and χ and their steep
variations are unexpected at first glance. We show that the
Shockley-Chambers tube-integral approach [24] can account
qualitatively for the sign difference and floor values observed.
Although AMR curves are usually difficult to calculate, there
are several mitigating factors in this material. Ab initio cal-

culations [12–14] reveal that the cylinders have uniform
cross-sections, which simplifies the evaluation of the tube
integral. Moreover, the condition μB 
 1 ensures that the
cylinders dominate the conductivity matrix element σxx. (As
discussed later, the sharp “resonant” features appearing in
LAMR seem to require a more sophisticated treatment.)

In a magnetic field, σab is given by the Shockley-Chambers
tube integral (see the Appendix)

σab = 2e2

(2π )3h̄2

∫
m∗

ωc
Cab dkH , (1)

with the velocity-velocity correlator Cab given by

Cab =
(
h̄kF
m0

)2 1

(1 − e−2πα )

×
∫ 2π

0
dφ

∫ 2π

0
dφ′ va(φ)vb(φ − φ′) e−αφ′

, (2)

where v(k) is the group velocity, m0 is the band mass, and
α = (ωcτ )−1.

We approximate the FS as three intersecting cylinders
(radius kF ), Cx, Cy, and Cz, with axes along x̂, ŷ, and ẑ,
respectively [Fig. 4(a)].

We assume E ‖ x̂ throughout. It is convenient to denote the
conductivity of an isolated cylinder in zero B as

σ
(1)
0 = n(1)eμ, (3)

where n(1), the carrier density enclosed within the cylinder, is
given by

n(1) = 2
πk2

F

(2π )3
(K − 2kF ), (4)

where kF is the radius of the cylinder, K = 2π/a, and a is
the primitive lattice spacing. In a tilted B, Eq. (A8) in the
Appendix gives for Cy (in isolation) the conductivity σ

Cy
xx =

σ
(1)
0 /[1 + (μBy)2].

Including both Cy and Cz, the measured residual resistivity
at B = 0 is then 1/ρ00 = 2n(1)eμ. With K � 4kF , we find
n(1) � 0.75 × 1022 cm−3, which yields μ = 90 000 cm2/V s.
This estimate agrees with the low-field peak in the Hall con-
ductivity σxy, which occurs at B = 0.08 T at 2 K (Fig. 7). The
inferred transport mean free path is then lmfp = h̄kFμ/e = 25
μm.

We next consider open orbits. In a tilted B, a wave packet
on the FS moves along an orbit [red curves in Fig. 4(a)]
defined by the intersection of a plane normal to B (pale blue
plane) and the FS. As drawn, the right-moving wave packet
on cylinderCy loops underCx (dashed curve) before resuming
its straight-line path on Cy, whereas the left-moving wave
packet in the companion orbit loops over Cx. In the high-field
limit, such open orbits, with nonvanishing vx, dominate the
conductivity σxx.

With B strictly ‖ ẑ, the orbits on the cylinder Cz are closed
and electronlike. The orbits on cylinders Cx and Cy are also
closed (apart from a negligible subset at the top and bottom
of Cx and Cy for which vx = 0). However, they are holelike
(comprised of alternating straight segments on Cx and Cy).
Because of the high mobility, the contributions of the closed
hole orbits on cylinders Cx and Cy to σxx decrease as 1/B2
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(a)

(b)

(c)

FIG. 4. Sketch of open orbits. Panel (a) shows the three FS cylinders Cx , Cy, and Cz (gray tubes) and a plane normal to B (pale blue).
Intersections of the FS with the normal planes define possible orbits of a wave packet. In the LAMR experiment, when B is tilted by θ relative
to ẑ, an open orbit can emerge (thick curves). A right-moving wave packet onCy loops underCx (dashed curve) before resuming its orbit onCy.
The left-moving partner loops over Cx . In the high-B limit, these open orbits contribute strongly to σxx . Panel (b) shows end-on views of three
cylinders Cy in the repeated zone scheme with K = 2π/a. The planes normal to B that are tangential to the outer cylinders (blue lines) define
the FS portion hosting open orbits on the middle cylinder (thick green arcs). States outside the green arcs remain in closed orbits. The green
arcs lengthen rapidly as θ → γc, the completion angle defined by the inner tangent (red dashed line). (c) Sketch of open orbits in the TAMR
experiment. With B tilted by angle χ relative to ẑ in the plane transverse to E, the open orbits are straight-line segments on Cx alternating with
looped segments onCy. The inset on the right shows the conical wedge (white area) on Cy. Cyclotron orbits on the wedge (red ellipses) project
onto circular orbits P on the cross-section (front end-face of Cy). Each orbit subtends an angle 2β on P , while the longest one subtends angle
2β0. The conductivity arising from states on the entire wedge is obtained by integrating the orbits over the white area [Eq. (A13)].

when μB 
 1. The absence of open orbits causes the re-
sistivity to increase monotonically in the large-B regime, as
observed. Our analysis focuses on the conversion of closed to
open orbits for states on Cx and Cy. The cylinder Cz is less
important for the AMR. However, it plays the dominant role
in the angular Hall conductivity σxy(θ, 0) [Fig. 3(b)], which
we leave for a future study.

A. LAMR

In the LAMR experiment, we observe a dramatic increase
in σxx when B is tilted, even slightly, in the longitudinal
kx-kz plane. To show that this results from a sharp increase
in the fraction of open-orbit states, we consider the set of
planes normal to B. Figure 4(b) shows cross-sections of three
Cy cylinders separated by K = 2π/a in the repeated zone
scheme, together with two planes at the tilt angle θ . The
planes that are tangential to the outer cylinders (blue lines)
intersect the middle cylinder to define two FS arcs hosting
open-orbit states [thick green arcs in Fig. 4(b)]. A wave packet
prepared initially on the left green arc on Cy loops under Cx

(as a “looped segment”) then alternates between straight-line
segments onCy and looped segments onCx [thick red curves in
Fig. 4(a)]. Conversely, if the initial state lies outside the green
arcs, the wave packet runs into a neighboring Cy before it can
complete a loop on Cx. These states, lying in the “shadow”
cast by adjacent cylinders, remain trapped in closed holelike
orbits.

The looped segments on Cx are crucial for linking straight
segments on Cy into open orbits even though they themselves
do not contribute to σxx. Increasing θ converts more of the
states on Cx to looped segments (as the fraction in the shadow

decreases). This results in a sharp increase in the fraction of
states on Cy that become open orbits. Hence σxx increases
rapidly with θ .

B. Completion angle

The increase in σxx ends abruptly when the blue line be-
comes the inner tangent to adjacent cylinders [red dashed line
in Fig. 4(b)] at the “completion angle” γc given by

sin γc = 2kF
K

. (5)

The completion angle provides a direct way to measure kF .
As mentioned, ρxx abruptly drops to its “floor” value at

γc ∼ 29◦ and stays there until θ exceeds 150◦ [Fig. 2(c)].
Using Eq. (5), we find that kF/K = 0.25, in good agreement
with de Haas–van Alphen experiments [15–17], which re-
ported kF/K = 0.23. The negative LAMR profile provides a
new way to measure kF in ReO3. In both the Hall scan and
the TAMR experiment, the step-changes at γc are much more
pronounced.

In the floor interval γc < θ < π − γc, nearly all the states
on Cy belong to open orbits [the green arcs in Fig. 4(b)
cover the entire cross section]. As noted in the Appendix
[line below Eq. (A8)], B has no effect on open orbits. Hence
the conductivity contribution from Cy reverts to its zero-B
value σ

(1)
0 . In the same interval γc < θ < π − γc, all the states

on Cz execute closed cyclotron orbits driven by the field
component Bz = B cos θ . By Eq. (A8), the conductivity con-
tribution from Cz is then σ

(1)
0 /[1 + (μB cos θ )2]. As a result,
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the total conductivity in the floor interval is

σ L,fl = σ
(1)
0

[
1 + 1

1 + (μB cos θ )2

]
. (6)

This conclusion is in accord with our experiment. Although
ρxx in the floor interval is indeed very low [red curve for |θ | >

30◦ in Fig. 2(a)], it is still nearly twice the residual resistivity
(measured in zero B) ρ00 = 1/(2σ

(1)
0 ).

C. TAMR

We turn next to the TAMR experiment with B tilted in the
plane ky-kz transverse to E [Fig. 4(c)]. Now, the conversion
of states on Cy into looped segments directly suppresses their
conductivity. Initially, with χ = 0 (B ‖ ẑ), the states k on Cy

contribute strongly to σxx despite being parts of hole-type
closed orbits. At finite χ , a subset of the planes normal to B
intersect Cy to define the surface of a conical wedge [inset in
Fig. 4(c)]. As discussed above, the orbits covering the wedge
are looped segments that link straight segments on Cx to form
open orbits. At the extrema of the loop, the x-component of
v(k) vanishes. Since v appears squared in Cab [Eq. (2)], this
results in a strong suppression of the conductance. In effect, a
finite χ converts high-conductance states on Cy to ones with
vanishing conductivity. With increasing χ , the conversion pro-
ceeds until it consumes all the high-conduction states on Cy.
This occurs at the completion angle γc ∼ 29◦ [Eq. (5)].

Using the tube integral, we have calculated the suppression
of σxx in the wedge as a function of χ . For the cylinder Cy,
the elliptical orbit on the tilted plane can be projected onto a
circular orbit P in the cross-section of the cylinder [inset in
Fig. 4(c)]. On P , the phase variable φ then becomes just the
azimuthal angle ϕ, which greatly simplifies the calculation of
Cab.

As a wave packet traverses a looped segment, its orbit
projects onto an arc of angular length 2β on P . As shown, the
angular half-length β0 of the longest loop segment is given
by

1 − cos β0 =
( K

kF
− 1

)
tan χ. (7)

We have integrated 0 < β < β0 numerically to determine the
value of the conductivity σloop at each χ (Fig. 5). The max-
imum net conductivity from Cy (attained when χ = γc) is
under 0.5% of that at χ = 0.

Finally, once χ exceeds γc, the states on Cy abruptly dis-
connect from open orbits to execute closed cyclotron orbits
driven by the field component By = B sin χ . By contrast, the
closed orbits in Cz are driven by the complementary com-
ponent Bz = B cos χ . With all states in Cy and Cz in closed
orbits [Eq. (A8)], the total conductivity in the interval γc <

χ < π/2 − γc is

σ T,fl = σ
(1)
0

[
1

1 + (μB sin χ )2
+ 1

1 + (μB cos χ )2

]
. (8)

As σ T,fl 
 σ L,fl, Eq. (8) implies that the observed resis-
tivity within this interval [blue curve in Fig. 1(a) in the
interval 29◦ < χ < 65◦] is much larger than the floor value

FIG. 5. Variation of the dimensionless integral G [Eq. (A13)] vs
tilt angle χ . Even when χ → γc, G is <0.015. This implies that when
all the states on Cy are converted to open orbits, its conductivity is
suppressed to less than 1.5% of the value at χ = 0 [see Eq. (A12)].

in the LAMR scan (red curve), again in agreement with
experiment.

This holds until χ increases beyond π/2 − γc. Then the
looped segments wrap around Cz instead of Cx, and ρxx rises
steeply.

In both LAMR and TAMR scans, these large-angle features
are qualitatively consistent with the experiment. A quantita-
tive comparison with ρxx requires a more involved calculation
of σxy (which can be larger than σxx).

FIG. 6. Numerical simulation of the pattern of open and closed
orbits at three selected values of θ (1◦, 5◦, 10◦) with χ = 0 in the
LAMR experiment. The cross-section displayed is centered on the
intersection of the cylinders. The array extends over 25 Brillouin
zones in the extended zone scheme. The orbits lie in a plane normal to
B with the horizontal axis kx/ cos θ measured in the direction ẑ × B.
In each panel, the orbits are quasiperiodic despite the appearance of
nominal periodicity.
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IV. SHARP RESONANT FEATURES

To investigate the highly unusual LAMR behavior in the
limit of small tilt angles, we have performed high-resolution
measurements of ρxx versus θ at fixed B. As shown in
Fig. 3(c), the profile of ρxx versus θ displays a sharp cusp
in the limit θ → 0. This implies that ρxx deviates from its
value at (0,0) in a nonanalytical way. More interestingly, we
observe weak peaks at θ = 1.1◦ and 2.2◦. Above the angle
2.2◦, ρxx steepens its decrease with θ , displaying a sharp break
in slope. Because the angular positions of the resonances are
independent of B, they are unrelated to Landau quantization
effects. The tiny B-independent angles suggest to us that the
features are geometric in origin, arising resonantly at small
θ from very large orbits that extend over multiple Brillouin
zones.

A conceptual difficulty in analyzing the small tilt regime
is the appearance of quasiperiodic orbits. In Fig. 6 (see the
Appendix), we plot numerical simulations of the combination
of closed and open orbits that appear at small tilt angles
θ = 1◦, 5◦, and 10◦ in the LAMR experiment. In each panel,
the plot extends over 25 Brillouin zones. The orbits are subtly
quasiperiodic despite the nominal repetition. As it stands,
the tube-integral approach lacks the formalism to handle
quasiperiodic orbit patterns.

V. CONCLUSION

High-resolution angular magnetoresistance performed in
the regime μB 
 1 in high-mobility metals can uncover novel
features that are not evident in conventional Shubnikov–de
Haas oscillations. In ReO3 with μ ∼ 90 000 cm2/V s, we
observe a singular variation of the resistivity: ρxx decreases
steeply by a factor of 40 when B is tilted in the longitudinal
plane containing E. However, it rises steeply by a factor of
8–10 when B is tilted in the plane orthogonal to E. Using
the tube integral approach, we show that this previously un-
reported singular variation is inherent to the jungle-gym FS
geometry. The AMR profiles display a rounded shoulder at a
completion angle γc that is an intrinsic feature of the FS topol-
ogy. In addition to explaining γc, the tube-integral approach
accounts for the relative magnitudes of the floor values in
both the LAMR and TAMR scans. However, the semiclassical
model fails to explain the series of sharp resonant features
observed in the LAMR scans (or the cuspy variations as θ

and χ approach zero). These features, which may involve
orbit patterns extending over multiple Brillouin zones, invite
further investigation.
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APPENDIX: SHOCKLEY-CHAMBERS TUBE INTEGRAL

In general, the semiclassical conductivity in a strong mag-
netic field B can be computed using the Shockley-Chambers

tube integral [10,24]

σab = 2e2

(2π )3h̄2

∫
m∗

ωc
Cab dkH , (A1)

where Cab is the velocity-velocity correlator discussed below.
The states in k space are divided into a set of parallel planes
normal to n̂ and indexed by kH = k · n̂, where n̂ = B/|B|. In
Eq. (A1), ωc is the angular frequency of a cyclotron orbit
confined to a plane, with m∗ the cyclotron mass. We may
express m∗ as the derivative with respect to the energy ε of
the area A enclosed by the cyclotron orbit, i.e.,

m∗ = h̄2

2π

∂A
∂ε

. (A2)

The velocity-velocity correlator Cab is given by

Cab =
∫ 2π

0
dφ

∫ ∞

0
dφ′va(φ)vb(φ − φ′) e−αφ′

. (A3)

Here v(φ) is the group velocity at the phase coordinate φ =
(ωc/eB)

∫ k dk/v⊥ in a cyclotron orbit, with v⊥ = |v × n̂|.
Equation (A1) is derived using the Green’s function of the

high-B Boltzmann equation [24]. The contribution to σab of
a state at the phase coordinate φ is the sum of wave packets
created with velocity vb by a train of E -field δ-function pulses
applied at all earlier times corresponding to the phase coordi-
nate φ − φ′. The wave packets advance along the cyclotron
trajectory at the rate φ̇′ = ωc while decaying exponentially
with the decay constant α = (ωcτ )−1, where τ is the lifetime.

By segmenting the interval 0 < φ′ < ∞ into finite seg-
ments, we simplify Cab to

Cab =
(
h̄kF
m0

)2 1

(1 − e−2πα )

×
∫ 2π

0
dφ

∫ 2π

0
dφ′ va(φ)vb(φ − φ′) e−αφ′

. (A4)

Our goal is to find σxx of the cylinder Cy in a field B tilted
at angle π/2 − χ to its axis. If we assume the quadratic dis-
persion ε(k) = h̄2(k2

x + k2
y )/2m0 with band mass m0, Eq. (A2)

gives

m∗ = m0/ sin χ, α = (ωcτ )−1 = (μ|B| sin χ )−1. (A5)

With μ � 90 000 cm2/V s, we have μB � 81 at 9 T.
For the cylinder, the cyclotron period in tilted B is identical

to that of a circular orbit P projected onto the cross-section in
the kx-kz plane and driven by the field component along ŷ,
By = B sin χ [inset in Fig. 4(c)]. Moreover, we can replace
the phase variable φ with the azimuthal angle ϕ in P [inset
in Fig. 4(c)]. The cylindrical geometry enables each k and
its velocity v(k) to be mapped one-to-one to corresponding
vectors on P . The mapping greatly simplifies the calculation
of σxx.

1. Isolated cylinder

We first consider an isolated cylinder with axis ‖ ŷ in a
field B tilted at an angle χ to ẑ in the y-z plane (E ‖ x̂). The
cylinder accommodates an electron density

n� = 2

(2π )3
πk2

FK�, (A6)
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FIG. 7. Plot of the Hall conductivity σxy/σ0 vs B at 2 K and zero
tilt angle. The low-field dependence was fit to a semiclassical model;
peaks in σxy(B) occur at |μB∗| = 1. For two different samples, this
yielded μ = 59 000 cm2/V s (M1) and 126 000 cm2/V s (F1).

where K� is its length. The orbits are closed ellipses with m∗
and α given by Eq. (A5). Integrating ϕ and ϕ′ over (0, 2π ) in
Eq. (A4) gives the following for both Cxx and Czx:

Cxx =
(
h̄kF
m0

)2
πα

1 + α2
, Czx =

(
h̄kF
m0

)2
π

1 + α2
. (A7)

Using these expressions in Eq. (A1), the conductivity σxx and
the Hall conductivity σxy (see Fig. 7) are

σxx = n�eμ

[1+ (μB sin χ )2]
, σzx = n�eμ2B sin χ

[1+ (μB sin χ )2]
, (A8)

where μ = eτ/m0 is the mobility.
In the limit χ → 0 (B ⊥ axis), σxx recovers its zero-B

value n�eμ. This is the simplest example of an open-orbit
conductivity that is B-independent even when μB 
 1.

2. Jungle-gym FS

Next, we apply the tube integral to address the TAMR
experiment in the jungle-gym FS with intersecting cylinders
[Fig. 4(c)]. Tilting of B in the kx-kz plane causes a fraction

of the holelike closed orbits to become looped segments that
belong to open orbits. The loops are shown as red curves on
the curved area of the conical wedge shown in white in the
inset of Fig. 4(c). In the open orbit, the wave packets traverse
alternatingly straight segments on Cx and looped segments on
Cy until they damp out.

As vx = 0 on the former, only the looped segments con-
tribute to σxx. Projecting the loop to the circular orbit P on the
cross-section [inset in Fig. 4(c)], the azimuthal angle ϕ on P
runs from π/2 − β to π/2 + β to describe an arc of angular
length 2β. Since the planes are indexed by kH , dβ and dkH
are related by

dkH = kF cos χ sin βdβ. (A9)
Evaluating the integrals over ϕ and ϕ′ in Cxx between the

limits (π/2 − β, π/2 + β), we have

Cxx(β ) =
(
h̄kF
m0

)2 1

(1 − e−2πα )

2e−απ/2

(1 + α2)

(
β − 1

2
sin 2β

)

× [α sin β cosh αβ − cos β sinh αβ]. (A10)

As mentioned, the looped segments cover the curved area
of the conical wedge [inset of Fig. 4(c)]. The longest orbit,
corresponding to the maximum angle β0, is fixed by the plane
tangential to the neighboring Cy. Hence β0 is determined by

1 − cos β0 = (�K/kF ) tan χ, (A11)

where �K = K − kF . Integrating over all the orbits covering
the wedge and using Eq. (4), we obtain the conductivity σ loop,

σ loop(χ ) = n(1)eμ
kF

K − 2kF
G(χ ), (A12)

where G(χ ) is the dimensionless integral

G(χ ) = 2

π

e−απ/2

(1 − e−2πα )

α cot χ

(1 + α2)

∫ β0

0

(
β − 1

2
sin 2β

)

× [α sin β cosh αβ − cos β sinh αβ] sin β dβ.

(A13)

G(χ ) is plotted in Fig. 5. As shown, σ loop is strongly sup-
pressed. Even when χ → γc (all states on Cy are open orbits),
σ loop is <0.015 × σ (1). The suppression accounts for the ob-
served increase in ρxx when B is tilted away from ẑ in the
TAMR experiment.
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