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Settlement research in the Maya lowlands has struggled to reconcile its goals to model a tropical forest civili-
zation in ecological terms with the logistical constraints imposed by the forest itself. In this paper, we argue that
the methodological challenges facing settlement research in this tropical lowland setting limited researchers’

]I:;(i;rform classification confidence in the representativeness of their data, nudging the discipline toward community-scale analysis and
Urbanization away from quantitative macro-scale settlement pattern research. As a result, many basic facts of human geog-

raphy have remained unsettled. These challenges can now be overcome thanks to advances in remote sensing.
Here, we use lidar-derived settlement and topographic data from the Corona-Achiotal region of northwestern
Guatemala to develop a settlement suitability model that reveals patterns in the distribution of archaeological
remains vis-a-vis landforms. Applying this model to a much larger published settlement dataset, we demonstrate
how it is not only widely applicable in the interior Maya Lowlands, but also capable of identifying historical
contingencies in the distribution of settlement, namely the crowding of less-suitable areas of the landscape,
linked to urban densification.

1. Introduction

Reviewing what was then the young and burgeoning field of
archaeological settlement pattern research, Trigger (1967, 1968) noted
the emergence of two major paradigms. The first focused on the size and
distribution of whole sites, macro-settlement patterns, as techno-social
adaptations to the environment. The second approach concentrated on
patterning within individual settlements, micro-settlement patterns, as
reflections of socio-political organization. This dichotomy was echoed
by Sanders (1967) who distinguished between “zonal” and “community”
settlement patterns and by de Montmollin’s (1988a, 1988b) classifica-
tion of bottom-up and top-down analyses. Though scholarship never
drew a hard line between these approaches in practice (Earle and Kolb
2010; Johnson and Earle 1987; Marcus 1973, 1993; Wright 1977, 1994),
the distinction proposed by these early synthesizers helps make sense of
the literature. For instance, research employing ideal distribution
models (Jazwa and Jazwa 2017; Prufer et al. 2017; Weitzel and Codding
2020) inherits the generalizing ecological tendencies of macro-
settlement pattern research, while interest in communities, neighbor-
hoods, and urbanism (Arnauld 2012; Canuto and Fash 2004; Hutson
et al. 2008; Isendahl and Smith 2013; Kurjack and Garza, 1981; Lem-
onnier 2012; Pyburn 1989; Robin 2012; Sabloff 1996; Smith 2011;

Smith and Novic 2012; Smith et al., 2021; Tourtellot and Sabloff 1994;
Yaeger 2003) hews to community-scale approaches.

In this paper, we argue that Lowland Maya archaeology’s macro-
scale research efforts have been beset by the methodological chal-
lenges of conducting the necessary fieldwork. These limitations estab-
lished a scalar ceiling on settlement data that led the discipline to rally
around community-scale analysis. Seeking to refresh the discipline’s
macro-settlement pattern analysis, this study leverages lidar-derived
settlement and topographic data to propose a spatially-explicit settle-
ment suitability model for the interior central Maya Lowlands, an area of
some 60,000 km? (Fig. 1). We argue that this model provides a common
yardstick for Lowland Maya settlement pattern research that enables
well-controlled interregional comparisons and the recognition of his-
torical contingencies in settlement growth.

This paper proceeds in three sections. First, we track how settlement
pattern research in the Maya Lowlands favored either community-scale
analysis or culture-ecology approaches that, while rigorous, were
applicable only to small study areas except in qualitative and descriptive
terms. This historical overview explains why some recurring ques-
tions—such as the distinctions between Maya cities and rural commu-
nities (Hutson 2016; Smith et al., 2021), or about regional variability in
settlement patterning (Dunning et al. 1998; Dunning and Beach 2011)—
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remain unsettled. Furthermore, this section clarifies how airborne li-
dar’s contribution to the discipline is not just a matter of data precision,
but a matter of analytical scale. The second section presents the results of
our own lidar-assisted settlement research in the Corona-Achiotal region
of northwestern Guatemala. We bridge community-scale and macro-
scale settlement analyses by introducing our settlement suitability
model, which provides a clearly specified and generalizable assessment
of how settlement was distributed across the Corona-Achiotal landscape.
In the third and final section, to gauge regional variability in settlement
patterning, we apply the suitability model to the 2100 km? settlement
sample recently published by the Pacunam Lidar Initiative (PLI)
research consortium. We demonstrate that settlement throughout the
interior central lowlands strongly favors the same landforms as in the
Corona-Achiotal study area—meaning that the suitability model is
robust and generalizable across the entire region, despite local physio-
graphic diversity—and that marginal landforms were more heavily
settled in urbanized landscapes.
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1.1. Geographic setting

In this paper, we focus on a region we loosely call the interior of the
central Maya Lowlands. This is a karst environment with locally rugged
terrain but limited absolute elevation change (Dunning et al. 1998). One
consequence of this region’s geology is relatively poor drainage in flat
and low-lying areas, especially the flat-bottomed karst depressions
(poljes) known locally as bajos. Although karst processes are responsible
for landforms throughout the Yucatan Peninsula, bajos are characteristic
of this interior region, where the combination of tectonic, geochemical,
and climatic conditions has favored the development of seasonal wet-
lands in low-lying terrain (Dunning et al. 2019:3). Interdigitated with
these bajos are upland areas with productive but shallow, erosible soils
that support high-canopy forests. These edaphic conditions have given
rise to distinct vegetation communities in bajo and upland environments
and along ecotones, producing a dense ecological mosaic (Lundell
1937). It was in the mosaic environment of the interior central Maya
Lowlands that archaeology set out, beginning nearly a century ago, to
understand how ancient settlement was disposed across the landscape.

interior of
central Maya Lowlands
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Fig. 1. Interior of central Maya Lowlands.
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2. Lowland Maya settlement studies: The rise of the community
scale

In 1925, Sylvanus Morley stated: “it is not improbable that the
southern Maya Lowlands was one of the most densely populated areas of
its size in the world during the first five centuries of the Christian era”
(1925:63). Since Morley’s declaration, scholarly interest in Lowland
Maya society has striven to determine the size, pattern, and distribution
of Lowland Maya settlement. The earliest methodologically rigorous
settlement study in the Maya Lowlands (Ashmore and Willey 1981:9)
was undertaken by the Carnegie Institute of Washington’s research of
Uaxactun in the 1920s. O.G. Ricketson designated a cruciform area of ca.
2 km? for survey (1937:15) that had a twofold result: the development of
the first empirically based population estimate for the Lowland Maya as
well as, and perhaps more importantly, the first macro-settlement
pattern model for the area. Ricketson (1937:9) claimed:

No Maya constructions (with one exception to be noted later) are
found in bajo. Though house-mounds are scattered throughout the
area, they always occur on high ground, while ruins of a more pre-
tentious nature usually crown the tops of hills. It is therefore logical
to assume that at the time of the ancient Maya’s occupancy of this
region the present areas of bajo were considered unsuited for human
habitation.

Following up on this novel survey methodology, Wauchope (1934)
analyzed several structures located in the Uaxactun survey strips and
confirmed their function as ancient residences.

Thanks to this earliest research, two fundamental aspects of Maya
settlement became clear. First, most of the “mounds” surrounding larger
architectural complexes were indeed ancient residences. Second, these
residences were distributed across the landscape in patterned, predict-
able ways. However, the effort to locate and document them was
hampered by “the extreme difficulty and slowness of ground travel and
the inability of the explorer, because of the density of the vegetation, to
gain a comprehensive idea of the topography of the region he is work-
ing...” (Ricketson Jr. and Kidder 1930:204). Nevertheless, settlement
patterning, as a reflection of ancient Maya logistical and cultural pref-
erences, became integral to the study of ancient populations, subsistence
strategies, and urbanization.

From these initial forays, the study of “settlement patterns” aimed to
address questions of demography, agricultural intensity, and urbanism
by focusing on settlement typology and spatial patterning (Thompson
1939), the premise being that “the manner in which people have ar-
ranged themselves over and built upon the surfaces of the earth must
inevitably tell us something about the societies and cultures of which
they were a part” (Willey 2005:2). After Willey’s celebrated Belize River
Valley survey in the mid-1950s, settlement research gained explicit
marching-orders: “Until we have more real knowledge of Maya settle-
ment, the archaeologist will be in no position to attack the problems of
demography or of prehistoric agricultural techniques and productive-
ness... [such questions] will remain insoluble until we can pin down the
facts of habitation” (Willey 1956:114). Following suit, Bullard’s (1960,
1964) survey in eastern Peten resulted in the formalization of the “do-
mestic house ruin” as a fundamental unit of ancient Maya settlement
(Ashmore 2007:49). Bullard (1960) further proposed a typology based
on the scale (e.g., house ruins, minor and major ceremonial centers),
function (e.g., quarries, flint-working sites), grouping (e.g., clusters,
zones, districts), and a distribution of settlement that was “conditioned
principally by the occurrence of sufficiently large tracts of well-drained
relatively level terrain within a kilometer or so of a water source” (365).

Although Bullard addressed all of Trigger’s analytical scales by
developing terminology for individual buildings, community organiza-
tion, and regional patterns, his interpretations focused on Trigger’s
micro-scale. Willey’s Belize Valley research also emphasized the micro-
scale, borrowing the term “community pattern” introduced by Chang
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(1958) to define his approach. Community-scale settlement pattern
studies thus flourished as multiple efforts focused on developing set-
tlement models and typologies (Coe 1961; Haviland 1966; Puleston
1973,1983, 2015; Vogt 1968; Willey et al. 1965). This research aimed to
recognize “hierarchies in Maya settlement clustering and to suggest they
were indices of successively more inclusive scales of social aggregation
and integration” (Ashmore 2007:49; see Willey and Bullard 1965; Willey
et al. 1965). Field projects at Tikal by the University of Pennsylvania and
Dzibilchaltun by Tulane University’s Middle American Research Insti-
tute also focused on household activities, social organization, and
community settlement patterns (Andrews 1965a, 1965b; Andrews and
Andrews 1980; Becker 1971; Haviland 1965, 1968, 1969, 1970; Kurjack
1974). As research increasingly drew inferences about larger socio-
political structures, the mid-1960s saw Mayanists reviving “with
vigor, the controversy over the Maya lowland ‘city.” Did the true city
exist, with all its sociopolitical and socioeconomic implications for the
interpretation of ancient Maya society?” (Ashmore and Willey 1981:14).
With scholarship calling for an amplification of settlement research to
better address these particular questions (see Haviland 1966), scholars
further concentrated on household and community scales of analysis.

In the wake of efforts at Tikal, Belize, and northern Yucatan,
Mayanists increasingly appreciated the need to overcome “site bias” by
expanding the scale of analysis (Willey and Smith 1969:33). Thus,
larger-scale approaches such as inter-site and regional surveys expanded
beyond the immediate orbit of a single site, especially with an eye to-
ward determining how regional or hinterland populations were inte-
grated politically and economically with cities and political seats (see
Adams 1981; Ashmore 1981a, 1981b; Fash 1983a, 1983b; Ford 1986;
Hammond 1975; Harrison 1981; Kurjack 1981; Leventhal 1979, 1981;
Puleston 1973, 1974, 1983, 2015; Rice 1976; Sharer 1978; Tourtellot
1970, 1988b, 1988c). However, difficulties in accessibility and visibility
limited the regional scope of field research; so much so, that at the
beginning of 1990s, after nearly four decades of intensive settlement
pattern research, the sum total of the interior central lowlands that had
been fully surveyed and mapped was only ca. 130 km? (~0.2% of the
area in question) with no individual project contributing more than ca.
30 km? (Fig. 2). Research was thus obliged to limit macro-settlement
analyses to areas that could be sufficiently sampled (Fedick 1988;
Ford et al. 2009; Puleston 2015; Rice 1976), and only the most ambi-
tious of these efforts—such as Ford and Fedick’s (1990) comparison of
landforms and settlement density across three extensively-sampled sub-
regions—came close to the scale implied by the “zonal” settlement
analysis advocated by the more ardent proponents of macro-settlement
patterns (see 1962, 1963).

Instead, the majority of Maya settlement studies directed attention to
vibrant and sophisticated analyses of activity areas, households, com-
munities, and neighborhoods, as well as a practice-oriented approach to
landscapes (e.g., Arnauld et al. 2012; Ashmore 2004; Ashmore and Wilk
1988; Canuto and Yaeger 2000; Dunning 1992; Iannone and Connell
2003; Lohse and Valdez 2004; Robin 2013). In extensively-deforested
areas outside of the interior central lowlands per se, researchers were
able to conduct broader full-coverage surveys, expanding Willey’s
community pattern and assessing the internal organization of entire
polities (e.g., de Montmollin 1989, 1995; Liendo Stuardo et al. 2011;
Webster et al. 2000). These combined efforts gave rise to important
insights regarding social organization, socio-economic complexity, and
rural-urban integration that modeled Maya society as a complex inter-
calation of multiple socio-political units based on diverse organizing
principles such as kinship, community, or economic specialization. In
this way, scholarship addressed Willey's (1956:111) “problem of
ceremonial-center-dwelling-site relationships” by a half-century appli-
cation and elaboration of his community-scale settlement analysis.

Culture ecology approaches, meanwhile, struggled to achieve a ho-
listic model of Lowland Maya settlement patterns as they were
confounded by the realities of fieldwork: “mapping efforts[...] generally
covered only a limited sample of any single site and rarely
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Il Ground survey pre-1990: ca. 130 sq. kms
[l Ground survey 1990-lidar: ca. 260 sq. kms
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Fig. 2. Ground and lidar surveys in the “bajo zone”

contextualized settlement in terms of its overall landscape” (Chase et al.
2012:12917). Parsons’ survey (1972:141) of the state of regional, zonal,
or macro-scale settlement research named only two efforts in the Maya
lowlands, Willey et al. (1965) and Bullard (1960), that had concerned
themselves with this broader scale. Three decades later, Sabloff and
Ashmore only extolled these same efforts from the Maya area when
reviewing the importance of macroregional analysis in settlement
archaeology (2001:19). In some sense, this scale of analysis in the Maya
area had rested with Bullard’s (1960:365) claim:

In broad view, settlement fringing lakes and bajos and where aguadas
and water sources are common often seems to be virtually contin-
uous. Actually, the seeming continuum is divided into large and
small segments by breaks in the terrain and the availability of suit-
able building sites. Preferred locations were the comparatively level,
well-drained, hill and ridge tops at medium elevations, with houses
also found on level spurs on hill slopes, the tops of semi-isolated
knolls, level areas at the foot of escarpments, and similar places.
Where the ground surface has a slight undulation, the houses typi-
cally occupy the high points. Areas of steep slopes and rugged terrain
were either not settled or very lightly so. Bajos and other areas of
swamp or poor drainage were not inhabited, although houses may be
found at their very edges. In sum, the distribution of settlement ap-
pears conditioned principally by the occurrence of sufficiently large
tracts of well-drained relatively level terrain within a kilometer or so
of a water source.

While this remarkably insightful synopsis was consistent with Rick-
etson’s observations decades earlier, subsequent attempts to refine,
quantify, and test the applicability of this paradigmatic description of
ancient Maya settlement’s disposition on the landscape were immured

by the scalar limitations of empirical observation and data recovery.

Indeed, concerns about the size and spatial biases of the settlement
sample became common in synthetic statements about Maya settlement
patterns during the 1980s and 90s. Rice and Puleston (1981:155) noted
that as a function of “these biases result[ing] both from logistical con-
siderations—such as time, money, and manpower—and from the
methodological orientations of archaeologists [...] assessments of
environmental impact on settlement dynamics, resource utilization,
interregional commerce, and sociopolitical evolution are still at best
conjecture.” Nine years later, Turner (1990:312) explicitly warned
against extending the findings of limited survey coverage to the entire
Maya Lowlands, noting that the Maya settlement sample was so heavily
biased toward cities and their immediate hinterlands that any extrapo-
lations would result in “astronomical” estimates of structure density and
population. Sanders advanced the same argument, writing that “The
major problem, [...] is the very small size of the sample areas, varying
from a few scores of square kilometers up to a few hundred. We need to
know much more about [...] the ‘intersite’ areas in order to attempt a
reconstruction of the entire Maya Lowlands” (1993:788). As the larger
scale analyses undertaken in highland Mexico (see Blanton 1978; Par-
sons 1971; Sanders 1965; Sanders et al. 1979; Spores 1969) remained
unmatched in the Maya lowlands (Chase et al. 2012:12917), by the
1990s Mayanists had at least implicitly aligned behind the notion that
their survey research had not accumulated a sufficiently large sample to
sustain a rigorous, quantitative macro-scale analysis.

2.1. The promise and perils of remote sensing

Given these challenges, Mayanists looked to remote sensing to bring
their projects to scale. While generally described as a single area of



M.A. Canuto and L. Auld-Thomas

research (e.g. Parcak 2009), remote sensing offers two potential uses for
archaeologists that do not necessarily overlap. First, remote sensing has
always held out the potential for direct discovery, i.e., the identification
of real, specific features of archaeological interest through remote
means (Garrison 2020; Kvamme 2005:28-29; Parcak 2009). Less tanta-
lizingly, remote sensing data allow researchers to correlate well-
controlled archaeological datasets with other remotely-sensed vari-
ables such as forest type or elevation, and then model the archaeological
phenomenon of interest across space based on this correlation (Howey
and Brouwer Burg 2017; Howey et al. 2020).

The possibility of remotely identifying features occluded by ground-
level hindrances was the goal of the first application of remote sensing to
Maya studies: a simple “overflight” survey by Ricketson and Kidder (see
Kidder 1930; Ricketson Jr. and Kidder 1930:204). This effort induced
pure giddiness: “one can learn to recognize the sort of terrain the Maya
were accustomed to pick for their temples and what varieties of trees
flourish on the soil best fitted for their system of agriculture” (Ricketson
Jr. and Kidder 1930:204-5). Nevertheless, settlement research at Tikal
(Puleston 2015:23) found aerial photography useful to confirm eleva-
tion contours and identify larger “satellite” sites, but not for the detailed
survey of residential structures (Puleston 1973:68-70). Even in more
deforested areas, such as in the Copan region, aerial photography proved
most useful in defining survey zones and situating sites on the landscape
rather than finding them per se (Webster 1985). As a tool for direct
discovery, aerial photography was most successful in northern Yucatan,
where extensive clearing together with lower and more open natural
vegetation made the detection of large numbers of sites possible
(Andrews and Robles Castellanos 2004; Andrews and Andrews 1980;
Covarrubias Reyna and Burgos Villanueva 2016; Kurjack 1974; Ringle
and Andrews 1990). It even permitted a degree of quantitative macro-
settlement pattern analysis for the region (Brown and Witschey 2003;
Winemiller 2007).

As archaeology adopted more explicitly probabilistic approaches to
settlement survey throughout the 1970s, disappointment with aerial
photography’s direct-discovery potential was replaced by the realization
that it could help develop fine-grained overviews of the environment at
scales much larger than those of any field survey. Rice’s (1976) study of
the Yaxha-Sacnab basins, carried out as part of an ambitious multidis-
ciplinary “historical ecology” project (and representing the first use of
that term, see Balée 2006), exemplified this approach. Using aerial
photos, Rice and colleagues classified the landscape into four topo-
graphically conditioned vegetation types (tall upland forest, tall forest
on moist slopes, swamp forest, and swamp thicket), and correlated these
with archaeological remains mapped in survey transects. This correla-
tion then informed broader interpretations about culture-ecological
patterns and population dynamics in the region that had been sampled
by the survey. Puleston’s research in the hinterlands of Tikal took a
similar approach, analyzing settlement density in terms of the vegeta-
tion communities with which ancient buildings co-occurred (Puleston
1973: Chapter 7), estimating the total number of ancient buildings in
Tikal National Park (576 km?) by extrapolating from his own survey
data using vegetation maps derived from aerial photos (Puleston
1973:229-230).

Both aerial photography and Synthetic Aperture Radar (SAR) were
employed during the 1970s and 80s to directly identify agricultural
modifications in wetlands (Dahlin 1979; Harrison 1977, 1990; Puleston
1977; Siemens 1982; Siemens and Puleston 1972; Turner II 1978), but
not without controversy. Adams et al. (1981) used SAR to suggest the
existence of extensive canal systems throughout Maya lowland bajos
(Adams 1980; Adams et al. 1981; Adams et al. 1990). These conclusions
were largely incorrect as the ubiquitous linear features in the images
were shown to be either artifacts of data processing or the natural
products of shrink-swell cycles in bajo clays (Garrison 2020:255-257;
Pope and Dahlin 1989, 1993; Pope et al. 1996). The experience with
SAR would have lasting impacts on the discipline: undermining confi-
dence in remote sensing’s usefulness as well as fueling an intense
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preoccupation with ground-truthing that has extended well beyond the
identification of wetland agricultural features (Dunning et al. 2020a;
Ford and Horn 2018; Sabloff 2019).

An early success in the use of remote sensing for direct discovery of
settlement remains (as opposed to agriculture) in the forested parts of the
Maya lowlands involved the discovery of bajo communities. NASA’s
Thomas Sever combined moderate-resolution digital elevation models
with multispectral images of the overlying vegetation to identify small
islands of elevated terrain located within the large bajos scattered
throughout the Maya lowlands. (Sever 1995, 1998, 1999, 2000; Sever
and Irwin 2003). Once investigated in the field, these islands proved to
contain settlement, suggesting that the ancient Maya settled them to
make use of the surrounding wetlands for agriculture or resource
extraction (Culbert et al. 1996; Culbert et al. 1997; Grazioso et al., 2001;
Kunen et al. 2000; Sever and Irwin 2003). Nuancing the blanket
observation that settlement avoided bajos, Sever and Irwin (2003: 118)
observed that “almost every rise in elevation that reaches above the level
of seasonal inundation contains an archaeological site.”

With the advent of very high-resolution satellite imagery, new efforts
were dedicated to the direct discovery of settlement. Saturno et al.
(2006, 2007) observed that multispectral signatures of vegetation
correlated directly to the presence of ancient architecture—a link that
had been suggested and explored as early as the Tikal project (see
Puleston 1973:70). They suggested that some component of ancient
Maya architecture—perhaps decomposing lime plaster—stressed the
overlying vegetation such that its multispectral signature was separable
from that of surrounding vegetation. Follow-up research noted that this
“settlement signature” was either invisible or unreliable in much of the
Maya lowlands, concluding that the correlation was a function of
physiographic and seasonal factors limited to the area of the initial study
(Garrison et al. 2008).

Surveys in Campeche (Sprajc 2008) and Quintana Roo (Guderjan and
Krause 2011; Guderjan et al. 2016; Lopez Camacho 2010; Lopez
Camacho et al. 2016; Tsukamoto 2005) as well as broader Maya area
efforts (Witschey and Brown 2010, 2014) made use of satellite imagery
and aerial photography to aid in the identification of new sites and the
geolocation of poorly-known sites, as well as in the continued detection
of wetland agricultural features (Dunning et al., 2020b). These efforts
largely relied on the identification of open water or hydrophytic vege-
tation to distinguish features of interest—ancient reservoirs as proxies
for large sites, rectilinear patterns of grass and scrub as indicators of
wetland fields—from a backdrop of forest. The insights provided by
remotely-sensed data highlighted a fundamental epistemological prob-
lem: it was possible to identify some sites in some regions through remote
sensing, but it was never possible to establish how representative that
knowledge was of facts beneath the canopy. The sites so identified
remained isolated points against a backdrop of near-total uncertainty
that only challenging, scale-limited pedestrian survey could fill in. Thus,
inasmuch as direct identification of settlement remained limited (Kur-
jack et al. 2004), the possibility of macro-scale analyses remained out-of-
reach.

2.2. Remote sensing and modeling: Toward regional settlement pattern

As a greater diversity of remote sensing data became available and as
the tools to analyze those data became more powerful and accessible,
some researchers adopted spatial modeling techniques to interpolate
settlement patterns at larger scales. Fedick (1994, 1995) calculated
settlement density by soil class within a 5 km? transect sample, then
modelled the distribution of settlement across a 1,000 km? area of
western Belize using 1:50,000 scale soil maps (Wright et al. 1959:8).
Two decades later, Garrison used unsupervised clustering on multi-
spectral imagery and compared this with his own pedestrian survey data
to determine that Lowland Maya “settlement features displayed strong
correlations with certain microenvironments that might be isolated in a
classification” (2010:218). Based on the frequency of these vegetation
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classes and the density of mapped settlement within a 2.5 km? sample,
Garrison extrapolated a population estimate for a 25 km? region be-
tween San Bartolo and Xultun (Garrison 2007:197-200, 2010:225-227).
Griffin’s (2012) study in the same region, while not concerned with
settlement per se, used a classification of forest types in Landsat 7 im-
agery to characterize the agricultural potential of a large area (~2,800
km?) to suggest upper limits for ancient population estimates.

Extending Fedick’s efforts, Ford undertook the most ambitious
example of probabilistic modeling of settlement in Maya studies thus far
(Ford et al. 2011; Ford et al. 2009; Ford and Nigh 2015). Using decades
of survey data in the vicinity of El Pilar as training data, her team
determined the relative importance of several regional data sets—soil
fertility, drainage, topography, and hydrological features—to settlement
distribution. Based on these weights, Ford and colleagues developed a
model that calculated the probability of settlement within a large 1300
km? area of the upper Belize River region. They concluded that “four
geographic and environmental factors predict 82 percent of the Maya
sites in the high-probability areas. Furthermore, fully 96 percent of the
settlement, a vast majority, can be predicted for less than 60 percent”
(2009:514) of the study area. In later studies (Ford et al. 2011; Ford and
Nigh 2015), they refined their analysis and extrapolated a population
estimate for a yet-larger region. Carleton et al. (2012), also working in
Belize, used a distinct modelling approach but with a similar goal of
identifying areas with high probability of containing archaeological
sites—and in their case, were able to validate the model several years
later using the results of an airborne lidar survey (Carleton et al. 2017).

While spatial analysis became more technical and sophisticated,
these approaches still derived from methods used by Rice and Puleston
in the 1970 s: mapping settlement in detail within a sample of a given
survey universe, then using the correlation between mapped features
and remote sensing data to make well-founded statements that extended
to the entire region. Even so, the reality of small samples meant that the
regions considered by these rigorous and bold analyses seldom met the
scales that could be mapped in full in less challenging environments,
such as the 3,100 km? mapped in the Basin of Mexico (Gorenflo 2015).
Consequently, the considerable body of research that sought to specify
ecological variables for settlement analysis (e.g., Fedick 1995; Garrison
2010; Murtha 2002, 2015; Thompson and Prufer 2021) used local var-
iables toward local ends, making regional comparison difficult. At-
tempts to find a generalizable model for Maya settlement location were
ultimately hemmed in by regional variation in the proxies they sought to
employ (Garrison et al. 2008).

So, while it had been long clear that most Maya settlement favored
upland areas, we could not determine if “most” meant 70% or 98%, or
whether that proportion varied meaningfully between regions. Into the
2010s the basic problem Ricketson and Bullard considered—the rules
and patterns that describe how Maya settlement was distributed on the
landscape—could still only be answered in qualitative terms beyond the
scale of local case studies: without a common culture-ecological yard-
stick, macro-settlement analysis could be quantitative or generalizable,
but not both. Writing on the eve of Mesoamerica’s “geospatial revolu-
tion”, Ford noted that Mayanists had managed to specify that “envi-
ronmental factors played a role in Maya site location, but the spatial
implications of these arguments have not been fully pursued” (Ford et al.
2009:497).

2.3. Lidar and the return of direct discovery

The application of lidar in the Maya lowlands, beginning with the
pioneering survey at Caracol in the Vaca Plateau of Belize (Chase et al.
2011a; Chase et al. 2011b), initiated a sea change in settlement research:
“With LiDAR coverage of the Mesoamerican landscape, interpretations
of spatial organization no longer need to be based on a small survey
sample of an undefined larger universe or require extensive on-the-
ground penetration of forest canopy” (Chase et al. 2012:12919).
Mayanists were thus presented with a direct-discovery tool that held
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promise where earlier technologies had faltered.

A raft of studies, site-based (Acuna and Chiriboga 2019; Chase and
Weishampel 2016; Ford 2014; Garrison et al. 2019; Inomata et al. 2018;
Prufer et al. 2015), regional (Canuto et al., 2018a; Chase et al., 2014a,b;
Golden et al., 2016; Schroder et al., 2020; Stanton et al., 2020), meth-
odological (Cap et al. 2018; Hutson 2015; Inomata et al. 2017; Reese-
Taylor et al. 2016; Yaeger et al. 2016), and theoretical (Chase and
Chase 2017a; Chase et al. 2012; Michelet and Nondédéo 2018), have
shown how this technology has inundated the discipline with data of
unprecedented precision and detail. Notwithstanding occasional claims
to the contrary (Ford and Horn 2018; Horn and Ford 2019), there has
been a sober and sustained reckoning with the technology’s capabilities
and limitations as a direct-discovery tool (Ebert et al. 2016; Hutson et al.
2016; Inomata et al. 2017; Magnoni et al. 2016; Reese-Taylor et al.
2016).

Nevertheless, lidar-based settlement analyses have largely focused
on individual cities and their hinterlands (for exceptions see Canuto
et al., 2018a; Chase et al., 2014b; Schroder et al., 2020). They are also,
without exception, direct-discovery undertakings geared toward the
identification and analysis of specific archaeological features, be they
buildings (Canuto et al. 2018a; Inomata et al. 2018; Reese-Taylor et al.
2016), terraces (Chase and Weishampel 2016; Macrae and Iannone
2016), wetland fields (Beach et al. 2019), or reservoirs (Brewer et al.
2017; Chase 2016; Chase and Cesaretti 2019).

Thus, to advance macro-settlement analysis, we take a slightly
different tack in this study. We leverage the direct-discovery potential of
lidar with its ability to provide high-resolution terrain models to
investigate the distribution of (extensively field-validated) settlement
across topographic landforms. Based on lidar data from the Corona-
Achiotal region in northwestern Petén, Guatemala, the resultant
settlement-landform patterns form the basis of our settlement suitability
model that we subsequently apply to a broader region with the aim of
elucidating macro-settlement patterns of the ancient Lowland Maya.

3. Landforms and settlement in the Corona-Achiotal region

In 2016, the Pacunam Lidar Initiative (PLI) undertook a 2144 km?
lidar survey in northern Guatemala (see Canuto et al. 2018a: for details
on PLI)—five times what all full-coverage survey in the region had
covered up to that point. As a member of the PLI’s research consortium,
the La Corona Archaeological Project (PRALC) was provided a 431 km?
block of lidar data located in the western edge of the Yucatan Penin-
sula’s central karstic uplands (Fig. 3). Even for Peten, the terrain of this
survey block is exceedingly flat, descending westwardly in a series of
broad terraces and low (5-30 m) scarps toward the marshy lowlands
located in Laguna del Tigre National Park and the Tabasco coastal plain
beyond.

3.1. Identification and validation of features

Analysis of these lidar data followed protocols established by the PLI
consortium involving heads-up digitization of a defined set of archaeo-
logical features that included, among others, structures, agricultural
infrastructure, defensive works, and causeways. “Structures” were
defined as human constructions supporting a roofed area, whether
perishable or masonry. In topographic terms, for a feature to be classi-
fied as a structure, it had to be (a) convex, (b) at least 3 m long and 2 m
wide, and (c) marked by a break in elevation on at least three sides.
Beyond these criteria, digitizers relied on field-based knowledge of local
settlement characteristics to determine if a feature meeting the criteria
was likely to be anthropogenic (a buildingl), natural (e.g., rock
outcrop), or a data artifact (e.g., bushy vegetation misclassified as

1 We use the words “structure,” “building,” and “mound” interchangeably
here.
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Fig. 3. Corona-Achiotal lidar block and nearby archaeological sites (dashed line: western edge of central karstic uplands).

ground).

For the Corona-Achiotal region (Fig. 4), heads-up digitizing was
conducted by three individuals over a period of three years during which
time in-field verification efforts iteratively improved dataset accuracy
(Canuto and Auld-Thomas 2020; Chatelain 2020). As of this writing, we
have identified 3831 features as archaeological structures, nearly a
quarter (942 features) of which have been confirmed through pedestrian
survey. Begun in 2017, field validation has involved full-coverage
pedestrian survey of 75 500 m? survey quadrats (thus far, 35
completed; 40 partially completed), totaling 12.71 km2. Within these
quadrat areas, structures were recorded as true positives, false positives,
or false negatives.” This procedure has demonstrated excellent overall
fidelity between the visual identification of structures in lidar data and
what we have encountered in the field. Using a confusion matrix, we
summarize our accuracy assessment using three indices: precision (user
accuracy; i.e., how many of the buildings identified digitally were
verified in the field), recall (producer accuracy; i.e., how many buildings
identified in the field were also identified digitally), and the FI-score
(composite measure of accuracy). Our verification efforts (Table 1)
resulted in a high precision of 0.906 (i.e., 703/776), our recall was an
acceptable 0.746 (i.e., 703/942), resulting in a good F1-score of 0.818
(the harmonic mean of 0.906 and 0.746). Further details on our calcu-
lations are summarized in Canuto and Auld-Thomas (2020).

Part of our field methodology was to identify two different types of
“false negatives™: those that could not be seen in the lidar data and those
that proved visible upon re-inspection of the lidar data. The former were
considered “unidentifiable false negatives” (n = 151), while the latter
were identified as “unidentified but visible” (n = 88). For the purposes of

2 “True negative” is virtually impossible to meaningfully calculate in appli-
cations such as archaeological survey, where the goal is to identify features of
interest against a continuous backdrop of “non-features.”

basic data validation, this distinction was not relevant; nevertheless,
when we added the “unidentified but visible” (n = 88) features to our
“true positives” (n = 703) features, we thus controlled for our digitizing
bias and more precisely assessed the fidelity of our lidar data. In so doing
(Table 2), our precision increased to 0.916 (i.e., 791/864), our recall to
0.840 (i.e., 791/942), and our F1-score to 0.876. These numbers tell us
our lidar data are exceptionally accurate.

In tandem, these two ways of assessing the accuracy of our digiti-
zation suggest that, as a function of both our lidar data’s fidelity (high)
and our digitizing bias (conservative), ground validation would result in
a ca. 10-20% net increase in the number of structures determined by
digitization alone (e.g., 776/864 digital structures vs. 942 field-verified
structures). Thus, we are confident that our current tally of 3831
structures represents no less than ca. 85% of the total number of struc-
tures in the Corona-Achiotal region.

3.2. Community-scale settlement patterns in the Corona-Achiotal block

These digitization methods and on-going field validation efforts have
resulted in a structure tally suggesting the Corona-Achiotal region was
characterized by a low overall settlement density of ca. 9 strs/km?.
However, settlement is not evenly distributed across the region. There
are several nodes of clustering, each centered around a known monu-
mental site: namely, La Corona, Tesoro, Achiotal, and Chable. These
clusters, measuring about 500-600 ha each, contain some 40% of the
region’s settlement; in the landscape surrounding these clusters, most of
the remaining settlement is distributed in dozens of 10-50 ha clusters of
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Fig. 4. Settlement in the Corona-Achiotal region (structures as black dots).

Table 1
Field validation Confusion Matrix: assessment of PRALC digitization as of 2019.
Numbers represent structures.

Table 2
Field validation Confusion Matrix: assessment of PRALC’s lidar fidelity.
Numbers represent structures.

Lidar-based
identification
Field Positive Negative
validation

Positive 703 (true 239 (false
positive) negative)

Negative 73 (false NA
positive)

10 to 50 structures”. As a result of the uneven distribution, the settle-
ment concentration climbs to as high as 275 strs/km? in the densest
parts of this region” while there are large swaths devoid of settlement
altogether. Furthermore, when calculated and expressed as a function of

3 While the chronological sequence of this region’s settlement remains
outside the purview of this study, we note that the evidence suggests that these
various “regional clusters” of settlement represent discrete non-contemporary
occupations, ranging from the Late Preclassic to Terminal Classic periods.
However, given that our concern here is to define a general settlement pattern,
temporal development of this system represents a potential consequence rather
than a parameter of the patterns we seek to elucidate and therefore will be
considered elsewhere.

4 ArcGIS Pro 2.6.1, Point Density, circle neighborhood, 564.19m radius.

Lidar-based identification

Positive Negative
Field Positive 791 (true positive & unid/ 151 (unid false
validation vis) negative)
Negative 73 (false positive) NA

hectares’, structure density increases to 18 strs/ha in a few select areas.
It is important to note, however, that these pockets of elevated density
are small (no larger than 10 ha in overall size) and mostly located within
the core of the largest centers of the region.

Regarding settlement variability, ground-verified settlement was
classified according to a basic settlement typology consisting of six site
types: monumental core, formal plaza, patio cluster, patio, informal
mound group, and isolated mound (Fig. 5). Our preliminary in-
terpretations of what social groups these settlement types represent re-
lies on a robust community-scale settlement studies literature in the
Maya Lowlands (see Ashmore 1981b; Becker 1982, 2003; de Montmollin
1995; Fash 1983a; Haviland 1981, 1988; Pyburn 1990; Tourtellot and
Sabloff 1994; Willey 1981). Monumental structures combined with
formal plazas were scarce (6% of sites). These values suggest that the

5 ArcGIS Pro 2.6.1, Point Density, circle neighborhood, 56.42m radius.
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region’s elite inhabitants were few, perhaps 5-10% of the overall pop-
ulation. There is a scattering of patio cluster sites, usually consisting of 5
to 24 residential structures arranged in contiguous patio groups. These
scattered site types likely represented multi-generational extended
family households of slightly higher status; they appear to compose less
than 15% of the region’s overall population. Most site types, however,
were patio and aggregate mound groups (types III and II), each con-
sisting of 3-6 structures. Their overwhelming majority suggests that
most of the region’s population was arranged in single family house-
holds (see Table 3).

From the Late Preclassic to Terminal Classic periods, the Corona-
Achiotal region appears to have been settled by rural populations of
farmers loosely distributed around the few monumental centers within
the region. Only two such concentrations, La Corona and Chable, are
sufficiently large and dense to potentially be considered urban, though
these are still quite small compared to most Maya cities (Canuto et al.
2018a; Chase and Chase 2017b; Folan 1992; Haviland 1969; Hutson
2016; Hutson et al. 2008). Throughout the surrounding region, dis-
tended rural populations were likely organized in kin-based households
clustered into communities of 30-160 people, likely representing small
farming hamlets.

With the exception of La Corona itself (Canuto and Barrientos Q.
2011, 2013, 2020), the limited presence of socio-political centers com-
bined with an overall low-density population suggest that this region’s
settlement represents a good example of Lowland Maya settlement
patterning unencumbered by outsized historical, political, and economic
forces. That is, it illustrates how ancient Maya people distributed
themselves over a landscape absent the strong push—pull factors related
to elevated settlement density—in human behavioral ecology, such a
distribution is called an Ideal Free Distribution (Jazwa and Jazwa 2017;

Prufer et al. 2017; Weitzel and Codding 2020). In this case, it is pre-
served on the surface over an area roughly half the size of Rhode Island,
thus providing a useful sample for re-engaging the issue of macro-
settlement patterns.

3.3. Macro-settlement patterns and landforms in the Corona-Achiotal
region

Considering the favorable conditions presented by the settlement of
the Corona-Achiotal survey block, we set out to determine some basic
principles of settlement patterning via visual analysis. We concluded
that: 1) settlement favors well-drained elevated levelled areas; 2) the
largest clusters of contiguous settlement groups are located along the
elevated edges of civales (pluvial marshes) or escarpments; 3) the low-
lying, poorly-drained bajos are largely empty of settlement; and 4) set-
tlement seems to favor proximity to locally abundant basins of pluvial
water. This description closely matches Bullard’s language from half a
century ago, as well as other more recent summaries (Dunning and
Beach 2011; Lucero et al. 2014). However, despite its accuracy, its
utility for further analysis of any kind is limited. And it is here that a
more systematic classification of the landscape becomes necessary.

3.4. Topographic position Index

The Topographic Position Index (TPI) is one of numerous means of
classifying landforms from raw elevation models; in the simplest terms,
it identifies areas of locally high and low ground. As discussed above, the
literature on Lowland Maya settlement emphasizes the preference for:
“comparatively level, well-drained, hill and ridge tops at medium ele-
vations” (Bullard 1965:365). TPI makes it possible to classify a
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Table 3
PRALC settlement typology distribution. Strs = Structures.
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Site types # % of sites strs % of strs strs/site Platform (avg m?) Platform (median m?)
VI Monumental core 9 2.8 23 2.3 2.6 4,832 1,356
\% Formal plaza 10 3.1 115 11.6 11.5 1,347 207
v Patio cluster 16 5.0 127 12.8 7.9 320 81
I Patio 78 24.5 299 30.1 3.8 325 78
1I Aggregate mound 102 32.0 325 32.7 3.2 121 66
I Isolated mound 104 32.6 104 10.5 1.0 128 66
319 993*

* This total differs from the total of 942 verified structures reported above because not every multi-structure site was fully ground-truthed.

landscape in precisely those terms.

Importantly, TPI is also a good proxy for many of the factors that
have been otherwise used to model the location of Maya settlement. For
example, soil type has been recognized for decades as an important
covariate of settlement location (Beach et al. 2006; Dunning and Beach
1994; Dunning et al. 2012; Dunning et al. 2015; Dunning et al. 2019;
Fedick 1995; Fedick and Ford 1990; Ford and Nigh 2015; Griffin 2012;
Murtha 2002; Sanders 1977). However, at local scales where variables
such as rainfall and parent material tend to stay constant (at least, in a
geologically monotonous region such as the Maya lowlands), soil type is
largely a function of hillslope position—which is to say, topographic
position. Vegetation communities, used since Ricketson’s time to predict
where settlement might occur, similarly covary with soil type and with
topographic position, a fact that has been central to the scientific liter-
ature since the very first vegetation surveys in the Maya Lowlands
(Lundell 1937) and which is reflected in common parlance, i.e. “bajo
vegetation”.

The correlation between local topographic position and vegetation
communities is in fact so strong that ecologists have published
straightforward conversion charts between the two (Schulze and Whi-
tacre 1999: Table 1, Figure 11): “To a large degree, forest type [is]
merely a condensation of topographic positions” (180). Since TPI
neither relies on the existence of undisturbed natural vegetation as do
optical classifications nor makes claims about the chemical or structural
attributes of soils, it is better suited to macro-scale modeling than these
other, dependent, variables.

TPI is computationally simple and logically straightforward: areas
that are elevated vis-a-vis their surroundings have higher TPI values,
while those that are lower than their surroundings have low TPI values®.
Typically, TPI is calculated as the difference between any one pixel’s
elevation and the average elevation of its neighborhood divided by the
standard deviation of the neighborhood. Since TPI is a neighborhood-
based calculation, it is scale-dependent: small neighborhoods capture
local variability but cannot distinguish a small knoll in the bottom of a
valley from the summit of a mountain; similarly, large neighborhoods
lose any distinction between the same small knoll and the valley that
contains it. This scalar dependency works to the analyst’s advantage,
however, because large- and small-scale measures may be combined in a
single classification. In this way, local elevation in valley bottoms (high
TPIsman, low TPljage) can be discriminated from mountain tops (high
TPIsmarl, high TPIjarge). Furthermore, TPI alone cannot discriminate be-
tween a flat plain and a steady 45° slope because it calculates the value
of each pixel as the average value of its neighbors; consequently, our
landform classification adapts Weiss’s (2001) method which includes
slope as a secondary variable to produce a ten-part landform

6 The method’s primary drawback is that it cannot easily discriminate be-
tween landforms where the direction of elevation change is meaningful: for
example, the base of an escarpment and the bottom of a narrow valley may
have identical TPI values, since both positions are lower than their neighbor-
hood average. In cases where directionality is important, other methods of
classifying topography are better suited (such as the geomorphometric analysis
implemented in GRASS GIS’s r.geomorphon algorithm).

10

Table 4
Description of 10 TPI landform classes and their reclassification.

Landform  Landform Description (Weiss 2001) Reclassification
1 V-shaped river valleys, deep narrow canyons Bajo
2 Lateral midslope incised drainages, local valleys in Bajo
plains
3 Upland incised drainages, stream headwaters Elevated Basin
4 U-shaped valleys Bajo
5 Broad flat areas Bajo
6 Broad open slopes Islote
7 Flat ridge tops, mesa tops Elevated Basin
8 Local ridge/hilltops within broad valleys Islote
9 Lateral midslope drainage divides, local ridges in Islote
plains
10 Mountain tops, high narrow ridges Upland ridge

classification (Table 4).

Our application of TPI to the problem of Maya settlement patterns
builds on Carlos Chiriboga’s regional survey for PRALC, conducted be-
tween 2010 and 2012 (Chiriboga 2011, 2012, 2013), which to our
knowledge was the first application of TPI within Mesoamerican
archaeology (for another early example, see Balzotti et al. 2013). To
identify those areas of highest likelihood of ancient settlement, Chir-
iboga applied TPI at two scales (2.7 kms and 900 m) on 90 m Shuttle
Radar Topography Mission (SRTM) elevation data and set a relative
elevation threshold at 5 m above the neighborhood average; this process
identified roughly 6.6% of PRALC’s research area (ca. 154 km?) as
highly likely to contain sites (Chiriboga 2011:26-28, 2012:30). Guided
by this classification, Chiriboga’s survey identified 34 previously un-
documented sites, ranging from relatively modest clusters of residential
buildings to monumental centers. The TPI classification presented here
represents a logical next step to this approach, based on a dramatically
expanded settlement dataset and much improved topographic data.

3.5. Landform classification methods

To undertake this analysis, we downsampled a 1 m per pixel reso-
lution lidar-derived digital terrain model to 5 m (a 25-fold reduction in
resolution). We did this for two reasons: first, to reduce the considerable
processing time that large-scale TPI analysis requires; and second, to
limit the effect of small terrain protrusions, such as individual ancient
buildings and small bedrock knolls, on the overall classification
(although the overwhelming majority of ancient structures are less than
1 m in height and therefore would have a negligible effect on TPI clas-
sification given the large neighborhood scales)(Ebert et al. 2016). All
computations were performed in ArcMap 10.7 and ArcGIS Pro 2.6 using
the Relief Analysis Toolbox (Miller 2015). We used circular neighbor-
hoods with a radius of 300 m for TPIsy,a; and 3000 m for TPIjarge, a set of
values that we determined to capture the smallest and the largest
analytically-relevant landforms in the region and which could easily
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scale to moderate resolution topographic data’.

This method produced a topographic classification with ten classes
(Table 4)°. We aggregated these ten classes into four “super-classes” that
reflect locally-meaningful landforms (Fig. 6): 1) well-drained areas in
upland terrain (ridges), 2) low or flat areas within upland terrain
(“elevated basins”), 3) low or flat areas in low-lying terrain (bajos), and
4) promontories within low-lying terrain (islotes). Three of these cate-
gories—bajos, ridges, and islotes—already figure to varying degrees in
the lowland Maya settlement literature (Kunen et al. 2000; Sever and
Irwin 2003). Less-prominent, generally slower-draining areas within
uplands (“elevated basins”), however, have been elided by the recurring
emphasis on an upland-bajo dichotomy—with the exception of “pocket
bajos” (Dunning et al. 2015:96; Dunning et al. 1999) which form a
subset of this superclass. The disambiguation of elevated basins from
bajos and ridges plays a major role in defining a more precise settlement
suitability model, elaborated below.

Our combination of landforms into our super-classes seeks to maxi-
mize their relevance to our analysis of settlement patterns within the
interior central lowlands’. Because this area contains diverse ecological
sub-regions (Dunning et al. 1998), a detailed analysis of landform cor-
respondence with vegetation communities or soil types exceeds the
scope of this paper. Nevertheless, we proffer some relevant observations
about each super-class (Table 5). First, ridges universally support upland
broadleaf forest (median canopy height: 17.1 m), with notable domi-
nants including ramén (Brosimum alicastrum), sapodilla (Manilkara
zapota), ceiba (Ceiba pentaforma), and cedar (Cedrela oderata spp.). Soils
tend to be shallow but fertile, rocky, and well-drained.

Elevated basin soils are deeper and have higher clay content than
ridge soils; forest species composition is similar but intermixed with
more mesic-adapted species like laurel (Nectandra sanguinea) and ma-
hogany (Swietenia spp.) and a variety of palms. Depending on the clay
content of the soils, elevated basins may be highly desirable for agri-
culture, dedicated to specific mesic-tolerant cultivars, or reserved for
dry-season and other “backup” plantings. The key feature of elevated
basins is that they are ecologically productive upland environments, but
their tendency to collect, channel, or retain moisture makes them less
desirable habitation sites than ridges. Median lidar-derived canopy
height for elevated basins in the Corona-Achiotal region is 15.4 m, lower
than ridges and consistent with a mix of “upland/montana” and “tran-
sitional” canopy heights reported elsewhere (Dunning et al. 2019:129-
130; Reese-Taylor et al. 2016:333; Rice 1976:290-291).

Our islote superclass combines meso-scale topographic prominences
(ridges and hilltops) located within low-lying regions and their sur-
rounding slopes (Landforms 8 and 9) with broad open slopes (Landform
6). We did this because in the bajo zone, “open slopes” are so short due
to the small scale of local elevation change as to not comprise a mean-
ingful landform separate from the knolls, ridges, and shallow drainages
with which they articulate. Like elevated basins, islotes support a mix of
upland and mesic-adapted species with organic rich, very dark, silty, and
unconsolidated soils. Because the elevation difference between islotes
and the surrounding bajos varies widely, so does the degree to which
islote forest diverges from bajo vegetation. Nevertheless, even the
lowest islotes (less than5m relative rise) generally support a greater
number and diversity of palms compared to their surroundings, along

7 We tested other combinations of smaller (100-500m) and larger
(2000-5000) radius values; the resulting terrain characterizations either varied
negligibly from our 300/3000 combination or, in extreme cases, exhibited too
great a loss of topographic detail to be useful for our analysis.

8 See Miller 2015 for a detailed description of the calculations that underlie
this tool’s classification process and how they are associated to the ten topo-
graphic classes.

 Any analysis focused either on other aspects of the Maya landscape (agri-
culture, movement, etc.) or on topographically dissimilar parts of Maya Low-
lands should consider amending these classifications.
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with emergent broadleaf trees. Forest on taller islotes (>10 m) is com-
parable in most respects to that found on ridges, and the median canopy
height for the class in our study area, 16.0 m, reflects this.

Our bajo superclass subsumes the deep karst depressions (dolines)
known locally as rejolladas; we justify this aggregation on the basis that
both bajos and rejolladas are karst depressions distinguished by a
gradient of concavity and subsurface drainage rather than a hard cate-
gorical break—and in any event, ancient settlement avoids both. Canopy
height in bajos is variable, ranging from stunted scrub forest—especially
palo de tinto (Haematoxylon campechianum)—to high palm forest to ri-
parian environments. In our study area the median canopy height is
14.7 m, much higher than the ~ 6-10 m typically reported for bajos
elsewhere in the region owing to the relative abundance of high-canopy
riparian environments and palm-dominated bajos. Bajo soils are typi-
cally vertisols or histosols: potentially very fertile but requiring signifi-
cant intervention to bring under cultivation.

Clearly, the four landform super-classes have strong ecological
salience in the region. They correspond to topographically conditioned
vegetation communities and soil catenas described for Tikal National
Park and environs (Balzotti et al. 2013; Burnett et al. 2012; Lentz et al.
2015b; Luzzadder-Beach et al. 2016; Schulze and Whitacre 1999), the
Calakmul Biosphere Reserve in southern Campeche (Brown 2005;
Martinez et al. 2001; Reese-Taylor et al. 2016); and on either side of the
Belize/Guatemala border (Dunning et al. 2003; Dunning et al. 1999).
Perhaps more importantly for our study, this landform classification also
proves strongly correlated to the distribution of the 3831 structures of
the Corona-Achiotal region.

3.6. Settlement distribution

In the Corona-Achiotal region, the TPI classification resulted in a
terrain map dominated by bajos (53%) and elevated basins (28%), while
ridges and islotes combined to constitute less than 19% of the total land
area (Figs. 7 and 8). There are two notable aspects of this terrain profile.
First, our percentage for bajos is higher than published bajo coverage
estimates for other Maya Lowland areas (e.g., Lentz et al. 2014; Puleston
1973, 1983; Rice and Culbert 1990:30-31; Ricketson 1937; Thomas
1981; Webster 2018:28) no doubt due to our study area’s location
straddling the central karstic uplands and low-lying western wetlands (i.
e. the Laguna del Tigre Park) of the central Maya Lowlands'’. Second,
the “elevated basin” class is the second largest category in the region,
representing more than a quarter of the region’s surface area.

When these topographical categories are compared to the distribu-
tion of structures within the Corona-Achiotal region, a significantly
imbalanced pattern manifests (Fig. 8). Consistent with previous
research, only 5.5% of structures identified through visual analysis or
field validation are located within bajos (209 strs over 230.0 km? for a
density of 0.9 strs/km?), with the vast majority of these occurring at the
very edges. More surprising, only 5.4% of identified structures are
located within “elevated basins” (208 strs over 120.5 km? for a density
of 1.7 strs/km?). Consequently, 89.1% of all identified buildings occupy
either islotes (657 strs over 32.0 km? for a density of 20.5 strs/km?) or
ridges (2754 strs over 49.5 km? for a density of 55.6 strs/kmz), with the
overwhelming majority occurring on the latter. Said another way, nearly
90% of the Corona-Achiotal settlement is located on less than 20% of the
available terrain—a far more lopsided distribution than anything sug-
gested by a simple upland/wetland dichotomy.

Given that the majority of the structure data under consideration
have not been ground-truthed, we had to consider the possibility that
the terrain of these different landforms, and their associated vegetation
communities, could differentially impede the recognition of structures

19 Our TPI calculations for areas located in the central karstic uplands result in
bajo percentages consistent with published values, i.e. ca. 45% (Dunning et al.
2020a).
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Fig. 6. Topographic profile of TPI classification. Architectural features (buildings, plazas, etc.) are drawn in black.

Table 5
Correspondences among landform super-classes, vegetation classes, and soil
types.

Landform Common Scientific Common Folk Typical soils (FAO,
Forest Classes ( Designations USDA) (Beach et al.
Dunning et al. 2003; (vegetation, soils, 2006; Dunning
Schulze and landforms) 1992; Jensen et al.
Whitacre 1999) 2007)

Ridge Dry upland forest, ramonal, sapotal, rendzina, rendoll,
standard upland cedral, ceibal, alfisol, inceptisol
forest, montana, montana, monte alto,
climax forest, ka’anal k’aax
deciduous seasonal
forest

Elevated Standard upland caobal, corozal, eutric nitozol,

basin forest, mesic upland escobal, Ya’ax chromic vertisol,
forest, sabal forest, Jjo’omal, k’ankabal, vertic phaeozem,
transitional forest, b’ox lu’'um, ek’ lu’'um, rendzina,
hill base forest, pocket bajo usterindoll,
escobal bajo, escobal argiustoll,
transition forest, paleustalf, rendoll,
cohune palm forest alfisol, inceptisol

Islote Tall scrub swamp, escobal, botanal, rendzina, cumulic
transitional forest, caobal, ceibal, ustirendoll, rendoll,
hill base forest, julubal, pus lu'um, alfisol, inceptisol,
escobal transition b’ox lu'um, ek’ lu'um, vertisol
forest, mesic upland bajo island, isla, islote
forest, sabal forest

Bajo Mesic bajo forest, tintal, pucteal, vertisol, histosol

tall scrub swamp,
low scrub swamp,
true swamp, tintal
bajo, bajo forest,
escobal bajo, cohune
palm forest, riparian
forest

huechal, julubal,
navajuelal, carrizal,
chechenal, cival/
sibal, akalche, bajo,
arroyo, uk'um
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during heads-up digitization, a phenomenon that has been documented
in diverse parts of the lowlands (Inomata et al. 2018; Reese-Taylor et al.
2016). For this reason, we recorded the extent to which our ground-
truthing modified the distribution of structures across the four terrain
classes. As Table 6 shows, the differences in landform distribution of
structures between ground-truthed and digitized data are statistically
insignificant (;(2 [3, N = 776] = 4.884, p = .181), lending further
robusticity to this observed pattern.

Interestingly, there is a sharp distinction in architectural volume and
quality between settlements on ridges and those on islotes (Fig. 9).
Buildings on islotes tend to be isolated, smaller, and shoddier. Our
excavated sample is too small at this point to make any strong functional
claims, but we suspect on analogical grounds that the limited architec-
tural investment across most islote settlements reflects a greater degree
of short-term or seasonal occupation of these environments (Sprajc et al.
2021; Zetina Gutiérrez and Faust 2011)—which would, if true, add a
further wrinkle to the already diverse category of (mostly resource-
specialized) “bajo communities” (Kunen et al. 2000). Inversely, the
largest site types in the region—monumental cores, plazas, and patio
clusters—overwhelmingly occupy ridges. Considering the notion that
long-occupied sites tend to grow in both volume and size (Haviland
1988; Tourtellot 1988a), the current landform distribution of settlement
types suggests that ridges are host to the earliest sites within the region,
consistent with the notion that ridges were the preferred settlement
landform generally.

The implications of this severely lopsided settlement distribution go
far beyond previous observations regarding the relative emptiness of
bajos. First, the manifest avoidance of our “elevated basin” category
suggests that there exists an extensive terrain class that the Lowland
Maya deemed almost equally unsuitable for settlement as the bajo and
which, by extension, they presumably reserved for other uses. Given that
much of the “elevated basin” terrain in the Corona-Achiotal region
supports upland forest, the landform is clearly not hostile to biomass and
would thus be well-suited to either agriculture or forestry. Second, and
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Fig. 8. Distribution of structure and landform class percentages throughout the Corona-Achiotal region.

Table 6
Landform distribution of lidar based (n = 776) vs. ground-truthed (n = 942)
structures.

Lidar-based (%) Ground-truthed (%)

Bajo 0.4 0.5
Islote 3.5 4.7
Elv basin 9.3 10.7
Ridge 86.9 84.1

relatedly, it is now possible to specify the degree of preference—that is,
the suitability rank—the ancient Lowland Maya conferred to each class:
ridges, then islotes, with elevated basins and bajos following far behind.
Third, the close alignment of our super-classes and the distribution of
settlement thereupon with the qualitative descriptions offered by Bul-
lard and others indicates that our classification has succeeded in
capturing the signal of what Mayanists have long understood about
settlement in the bajo zone of the central Maya Lowlands—this time in
spatially-explicit, quantifiable, and generalizable terms. In as many
words, our identification of ranked landform preference converts
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existing knowledge of ancient Maya settlement patterning into an
explicit settlement suitability model.

4. Variation of macro-scale settlement patterns and Maya
urbanism

We extended our analysis to other survey blocks in the PLI sample to
determine how closely other more densely inhabited parts of the interior
central lowlands adhere to the pattern established for the Corona-
Achiotal area. Since the published PLI settlement data derive from
lidar data subject to ongoing analyses by PLI member projects, we
applied the landform classification to freely available, moderate-
resolution terrain data from the Advanced Land Observing Satellite
(ALOS) mission of the Japanese Aerospace Exploration Agency (JAXA).
Despite some salient deviations, we found a strong adherence to the
same pattern.

First, a technical note: ALOS DEMs are 1 arc-second (~30 m) surface
models, representing a mix of tree crowns, modern roof tops, and bare
ground; therefore, the DEM lacks the topographic precision of a lidar-
derived terrain model. This, together with the reduced spatial
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Table 7
Distribution of structures (2018 PLI dataset) across landforms (ALOS 30 m DEM).
Peru Naachtun Tikal Holmul Xultun Zotz Uaxactun Env2 Envl Corona Yala Total
Islotes/Ridges strs 3226 9151 9271 5749 4108 4743 4112 201 242 2992 593 44,388
Islotes/Ridges str % 79 76 75 80 75 76 81 68 79 82 81 77
Islote/Ridges area % 39 38 40 36 37 37 38 29 32 39 34 36

resolution, means that the ALOS-based landform classification is less
precise as well as prone to noise. For example, in ALOS, a larger per-
centage of the PRALC study area is classified as islote compared with
lidar (12.5% vs 7.4%). This is because 1) some small but sharp hills are
smoothed into larger, gradual rises in the coarser-resolution data and 2)
variability in canopy height leads surface model-based classifications to
identify some areas as ridges or islotes when the underlying topography
may be level (and the opposite problem applies to gaps in the canopy
caused by tree falls and anthropogenic clearing). Noisy classifications
are simply the cost of doing business with surface models.

These issues notwithstanding, the same patterns in landform ranking
are clear in the ALOS classification. Using the 2018 PLI structure dataset
(Canuto et al. 2018a; Canuto et al. 2018b) and applying the same pro-
cedure we used for the lidar-based analysis of the PRALC survey block,
our results showed the same striking pattern seen in the Corona-Achiotal
region: settlement overwhelmingly favors ridges and islotes across 10
PLI survey blocks, such that an average of 77% (68-82%) of structures
occupied favored landforms even though these only constituted an
average of 36% (29-40%) of the terrain within the PLI dataset (Table 7).
Both bajos and elevated basins were preferentially avoided across all
blocks.

These results indicate that the patterns starkly visible in the Corona-
Achiotal region are in fact a phenomenon of the interior central low-
lands in general (see Fig. 1). Consequently, tracking the distribution and
extent of these landforms can provide an important baseline for un-
derstanding the disposition of settlement within any particular sub-
region. A review of the PLI data set shows some interesting variations
that prove relevant here. Regions with low overall settlement density
have the higher percentages of ancient buildings occupying preferred
landforms: Corona-Achiotal is at 82%. Inversely, where overall settle-
ment density is higher, the total proportion of buildings on favored
landforms decreases: Tikal is at 75%. Is this 7% difference a meaningless
bit of statistical noise or does it reflect a salient difference in the way
settlement was disposed in those two areas?

To answer this question, we look to “elevated basins”. Though these
are ecologically productive upland environments, they were largely
avoided by settlement. It follows that these parts of the landscape were
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host to the lion’s share of the region’s outfield agriculture, forestry, and
wild-food harvesting—all of which favor upland forest environments
and ecotones (Balzotti et al. 2013; Dunning et al. 2020a; Fedick 1996;
Ford and Nigh 2009, 2015; Griffin 2012). However, in the most heavily
settled regions, elevated basins demonstrate higher-than-average set-
tlement density rates: in Naachtun elevated basins are 4.9% more
densely settled than the regional average, while in Corona-Achiotal,
they are 36% less (Fig. 10",

Parsimony would suggest that as the landscape became populated,
people were pushed to build in less favorable areas. A closer look,
however, reveals that this explanation does not account for 1) the un-
expectedly high settlement density of elevated basins found in only
moderately dense regions, such as El Perti, or 2) the existence of unin-
habited ridges and islotes within all regions. Consequently, the notion of
a “full” landscape compelling settlement of marginal lands does not
adequately explain the distribution of settlement across landforms. Why,
then, would people crowd into marginal terrain even when preferred
landforms remained unsettled a few kilometers away?

The data suggest that the above-average use of marginal landforms
was (at least, in part) a function of their proximity to densely urbanized
areas rather than overall population size at the meso-scale (>100 km?).
Where the largest, densest centers existed in the PLI data set, the cen-
tripetal force of these urban centers was sufficiently compelling to crowd
elevated basin terrain in their immediate vicinities—regardless of how
densely settled the broader landscape was. Settlement preference was
therefore not just determined by topography but also impacted by local
socio-economic and politico-historical factors.

This finding is consistent with a detailed and chronologically-
controlled case study of settlement patterns at the site of Uxbenka in

11 Although settlement percentages across landform classes using higher res-
olution lidar data will likely differ from those derived from ALOS data, we are
confident that the manner in which settlement distribution varies between
distinct regions will not change significantly. Future research comparing lidar
data analyzed using our TPI method from multiple areas in the Maya Lowlands
would permit a more precise analysis of these patterns.
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Belize (Prufer et al. 2017; Thompson and Prufer 2021), and demon-
strates that those authors’ broadest conclusion applies to Lowland Maya
settlement patterns generally: as specific places on the landscape took on
political, religious, and economic importance, people elected to live
near them even though it meant settling on less desirable land. This
settlement pattern is all the more significant considering that expansion
of settlement into these landforms would have unavoidably strained a
carefully-managed land-use/land-cover balance among woodlands (as a
source of fuel, wild foods, and building material), farms, and built space
(Dussol 2020; Emery and Thornton 2008; Fedick 2010)—a process
detected in charcoal assemblages from Tikal (Lentz et al. 2015a; Lentz
et al. 2014) and Naachtun (Dussol et al. 2020), perhaps not coinciden-
tally the two largest cities in the PLI sample (Canuto et al. 2018a; Canuto
et al. 2018b).

These observations run counter to arguments claiming that
agriculturally-motivated settlement dispersal impeded the development
of genuine urbanism in the Maya lowlands (Drennan 1988; Griffin 2012;
Murtha 2015:94-95; Sanders 1962, 1963, 1973, 1977; Sanders and
Webster 1988; Webster and Murtha 2015; Webster 1997, 2018). Instead,
these data suggest that the gravitational pull toward urbanization
counteracted the centrifugal imperative of subsistence agriculture
(Smith et al. 2021) even in landscapes that were not yet “full”. That is,
Lowland Maya could and did forego colonization of higher-ranked areas
in favor of proximity to urban amenities and other people, leading to
“densification” and what Kostof (1991; see also Smith 2019; Smith and
Lobo 2019) called the “energized crowding” of their urban centers.
While Lowland Maya cities were indeed generally lower-density than
cities in temperate Eurasia (Fletcher 1995; Isendahl and Smith 2013;
Smith et al. 2021), our analysis shows that socio-economic and politico-
historical factors played a key role in the development of urban land-
scapes. It bears noting, at the risk of tedious repetition, that the above
analysis derives from recognizing variation within generalized settlement
patterns—teasing local nuance from regional pattern is precisely the
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benefit of robust macro-settlement analysis.
5. Conclusion

Settlement archaeology’s foundational goal was to describe, and
then explain, “the way in which man disposed himself over the land-
scape on which he lived” (Willey 1953:1). As Willey and other pio-
neering surveyors recognized, a convincing analysis of settlement
patterns had to grapple with and ultimately reconcile environmental
and cultural forces. And while Mayanists can claim some major suc-
cesses in this regard at the community scale (e.g., Hammond 1991; Lentz
et al. 2015b; McAnany 2004; Murtha 2002; Pyburn 1989; Robin 2012),
bridging from local case studies to a robust and testable regional model
for macro-settlement patterns remained limited.

To achieve this fuller accounting of the ancient Lowland Maya set-
tlement landscape, we must leverage the insights from lidar data to
understand the full suite of variables—geomorphologic, floristic, cli-
matic, etc.—that enabled, constrained, and indeed even reflect the
patterning of settlement, and then model the implications of those
variables across space. In spirit, this analysis represents the kind of local-
to-regional scale modeling previously undertaken by Puleston (1973),
Rice (1976, 2006), Fedick (1994, 1995), Garrison (2007, 2010), Griffin
(2012), and Ford and Nigh (2015) but with the clear advantage of lidar-
based data that enable exhaustive community-scale analysis while also
bridging to macro-scale, quantitative analysis of settlement data and its
ecological covariates.

Our topographic settlement suitability model represents a step in that
direction. It suggests that for a large swath of the Maya Lowlands,
topographic position (as modeled by the Topographic Position Index) is
a powerful proxy for the factors that ancient Lowland Maya people
considered when deciding where to build. Furthermore, it demonstrates
that the high degree of local-scale environmental variability together
with the strong preference conferred to certain landforms as building
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sites means that lowland Maya settlement is best understood as patchy,
rather than dispersed or low-density. This term, borrowed from behav-
ioral ecology, better represents the relationship of settlement to land-
scape at both the micro- and macro-scale.

The suitability model presented here applies to the interior central
Maya Lowlands, an area whose boundaries remain unspecified. Deter-
mining where this macro-settlement pattern gives way to a different
kind of settlement distribution, tuned to a different physiographic
landscape, is an area for future research, though on the basis of physical
geography and descriptive treatments of settlement patterning, we
expect that the same ranked landform preference will indeed hold true
for some areas beyond the limits of what we preliminary propose here.
We hope that colleagues working in those areas are inspired to develop
such models.

Finally, our proposed model for the potential distribution of ancient
settlement should also encourage use of the same robust, lidar-derived
settlement datasets to explain regional variation. Our analysis of vari-
ability in the rates of “spillover” into marginal landforms suggests that
topographic preferences were continuously revalued by social, eco-
nomic, and political factors that had a measurable impact on patterns of
settlement concentration or dispersal. Thus, far from being determin-
istic, our settlement suitability model provides a quantitative basis for
considering the specific impact of non-environmental factors on the
character and morphology of individual communities. As this and other
spatially explicit suitability models are applied throughout the Maya
lowlands, we will gain a clear view of where and how and why specific
cultural and environmental forces articulated to create the ancient Maya
settlement landscape.
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