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Higgs and Goldstone modes, well known in high energy physics, have been realized in a number of
condensed matter physics contexts, including superconductivity and magnetism. The Goldstone-
Higgs concept is also applicable to and gives rise to new insights on structural phase transitions.
Here, we show that the Leggett mode, a collective mode observed in multi-band superconductors,
also has an analog in crystallographic phase transitions. Such structural Leggett modes can occur in
the phase channel as in the original work of Leggett, Prog. Theor. Phys. 36, 901 (1966). That is,
they are antiphase Goldstone modes (anti-phasons). In addition, a new collective mode can also
occur in the amplitude channel, an out-of phase (antiphase) Higgs mode, that should be observable
in multi-band superconductors as well. We illustrate the existence and properties of these structural
Leggett modes using the example of the pyrochlore relaxor ferroelectric, CdaNb2O~.

I. INTRODUCTION

Spontaneous symmetry breaking is a ubiquitous phe-
nomenon in physics, and is responsible for various col-
lective modes, most famously the well-known Goldstone
and Higgs modes. The former refers to fluctuations of
the phase of an order parameter, the latter to fluctua-
tions of its amplitude. These modes play a fundamental
role in gauge theories of particle physics, and are also
important in condensed matter physics. The Goldstone-
Higgs phenomenon in high energy physics is a relativistic
generalization of the analogous behavior found in super-
conductors [1]. In superconductors, the Goldstone mode
does not occur at zero energy as in a neutral superfluid,
but it is pushed to the plasma frequency by coupling to
the electromagnetic field [2]. The superconducting Higgs
mode is non-trivial to observe since its energy tends to
be located near the quasiparticle continuum [3]. Never-
theless, it has been observed in several superconductors
[4].

Superconductors can exhibit other collective modes. In
particular, a relative phase mode of the order parameters
of the two bands of a two-band superconductor was pro-
posed by Leggett [5] and first realized in MgB, [6]. While
the Goldstone mode is pushed to the plasma frequency by
coupling to the electromagnetic field, the Leggett mode
maintains charge neutrality and so is not affected by the
field [5]. Other modes are known as well, for instance
Carlson-Goldman modes in which the superconducting
and normal condensates oscillate out of phase [7]. In
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addition, in superfluid 2He a variety of clapping, flapping,
and Higgs modes occur because of the high degeneracy of
its SO(3) x SO(3) x U(1) order parameter space [8, 9].

Structural phase transitions are typically associated
with soft phonons [10], and the concepts of Goldstone
and Higgs modes have provided new insights into these
transitions. A classic example is the pyrochlore CdaResO7.
Its structural phase transition arises from an instability
associated with a doubly degenerate I'y; phonon [11]. This
defines a Mexican-hat free energy surface with the top of
the hat representing the high temperature cubic phase,
and the brim representing the lower symmetry distorted
phase. In the Landau free energy, anisotropy terms that
warp the brim of the Mexican hat only arise at sixth order,
suggesting the existence of a low energy Goldstone mode
corresponding to oscillations along the brim. (Since they
are not at zero energy because of the warping terms, these
are sometimes referred to as pseudo-Goldstone modes).
Subsequent Raman scattering experiments [12] exhibited
strong evidence for this mode, and its existence has been
recently confirmed by diffuse scattering studies [13]. The
Higgs mode is also evident from the Raman data, though
its interpretation has been challenged by recent pump-
probe measurements [14]. After these pioneering studies
of CdsRezO7, Higgs and Goldstone modes have been
proposed in a variety of perovskite and other complex
oxides [15-20]. Routes to detect them if they are optically
silent have also been identified [21].

Here, we investigate whether the Leggett mode can be
realized in the structural context, where it could give new
insights into the associated structural phase transitions.
We begin by developing a minimal Landau model that de-
scribes a structural phase transition that is accompanied
by a new collective mode, the antiphase Higgs mode (the
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amplitude analog of the Leggett mode), that should also
be observable in multi-band superconductors. We then
consider a Landau treatment of the ferroelectric transition
in the pyrochlore CdyNbyO7, where we show that both
the antiphase Higgs mode and the Leggett mode (the
anti-phason) are possible. Finally, we discuss secondary
modes that can drive these Leggett modes by coupling to
them in the context of pump-probe studies. We conclude
by discussing the relevance of our work to other materi-
als, in particular those that involve modes at non-zero
wavevectors.

1II. MINIMAL LANDAU MODEL

A superconductor is described by an order parameter
Ae'® with an amplitude, A, and a phase, ¢. In a two-band
superconductor, one can identify a collective mode, called
the Leggett mode, that corresponds to oscillations of the
relative phase of the order parameters associated with the
two bands, ¢1 — ¢ [5]. This mode is an eigenvector of a
secular matrix whose eigenvalues are the collective mode
energies [22]. In the structural context, the corresponding
secular matrix is the force-constant matrix [19], with

elements ¢;; = %{;‘;J_ where u; is the displacement of
the i-th ion from its high symmetry position and F' is
the free energy. For a periodic system with N atoms in
the unit cell, this is a 3N x 3N matrix. For our further
analysis, we will use a reduced form of the force-constant
matrix, ®;; = %, where ¢; are symmetry-adapted
distortion modes [23, 24]. Each ¢; is a linear combination
of atomic displacements that transform like a particular
group representation of the high symmetry phase, and
as such describe a collective motion involving multiple
ions. For structural phase transitions following Landau
theory [25], F is formulated as a polynomial expansion in
these ¢;. The distortions from the high-symmetry phase
are given, in the harmonic limit, by the eigenvectors of
the force-constant matrix [26]. The advantage of Landau
theory is the reduction of the large force-constant matrix
to this smaller one involving only the ¢; relevant to the
phase transition [19].

To illustrate the structural Leggett mode, we present
a simple example in which the phase transition involves
only two modes, q and r, each from a different two-
dimensional group representation. For simplicity, we use
a Cartesian basis, q (q1,¢2) and r (1, 72). In a polar basis,
qi = Q;cos(¢;), etc. In general, in the uncoupled case,
each mode would have a different transition temperature,
T4 # Ty. We describe each mode by a Mexican-hat
potential, and include a biquadratic coupling between
them [27]. In this case, the free energy is given by
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FIG. 1. Mode energies for the minimal Landau model with
aq = ar, bqg = by, and ¢ = bq/2, so that Tq = Ty = T. Units
are such that aqo/Tq is set to unity. The Goldstone modes
(not shown) are at zero energy.

where the temperature dependence is typically only in-
cluded in the quadratic terms aq = aqo(T — Tq) and
ar = apo(T — Ty). The subspace of the force-constant
matrix of interest is now given by
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where ¢; € {q1,q2,71,72}, and () describes the thermo-
dynamic average at a given temperature.

Choosing without loss of generality that ¢ = (g),
g2 = 0, 11 = (r), 7o = 0, the force-constant matrix
then becomes

Hy 2¢{qy{(r) 0 O
2¢{q) (r) H, 0 0

o = 3
0 0 Gq 0| 3)
0 0 0 Gy

with

Hq = aqO(T - Tq) + 3bq <Q>2 +c <’/‘>2

Gq = aqo(T — Tq) + bg (@) + ¢ (r)?

H, = ayo(T —Tp) + 3be (1) + ¢ ()

Gr = aro(T = To) + by ()* + ¢ (q)?

Here, we use H to indicate Higgs modes, that is amplitude
modes with symmetry A;, and G to indicate Goldstone
modes, that is phase modes whose symmetry depends on
the underlying space groups involved.
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There are no off-diagonal terms coupling the Higgs
and Goldstone sectors, but in this simple example, the
biquadratic coupling term couples the two Higgs modes,
Hgy and H,. Because of this coupling, we expect that a
new collective mode, the antiphase Higgs (the amplitude
analog of the Leggett mode), can exist. To see this, note
that the eigenvalues of the force-constant matrix are the
square of the collective mode frequencies [28]. That is, the
eigenvalues of the upper 2 x 2 block of the force-constant
matrix are

Wi =1 (H + Hq %/ (He — Ho)? +16¢2 (q)? (7")2) .

2
(4)

The eigenvectors are
e = (12 ) 6
u7 v = xr Y TN\ N\ )
TN U 2e(g) ()

where Ny is a normalization factor. For small ¢(g)(r)
relative to Hq — H,, we can think in terms of separate
Higgs modes that are weakly coupled. In the limit of
large coupling ¢(q)(r), however, we obtain an in-phase
Higgs mode and an out-of-phase Higgs mode. The latter
is the Higgs analog of the Leggett phase mode. These are
illustrated in Figure 1 for the simple case where the q
and r parameters are the same. For this case, it is easy to
show that the square of the Higgs mode energy is —2aq
et

For its realization, one finds from the above equations
that even one-dimensional group representations would
produce this antiphase Higgs mode. To determine the
mode dispersions requires the addition of gradient terms
that typically lead to a quadratic dispersion about the
ordering wavevector, unless the mode energy at the order-
ing vector is at zero energy, in which case the dispersion
is linear in momentum instead.

What about the anti-phason, the out-of-phase mode
in the phase channel that would be the analog of the
superconducting Leggett mode? To obtain this requires
coupling of the two Goldstone modes. One can show
that such coupling requires terms in Equation 1 that
are linear in the two Goldstone variables. In the above
example, this would be terms of the form gs72 times Higgs
variables (q1,71,¢%,7%, 171, etc.). Although these terms
do not exist in the above minimal model, they do exist

and that of the Leggett mode is —2aq

FIG. 2. Crystal structure of cu-
bic Cd2Nb2O7 shown to illus-
trate its two interpenetrating
sublattices of NbOg octahedra
and O’Cdy tetrahedra with Cd
(magenta), Nb (blue), and O
(orange) ions.

Cd,Nb,060’ pyrochlore

in general. Instead of extending our minimal model to
the more general case, we instead illustrate anti-phasons
using the specific example of CdyNbyO7.

III. LANDAU THEORY OF Cd:Nb,O~

The pyrochlore CdaNboOy is one of the few known
stoichiometric materials that exhibits relaxor ferroelectric
behavior. Because it is stoichiometric, its phonons, as
observed by IR reflectivity and Raman scattering, are well
defined. The pyrochlore structure consists of a network of
corner sharing NbQOg octahedra interpenetrated by CdO
tetahedra (or CdO chains depending on how one views
it), as shown in Figure 2. Several structural transitions
have been observed as a function of temperature, where
the symmetry lowers from the high temperature cubic
phase (F'd3m). Of particular interest are the ferroelastic
transition at 204 K (which lowers the point group sym-
metry from m3m to mmm, maintaining inversion) and
the ferroelectric one at 196 K (which further lowers the
point group symmetry to mm2) [29]. At much lower tem-
peratures, two other transitions have been reported that
are consistent with a monoclinic space group, probably
Cec. Based on group-subgroup relations and structural
refinements, the accepted phase transition series with de-
creasing temperature is Fd3m — Imma — Ima2 — Cec.
The complexity of the phase diagram and the fact that
the polarization direction is easily reoriented by an exter-
nal field [29] indicate that the free energy landscape is
soft, suggesting that this material is an excellent hunting
ground for new collective modes.

Density functional theory (DFT) calculations (T =
0K) show that Fd3m is unstable to both I'; and I'y
distortions (the former being polar in nature). I'; and
I'; are both primary order parameters for the transition
from Fd3m to Ima2 [30]. In the ferroelectric phase, the
minimum Landau subspace is 6 x 6, given that both
I'y and I'; are three-dimensional group representations,
meaning CdaNbyO7 hosts a richer space of possibilities
than the minimal Landau model discussed earlier [31]. In
addition, as we demonstrate below, more coupling terms
exist besides the biquadratic one, a general result not
specific to CdaNboO7. Before turning to Ima2, we first
discuss the related F'dd2 space group which is simpler to
present in a Cartesian basis.
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FIG. 3. Illustration of the Leggett phase mode for F'dd2 with (a) the free energy surfaces drawn as nested spheres for I'j and
Iy, whose radii are the amplitudes Q4 and Qs, and (b) the corresponding Mexican-hat potentials when restricting to Cec. In (a)
the C'c subspace is indicated by great circles on these spheres (which are in reality warped given that Q4 and Qs depend on the
spherical angles). The Fdd2 minimum in Cartesian coordinates is (Q4,0,0) on the I'; sphere and (0, @s,0) on the I'; sphere.
In (b) the vertical axis is energy, with the wavy line indicating the Landau couplings between the two energy surfaces. In both
panels, the Goldstone mode corresponds to oscillations about the F'dd2 minima on each circle (these minima are indicated by
black dots) to one C'c domain on one swing (a red arrow on one surface, a blue arrow on the other) and to another C'c domain
on the other swing (a blue arrow on one surface, a red arrow on the other). The higher energy Leggett mode (anti-phason)
instead involves oscillations corresponding to antiphase C¢c domains, with one swing involving both red arrows and the other
swing involving both blue arrows. A similar picture exists for the antiphase Higgs mode, with the arrows pointing along the
radial directions instead.

have a slightly lower free energy than ones where I'; is
dominant [34], whereas order parameter-like behavior of
the distortion amplitudes as a function of temperature
has only been claimed for I'; based on global structural

TABLE I. Space groups generated on condensing the (I';, I'y)
order parameters along various crystallographic directions in
Cd2Nb2O7 (generated from Ref. 32).

r; r; Space Group refinements [35]. Regardless, the net result is that one

(2,0,0) (0,5,0) Fdd2 has tvzo cou.pled flat energy surfaces, one for I'; , the other
for I'y', which only differ from each other by a few meV

(a,a,0) (0,b,-b) Ima2 o

(a.0.8) (bbb) R3 per formula unit [34].

" ” In terms of order parameter directions (Table I), the
(a,b,0) (0,c,) Ce Fdd2 phase corresponds to (a,0,0)|(0, ¢, 0) with (a, 0, 0)
(a,a,b) (0,¢,-¢) Cm being a point on the I'; sphere and (0, ¢, 0) on the I';
(a,a,0) (-c,b,-b) C2 sphere, whereas I'ma2 corresponds to (a,a,0)|(0,c,—c)

instead. Here, a refers to the I'j order parameter and c
to the I'; one. The lower symmetry space group encom-
A.  Fdd2 passing these two is C'¢, corresponding to (a, b, 0)|(0, ¢, d),
which can be seen to correspond to particular great cir-
cles on each sphere (analogous to the Mexican-hat brims
of the minimal model). For our purposes here, we will
restrict our analysis to these two circles, recognizing that
there are also fluctuations orthogonal to them on the
spheres corresponding to rhombohedral (R3) and other
monoclinic (Cm and C2) space groups, as well as to other
domains of F'dd2 and I'ma2 not represented by these two
particular circles (Table IT). That is, we consider a re-
duced 4 x 4 force-constant matrix. We note that for these
flat free energy surfaces, it is often useful to describe each
order parameter with spherical/polar coordinates, but
for simplicity in the following derivations we will use a
Cartesian basis instead.

We obtain the Landau free energy using the INVARI-
ANTS routine [36] (accessible electronically at Ref. 32),
noting that it is important to specify the appropriate

The six-dimensional subspace formed by I'; and I';" de-
fines two free energy surfaces (Figure 3a). These surfaces
are three-dimensional generalizations of two Mexican-hat
potentials (Figure 3b), and can be considered as nested
warped spheres, one for I';’, the other for I'; . Each repre-
sentation condensing along the cubic axis of its respective
sphere gives rise to F'dd2. Interestingly, F'dd2 has been
identified as the local structure of CdoNbsO~ from diffuse
scattering studies [33] and is also the global space group
upon sulfur doping [34]. But what is evident from both
the DFT and structural studies is that there are a number
of space groups which are close in energy and provide
comparable descriptions of the data. That is, the free
energy landscape of these two coupled spheres is relatively
flat (i.e., the warping of the spheres is small). DFT cal-
culations indicate that structures where I'; is dominant



C'c domains for the subspace considered, specifically the
order parameter directions (a,b,0)|(0, ¢, d). Considering
terms to quartic order, we obtain

F:%(aQ—l—bQ)+%(02+d2)+%(a2+b2)2
_|_E( 4+b4)+%(02+d2)2+%(c4+d4)
+—(a® + b)) (? + d?) + €1 (ab)(ad — bc)

ARSI

+2 (a2 + 02d?) + eg abed) + ea (ed)(ad — be)
(6)

We note that in polar coordinates, a = Q4 cos(¢4),b =
Qasin(gg), ¢ = Qs cos(Ps),d = Qs sin(¢s), where Q; are
the amplitudes and ¢; are the phases.

We first consider expanding about an assumed F'dd2
free energy minimum, and then consider Ima2 next. For
Fdd2, fluctuations of a and ¢ correspond to Higgs modes
(A; symmetry), fluctuations of b and d to Goldstone
modes (B symmetry) (Table IT). Note these Goldstone
modes are not at zero energy because of the anisotropy
terms 7;, so they are formally pseudo-Goldstone modes.
In addition, the ¢ (biquadratic) and €; terms will provide
coupling between the two Higgs modes, and the latter also
between the two Goldstone modes. There is no coupling
between the Higgs and the Goldstone modes, so the 4 x 4
matrix reduces to two 2 x 2 blocks: one for the two Higgs
modes, one for the two Goldstone modes. This remains
true when considering sixth-order terms in the free energy,
and also for the full I'y ©I'; space. That is, this larger
6 x 6 matrix reduces to three 2 x 2 blocks: one in the
Higgs sector and the other two in the Goldstone sector.
That is, there are no terms coupling the two Goldstone
blocks.

Differentiating Equation 6 with respect to a, b, ¢, d and
setting each expression to zero determines these parame-
ters via a set of coupled equations [27]. One can see from
these expressions that b = d = 0 (F'dd2) is an allowed so-
lution to these coupled equations. Whether it is or is not
depends on the actual values of the Landau coefficients,
but for purposes here we assume that this is the case [37].

The coeflicients of the force-constant matrix for each of

N 2
the modes are determined by 62- 5; - where ¢; are a, b, c,d,
104qj

evaluated at a = (a), ¢ = (¢}, b = d = 0 The diagonal ele-
ments of the force-constant matrix will give the uncoupled
Higgs mode energies (aa and cc elements) and Goldstone
mode energies (bb and dd elements). Of interest here are
the off-diagonal terms. We find that in this case, there
are two non-zero ones. The first is the ac one that couples
the two Higgs modes

0’F
Babe 2(6 + €2)(ac) . (7)

The other is the bd one that couples the two Goldstone
modes

0°F
abod

e1(a?) + ez(ac) — es(c?). (8)

For each 2 x 2 block, we denote the diagonal elements
corresponding to the uncoupled mode energies as w3 (aa or
bb) and w? (cc or dd). Denoting the off-diagonal element
in each block as X (ab or cd), one obtains as before
coupled mode energies of the form

2 2 2 _ . ,2)2
wi: w4;w5 i\/(wél 4w5) +X2. (9)

The two eigenvectors of this matrix either have the two
components in-phase, or out-of-phase, as in Equation 5.
The in-phase modes then correspond to Higgs and Gold-
stone modes, the out-of-phase modes to their Leggett
analogs.

To understand the two phase modes, consider a given
Fdd2 domain, (a,0,0)|(0,¢,0). The Goldstone mode
would correspond to oscillations along the two circles
on the free energy spheres towards one Cc¢ domain
(a,b,0)[(0,¢,d) (one swing) and towards another Cc do-
main (a, —b,0)|(0, ¢, —d) (the other swing) as illustrated
in Figure 3. The Leggett analog corresponds instead to os-
cillations towards (a, b, 0)|(0, ¢, —d) and (a, —b,0)|(0, ¢, d).
These can be thought of as antiphase domains of Cc that
occur at a higher energy since they are penalized by the
coupling terms in the Landau free energy. As such, the
Leggett phase mode occurs at a higher energy than the
Goldstone mode. We therefore denote the Leggett phase
mode as an anti-phason. A similar picture applies in the
Higgs sector (oscillations along the radial directions in
Figure 3). That is, the amplitudes Q4 and Q5 oscillate
either in-phase or out-of phase, so we can denote the latter
as a Leggett amplitude mode, that is an antiphase Higgs
mode. Considering the full six-dimensional I'j ©I'; space,
there are actually two ‘anti-phasons’ and one ‘antiphase
Higgs’ mode, as alluded to above.

B. Ima2

Although the Fdd2 space group is realized upon sulfur
doping [34], stoichiometric CdaRe2O7 is thought to be
Ima2 below the ferroelectric transition. The Ima2 case
is similar to the F'dd2. Ima2 corresponds to a = b and
d = —c. These coordinates represent points on the two
circles in Figure 3 that are rotated by 45° relative to F'dd2.
Therefore, to construct Goldstone and Higgs variables in
a Cartesian basis, it is convenient to express I’ using a
45° rotated coordinate frame instead, that is a = (a +
b)/V2 b= (a—b)/v2 &= (c—d)/V2, d=(c+d)/V2,

so that Ima2 corresponds to b = d = 0. The resulting



TABLE II. Fluctuations about F'dd2 and Ima2 derived from
Table I. H denotes fluctuations indicated by the blue/red ar-
rows along the specific great circles shown on the spheres in
Figure 3. V denotes fluctuations along great circles orthogonal
to these circles. Note that the circles are turned 90 degrees
between the two surfaces because of the different transforma-
tion properties of I'y and I';. R denotes fluctuations along
the radial directions of the spheres. For F'dd2, the two Cc
rows correspond to different C'c domains. Also, the reduction
to C'2 is not shown because it involves an F'dd2 — P1 — C2
path on the spheres in Figure 3.

Space group Symmetry I'y T'; Modes

Fdd2 — Fdd2 T (A1) R R Higgs, antiphase Higgs
Fdd2 — Cec s (B2) H H Goldstone, anti-phason
Fdd2 — Cc s (A2) V V  Goldstone, anti-phason
Ima2 — Ima2 T1 (A1) R R Higgs, antiphase Higgs
Ima2 — Cc T4 (B2) H H Goldstone, anti-phason
Ima2 - Cm T's (A2) AY4 Goldstone
Ima2 — C2 Iy (B1) V  Goldstone
Landau free energy is:
Qay . ~ as ~ - ~
F:é(aQ—&—bz)—l—75(02+d2)+%(a2+b2)2
_~_%(&4 + B —|—6d252) + %(62 +d‘2)2
a3 Y 0,0  Fov,.2 3
—&-%(04 +d* +6&%d*) + 5(a2 +0?) (& + d?)
+%1(*2 —5%)(bd — a¢)
6 - ~ " ~ T
+Z2[( 24 D) + d?) + dabéd)
€3, oy - €4, % o\ T o
+Z3( 2 bH)(d* - &)+ 54(612 — &) (bd — ac) .

(10)

One can show that, as before, the only off-diagonal terms
of the force-constant matrix that survive are the ac¢ and bd
terms. Thus, the force-constant matrix again reduces to
two 2 X 2 blocks and results in a Higgs mode, a Goldstone
mode, and the two Leggett modes: an antiphase Higgs
mode and an anti-phason. This is straightforward to
understand from a study of Figure 3 and Table I as we
summarize in Table II.

We now connect these results to those on superconduc-
tors. Upon manipulation of the corresponding dynamical
matrix in the case of superconductivity [22], one can show
that the off-diagonal element for a charge-neutral two-
band superconductor is equal to the square root of the
product of the two diagonal elements. This results in one
mode frequency that is zero (the Goldstone mode) and
one whose squared frequency is the sum of the two diago-
nal elements (the Leggett mode). Besides this distinction,
there is no qualitative difference between the supercon-
ductivity and structural mode cases. In particular, for
both cases, the two components of the eigenvector do not
have equal amplitudes. In the superconductivity case,

this is due to the difference in the density of states of
the two bands. In the structural case, it is because the
uncoupled mode frequencies for I'y and I'y differ.

The Leggett analog of the Higgs mode (the antiphase
Higgs) has not been explicitly described before. A related
mode, however, was predicted recently in time-reversal
breaking superconductors [38]. It should be observable as
well in multi-band superconductors, and would correspond
to out-of-phase oscillations of the gap amplitudes of the
two bands. We suggest that the existence of this mode be
searched for by appropriate experiments (Raman, pump-
probe) on two-band superconductors like MgBs. Below,
we address its observation in the structural case.

C. Secondary Order Parameters

The secondary order parameters present in CdaNboOr
are even-parity ones with symmetry Fg‘ and F;r. For
Clc, this results in a seven-dimensional space: I'; (a,b) ®
s (c,d) @ T§(e, f) ®T¥(g9). Expanding around Fdd2
(b=d=g=0)and Ima2 (b = a,d = —c¢, f = 0),
no couplings exist between the primary Higgs and Gold-
stone modes (that is, the ab, ad, be, cd terms in the force-
constant matrix vanish at the Fdd2 and I'ma2 minima).
This means that any coupling between these Higgs and
Goldstone modes are beyond the harmonic approxima-
tion, however higher-order coupling can occur in non-
equilibrium situations [19, 21]. At first glance, these
secondary modes shift the various primary mode frequen-
cies that would be determined from the smaller 4 x 4
block. That is, one can in principle reduce this 7 x 7
matrix to an effective 4 x 4 one by integrating out e, f, g
in the Landau free energy equations, as these secondary
order parameters are slaved to the primary ones.

But closer inspection of the form of the primary-
secondary mode couplings reveals new opportunities to
study the Leggett modes. To see this, note that in the
C'c subspace discussed above, one now has the following
coupling terms at cubic order since the secondary order
parameters have even parity:

L9, 2 2 2
F3 m[\/g(a +0%)e+ (a” —b7)f]
Lo 2 2 2
+772[\/§(C +d)e+ (" —d)f]

+ns3[(ac — bd)e — %(ac + bd) f]

+n4(abg) + ns(cdg) + ne[(ad — be)g] . (11)

For both F'dd2 and Ima2, the n3 term leads to both pri-
mary Higgs and Goldstone mode couplings. For Ima2,
the ng term also leads to both primary Higgs and Gold-
stone couplings. We note that I'j and I'7 are Raman
active modes in the cubic phase. Therefore, below the fer-
roelectric transition, they can be used to drive the primary
Leggett modes via these two cubic terms, analogous to
nonlinear phononics experiments on perovskites [39] that
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FIG. 4. Decomposition of the I'ma2 structural refinement of
Cd2NbyO7 from Ref. 35 using ISODISTORT [24, 32]. Shown
is the overall I'; (7%,) amplitude previously plotted in [35]
along with various I'y (71.) and I'; decompositions involving
either Nb or Cd ion displacements from their cubic positions,
noting that for each ion, I'; has two submodes I'; (E,) and I'
(Az.) whereas I'; has only one (I'y'). Curves are proportional
to |T. — T|?, where T. = 196 K is the ferroelectric transition
temperature and = 0.27 is the order parameter exponent.

have been studied theoretically using similar Landau-like
equations of motion [40-42]. Note that pump-probe ex-
periments have been instrumental in the study of Leggett
modes in superconductors [43].

In the above analysis, we did not include strain (which
typically renormalizes the Landau coefficients), and gra-
dient terms which need to be included to address domain
walls. One would expect that the collective modes could
be significantly modified by domain walls if they are spa-
tially broad enough [44] and present at a high enough
density. These effects would be interesting to study in
future work.

D. Submodes and Phonons for Cd>:Nb,O~;

In the real crystal, there are multiple force-constant
matrix eigenmodes for each symmetry, typically referred
to in the literature as ‘submodes’. The full matrix has
a size of 66 x 66. Restricting the symmetry to Cc, the
matrix reduces to 33 x 33. Further restriction to I'y and
I';, it reduces to 24 x 24. In the Landau treatment,
each ¢; is a particular sum of these submodes with the
appropriate group symmetry that is gotten by reducing
this larger matrix to the smaller 4 x 4 matrix. Still,
one can ask the question whether this simplification is
supported by the data or not. To address this, in Figure 4,
we plot the temperature dependence of several relevant
submode amplitudes based on the I'ma2 crystal structure
refinements of Malcherek et al. [35]. We find that the Cd
and Nb displacements for both I'; and I'; symmetries
scale with the overall I';” order parameter amplitude that

was previously shown in Ref. [35]. This indicates that
this simpler Landau description is valid.

We now turn to the phonons. Since the ions involved
(Cd, Nb, O) have different masses, there is no one-to-
one correspondence between the force-constant modes
and the phonons (unless the mode involved only one ion
type). As a consequence, a given force-constant mode
could involve more than one phonon. However, it has
been shown that there is a strong correspondence between
single phonons and the Higgs and Goldstone modes in
YMnOg [19]. Therefore it is probable that such modes for
CdyNbsOr can also be associated with specific phonons.

To gain further insight, we turn to experimental Raman
and infrared (IR) data. In the Ima2 phase, all phonons
are in principle Raman active. Raman data on CdyNbsO7
find several low lying A; and Bs modes below the ferro-
electric transition, three of which soften as the structural
phase transition is approached from below [45]. As the
amplitude modes have A; symmetry and the phase modes
have Bs symmetry, there should be a correlation between
our collective modes and the data. That is, it is possible
that the two lowest lying A; Raman modes corresponds
to the Higgs and antiphase Higgs modes. Presumably the
lowest lying Bs mode is the Goldstone mode, with the
anti-phason corresponding to a higher energy Bs mode
that has yet to be studied.

The IR data for CdyNbyO7 are complicated given the
presence of seven optic modes of I'; symmetry in the
cubic phase, which further split in the ferroelectric phase.
Two of the lower lying IR modes have been interpreted
as being coupled (both above and below the transition)
due to their temperature dependencies [46]. One of these,
referred to as a ‘central’ mode and speculated to be due to
hopping of Cd ions among equivalent locations displaced
from their cubic positions, is not thought to be of '}
symmetry given that seven other IR modes of this sym-
metry are already seen. Its coupling with a higher energy
second mode, thought to be a Nb displacement mode of
I’y symmetry, drives this central mode to soften at the
ferroelectric transition [46]. Whether this central mode is
an A; symmetry mode (as typical for an order-disorder
transition), or instead a I'; mode that becomes IR active
due to coupling to the second I'j mode, is worth inves-
tigating. If the latter, this would be consistent with the
theory we offer above of two coupled modes of I'; and
I'y symmetry. Moreover, as discussed above, pump-probe
studies of CdasNbyO7 would be instrumental in probing
for possible collective modes: Higgs, Goldstone, and their
Leggett analogs.

IV. SEARCHING FOR AND OBSERVING
LEGGETT MODES

Although we considered the specific example of
CdsNbyO7, the above analysis should be applicable when-
ever more than one primary order parameter is involved
in a phase transition. As such, Leggett modes should



exist in the structural context, and could be identified
from a DFT analysis of the force-constant and dynamical
(phonon) matrices in comparison to experimental data.
We plan to report on this in a future paper that will pro-
vide a detailed DFT study of CdaNboO7 [47]. In general,
analysis of Raman and IR data, including the symmetry
of the modes and their temperature dependence, should
be helpful in elucidating the presence of Leggett modes.
Specifics, including identifying the out-of-phase behavior
characteristic of the Leggett modes, could be resolved by
pump-probe studies of the phase of the oscillations as a
function of time. Moreover, the equations of motion asso-
ciated with nonlinear phononics involve the same cubic
and quartic coupling terms invoked in this paper that
provide for the existence of the Leggett modes to begin
with. Driving specific modes would then be instrumen-
tal in identifying the various collective modes via their
couplings to the driven mode.

As for materials, obviously those phase transitions
involving more than one primary group representation
would be obvious targets for study, including those exhibit-
ing improper and hybrid-improper ferroelectric transitions
[48-53]. Although the latter typically involve order pa-
rameters with non-zero wavevector, the Landau coupling
terms in the free energy are similar and so the considera-
tions presented here should be valid there as well. The
existence of low lying modes would be aided by having
flat energy surfaces with low transition barriers as consid-
ered here. In that context, CdaNbsO7 consists of corner
sharing NbOg octahedra in an open framework interpen-
etrated by CdO tetrahedra that are weakly coupled to
the octahedra, implying floppy low energy modes. Going
from a cubic phase to a lower symmetry orthorhombic
or monoclinic phase is also useful in order to optimize
the number of coupling terms in the Landau free energy.
This is particularly pervasive in pyrochlores and spinels.
Cage-like structures as in skutterudites with their associ-
ated floppy modes would also be a good place to search.
Much of the work concerning Goldstone and Higgs modes
has been done in the context of perovskites, which also
involve corner-sharing octahedra, and a number of them
exhibit improper ferroelectric transitions as referenced
above. Similar considerations to ours would also apply

to ferroelastic transitions. However, a large coupling to
strain usually leads to large warping terms (see e.g. in
the case of ferroelastic WO3 [54]). A locally flat energy
landscape can sometimes be recovered at Ising-type do-
main walls (see e.g. for LiNbO3 [55]). In the same way,
locally-confined Leggett modes could be observed.

V. CONCLUSION

We demonstrated via a Landau analysis that structural
Leggett modes should exist in the context of displacive
transitions when more than one multi-dimensional group
representation is involved. These collective modes exist
not only in the phase channel as in the original work of
Leggett, but also in the amplitude channel, represent-
ing a new collective mode, the antiphase Higgs, that
should be observable in multi-band superconductors as
well. We studied in detail the specific case of the relaxor
ferroelectric pyrochlore Cd3NboO7, which we believe is
a promising material to search for such modes. We be-
lieve there should be a large group of materials where
such modes could exist, and advocate in particular that
pump-probe studies would be the most illuminating way
to identify and characterize these modes. The study of
such modes should give new insights into their associated
crystallographic phase transitions.
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