
Original Research Article

Journal of Educational Computing
Research
2022, Vol. 0(0) 1–24
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/07356331221087771
journals.sagepub.com/home/jec

Patterns of Using Multimodal
External Representations in
Digital Game-Based Learning

Yanjun Pan1,*, Fengfeng Ke1, and Chih-Pu Dai1

Abstract
Although prior research has highlighted the significance of representations for
mathematical learning, there is still a lack of research on how students use multimodal
external representations (MERs) to solve mathematical tasks in digital game-based
learning (DGBL) environments. This exploratory study was to examine the salient
patterns problem solvers demonstrated using MERs when they engaged in a single-
player, three-dimensional architecture game that requires the acquisition and appli-
cation of math knowledge and thinking in game-based context problem solving. We
recorded and systematically coded the behaviors of using MERs demonstrated by
20 university students during 1.5 hours of gameplay. We conducted both cluster and
sequential analyses with a total of 2654 encoded behaviors. The study indicated that the
maneuverable visual-spatial representation was most frequently used in the selected
architecture game. All of the participants performed a high level of representational
transformations, including both treatment and conversion transformations. However,
compared to the students in the second cluster who were mostly non-game players,
students in the first cluster (composed of mainly experienced video game players)
displayed a higher frequency of interacting with various MERs and a more cautious and
optimized reflective problem-solving process.
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Research on mathematics education suggests that students gain better performance by
practicing problem solving in a real-world context (Kilpatrick, 2014). Unfortunately,
prior research indicated that many students are not able to solve mathematical problems
embedded in contexts because they lack sufficient learning opportunities to practice
mathematical representations of the situation (Ke & Clark, 2020). Students are often
taught how to solve well-structured mathematical problems that utilize standardized
phrases and keywords in classrooms (Daroczy et al., 2015). Nevertheless, multiple
studies reported that teaching students with standardized phrases and keywords often
led to incorrect mathematical translation of problem situations (Daroczy et al., 2015;
Griffin & Jitendra, 2009; Hegarty et al., 1995; Nesher & Teubal, 1975; Pongsakdi et al.,
2020). Students, especially less successful problem solvers, tend to be attracted by
verbal cues and then directly interpret texts into a mathematical representation without
deep thinking of contextualized situations (Nesher & Teubal, 1975). Therefore, it is
crucial for students to identify the meaning and structure of the problem to make sense
of problem situations when they are involved in problem solving.

Recently, a growing body of empirical evidence suggests that digital game-based
learning (DGBL) is a natural and dynamic learning platform that improves students’
mathematical performance, by creating a meaningful context-based learning envi-
ronment with multiple representations of mathematical problems (Bullock et al., 2021;
Ke, 2016; Ke & Clark, 2020; Moyer-Packenham et al., 2021; Siew, 2018). These
external representations refer to the concrete and visual objects that represent abstract
math knowledge in a simulated context. It is one of the most frequently used approach
for designing the game objects that help students make meaning between abstract math
concepts and concrete objects in mathematics education (Ke, 2016). More importantly,
the platform of DGBL enables students to interact in a systematic way with large sets of
multimodal external representations (MERs, e.g., verbal, visual-spatial, and notation,
Ke & Clark, 2020), which are the embodiments of the mathematical concepts pur-
posefully designed as the game objects in the game world. MERs are supposed to foster
cognitive processing and encourage in-depth learning (Ainsworth, 1999), which in turn
enhance students’ abilities to construct mathematical representations of the situation
(Adu-Gyamfi et al., 2019; Goldin, 2003, 2014).

Prior research reported that interacting with purposefully designed MERs in DGBL
could improve students’ performance of mathematical problem solving (Bullock et al.,
2021; Ke, 2019; Moyer-Packenham et al., 2019), performance of mental rotation (Ke,
2019; Ke & Clark, 2020), learning engagement (Moon & Ke, 2020), and mathematics
connections (Moyer-Packenham et al., 2019). Thus, we speculate that there is a positive
association between the use of MERs in DGBL and students’ mathematical learning
outcomes (Moyer-Packenham et al., 2021). However, most of these studies used
conventional learning performance assessment or self-report questionnaires, studies
that investigate learning process through exploring learners’ behavioral patterns
of interactions with various MERs in DGBL for mathematical learning remain in-
adequate. In-depth analyses of the students’ behavioral patterns should yield more
comprehensive results that provide guidance for educators, researchers, and game
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designers to better understand students’ learning process of interacting with MERs in
the context of DGBL. Therefore, in the current study we investigated of how problem
solvers interact with MERs in DGBL by analyzing their in-game actions. We im-
plemented the data mining technique, including both cluster and sequential analyses, to
obtain a deeper understanding of the learning process by visualizing learners’ be-
havioral pattens of interactions with various MERs in DGBL. The overarching research
question guides the current study is as follows:What are learners’ behavioral patterns of
interacting with MERs in the context of DGBL? Specifically, the study addresses the
following two questions:

1. What are the cluster patterns of using various MERs demonstrated by partic-
ipants in DGBL?

2. What are the sequential behavior patterns of using MERs demonstrated by
participants in each cluster?

Literature Review

External Representations for Mathematical Learning

There is no universally accepted definition for external representations for mathe-
matical learning, but most researchers acknowledge that mathematical external rep-
resentations refer to the physical (and therefore observable) embodiments of the
abstract math ideas, concepts, and procedures that conceptualize students’ internal
structure (Ainsworth, 1999; Lesh, 1981). According to Lesh’s (1981) conceptual model
of the representation system, external representations can be categorized into real-world
situations, manipulatives, pictures, spoken symbols, and written symbols with respect
to their different aspects of the structure of the concept.

Numerous researchers have reported or claimed the paramount importance of
external representations on the development of mathematical thinking (Duval, 2006;
2017; Goldin, 2003; Hurst et al., 2020; Lesh et al., 1987). Mathematics itself is a special
and artificial language that heavily relies on signs and numeral expressions. For in-
stance, the number of 1 can represent the quantity of a set, such as one apple; it can also
represent a position on a number line. Compared to other scientific disciplines,
mathematical phenomena cannot be directly perceived and observed (Duval, 2006).
Therefore, the representations are used not only to stand for mathematical objects, but
also to communicate the meaning of the problem and provide the possibility of working
on mathematical objects. In other words, the employment of external representations
builds upon the foundation of performing mathematical processing (Duval, 2006).

In Duval’s Theory of Registers of Semiotic Representation (TRSR) (Duval, 2006,
2017), the external representations are considered as “representation registers” (Duval,
2006). Students will make a variety of register transformations, which include either
treatments or conversions, when they are engaged in solving mathematical problems.
Treatment refers to a transformation within the same register, but conversion happens
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when changing one representation register to another (Duval, 2006, 2017). Both
transformations play vital roles in developing conceptual understanding of mathe-
matics (Duval, 2006, 2017; Hurst et al., 2020; Lesh et al., 1987; Moyer-Packenham
et al., 2019; 2021).

Conversion is generally considered as more complex than treatment (Lesh et al.,
1987; Moyer-Packenham et al., 2021; Pino-Fan et al., 2017), because it is built upon the
recognition of the representation registers and extends the “recognition of the same
represented object between two representations whose contents have very often nothing
in common” (Duval, 2006). For example, Figures 1 and 2 are two examples of word
problem solving of ratios and proportions. The former question primarily requires
students to make “treatment” transformations, while the latter one involves the ap-
plication of “conversion” transformations. Specifically, to answer the question in
Figure 1, students are requested to perform computations within the same represen-
tation system (i.e., written symbols/formal mathematical notation). To solve the
question in Figure 2, students must first recognize the representation system of the
written symbol (i.e., formal mathematical notation), then make a conversion trans-
formation from a written symbol to a representation register of static pictures. Ac-
cording to the theory of TRSR (Duval, 2006, 2017), students who are able to flexibly
make more transformations across different registers (i.e., conversions) have a greater
understanding of the mathematical concepts than those who make fewer conversion
transformations (Calder et al., 2018; Pino-Fan et al., 2017). Empirical research also
supports this proposition. For example, Brenner et al. (1997) found that middle school
students who participated in a training program for representation performed signif-
icantly better in the posttest than those without practice in representational transfor-
mations. Kellman et al. (2008) reported that students who were given opportunities to
practice their transformation competencies in a computer-supported system obtained
significant higher learning gains than those who did not receive any instruction. Sidney
et al. (2019) explored the effects of registers of static pictures (number lines and area
models) on middle school students’ accuracy and conceptual understandings of fraction
division and found that students in the group of number lines outperformed those

Figure 1. An example of a word problem with ratios and proportions that requires treatment
transformations.
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without any picture registers. However, researchers argued that some “treatment”
transformations, particularly those corresponding to symbolic registers (i.e., formal
mathematical notations to formal mathematical notations), are as complex as “con-
version” transformations (Pino-Fan et al., 2017).

Overall, prior research (Ainsworth, 1999; De Bock et al., 2017; Duval, 2006;
Goldin, 2003; Hurst et al., 2020; Lesh, 1981; Lesh et al., 1987) revealed the importance
of external representations for mathematical learning, but most of these previous
studies focused on a conventional learning setting. Recently, research on the field of
external representations for mathematical problem solving in DGBL is increasing
(Bullock et al., 2021; Duval, 2017; Hung et al., 2014; Moyer-Packenham et al., 2019;
2021), but still scarce.

Multimodal External Representations in DGBL for Mathematical
Problem Solving

DGBL could present a multimodal environment by embedding dynamic and interactive
2D or 3D external representations (e.g., graphics and “physical objects”). According to
the theory of situated learning, the processes of cognition “extend to external states and
structures (or representations)” (Ke & Clark, 2020, p. 105), students will form new
insights when they are involved in interacting with external representations that are
tentative to their internal cognitive processes. The platform of DGBL provides students
with multimodal external representations that involve not only verbal associations but
also visual-spatial and physical accounts (Ke & Clark, 2020). According to the
characteristics of DGBL as well as the MER perspectives of Goldin (2003), MERs
in DGBL can be categorized as verbal/syntactic task narratives, maneuverable

Figure 2. An example of a word problem with ratios and proportions that requires conversion
transformations.
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visual-spatial representations, formal mathematical notations, and interactive mathe-
matical tools (Ke & Clark, 2020). The current study adopted this category to explore
how students interact with MERs in DGBL.

Prior research (Bullock et al., 2021; Ke & Clark, 2020; Moyer-Packenham et al.,
2019; 2021) suggested that interactions with well-structured MERs in DGBL could
enhance students’ abilities to construct amental model for mathematical problem solving.
Specifically, DGBL provides opportunities of translations (i.e., transformations) among
different mathematical representations. The translations among different modes of
representations (i.e., conversion transformation) provide opportunities for students to
perceive the samemathematical concept from different perspectives, which then foster an
enriched and deeper math understanding prior to constructing mathematical represen-
tations of the situation for problem solving (Adu-Gyamfi et al., 2019; Goldin, 2003,
2014). Recently, Ke and Clark (2020) reported that students’ abilities to translate math
problem representations could be enhanced through the interactions with MERs in
DGBL. Based on the data collected from 46 seventh graders, they found that the students
who played E-Rebuild for 5 hours over six in-class sessions performed significantly
better than the control group students in both mathematical problem solving and mental
rotation test performance. Furthermore, Moyer-Packenham et al. (2021) examined
145 4–6 graders’ gameplay and pretest-posttest to investigate the relationships between
students’ mathematical performance and their abilities of representational transforma-
tions. Their finding indicated that students who recognized and made more represen-
tational transformations among MERs during gameplay demonstrated better
performance in the mathematical posttest than those with fewer transformations.

Overall, recent studies have revealed the positive effects of interactions with MERs
in DGBL on students’ mathematical problem solving (Bullock et al., 2021; Ke, 2019;
Moyer-Packenham et al., 2019; 2021), but few of them investigated how students
interact with various MERs. In-depth analyses of how students interact with different
MERs in DGBL for mathematical problem solving remain inadequate. Therefore, in the
current study we aimed to conduct a naturalistic inquiry to facilitate a deep under-
standing of problem solvers’ interactions with MERs in DGBL.

Data Mining Techniques on Students’ In-Game Behaviors

Data mining techniques, including cluster and sequential analyses (Hou, 2015; Hsu &
Cheng, 2021), have gained increasing attention in the research of technology-assisted,
visualized learning processes, such as the investigation of interactions in threaded
discussions in online courses (Jeong, 2003), and students’ problem-solving sequences
and learning processes in DGBL environments (Hou, 2015; Hsu & Cheng, 2021; Tsai
et al., 2016). Cluster analysis is one of the most frequently used educational data mining
techniques (Castro et al., 2007), by which the data set that is implicit and previously
unknown will be analyzed in a manageable number of variables (Vogt & Nagel, 1992).
Cluster analysis in educational contexts frequently categorizes students based on the
similarities and differences of their performance (Feldman et al., 2014). Sequential
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analysis, another data mining technique, is particularly useful for studying students’
interactions with the game world (Hwang et al., 2017; Sun et al., 2021). Students need
to perform a series of actions to complete a game task. Such a game-based problem
solving or learning process is normally complex and embeds special behavioral
structures or patterns. These behavioral patterns will inform on students’ in-depth
learning process and disclose hidden yet important issues of the design of DGBL
(Bakeman & Gottman, 1997).

Multiple studies have applied cluster analysis and sequential analysis in investi-
gating students’ behavioral patterns in DGBL (Hou, 2012; 2015; Hsu & Cheng, 2021;
Hwang et al., 2017; Lin et al., 2015; Moon & Ke, 2020). For example, Hsu and Cheng
(2021) employed both cluster and sequential analyses to find that students in the cluster
of immersion experiences demonstrated in-game behavioral patterns of more heuristic
and analogical thinking strategies than those in the cluster without immersion expe-
riences. Hwang et al. (2017) used a progressive sequential analysis to explore how
anxiety affected students’ language learning behaviors in a puzzle game. Hou (2015)
used cluster and sequential analyses to examine the relation between the experience of
flow and behavioral patterns in game-based science education.

Although different data mining techniques have been employed to explore students’
behavioral patterns of game-based learning, research incorporating both cluster and
sequential analyses to investigate participants’ patterns of interactions with MERs in
DGBL is still scarce. In this study, we conducted both cluster analysis and sequential
analysis to analyze students’ gameplay behaviors to explore the cognitive operations
they perform when interacting with various MERs during gameplay.

Methods

Research Design

In this case study, we explored learners’ behavioral patterns of interacting with different
MERs in DGBL. Data mining techniques, including cluster and sequential analyses
(Bakeman & Gottman, 1997; Vogt & Nagel, 1992), were used to analyze the encoded
behavioral data governing learner-MER interactions during game-based mathematical
problem solving.

Participants

We recruited 25 college students from a university in the Southeastern United States.
Five students did not complete the study session, so their video recordings were
excluded from the final data analysis. Across all the 20 participants, 40% were male,
45% were Caucasian, 40%were African American, and 15%were Latino. Participants’
average age was 20.3 (SD = 2.4), and their grade levels ranged from freshman to senior.
There were 45% identified as occasional gamers or gamers and 55% considered as non-
gamers.
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Game-Based Learning Platform: E-Rebuild

The study employed a 3D architectural simulation game E-Rebuild. The game aims to
foster students’ performance of mathematical problem solving and conceptual un-
derstanding in the context of reconstructing a disaster-damaged space to fulfill diverse
design parameters or needs (Ke & Clark, 2020). Prior research reported that students’
math problem-solving performance was enhanced after the interactions with structured
MERs embedded in E-Rebuild (Ke, 2019; Ke & Clark, 2020).

In E-Rebuild, students need to solve contextualized math problems by interacting
with multiple MERs that are embodiments of math problem parameters. To concep-
tualize and solve mathematical context problems, students have to collect, organize,
and interpret distributed information that is purposefully inscribed onto MERs situated
in the game world. The game encompasses four types of MERs (Ke & Clark, 2020), as
illustrated in Figure 3: (1) verbal/syntactic task narratives; (2) maneuverable visual-
spatial representations; (3) formal mathematical notations; and (4) interactive math-
ematical tools. The detailed descriptions and examples of each MER are presented in
Table 1.

Coding Scheme of Behaviors

We conducted a systematic, structural coding for behavior analyses with the recorded
gameplay actions of the participants via BORIS, an analytic tool designed for pro-
fessional video analysis (Friard & Gamba, 2016). First, two trained researchers
conducted independent coding by using an initial coding scheme (based on Ke and

Figure 3. Screen shots of four types of multimodal external representations in E-Rebuild.
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Clark’s category (2020) of MERs in DGBL) to systematically label and index a set of
randomly picked video recordings of participants’ gaming sessions. The coding was
aimed to specify specific events or game actions associated with each of the four types

Table 1. Coding Scheme of Learning Behaviors in Relation to Using MER.

Code Category Description
Modifiers
(sub-codes) Examples

V Use verbal/
syntactic task
narratives

Interactions with
written text words
stating the situation
or task within the
game that students
used or recognized
during game play.

1. Task narrative Read task narrative
(i.e., the
contextualized math
problems and game
objectives for
players).

2. Object-
oriented
narrative

3. Syntactic cue
4. Information on
help panel

M Use maneuverable
visual-spatial
representations

Interactions with
interactive 2D/3D
game objects that
encode the semantic
relations embedded
in a problem.

1. 2D game
objects

Explore the spatial
configuration of the
landscape
designating the size
of the shelter to be
built.

2. 3D game
objects

3. Environmental
landscape

N Use formal
mathematical
notations

Interactions with
mathematical
symbols, numerals,
and operations
students referenced
during gameplay.

1. Object-
oriented
notation

Retrieve the numerals
inscribed onto
different size of
families to answer
the question.

2. Object-
oriented
operation

T Use interactive
mathematical
tools

Interactions with tools
that students used to
explore the
distributed
mathematical
information
embedded in the
objects and game
world.

1. Appropriate
use of a
measuring tool

Use a measuring tool to
measure distance or
angle.

2. Inappropriate
use of a
measuring tool

3. Appropriate
use of a
copying tool

4. Inappropriate
use of a
copying tool

S Successful attempt Successfully
accomplishing a
mission within a
game level.

N/A Collect a scattered
container by
correctly answering
attached question.

F Failed attempt Unsuccessfully
accomplishing a
mission within a
game level.

N/A Pay incorrect amount
of money to buy a
door.
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of MERs. After the initial coding, peer debriefing was held to resolve the disagree-
ments, the examples and definitions of the coding categories were updated, and
corresponding sub-codes (modifiers) were modified. In the second stage, researchers
coded 20% of the video recordings independently with the refined coding scheme.
Since the reliability of the multi-rater Fleiss Kappa coefficient κ was 0.96, the re-
searchers moved on to the third stage—coding an equal part of the remaining re-
cordings separately. During the process of structural coding, the coding scheme was
constantly refined as the synthesis proceeded and meanwhile, a cross-case pattern
analysis of the individual cases was conducted (Miles & Huberman, 1994). Minor
revisions were made after peer debriefing. All behavior codes with corresponding sub-
codes for the analyses are displayed in Table 1.

In Table 1, six coding categories, depicting the four types of MERs (i.e., verbal/
syntactic task narratives, maneuverable visual-spatial representations, formal mathe-
matical notations, and interactive mathematical tools) as well as the successful and
failed attempts of game tasks, were presented with the supportive examples and sub-
codes (modifiers).

Procedure

The participants signed the consent form before participating in the study. To collect
thorough information with respect to the participants’ gameplay behaviors and observe
their interactions with a variety of MERs during the game-based problem solving
process, we scheduled a one-on-one study session for each participant. On the
scheduled observation day, each participant played E-Rebuild for 1.5 hours. At the
beginning of the gameplay session, the researcher gave a very brief introduction of the
gameplay. The first five participants’ individual gameplay sessions were held face to
face in a study room on campus. The remaining 15 participants attended one-on-one
sessions through Zoom due to the Covid-19 pandemic situation. Participants’ gameplay
actions and conversations were screen recorded.

Data Analyses

We conducted a cluster analysis with the frequency data of the four types of MERs as
well as the successful and failed attempts (see Table 1). A two-step clustering procedure
was used to analyze the encoded data (Rovniak et al., 2010). First, an agglomerative
hierarchical cluster analysis was performed to determine the initial cluster groupings
and cluster centers. Ward’s minimum variance method and Squared Euclidean distance
were used to form the clusters (Ward, 1963). The number of clusters was selected based
on the information shown in the dendrogram and agglomeration schedules. In the
second step, the cluster means (centroids) from the previous hierarchical cluster
analysis were used as initial seed points in a non-hierarchical, k-means cluster analysis
to refine the initial cluster solution (Hair & Black, 2000).
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Afterward, each participant’s behavior codes were chronologically arranged so that
we can explore participants’ patterns of using MERs in DGBL by conducting se-
quential analysis. For example, after reading the narrative of the game task (V), a
participant headed to the store and traded 2D objects (M) that involved the act of
processing formal mathematical notations (N), before acquiring and maneuvering these
objects (or building materials) for the following construction task. In this case, the
visualized sequence was noted as V→ M → N.

We then conducted a series of frequency transition matrices, including transfer
matrix of behavioral frequency, conditional probability matrix, and expected value
matrix to determine the sequential behavioral patterns of each cluster (Bakeman &
Gottman, 1997). The transfer matrix of behavioral frequency between each behavioral
code was used to form a matrix of the frequencies of transfer between each code. The
conditional probability was calculated based on the conditional probability between
each code from the aforementioned frequency transfer matrix. Subsequently, the matrix
of the expected value of sequence transfer between each code was calculated with
respect to the aforementioned two matrices. We inferred the z-score value based on the
three matrices to examine the significance of each sequence, by testing whether the
continuity of each sequence reaches the significant level. Finally, we drew sequential
diagrams of behavioral transition with the significant sequences for each cluster to
reveal the sequential correlations associated with each behavior.

Results

Cluster Patterns of Using Various MERs

The results of the hierarchical cluster analysis indicated that grouping all the partic-
ipants into two clusters was the most reasonable and accurate solution. The follow-up
k-means cluster analysis revealed the members in each cluster. Table 2 shows the results
of cluster analysis of the 2654 coded behaviors with respect to the frequency of using or
interacting with each MER.

The two clusters comprised 12 and 8 participants, respectively, accounting for 60%
and 40% of the total participants. In general, participants in Cluster 1 displayed higher
frequency of using MERs as well as of successful and failed attempts (V, M, N, T, F, S)
than those in Cluster 2 (see Figure 4). Maneuverable visual-spatial representations were
the most frequent type of MERs used when participants were involved in solving game-
based mathematical problems, followed by formal mathematical notations. The results
of the F-test of equal variance of two clusters indicated that the variances on the
frequencies of the two coded behaviors—using interactive mathematical tools and
failed attempt (T and F)—achieved the level of significance, but the rest of the coded
behaviors (V, M, N, S) showed little difference.

We further examined participants’ prior gaming experience in relation to the game
tasks completed. Since the current study targeted participants with sufficient and
advanced prior knowledge of mathematics relevant to the problem solving in
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Table 2. Cluster Analysis of the Participants’ Behaviors of Using Each MER.

Clusters F

Indicators of cluster analysis Cluster 1
(n = 12, 60%)

Cluster 2
(n = 8, 40%)

V 415 120 0.24
M 730 172 0.14
N 569 152 0.35
T 92 20 8.12*
F 60 15 4.78*
S 238 71 1.22
Background of each participant
Percentage of students with gameplay experience 83% 13%
Percentage of students who completed tasks 80% 35%

*p < 0.05.

Figure 4. Frequency of using different multimodal external representations for each cluster.
Note. V represents using verbal/syntactic task narratives; M represents using maneuverable
visual-spatial representations; N represents using formal mathematical notations; T represents
using interactive mathematical tools; S represents a successful attempt; F represents a failed
attempt.
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E-Rebuild, participants’ prior gaming experience could be a moderator that might
impact participants’ game task performance. Table 2 shows that the percentage of the
participants with prior gaming experience in Cluster 1 (83%) was significantly higher
than that in Cluster 2 (13%). Correspondingly, participants in Cluster 1 (80%) com-
pleted more game tasks/levels than those in Cluster 2 (35%). These findings suggest
that gaming experience may play a salient role in game-based learning; experienced
gaming students are likely to collect more task-relevant information, execute better
problem solutions or in a more efficient way.

Behavioral Sequential Analysis

We conducted a sequential analysis with the six behavior codes for each cluster of
participants and visualized each behavioral sequence in Figure 5. The adjusted re-
siduals of the participants’ behavioral transition for each cluster are shown in Table 3.
The rows of the table display participants’ initial behaviors, and the columns represent
the subsequent behaviors. A z-score greater than 1.96 indicates that a sequential be-
havior in the cluster reaches a level of statistical significance (p < 0.05) (Bakeman &
Gottman, 1997). As shown in Table 3, there are 11 and 9 significant sequences oc-
curring in the two clusters, respectively. To further clarify the similarities and dif-
ferences of the salient behavior sequences between the two clusters, two diagrams of
behavioral transition (Figures 6 and 7) were presented to portray these behavior
sequences.

We found that the participants in the two clusters demonstrated both similar and
different behavioral patterns of using MERs in the architectural simulation game.

Figure 5. Visualization of each behavioral sequence for two clusters based on adjusted
residuals. Note. V represents using verbal/syntactic task narratives; M represents using
maneuverable visual-spatial representations; N represents using formal mathematical notations;
T represents using interactive mathematical tools; S represents a successful attempt; F represents
a failed attempt.

Pan et al. 13



Overall, the sequential patterns in Figures 6 and 7 show that both clusters had four
sequential links, 2 bi-directional connections, and 1 self-circular sequence. Specifically,
the two clusters had the same sequential links between the use of four types of MERs
(V, M, T, N) and successful attempts (S) (i.e., T → N, N → S, S → V, S → M). It
indicates that all participants performed a variety of conversion-oriented representation
transformations to successfully tackle a math task in the architectural simulation game.
Compared to Cluster 2, the z-scores associated with three sequential links (i.e., T→ N,
N→ S, S→ V) were much higher in Cluster 1, though the z-scores with the remaining
one (i.e., S → M) were quite close. Meanwhile, there were bi-directional connections
between the use of verbal task narratives (V) and the maneuverable visual-spatial
representations (M), as well as the use of formal mathematical notation (N) and failed
attempts (F) in both clusters (i.e., V → M, M → V, N → F, F → N). Similarly, the
z-scores associated with the two sequential links (i.e., V→M,N→ F) in Cluster 1 were
higher than those in Cluster 2. In addition, Figures 6 and 7 show that there was a self-
circular sequential pattern in the use of formal mathematical notation (i.e., N → N).
Interestingly, the z-score associated with this sequential link in Cluster 1 is slightly
lower than Cluster 2. It indicates that there were more behavioral sequences of
“treatment” transformations when participants used the formal mathematical notation
in Cluster 2.

Compared to Cluster 2, Cluster 1 portrayed additional behavioral sequences be-
tween the use of maneuverable visual-spatial representations (M) and that of interactive
mathematical tools (T) (M → T) (z = 6.71, p < 0.05), and between failed attempts (F)
and the use of verbal task narratives (V) (F → V) (z = 2.22, p < 0.05). It suggests that
participants in Cluster 1 tended to better retrieve mathematical information inscribed

Table 3. The Adjusted Residual Table for the Behaviors of Using MER in Each Cluster.

V M N S F T

Cluster 1
V �2.86 6.44* 1.56 �5.19 �3.24 �2.19
M 5.56* �0.39 �5.16 �2.29 �2.17 6.71*
N �8.88 �5.45 2.41* 13.40* 8.77* �2.86
S 8.30* 5.21* �7.24 �5.58 �2.78 �1.44
F 2.22* �2.93 4.14* �2.79 �0.55 �1.67
T �2.63 �5.39 11.50* �2.84 �1.69 �1.58

Cluster 2
V �3.27 6.21* 0.54 �4.21 �1.46 �0.78
M 6.26* �0.51 �4.36 �0.69 �2.68 1.79
N �4.07 �7.39 3.34* 8.30* 5.15* �0.29
S 2.71* 5.66* �4.54 �3.37 �1.46 �1.70
F �1.17 �1.89 4.60* �1.42 �0.62 �0.71
T �2.33 �3.11 5.78* �1.77 0.62 1.53

*p < 0.05.
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onto the game objects, through the acts of applying interactive mathematical tools and
interacting with the maneuverable visual-spatial representations. It may also indicate
that participants in Cluster 1 engaged in more reflective problem-solving processes
because they not only went back to check the information obtained from the formal
mathematical notation, but also re-gauged the information retrieved from the verbal
task narratives when they failed to solve the game-based math task. This pattern helped
explain why participants in Cluster 1 portrayed more behavioral sequences of using
formal mathematical notations in relation to successful attempts than those in Cluster 2.

Discussion

Discussion of Cluster Patterns

We found that participants tended to use maneuverable visual-spatial representations
and formal mathematical notations more than verbal/syntactic task narratives and
interactive mathematical tools for game-based math problem solving. This finding is
similar to the research by Moyer-Packenham et al. (2021) who reported that the image
(i.e., visual pictures or objects) was the most frequently used type of representations in

Figure 6. The behavioral transition diagram of cluster 1. *p < 0.05.
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the selected 9 digital math games for students in Grades 4, 5, and 6, followed by
symbols (i.e., mathematical symbols and numerals). A potential explanation is that a
maneuverable visual-spatial representation acts as “an advanced organizer that aids
students in integrating and encoding problem information” (Ke & Clark, 2020).
Another potential interpretation is that in the current study, manipulating 2D and 3D
game objects and interacting with formal mathematical notation have become an
essential part of solving contextualized mathematical problems. It is aligned with the
proposition that there is a strong relationship between the design of the most prominent
MERs in DGBL and students’ recognitions and the employment of such kind of MERs
(Moyer-Packenham et al., 2021). However, it is important to note that more research is
needed to further explore how each MER contributes to different learning outcomes.

Meanwhile, the differences in the cluster patterns might be moderated by partici-
pants’ gaming experience. Our findings indicate that there might be connections
between students’ prior gaming experience, the interactions with MER, and their
reflective problem-solving processes. Experienced video game players might solve
game tasks more efficiently and strategically than non-players (Smith et al., 2020). The
current behavior observations tend to support the previous findings (Bavelier et al.,
2012; Smith et al., 2020) that prior gaming experience may cultivate the strategies and

Figure 7. The behavioral transition diagram of cluster 2. *p < 0.05.
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propensities that students could leverage to explore, process, and coordinate infor-
mation in complicated and novel DGBL.

Discussion of Sequential Behavior Patterns

One of the salient findings of this study is that participants in both clusters exhibited
similar sequential patterns. First, all the participants engaged in representational
transformations, including both treatment and conversion transformations. It indicates
that students in DGBL need to perform representational transformations with MERs
during math problem solving. It is consistent with what Goldin (2014) suggested that
the interactions with a variety of MERs in computer-based learning environments help
students construct solutions for contextualized mathematical problem.

Second, participants in both clusters exhibited bi-directional conversion transfor-
mations. It indicates that verbal narratives and dynamic visual-spatial objects sup-
plement each other to support mathematical meaning-making. In DGBL, a game-based
task is a contextualized math problem, and information is distributed and situated
within various objects in the game world. Students need to identify and integrate all the
sufficient information to solve the problem. In the current study, verbal narratives aid
participants in identifying and formulating initial strategies and solutions, whereas
dynamic visual-spatial objects help participants integrate and encode problem-relevant
information. Manipulating the virtual mathematical objects helps learners develop
alternative insights in relation to the game-based task, thus helping them to adjust their
problem-solving strategies and solutions. Participants then seek verbal information to
support and verify their problem solutions. After multiple rounds of bi-directional,
conversion-oriented representation transformations between verbal narratives and
dynamic visual-spatial objects, participants solve the problem and potentially acquire
better understanding of the mathematical concepts that are embodied in the game
objects. Such a pattern is consistent with the previous study finding that the interactions
with a variety of MERs (e.g., manipulating dynamic visual-spatial objects) in DGBL
help students internalize conceptual understanding (Ke & Clark, 2020; Kirsh, 2010).

In addition, the current study findings showed that participants in both clusters
exhibited bi-directional processes of reflection. The analyses showed that after re-
ceiving feedback for failed task attempts, participants would re-analyze, re-process, and
re-coordinate the formal mathematical notations, and then retest the hypothesis. Such
kind of reflective solution refinement iteratively repeated until the correct solutions
were formulated. It supports the argument by Kiili (2007) that students engage in
reflective learning processes in DGBL when they iteratively refine their problem-
solving solutions.

However, it is worth noting that the frequency of the conversion-oriented repre-
sentation transformations is higher than that of the treatment-oriented representation
transformations in the current study. There was only one type of treatment-oriented
representation transformations (i.e., formal mathematical notation to formal mathe-
matical notation) shared by both clusters. This finding suggests that interacting with
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formal mathematical notation is an essential part of solving contextualized mathe-
matical problems in the selected architecture game. The treatment-oriented repre-
sentation transformation that uses the registers of the formal mathematical notations, as
demonstrated by the current study, is “as cognitively challenging as some conversion
transformations” (Moyer-Packenham et al., 2021). This finding is aligned with Pino-
Fan et al. (2017) who argued that treatment-oriented representation within symbol
registers (i.e., notation) is as complex as some conversion-oriented representation
transformations.

Our behavioral analyses showed that participants in both clusters exhibited dis-
crepant sequential behavior patterns. Specifically, the participants in Cluster 1 dis-
played a higher frequency in using various MERs and attempting game tasks, as well as
a more cautious and optimized reflective problem-solving process, while the partic-
ipants in Cluster 2 portrayed lower frequencies in the coded behavioral events and a
relatively less reflective problem-solving process. This finding confirms that students
who can freely make more transformations across two registers exhibit deeper
mathematical conceptual understanding than those who make fewer conversion
transformations (Calder et al., 2018; Pino-Fan et al., 2017).

Furthermore, our findings suggested that there exists a special type of transfor-
mations in DGBL: failed-attempt-mediated transformation. After receiving instant
feedback for a failed attempt, participants would determine the subsequent refinement
of their solutions by referring to the same or a different register. In the current study,
failed-attempt-mediated conversion transformations seemed to better promote par-
ticipants’ task performance than treatment transformations: Participants in Cluster
1 who completed more game levels than those in Cluster 2 demonstrated a frequent
behavioral sequence from failed attempts (F) to the use of verbal task narratives (V) (F
→ V). Therefore, it supports the prior finding that providing instant feedback to
students in DGBL could positively impact the way students plan, monitor, and execute
problem solutions, thus enhancing students’ performance (Law & Chen, 2016;
Nadolski & Hummel, 2017; Tsai et al., 2015).

Conclusion

The study provides an initial and critical reference of how problem solvers interact with
a variety of MERs in DGBL. Data mining techniques, including cluster and sequential
analyses, were used to extract learners’ behavioral patterns of using various MERs. We
observed that the maneuverable visual-spatial representation was the most frequently
used type of representations in the selected architecture game for the problem solvers
when they were involved in solving mathematical problems, followed by the formal
mathematical notations. Manipulating dynamic game objects and interacting with
formal mathematical notation composed an essential part of solving contextualized
mathematical problems in DGBL. The findings of cluster and sequential analyses
coherently indicated that participants have engaged in a high level of representational
transformations, including both treatment and conversion, which help them internalize

18 Journal of Educational Computing Research 0(0)



math concepts. Consequently, participants who were capable of making more con-
version transformations have exhibited a greater performance of gameplay than those
who made fewer. We also observed that participants with gaming experience have
solved game-based tasks more efficiently than non-players. Learners should be given
more opportunities to practice seeking, processing, and coordinating grounded problem
information in a learning environment with a variety of MERs.

Implications

The selected architectural simulation game in the study was found to engage learners in
treatment and conversion transformations between various MERs. It shows the fea-
sibility of using digital game-based math context problem solving to promote students’
abilities to recognize, encode and translate grounded problem information embedded in
a variety of MERs. The study findings help to inform teachers, game developers, and
educators about how to design and implement MERs in DGBL to enhance students’
mathematical problem solving performance.

First, participants with different gaming experience have demonstrated different
behavioral patterns of using MER in a game-based learning environment. As such, we
recommend that teachers should provide appropriate guidance on how to interact with
the MERs. For example, teachers may provide students who lack sufficient gaming
experience with instructions on how to extract and recognize mathematical information
embedded in a variety ofMERs. For students who are insufficiently equipped with prior
knowledge of mathematics, teachers can provide exercises and examples of repre-
sentational transformations before the gameplay and encourage students to share the
transformations they have observed and performed after gameplay.

Second, we propose that educational game developers should provide more op-
portunities for students to engage in representational transformations by designing
games with multiple MERs rather than a single-mode external representation. In
addition, game design should allow students to practice seeking, processing, and
coordinating grounded problem information in a learning environment. This can be
achieved by designing scaffolds that introduce situated or contextualized represen-
tations of math concepts.

Lastly, we suggest that exploring students’ behavioral patterns through data mining
techniques (e.g., cluster and sequential analyses) should be encouraged in future DGBL
research. It fosters a deeper understanding of the learning process by visualizing
learners’ behavioral patterns of interactions in DGBL.

Limitation and Future Research

This naturalistic inquiry involved a small sample and did not directly measure par-
ticipants’math problem-solving knowledge or performance before and after gameplay.
A future study can be enhanced with an increasing number of participants and by
including an external problem-solving test. It is warranted to conduct future research on
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the same phenomenon in longitudinal and comparative ways to investigate whether the
effect of gaming experience will diminish on the students’ interactions with MERs. It is
also suggested that the potential moderating effect of the learner variables (e.g., prior
knowledge of relevant content, problem solving skills, or perception of game flow)
should be controlled or investigated for the future research.
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